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S . N Ö L L E R T *, A . N Ü S K E *, R . O G AYA zzzzzz, J . O L E K S Y N kkkkkkkkkkk,
V. G . O N I P C H E N K O ************, Y. O N O D A w w w w w w w w w w w w , J . O R D O Ñ E Z zzzzzzzzzzzz,
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*************Plant Sciences, Forschungszentrum Jülich, 52428 Jülich, Germany, wwwwwwwwwwwwwCenter for Ecosystem Studies, Wageningen

University, 6700 AA Wageningen, The Netherlands, zzzzzzzzzzzzzInstitute of Botany, University of Regensburg, 93040 Regensburg,
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Abstract

Plant traits – the morphological, anatomical, physiological, biochemical and phenological characteristics of plants and

their organs – determine how primary producers respond to environmental factors, affect other trophic levels,

influence ecosystem processes and services and provide a link from species richness to ecosystem functional diversity.

Trait data thus represent the raw material for a wide range of research from evolutionary biology, community and

functional ecology to biogeography. Here we present the global database initiative named TRY, which has united a

wide range of the plant trait research community worldwide and gained an unprecedented buy-in of trait data: so far

93 trait databases have been contributed. The data repository currently contains almost three million trait entries for

69 000 out of the world’s 300 000 plant species, with a focus on 52 groups of traits characterizing the vegetative and

regeneration stages of the plant life cycle, including growth, dispersal, establishment and persistence. A first data

analysis shows that most plant traits are approximately log-normally distributed, with widely differing ranges of

variation across traits. Most trait variation is between species (interspecific), but significant intraspecific variation is

also documented, up to 40% of the overall variation. Plant functional types (PFTs), as commonly used in vegetation

models, capture a substantial fraction of the observed variation – but for several traits most variation occurs within

PFTs, up to 75% of the overall variation. In the context of vegetation models these traits would better be represented by

state variables rather than fixed parameter values. The improved availability of plant trait data in the unified global

database is expected to support a paradigm shift from species to trait-based ecology, offer new opportunities for

synthetic plant trait research and enable a more realistic and empirically grounded representation of terrestrial

vegetation in Earth system models.

Keywords: comparative ecology, database, environmental gradient, functional diversity, global analysis, global change, inter-

specific variation, intraspecific variation, plant attribute, plant functional type, plant trait, vegetation model
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Introduction

Plant traits – morphological, anatomical, biochemical,

physiological or phenological features measurable at

the individual level (Violle et al., 2007) – reflect the

outcome of evolutionary and community assembly

processes responding to abiotic and biotic environmen-

tal constraints (Valladares et al., 2007). Traits and trait

syndromes (consistent associations of plant traits)

determine how primary producers respond to environ-

mental factors, affect other trophic levels and influence

ecosystem processes and services (Aerts & Chapin,

2000; Grime, 2001, 2006; Lavorel & Garnier, 2002; Dı́az

et al., 2004; Garnier & Navas, 2011). In addition, they

provide a link from species richness to functional

diversity in ecosystems (Dı́az et al., 2007). A focus on

traits and trait syndromes therefore provides a promis-

ing basis for a more quantitative and predictive ecology

and global change science (McGill et al., 2006; Westoby

& Wright, 2006).

Plant trait data have been used in studies ranging

from comparative plant ecology (Grime, 1974; Givnish,

1988; Peat & Fitter, 1994; Grime et al., 1997) and func-

tional ecology (Grime, 1977; Reich et al., 1997; Wright

et al., 2004) to community ecology (Shipley et al., 2006;

Kraft et al., 2008), trait evolution (Moles et al., 2005a),

phylogeny reconstruction (Lens et al., 2007), metabolic

scaling theory (Enquist et al., 2007), palaeobiology

(Royer et al., 2007), biogeochemistry (Garnier et al.,

2004; Cornwell et al., 2008), disturbance ecology (Wirth,

2005; Paula & Pausas, 2008), plant migration and inva-

sion ecology (Schurr et al., 2005), conservation biology

(Ozinga et al., 2009; Römermann et al., 2009) and plant

geography (Swenson & Weiser, 2010). Access to trait

data for a large number of species allows testing levels

of phylogenetic conservatism, a promising principle in

ecology and evolutionary biology (Wiens et al., 2010).

