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CHAPTER 2

Linear transformation of anharmonic

molecular force constants between normal

and Cartesian coordinates

A full derivation of the analytic transformation of the quadratic, cubic, and
quartic force constants from normal coordinates to Cartesian coordinates is given.
Previous attempts at this transformation have resulted in non-linear transforma-
tions, however for the first time a simple linear transformation is presented here.
Two different approaches have been formulated and implemented, one of which
does not require prior knowledge of the translation-rotation eigenvectors from di-
agonalization of the Hessian matrix. The validity of this method is tested using
two molecules H2O and c-C3H2D+.

C. J. Mackie, A. Candian, X. Huang, T. J. Lee, and
A. G. G. M. Tielens, J. Chem. Phys 142, 244107 (2015)



Linear transformation of molecular force constants

2.1 Introduction

Over the past 25-30 years, quartic force fields (QFFs) have been used extens-
ively to compute fundamental molecular vibrational frequencies, combination and
overtone bands, and rovibrational spectroscopic constants (for example, see Refs.
56, 57, 58, 59, 60, 61, 62, 63 and references therein). QFFs have been used ex-
tensively in both second-order perturbation theory [64, 65, 66, 67] and variational
treatments [68, 69, 70] to solve the bound-state nuclear Schrödinger equation.
QFFs are usually computed in simple- or symmetry-internal coordinates and then
transformed into either normal coordinates for perturbation theory analysis or
some sort of Morse-cosine coordinate system for variational treatments. [71, 72]
This allows one to compute the vibrational frequencies and rovibrational spectro-
scopic constants for all isotopologues. However, it was noted in a 1989 paper by
Schneider and Thiel [73] that since the second-order perturbation theory formula
only uses a subset of the quartic force constants in the normal coordinate basis, if
one were to use central differences of analytical second derivative techniques, that
many fewer displacements would be needed if displacements were made in normal
coordinates, and only those quartic force constants needed were computed. One
disadvantage to this approach is that since normal coordinates are mass-dependent,
the resulting normal coordinate partial QFF will yield vibrational frequencies and
rovibrational spectroscopic constants for only the isotopologue used to define the
normal coordinates used to define the displacements.

Nonetheless, if one has the full or only a partial QFF in normal coordinates,
there are good reasons to transform the QFF into Cartesian coordinates. For
example, also in 1989, Thiel[55] showed how to transform the normal coordin-
ate force constants into Cartesian coordinates in order to represent the QFF in
simple internal or symmetry internal coordinates which may then be used in the
spectroscopic analysis of an isotopologue or they may be transferred to molecular
systems with a similar internal coordinate(s) in the approximate construction of a
quadratic, cubic, or quartic force field of a larger molecule.

It has been shown in the literature that the transformation from Cartesian
coordinate to normal coordinate force constants is a linear transformation [74].
However, the opposite transformation, from normal coordinate to Cartesian co-
ordinate force constants, has until now only been dealt with in the literature as
a non-linear transformation [55, 75]. The reason for the transformation to be
thought as linear one way but non-linear the other way is due to the number of
defined coordinates in the respective coordinate systems. The Cartesian coordin-
ates that define the positions of the atoms in a molecule have 3N unique degrees
of freedom (where N is the number of atoms) whereas normal coordinates that
define the position of the atoms have 3N-6 coordinates (3N-5 in linear molecules).
When moving from Cartesian coordinates to normal coordinates the loss of the six
(five) degrees of freedom occurs because normal coordinates are defined in such a
way that the origin of the coordinate system moves and rotates with the center
of mass of the molecule, effectively eliminating the need for the six rotational and
translational normal modes. This does not affect the transformation of the force
constants from 3N Cartesian coordinates to 3N-6 normal coordinates since the loss
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Derivation of the eigenvectors

of the six extra degrees of freedom have no effect on the transformation. However,
when transforming from normal coordinates to Cartesian coordinates the process
involves going up from 3N-6 normal coordinates to 3N Cartesian coordinates. This
increase in the number of coordinates was the reason for the need of the previous
non-linear transformation.