Plant trait data have been used for the estimation of

parameter values in vegetation models, but only in a

few cases based on systematic analyses of trait spectra

(White et al., 2000; Kattge et al., 2009; Wirth & Lichstein,

2009; Ziehn et al., 2011). Recently, plant trait data have

been used for the validation of a global vegetation

model as well (Zaehle & Friend, 2010).

While there have been initiatives to compile datasets

at regional scale for a range of traits [e.g. LEDA (Life

History Traits of the Northwest European Flora: http://

www.leda-traitbase.org), BiolFlor (Trait Database of the

German Flora: http://www.ufz.de/biolflor), EcoFlora

(The Ecological Flora of the British Isles: www.ecoflora.

co.uk), BROT (Plant Trait Database for Mediterranean

Basin Species: http://www.uv.es/jgpausas/brot.htm)]

or at global scale focusing on a small number of traits

[e.g. GlopNet (Global Plant Trait Network: http://www.

bio.mq.edu.au/� iwright/glopian.htm), SID (Seed

Information Database: data.kew.org/sid/)], a unified
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initiative to compile data for a large set of relevant

plant traits at the global scale was lacking. As a con-

sequence studies on trait variation so far have either

been focussed on the local to regional scale including

a range of different traits (e.g. Baraloto et al., 2010),

while studies at the global scale were restricted

to individual aspects of plant functioning, e.g. the

leaf economic spectrum (Wright et al., 2004), the evolu-

tion of seed mass (Moles et al., 2005a, b) or the char-

acterization of the wood economic spectrum (Chave

et al., 2009). Only few analyses on global scale have

combined traits from different functional aspects,

but for a limited number of plant species (e.g. Dı́az

et al., 2004).

In 2007, the TRY initiative (TRY – not an acronym,

rather an expression of sentiment: http://www.try-db.

org) started compiling plant trait data from the different

aspects of plant functioning on global scale to make the

data available in a consistent format through one single

portal. Based on a broad acceptance in the plant trait

community (so far 93 trait databases have been

contributed, Table 1), TRY has accomplished an unpre-

cedented coverage of trait data and is now working

towards a communal global repository for plant trait

data. The new database initiative is expected to

contribute to a more realistic and empirically based

representation of plant functional diversity on global

scale supporting the assessment and modelling of

climate change impacts on biogeochemical fluxes and

terrestrial biodiversity (McMahon et al., 2011).

For several traits the data coverage in the TRY

database is sufficient to quantify the relative amount

of intra- and interspecific variation, as well as variation

within and between different functional groups.

Thus, the dataset allows to examine two basic tenets

of comparative ecology and vegetation modelling,

which, due to lack of data, had not been quantified

so far:

(1) On the global scale, the aggregation of plant trait

data at the species level captures the majority of

trait variation. This central assumption of plant

comparative ecology implies that, while there is

variation within species, this variation is smaller

than the differences between species (Garnier et al.,

2001; Keddy et al., 2002; Westoby et al., 2002; Shipley,

2007). This is the basic assumption for using average

trait values of species to calculate indices of func-

tional diversity (Petchey & Gaston, 2006; de Bello

et al., 2010; Schleuter et al., 2010), to identify ecolo-

gically important dimensions of trait variation

(Westoby, 1998) or to determine the spatial variation

of plant traits (Swenson & Enquist, 2007; Swenson &

Weiser, 2010).

(2) On the global scale, basic plant functional classifica-

tions capture a sufficiently important fraction of

trait variation to represent functional diversity. This

assumption is implicit in today’s dynamic global

vegetation models (DGVMs), used to assess the

response of ecosystem processes and composition

to CO2 and climate changes. Owing to computa-

tional constraints and lack of detailed information

these models have been developed to represent the

functional diversity of 4300 000 documented plant

species on Earth with a small number (5–20) of

basic plant functional types (PFTs, e.g. Woodward

& Cramer, 1996; Sitch et al., 2003). This approach

has been successful so far, but limits are becom-

ing obvious and challenge the use of such models in

a prognostic mode, e.g. in the context of Earth

system models (Lavorel et al., 2008; McMahon

et al., 2011).