The previously non-linear method, as mentioned above, involves the calcula-
tion of many terms including mixed partial derivatives of the second and third
order (which themselves involve the calculation of another six additional sets of
terms, including Coriolis constants). These terms arise precisely because the ro-
tational and translational normal modes are not included in the transformation.
This highly complicated non-linear transformation can be greatly simplified into
a linear transformation if the rotational and translational normal modes are re-
introduced. In this way all of the Coriolis terms and mixed partial derivatives
become precisely zero, eliminating these non-linear terms in the previously deriv-
ation. This work outlines the method, effectively making the transformation from
normal coordinate force constants to Cartesian coordinate force constants a simple
linear 3N to 3N coordinate conversion. §2.2 shows the normal mode eigenvectors
derivation as well as gives two methods to regenerate the missing translational
and rotational normal mode eigenvectors. §2.3 derives the linear transformation
equations for the conversion of the quadratic, cubic, and quartic force constants
forwards and backwards between Cartesian and normal coordinates. §2.4 derives
the partial derivatives needed in §2.3. §2.5 outlines two separate mathematical
manipulations that can be implemented to speed up calculation time of the trans-
formation. Finally §2.6 applies the transformation method described in this paper
to two example molecules, H2O and c-C3H2D+, to show the validity of the method.

2.2 Derivation of the eigenvectors

The Hamiltonian for a molecule can be written using a Taylor expansion for the
potential energy function as follows

H = −
~2

2

3N∑
a=1

∂2

∂Y2
a

+ V0

+

3N∑
a=1

(
∂V
∂Ya

)
0

Ya

+
1
2

3N∑
a=1

3N∑
b=1

(
∂2V

∂Ya∂Yb

)
0

YaYb + · · ·

(2.1)

where the x,y,z coordinates of the atoms are numbered from 1 to 3N, and Ya =
√

maXa is the mass-weighted Cartesian coordinate of a given atom

The harmonic approximation is made by retaining only the first non-vanishing
term of its Taylor expansion (V0 is arbitrary so it is set to zero and since the Taylor
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Linear transformation of molecular force constants

expansion is taken at a stationary point any gradients are also zero).

H = −
~2

2

3N∑
a=1

∂2

∂Y2
a

+
1
2

3N∑
a=1

3N∑
b=1

(
∂2V

∂Ya∂Yb

)
0

YaYb (2.2)

To solve for the normal mode eigenvalues (frequencies) of the molecule the
mass-weighted Hessian is diagonalized by

ΩT FΩ = f (2.3)

where F(a,b) is the mass-weighted Hessian that consists of the second order deriv-
atives of the potential energy

Fa,b =

(
∂2V

∂Ya∂Yb

)
0

(2.4)

and f = diag( f1, f2, ..., f3N−6, 0, 0, 0, 0, 0, 0) are the frequencies of the normal modes.
The last six zero frequencies correspond to the rotational and translational

modes of the non-linear molecule at its stationary point. The columns that make
up the Ω matrix are the normal mode eigenvectors ω expressed in mass-weighted
Cartesian coordinates. The last six columns correspond to the translational and
rotational eigenvectors, but in reality can be linear combinations of these six ei-
genvectors and as such may not be easily visualized.

Generally only the non-zero frequency modes of the Ω matrix and their cor-
responding eigenvectors ω are reported in the literature or in the default output
of computational packages. The rotational and translational eigenvectors are nor-
mally dropped, resulting in only the non-zero 3N-6 normal modes (3N-5 for linear
molecules) being reported. However, these six (five) normal mode eigenvectors are
needed to make the transformation from normal coordinate to Cartesian coordinate
force constants linear. In such cases the translational and rotational eigenvectors
can be regenerated by re-diagonalizing the mass-weighted Hessian as in equation
2.3, or by explicitly regenerating the missing mass-weighted eigenvectors as shown
below. Note that when regenerating the six ‘missing’ eigenvectors as shown in this
work, they will represent the pure rotational and translational eigenvectors and
will be easily visualized as such, unlike the linearly combined eigenvectors that
result from the numerical re-diagonalization method. It should be noted that the
resulting individual Cartesian coordinate force constants obtained with these two
methods may differ due to the degenerate nature of Cartesian coordinates, but will
produce Cartesian coordinate force constants that are equivalent when taken as
full sets. There are two sources of degeneracy when it comes to Cartesian force con-
stants: One being the arbitrary orientation and position chosen for the molecule
in the Cartesian plane, the other being the infinite number of linear combinations
of the rotational and translational eigenvectors. One should also be cautious when
re-diagonalizing the Hessian of a molecule with degenerate modes. The eigen-
vectors for degenerate vibrational modes can be arbitrarily rotated amongst each
other which will give different self-consistent cubic and quartic force constants.
Hence, if re-diagonalizing, one needs to ensure degenerate modes are aligned the
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Derivation of the eigenvectors

way they were when the normal coordinate force constants were generated. For
this reason it would be advantageous to use the regeneration method for molecules
with degenerate modes.