This article first introduces the TRY initiative and

presents a summary of data coverage with respect to

different traits and regions. For a range of traits, we

characterize general statistical properties of the trait

density distributions, a prerequisite for statistical

analyses, and provide mean values and ranges of

variation. For 10 traits that are central to leading dimen-

sions of plant strategy, we then quantify trait variation

with respect to species and PFT and thus examine the

two tenets mentioned above. Finally, we demonstrate

how trait variation within PFT is currently represented

in the context of global vegetation models.

Material and methods

Types of data compiled

The TRY data compilation focuses on 52 groups of traits

characterizing the vegetative and regeneration stages of plant

life cycle, including growth, reproduction, dispersal, establish-

ment and persistence (Table 2). These groups of traits were

collectively agreed to be the most relevant for plant life-history

strategies, vegetation modelling and global change responses

on the basis of existing shortlists (Grime et al., 1997; Weiher

et al., 1999; Lavorel & Garnier, 2002; Cornelissen et al., 2003b;

Dı́az et al., 2004; Kleyer et al., 2008) and wide consultation with

vegetation modellers and plant ecologists. They include plant

traits sensu stricto, but also ‘performances’ (sensu Violle et al.,

2007), such as drought tolerance or phenology.

Quantitative traits vary within species as a consequence of

genetic variation (among genotypes within a population/

species) and phenotypic plasticity. Ancillary information is

necessary to understand and quantify this variation. The TRY

dataset contains information about the location (e.g. geogra-

phical coordinates, soil characteristics), environmental

conditions during plant growth (e.g. climate of natural

environment or experimental treatment), and information
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Table 1 Databases currently contributing to the TRY database

Name of the Database Contact person(s) Reference(s)

Databases public, maintained on the Internet

1 Seed Information Database (SID)* J. Dickie, K. Liu Royal Botanic Gardens Kew Seed

Information Database (SID), (2008)

2 Ecological Flora of the British Isles* A. Fitter, H. Ford Fitter & Peat (1994)

3 VegClass CBM Global Database A. Gillison Gillison & Carpenter (1997)

4 PLANTSdata* W. A. Green Green (2009)

5 The LEDA Traitbase* M. Kleyer Kleyer et al. (2008)

6 BiolFlor Database* I. Kühn, S. Klotz Klotz et al. (2002), Kühn et al. (2004)

7 BROT plant trait database* J. G. Pausas, S. Paula Paula & Pausas (2009), Paula et al. (2009)

Databases public, fixed

8 Tropical Respiration Database J. Q. Chambers Chambers et al. (2004, 2009)

9 ArtDeco Database* W. K. Cornwell,

J. H. C. Cornelissen

Cornwell et al. (2008)

10 The Americas N&P database B. J. Enquist, A. J. Kerkhoff Kerkhoff et al. (2006)

11 ECOCRAFT B. E. Medlyn Medlyn and Javis (1999), Medlyn et al.

(1999, 2001)

12 Tree Tolerance Database* Ü. Niinemets Niinemets & Valladares (2006)

13 Leaf Biomechanics Database* Y. Onoda Onoda et al. (2011)

14 BIOPOP: Functional Traits for Nature

Conservation*

P. Poschlod Poschlod et al. (2003)

15 BIOME-BGC Parameterization

Database*

M. White, P. Thornton White et al. (2000)

16 GLOPNET – Global Plant Trait Network

Database*

I. J. Wright, P. B. Reich Wright et al. (2004, 2006)

17 Global Wood Density Database* A. E. Zanne, J. Chave Chave et al. (2009), Zanne et al. (2009)

Databases not-public, fixed in the majority of cases

18 Plant Traits in Pollution Gradients

Database

M. Anand Unpublished data

19 Plant Physiology Database O. Atkin Atkin et al. (1997, 1999), Loveys et al.

(2003), Campbell et al. (2007)

20 European Mountain Meadows Plant

Traits Database

M. Bahn Bahn et al. (1999), Wohlfahrt et al. (1999)

21 Photosynthesis Traits Database D. Baldocchi Wilson et al. (2000), Xu & Baldocchi (2003)

22 Photosynthesis and Leaf Characteristics

Database

B. Blonder, B. Enquist Unpublished data

23 Wetland Dunes Plant Traits Database P. M. van Bodegom Bakker et al. (2005, 2006), van Bodegom

et al. (2005, 2008)

24 Ukraine Wetlands Plant Traits Database P. M. van Bodegom Unpublished data

25 Plants Categorical Traits Database P. M. van Bodegom Unpublished data

26 South African Woody Plants Trait

Database (ZLTP)

W. J. Bond, M. Waldram Unpublished data

27 Australian Fire Ecology Database* R. Bradstock Unpublished data

28 Cedar Creek Plant Physiology Database D. E. Bunker, S. Naeem Unpublished data

29 Floridian Leaf Traits Database J. Cavender-Bares Cavender-Bares et al. (2006)

30 Tundra Plant Traits Databases F. S. Chapin III Unpublished data

31 Global Woody N&P Database* G. Esser, M. Clüsener-Godt Clüsener-Godt (1989)

32 Abisko & Sheffield Database J. H. C. Cornelissen Cornelissen (1996), Cornelissen et al. (1996,

1997, 1999, 2001, 2003a, 2004), Castro-

Diez et al. (1998, 2000), Quested et al.

(2003)

33 Jasper Ridge Californian Woody Plants

Database

W. K. Cornwell, D. D. Ackerly Cornwell et al. (2006), Preston et al. (2006),

Ackerly & Cornwell (2007), Cornwell &

Ackerly (2009)

34 Roots Of the World (ROW) Database J. M. Craine Craine et al. (2005)

Continued
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Table 1. (Contd.)

Name of the Database Contact person(s) Reference(s)

35 Global 15N Database J. M. Craine Craine et al. (2009)

36 CORDOBASE S. Dı́az Dı́az et al. (2004)

37 Sheffield-Iran-Spain Database* S. Dı́az Dı́az et al. (2004)

38 Chinese Leaf Traits Database J. Fang Han et al. (2005), He et al. (2006, 2008)

39 Costa Rica Rainforest Trees Database B. Finegan, B. Salgado Unpublished data

40 Plant Categorical Traits Database O. Flores Unpublished data

41 Subarctic Plant Species Trait Database G. T. Freschet, J. H. C.

Cornelissen

Freschet et al. (2010a, b)

42 Climbing Plants Trait Database R. V. Gallagher Gallagher et al. (2011)

43 The VISTA Plant Trait Database E. Garnier, S. Lavorel Garnier et al. (2007), Pakeman et al. (2008,

2009), Fortunel et al. (2009)

44 VirtualForests Trait Database A. G. Gutiérrez Gutiérrez (2010)

45 Dispersal Traits Database S. Higgins Unpublished data

46 Herbaceous Traits from the Öland Island

Database

T. Hickler Hickler (1999)

47 Global Wood Anatomy Database S. Jansen, F. Lens Unpublished data

48 Gobal Leaf Element Composition

Database

S. Jansen Watanabe et al. (2007)

49 Leaf Physiology Database* J. Kattge, C. Wirth Kattge et al. (2009)

50 KEW African Plant Traits Database D. Kirkup Kirkup et al. (2005)

51 Photosynthesis Traits Database K. Kramer Unpublished data

52 Traits of Bornean Trees Database H. Kurokawa Kurokawa & Nakashizuka (2008)

53 Ponderosa Pine Forest Database D. Laughlin Laughlin et al. (2010)

54 New South Wales Plant Traits Database M. Leishman Unpublished data

55 The RAINFOR Plant Trait Database J. Lloyd, N. M. Fyllas Baker et al. (2009), Fyllas et al. (2009),

Patiño et al. (2009)

56 French Grassland Trait Database F. Louault, J. -F. Soussana Louault et al (2005)

57 The DIRECT Plant Trait Database P. Manning Unpublished data

58 Leaf Chemical Defense Database T. Massad Unpublished data

59 Panama Leaf Traits Database J. Messier Messier et al. (2010)

60 Global Seed Mass Database* A. T. Moles Moles et al. (2004, 2005a, b)

61 Global Plant Height Database* A. T. Moles Moles et al. (2004)

62 Global Leaf Robustness and Physiology

Database

Ü. Niinemets Niinemets (1999, 2001)