The missing eigenvectors can be regenerated using the methods extracted from
Ref. 76. The translational eigenvectors can be written as follows

ω(3N−5) = [
√

m1, 0, 0,
√

m2, 0, 0, ... ,
√

mN , 0, 0] (2.5)

ω(3N−4) = [0,
√

m1, 0, 0,
√

m2, 0, ... , 0,
√

mN , 0] (2.6)

ω(3N−3) = [0, 0,
√

m1, 0, 0,
√

m2, ... , 0, 0,
√

mN] (2.7)

The rotation eigenvectors components can be written as follows

ω(3N−2) j,i =
[
(Py)iD j,3 − (Pz)iD j,2

]
×
√

mi (2.8)

ω(3N−1) j,i =
[
(Pz)iD j,1 − (Px)iD j,3

]
×
√

mi (2.9)

ω(3N) j,i =
[
(Px)iD j,2 − (Py)iD j,1

]
×
√

mi (2.10)

where D is the matrix that diagonalizes the moment of inertial tensor and Px, Py,
Pz are defined as

Px = [X1 · Dx,X2 · Dx, ... ,Xn · Dx] (2.11)

Py = [X1 · Dy,X2 · Dy, ... ,Xn · Dy] (2.12)

Pz = [X1 · Dz,X2 · Dz, ... ,Xn · Dz] (2.13)

where Xn is the Cartesian coordinate vector of the nth atom, and Dα is the αth row
of the D matrix.

All of the eigenvectors are then normalized to produce an orthonormal set of
3N eigenvectors Ω. Note that in the linear molecule case one of the rotational
eigenvectors will come out as the zero vector, and should be dropped.
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2.3 Derivation of the transformations equations

In the quartic force field approximation the potential energy of the Hamiltonian
takes the form of the first three non-zero terms in its Taylor expansion

H = −
~2

2

3N∑
a=1

∂2

∂Y2
a

+
1
2

3N∑
a=1

3N∑
b=1

(
∂2V

∂Ya∂Yb

)
0

YaYb

+
1
6

3N∑
a=1

3N∑
b=1

3N∑
c=1

(
∂3V

∂Ya∂Yb∂Yc

)
0

YaYbYc

+
1

24

3N∑
a=1

3N∑
b=1

3N∑
c=1

3N∑
d=1

(
∂4V

∂Ya∂Yb∂Yc∂Yd

)
0

YaYbYcYd

(2.14)

Instead of solving this Hamiltonian directly, second-order perturbation theory
is often used. The quadratic force constants are used in the unperturbed harmonic
terms, the cubic force constants are used in the first term of the perturbation,
and the quartic force constants are used in the second term of the perturbation.
Therefore it will be shown how to transform these three orders of force constants
between normal and Cartesian coordinates. It will also be easy to see how the
transformations can be extended to any number of orders. In order to convert the
force constants between the two coordinate systems, the Taylor expansions of the
potential in each coordinate system are considered. The potential energy function
in Cartesian coordinates is given by

Vcart =
1
2

3N∑
a=1

3N∑
b=1

FabXaXb

+
1
6

3N∑
a=1

3N∑
b=1

3N∑
c=1

FabcXaXbXc

+
1

24

3N∑
a=1

3N∑
b=1

3N∑
c=1

3N∑
d=1

FabcdXaXbXcXd

(2.15)

where Fab, Fabc and Fabcd the Cartesian quadratic, cubic, and quartic force con-
stants respectively.

Likewise, the potential energy function in normal coordinates is given by

Vnorm =
1
2

3N∑
k=1

3N∑
l=1

ΦklQkQl

+
1
6

3N∑
k=1

3N∑
l=1

3N∑
m=1

ΦklmQkQlQm

+
1
24

3N∑
k=1

3N∑
l=1

3N∑
m=1

3N∑
n=1

ΦklmQkQlQmQn

(2.16)
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Derivation of the transformations equations

where Φkl, Φklm and Φklmn are the normal coordinate quadratic, cubic, and quartic
force constants respectively.