63 The Netherlands Plant Traits Database J. Ordoñez, P. M. van Bodegom Ordonez et al. (2010a, b)

64 The Netherlands Plant Height Database W. A. Ozinga Unpublished data

65 Hawaiian Leaf Traits Database J. Peñuelas, Ü. Niinemets Peñuelas et al. (2010a, b)

66 Catalonian Mediterranean Forest Trait

Database

J. Peñuelas, R. Ogaya Ogaya & Peñuelas (2003, 2006, 2007, 2008),

Sardans et al. (2008a, b)

67 Catalonian Mediterranean Shrubland

Trait Database

J. Penuelas, M. Estiarte Peñuelas et al. (2007), Prieto et al. (2009)

68 ECOQUA South American Plant Traits

Database

V. Pillar, S. Müller Pillar & Sosinski (2003), Overbeck (2005),

Blanco et al. (2007), Duarte et al. (2007),

Müller et al. (2007), Overbeck &

Pfadenhauer (2007)

69 The Tansley Review LMA Database* H. Poorter Poorter et al. (2009)

70 Categorical Plant Traits Database H. Poorter Unpublished data

71 Tropical Rainforest Traits Database L. Poorter Poorter & Bongers (2006), Poorter (2009)

72 Frost Hardiness Database* A. Rammig Unpublished data

73 Reich-Oleksyn Global Leaf N, P Database P. B. Reich, J. Oleksyn Reich et al. (2009)

74 Global A, N, P, SLA Database P. B. Reich Reich et al. (2009)

75 Cedar Creek Savanna SLA, C, N

Database

P. B. Reich Willis et al. (2010)

76 Global Respiration Database P. B. Reich Reich et al. (2008)

Continued

2910 J . K AT T G E et al.

r 2011 Blackwell Publishing Ltd, Global Change Biology, 17, 2905–2935



about measurement methods and conditions (e.g. temperature

during respiration or photosynthesis measurements). Ancil-

lary data also include primary references.

By preference individual measurements are compiled in the

database, like single respiration measurements or the wood

density of a specific individual tree. The dataset therefore

includes multiple measurements for the same trait, species

and site. For some traits, e.g. leaf longevity, such data are only

rarely available on single individuals (e.g. Reich et al., 2004),

and data are expressed per species per site instead. Different

measurements on the same plant (resp. organ) are linked to

form observations that are hierarchically nested. The database

structure ensures that (1) the direct relationship between traits

and ancillary data and between different traits that have been

measured on the same plant (resp. organ) is maintained and (2)

conditions (e.g. at the stand level) can be associated with the

individual measurements (Kattge et al., 2010). The structure is

consistent with the Extensible Observation Ontology (OBOE;

Table 1. (Contd.)

Name of the Database Contact person(s) Reference(s)

77 Leaf and Whole-Plant Traits Database:

Hydraulic and Gas Exchange

Physiology, Anatomy, Venation

Structure, Nutrient Composition,

Growth and Biomass Allocation

L. Sack Sack et al. (2003, 2005, 2006), Sack (2004),

Nakahashi et al. (2005), Sack & Frole

(2006), Cavender-Bares et al. (2007),

Choat et al. (2007), Cornwell et al. (2007),

Martin et al. (2007), Coomes et al. (2008),

Hoof et al. (2008), Quero et al. (2008),

Scoffoni et al. (2008), Dunbar-Co et al.

(2009), Hao et al. (2010), Waite & Sack

(2010), Markesteijn et al. (2011)

78 Tropical Traits from West Java Database S. Shiodera Shiodera et al. (2008)

79 Leaf And Whole Plant Traits Database B. Shipley Shipley (1989, 1995), Shipley and Meziane

(2002), Shipley & Parent (1991),

McKenna & Shipley (1999), Meziane &

Shipley (1999a, b, 2001), Pyankov et al.

(1999), Shipley & Lechowicz (2000),

Shipley & Vu (2002), Vile (2005),

Kazakou et al. (2006), Vile et al. (2006)

80 Herbaceous Leaf Traits Database Old

Field New York

A. Siefert Unpublished data

81 FAPESP Brazil Rain Forest Database E. Sosinski, C. Joly Unpublished data

82 Causasus Plant Traits Database N. A. Soudzilovskaia, V. G.

Onipchenko, J. H. C.

Cornelissen

Unpublished data

83 Tropical Plant Traits From Borneo

Database

E. Swaine Swaine (2007)

84 Plant Habit Database* C. Violle, B. H. Dobrin, B. J.

Enquist

Unpublished data

85 Midwestern and Southern US

Herbaceous Species Trait Database

E. Weiher Unpublished data

86 The Functional Ecology of Trees (FET)

Database – Jena*

C. Wirth, J. Kattge Wirth & Lichstein (2009)

87 Fonseca/Wright New South Wales

Database

I. J. Wright Fonseca et al. (2000), McDonald et al. (2003)

88 Neotropic Plant Traits Database I. J. Wright Wright et al. (2007)

89 Overton/Wright New Zealand Database I. J. Wright Unpublished data

90 Categorical Plant Traits Database I. J. Wright Unpublished data

91 Panama Plant Traits Database S. J. Wright Wright et al. (2010)

92 Quercus Leaf C&N Database B. Yguel Unpublished data

93 Global Vessel Anatomy Database* A. E. Zanne, D. Coomes Unpublished data

Databases are separated whether they are at a final stage or still continuously developed, and whether they are or are not publicly

available as an electronic resource in the Internet. Databases that are already integrated databases, pooling a range of original

databases (e.g. LEDA, GLOPNET) are highlighted by asterisks (*). Contributions are sorted alphabetically by principal contact

person. A database can consist of several datasets (268 individual files have currently been imported to the TRY database). Most of

the nonpublic databases contain unpublished besides published data.
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Table 2 Summary of data coverage in the TRY data repository (March 31, 2011) for the 52 groups of focus traits and one group

lumping all other traits (53)

Group of traits

Traits per

group Datasets Species Entries Geo-referenced Location Soil

1 Plant growth form* 7 62 39 715 130 527 45 683 48 355 19 630

2 Plant life form* 1 9 7870 64 949 55 476 58 575 53 008

3 Plant resprouting capacity* 4 7 3248 5219 410 319 2462

4 Plant height 15 63 18 071 105 422 43 351 50 154 34 325

5 Plant longevity 4 23 8198 18 844 3709 2336 5109

6 Plant age of reproductive

maturity

3 3 1506 2024 0 24 0

7 Plant architectural

relationships

72 43 10 227 356 188 340 540 340 390 332 608

8 Plant crown size 4 8 276 4180 1450 846 33

9 Plant surface roughness 1 1 31 31 0 0 0

10 Plant tolerance to stress 40 14 8275 62 362 877 1286 33 799

11 Plant phenology 10 16 7630 26 765 2900 8816 6868

12 Leaf type* 1 15 33 519 49 668 6261 4490 2511

13 Leaf compoundness* 1 15 34 523 50 502 13 495 13 558 230

14 Leaf photosynthetic

pathway*

1 29 31 641 40 807 6305 4442 5495

15 Leaf phenology type* 1 35 15 512 65 536 36 579 37 888 24 900

16 Leaf size 17 67 16 877 205 165 158 066 138 105 74 424

17 Leaf longevity 4 18 1080 1953 1705 1515 551

18 Leaf angle 2 6 4693 41 882 41 848 41 805 39 820

19 Leaf number per unit shoot

length

1 4 4135 10 751 1340 2007 1265

20 Leaf anatomy 41 10 1076 26 649 24 014 23 950 0

21 Leaf cell size 14 6 310 1196 339 462 0

22 Leaf mechanical resistance 7 17 4206 11 645 5608 6295 227

23 Leaf absorbance 1 4 137 363 0 0 61

24 Specific leaf area (SLA) 13 89 8751 87 064 63 730 53 830 18 149

25 Leaf dry matter content 5 35 3098 33 777 26 125 19 767 6919

26 Leaf carbon content 3 32 3028 18 887 15 295 11 938 7857

27 Leaf nitrogen content 4 62 7122 58 064 43 417 41 844 25 857

28 Leaf phosphorus content 2 35 4870 26 065 19 022 21 095 7390

29 Tissue carbon content (other

plant organs)