Since the total potential energy of a molecule is independent of the coordinate
system used, it can be written that

Vcart = Vnorm (2.17)

Subsequently, all derivatives of the total potential energy in any two different
coordinate systems with respect to same coordinate system are also equal.

Taking the second derivatives of equations 2.15 and 2.16 with respect to Xa

and Xb gives the following: (
∂2Vcart

∂Xa∂Xb

)
=

1
2

Fab +
1
2

Fba

= Fab

(2.18)

and

(
∂2Vnorm

∂Xa∂Xb

)
=

1
2

3N∑
k=1

3N∑
l=1

Φkl

[
∂Qk

∂Xa

∂Ql

∂Xb
+
∂Qk

∂Xb

∂Ql

∂Xa

+
∂2Qk

∂Xa∂Xb
Ql +

∂2Ql

∂Xa∂Xb
Qk

]
=

3N∑
k=1

3N∑
l=1

Φkl

[
∂Qk

∂Xa

∂Ql

∂Xb

]
(2.19)

respectively.
When expressions 2.18 and 2.19 are equated it gives the transformation equa-

tion for going from normal coordinates to Cartesian coordinates for the quadratic
force constant terms. A similar procedure is performed on equations 2.15, and 2.16,
but with a third derivative with respect to Xc, and a third and forth derivative
with respect to Xc and Xd respectively, to give the following set of transformations.

Fab =

3N∑
k=1

3N∑
l=1

Φkl

[
∂Qk

∂Xa

∂Ql

∂Xb

]
(2.20)

Fabc =

3N∑
k=1

3N∑
l=1

3N∑
m=1

Φklm

[
∂Qk

∂Xa

∂Ql

∂Xb

∂Qm

∂Xc

]
(2.21)

Fabcd =

3N∑
k=1

3N∑
l=1

3N∑
m=1

3N∑
n=1

Φklmn

[
∂Qk

∂Xa

∂Ql

∂Xb

∂Qm

∂Xc

∂Qn

∂Xd

]
(2.22)
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Linear transformation of molecular force constants

Note that the summations are over all of the 3N normal modes, including
translational and rotational modes. If the translational and rotational modes were
neglected then the higher order mixed derivatives (not shown here) would be non-
zero, resulting in the non-linear transformation mentioned above.

The derivation for the opposite transformation, going from Cartesian to normal
coordinate force constants, is the same procedure as above except the derivatives
are taken with respect to Qk, Ql, Qm, and Qn. This gives

Φkl =

3N∑
a=1

3N∑
b=1

Fab

[
∂Xa

∂Qk

∂Xb

∂Ql

]
(2.23)

Φklm =

3N∑
a=1

3N∑
b=1

3N∑
c=1

Fabc

[
∂Xa

∂Qk

∂Xb

∂Ql

∂Xc

∂Qm

]
(2.24)

Φklmn =

3N∑
a=1

3N∑
b=1

3N∑
c=1

3N∑
d=1

Fabcd

[
∂Xa

∂Qk

∂Xb

∂Ql

∂Xc

∂Qm

∂Xd

∂Qn

]
(2.25)

2.4 Deriving the partial derivatives

The derivatives in equations 2.20 through 2.25 are generated from the 3N normal
mode eigenvectors. First the mass weighting of the eigenvector matrix, Ω, is
removed and each column vector is re-normalized

Ω̄ =
(
M− 1

2Ω
)
Λ (2.26)

where M = diag(m1,m2, ...,mN) and Λ is a diagonal matrix containing the normal-
ization factor for each respective mass-unweighted eigenvector.

Each normal mode vector ωN which are the components of Ω̄ is then divided
by the square root of its reduced mass µN

Ω̃ = Ω̄µ−
1
2 (2.27)

where µ = diag(µ1, µ2, ..., µN) with

µN =
∑

i

mN,iω
2
N,i (2.28)

where ωN,i is the ith component of eigenvector ωN and mN,i is the corresponding
mass of ith component of eigenvector ωN

This matrix Ω̃ is then a matrix of the values of the partial derivatives in
equations 2.23 through 2.25 that are needed for the transformation from Cartesian
to normal coordinate force constants.

∂Xb

∂Ql
= Ω̃b,l (2.29)
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The inverse of this matrix is then a matrix of the values of the partial derivatives
in equations 2.20 through 2.22 that are needed for the transformation from normal
coordinate to Cartesian coordinate force constants.