19 18 659 4273 2726 2040 1093

30 Tissue nitrogen content

(other plant organs)

55 40 4848 32 438 24 598 22 317 21 904

31 Tissue phosphorus content

(other plant organs)

16 18 3763 17 058 10 115 12 519 2445

32 Tissue chemical composition

(apart from C,N,P)

136 28 5031 84 743 26 272 74 076 25 152

33 Photosynthesis 49 34 2049 19 793 9446 9980 11127

34 Stomatal conductance 76 23 918 11 811 4386 6409 4729

35 Respiration 105 18 633 14 898 6423 12 519 3621

36 Litter decomposability 2 8 972 2172 2013 1568 968

37 Pollination mode* 1 10 4211 16 571 780 853 299

38 Dispersal mode* 6 19 9728 43 502 5410 6357 341

39 Seed germination

stimulation*

6 7 3407 7074 112 206 4437

40 Seed size 17 30 26 839 158 881 13 225 6780 3755

41 Seed longevity 3 5 1862 11 466 3 97 3

42 Seed morphology 5 9 2326 3811 567 1253 0

43 Stem bark thickness 1 3 52 183 183 183 0

Continued
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Madin et al., 2008), which has been proposed as a general basis

for the integration of different data streams in ecology.

The TRY dataset combines several preexisting databases

based on a wide range of primary data sources, which include

trait data from plants grown in natural environments and

under experimental conditions, obtained by a range of scien-

tists with different methods. Trait variation in the TRY dataset

therefore reflects natural and potential variation on the basis of

individual measurements at the level of single organs, and

variation due to different measurement methods and measure-

ment error (random and bias).

Data treatment in the context of the TRY database

The TRY database has been developed as a Data Warehouse

(Fig. 1) to combine data from different sources and make them

available for analyses in a consistent format (Kattge et al.,

2010). The Data Warehouse provides routines for data extrac-

tion, import, cleaning and export. Original species names

are complemented by taxonomically accepted names, based

on a checklist developed by IPNI (The International Plant

Names Index: http://www.ipni.org) and TROPICOS (Mis-

souri Botanical Garden: http://www.tropicos.org), which

had been made publicly available on the TaxonScrubber

website by the SALVIAS (Synthesis and Analysis of Local

Vegetation Inventories Across Sites: http://www.salvias.net)

initiative (Boyle, 2006). Trait entries and ancillary data are

standardized and errors are corrected after consent from data

contributors. Finally, outliers and duplicate trait entries are

identified and marked (for method of outlier detection, see

Appendix S1). The cleaned and complemented data are moved

to the data repository, whence they are released on request.

Selection of data and statistical methods in the context of
this analysis

For the analyses in the context of this manuscript, we have

chosen traits with sufficient coverage from different aspects of

plant functioning. The data were standardized, checked for

errors and duplicates excluded. Maximum photosynthetic

rates and stomatal conductance were filtered for temperature

(15–30 1C), light (PAR 4500mmol m2 s�1) and atmospheric CO2

concentration during measurements (300–400 ppm); data for

respiration were filtered for temperature (15–30 1C). A temp-

erature range for respiration from 15–30 1C will add variability

to trait values. Nevertheless, an immediate response of respira-

tion to temperature is balanced by an opposite adaptation of

basal respiration rates to long-term temperature changes. More

detailed analyses will have to take short- and long-term impact

of temperature on both scales into account. With respect to

photosynthetic rates the problem is similar, but less severe.

Statistical properties of density distributions of trait data were

characterized by skewness and kurtosis on the original scale

and after log-transformation. The Jarque–Bera test was applied

to assess departure from normality (Bera & Jarque, 1980).

Finally outliers were identified (see supporting information,

Appendix S1). The subsequent analyses are based on standar-

dized trait values, excluding outliers and duplicates.