∂Ql

∂Xb
= Ω̃−1

b,l = Ω̌l,b (2.30)

To reduce computational demand it is also possible to take advantage of the
fact that the matrix Ω̄ is orthonormal, which means Ω̄−1 = Ω̄T . This can be used
to avoid taking the inverse of the potentially large non-orthonormal 3N×3N matrix
as is stated in equation 2.30. Ω̌ can instead be expressed as follows

Ω̌ = Ω̃−1

=
(
Ω̄µ−

1
2

)−1

= µ
1
2 Ω̄−1

= µ
1
2 Ω̄T

(2.31)

Both the inverse and transpose methods, equations 2.30 and 2.31 respectively,
have been verified as numerically equivalent.

Furthermore, it can now be seen why the transformation from normal coordin-
ate force constants to Cartesian coordinate force constants had previously been
thought of as a non-linear transformation. Without the six additional rotational
and translational normal modes added back into the Ω matrix it is not possible
to perform a standard inverse on the previously non-square 3N × (3N − 6) normal
mode matrix.

2.5 Implementation details

These transformations can be quite computationally demanding, especially with
large molecules, since they are converting (3N)4 values for the quartic force terms.
To avoid nested summations the conversion equations can be broken up into a
series of sequential summations. We thus have for the quadratic force constants:

Fa j =

3N∑
i=1

Ω̌a,iQi, j (2.32)

Fab =

3N∑
j=1

Ω̌b, jFa, j (2.33)

for the cubic force constants:

Fa jk =

3N∑
i=1

Ω̌a,iQi, j,k (2.34)

Fabk =

3N∑
j=1

Ω̌b, jFa, j,k (2.35)
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Fabc =

3N∑
k=1

Ω̌c,kFa,b,k (2.36)

and for the quartic force constants:

Fa jkl =

3N∑
i=1

Ω̌a,iQi, j,k,l (2.37)

Fabkl =

3N∑
j=1

Ω̌b, jFa, j,k,l (2.38)

Fabcl =

3N∑
k=1

Ω̌c,kFa,b,k,l (2.39)

Fabcd =

3N∑
l=1

Ω̌d,lFa,b,c,l (2.40)

where Fa,..., j,... are the intermediate mixed normal-Cartesian coordinate force con-
stants calculated from the previous step.

2.6 Application to H2O and c-C3H2D
+

In this section the linear transformation method described in this paper is tested
on two molecules H2O and c-C3H2D+. Cartesian coordinate force constants are
not unique for a given molecule (due to the infinite number of valid translational
and rotational eigenvector sets) so direct comparison of the individual Cartesian
force constants is not possible between different references. Instead two tests can
be applied to check the validity of the transformation method. The first test is a
forward transformation of the force constants from normal to Cartesian coordinates
followed by a backwards transformation to obtain the same original values. The
second test would use a set of reference force constants that were numerically
calculated in both normal coordinates and Cartesian coordinates, transform the
normal coordinate force constants to Cartesian coordinates, and then perform a
second-order perturbation treatment using the original Cartesian force constants
and finally comparing the results with a second-order perturbation treatment using
the transformed Cartesian coordinates.

The first test was performed on the H2O molecule. Table 2.1 lists the full non-
zero set of the original normal coordinate force constants of H2O as reported by
Gaussian09[53] (B3LYP/4-31G) and the transformed values for each of the meth-
ods: the explicitly regeneration of the rotational and translational eigenvectors
method (explicit), and the re-diagonalization of the Hessian method (re-diag).
Six significant digits are available for the normal mode eigenvectors calculated by
Gaussian09, and so are the limiting numerical factor in these transformations. It
can therefore be seen that the resulting values from these tests all agree within the
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Application to H2O and c-C3H2D+

Normal coordinate quadratic force constants
I,J Gaussian09 Explicit Re-diag
1,1 0.588920 0.5889195204 0.5889195204
2,2 0.556360 0.5563597083 0.5563597083
3,3 0.103107 0.1031073853 0.1031073853

Normal coordinate cubic force constants
I,J,K Gaussian09 Explicit Re-diag
2,1,1 -1.537841 -1.5378412008 -1.5378412008
2,2,2 -1.494314 -1.4943140745 -1.4943140745
3,1,1 0.147698 0.1476983577 0.1476983577
3,2,2 0.041158 0.0411582366 0.0411582366
3,3,2 0.109423 0.1094229743 0.1094229743
3,3,3 -0.061993 -0.0619934648 -0.0619934648

Normal coordinate quartic force constants
I,J,K,L Gaussian09 Explicit Re-diag
1,1,1,1 3.743561 3.7435605526 3.7435605526
2,2,1,1 3.604032 3.6040318012 3.6040318012
2,2,2,2 3.484090 3.4840896130 3.4840896130
3,2,1,1 -0.366798 -0.3667977452 -0.3667977452
3,2,2,2 -0.191875 -0.1918745935 -0.1918745935
3,3,1,1 -0.755795 -0.7557945848 -0.7557945848
3,3,2,2 -0.611669 -0.6116693020 -0.6116693020
3,3,3,2 0.201451 0.2014514506 0.2014514506
3,3,3,3 -0.051939 -0.0519393906 -0.0519393906

Table 2.1 Non-zero normal coordinate force constants of H2O before and after
transformation from normal force constants and back to Cartesian coordinate force
constants using the two methods for obtaining the missing eigenvectors, explicitly
regenerating the rotational and translational eigenvectors, and re-diagonalizing the
Hessian.

numerical accuracy available. The ‘explicit’ and ‘re-diag’ values are reported to
ten decimal places to show agreement between the two transformation methods.

For the second test the c-C3H2D+ QFF, as described in reference 77, is used.
They calculated both the Cartesian coordinate and normal coordinate force con-
stants and supplied those values for this paper. Three sets of Cartesian force
constants are used for this test: the original Cartesian force constants from ref-
erence 77 are used as reference, the ‘explicit’ transformation method of this work
using the normal coordinate QFF of reference 77, and finally the Hessian ‘re-diag’
transformation method of this work using the normal coordinate QFF of reference
77. Each of these sets of Cartesian coordinate force constants is used to perform a
second-order perturbation theory (VPT2) analysis using SPECTRO[54]. All val-
ues should agree between the reference of reference 77 and the two VPT2 methods
using the transformation here presented. Table 2.2 shows the resulting band pos-
itions and the resonances obtained by SPECTRO. Again, it can be seen that all
values match within numerical accuracy. The position of the fundamental modes
and spectroscopic constants obtained with the VPT2 implementation also agree,
with numerical accuracy, between the reference and transformation method values.

These two tests show that the transformation has indeed been performed suc-
cessfully from normal coordinate force constants to Cartesian coordinate force
constants.

37



Linear transformation of molecular force constants

Mode Ref. Explicit Re-diag
1 3170.36 3170.354 3170.354
4(2) 3137.34 3137.337 3137.337
2 3131.56 3131.562 3131.562
5(2) 2583.82 2583.820 2583.820
6(2) 2540.87 2540.869 2540.869
3 2388.12 2388.117 2388.117
5 + 7 2301.88 2301.874 2301.874
7 + 11 1734.36 1734.364 1734.364
4 1578.66 1578.660 1578.660
11(2) 1433.93 1433.928 1433.928
12(2) 1310.36 1310.360 1310.360
5 1293.31 1293.312 1293.312
6 1274.20 1274.198 1274.198
7 1015.48 1015.475 1015.475
8 1004.66 1004.658 1004.658
9 921.28 921.2834 921.2834
10 916.47 916.4719 916.4719
11 719.23 719.2262 719.2262
12 655.05 655.0473 655.0473

Table 2.2 The wavenumbers [cm−1] of the bands and resonances resulting from the
second-order perturbation theory treatment of c-C3H2D+ calculated using three
different Cartesian force constants: Originally calculated (Ref. 77), converted from
normal coordinate force constants using explicit regeneration method (this work),
and converted from normal coordinate force constants using re-diagonalization
method (this work).

2.7 Conclusions

It has been shown that the transformation from normal coordinates to Cartesian
coordinates (and vice versa) can be made linear through the re-introduction of
the translational and rotational eigenvectors. This method eliminates the need to
calculate mixed derivatives as in the non-linear procedure. Two methods for re-
generating these eigenvectors are presented, one from the re-diagonalization of the
mass-weighted Hessian and one from a series of equations to explicitly reconstruct
the missing rotational and translational eigenvectors. These two methods avoid
the complicated non-linear transformation that that arises if the rotational and
translational normal mode eigenvectors are neglected. Application of the two new
approaches to the H2O and c-C3H2D+ molecules has been performed to validate
the equations and implementation.
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