Table 2. (Contd.)

Group of traits

Traits per

group Datasets Species Entries Geo-referenced Location Soil

44 Wood porosity* 1 1 5221 7059 0 0 0

45 Woodiness* 1 23 44 385 74 891 24 957 26 237 19 609

46 Wood anatomy 77 13 8506 252 072 126 24 965

47 Wood density 10 34 11 907 43 871 19 422 31 522 3121

48 Modifications for storage* 4 7 4090 10 410 4052 4054 3747

49 Mycorrhiza type* 1 5 2453 14 935 10 481 10 500 10 481

50 Nitrogen fixation capacity* 3 22 10 642 36 023 18 663 16 826 17 627

51 Rooting depth 1 5 613 629 451 453 280

52 Defence/allelopathy/

palatability

15 12 3333 13 388 2489 2663 10 936

Additional traits 257 132 35 286 496 383 123 068 135 052 179 577

Sum 1146 268 (total) 69 296 (total) 2 884 820 1 267 513 1 318 580 1 029 715

*Qualitative traits assumed to have low variability within species.

Traits that address one plant characteristic but expressed differently are summarized in groups, e.g. the group ‘leaf nitrogen content’

consists of the three traits: leaf nitrogen content per dry mass, leaf nitrogen content per area and nitrogen content per leaf. In the case

of respiration, the database contains 105 related traits: different organs, different reference values (e.g. dry mass, area, volume,

nitrogen) or characterizing the temperature dependence of respiration (e.g. Q10). Specific information for each trait is available on the

TRY website (http://www.try-db.org). Datasets: number of contributed datasets; Species: number of species characterised by at

least one trait entry; Entries: number of trait entries; Georeferenced, Location, Soil: number of trait entries geo-referenced by

coordinates, resp. with information about location or soil.

Bold: qualitative traits standardized and made publicly available on the TRY website.
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PFTs were defined similar to those used in global vegetation

models (e.g. Woodward & Cramer, 1996; Sitch et al., 2003; see

Table 5), based on standardized tables for the qualitative traits

‘plant growth form’ (grass, herb, climber, shrub, tree), ‘leaf

type’ (needle-leaved, broad-leaved), ‘leaf phenology type’

(deciduous, evergreen), ‘photosynthetic pathway’ (C3, C4,

CAM) and ‘woodiness’ (woody, nonwoody).

The evaluation of the two tenets of comparative ecology and

vegetation modelling focuses on 10 traits that are central to

leading dimensions of trait variation or that are physiologi-

cally relevant and closely related to parameters used in vege-

tation modelling (Westoby et al., 2002; Wright et al., 2004): plant

height, seed mass, specific leaf area (one-sided leaf area

per leaf dry mass, SLA), leaf longevity, leaf nitrogen content

per leaf dry mass (Nm) and per leaf area (Na), leaf phosphorus

content per leaf dry mass (Pm) and maximum photosynthetic

rate per leaf area (Amaxa
), per leaf dry mass (Amaxm

) and per leaf

nitrogen content (AmaxN
). As for the relevance of the 10 selected

traits: plant height was considered relevant for vegetation

carbon storage capacity; seed mass was considered relevant

for plant regeneration strategy; leaf longevity was considered

relevant for trade-off between leaf carbon investment and

gain; SLA for links of light capture (area based) and plant

growth (mass based); leaf N and P content: link of carbon and

respective nutrient cycle; photosynthetic rates expressed per

leaf area, dry mass and N content for links of carbon gain to

light capture, growth and nutrient cycle. Although we realize

the relevance of traits related to plant–water relations, we did

not feel comfortable to include traits such as maximum sto-

matal conductance or leaf water potential into the analyses for

the lack of sufficient coverage for a substantial number of

species. For each of the 10 traits, we quantified variation across

species and PFTs in three ways: (1) Differences between mean

values of species and PFTs were tested, based on one-way

ANOVA. (2) Variation within species, in terms of standard

deviation (SD), was compared with variation between species

(same for PFTs). (3) The fraction of variance explained by

species and PFT R2 was calculated as one minus the residual

sum of squares divided by the total sum of squares.

We observed large variation in SD within species if the

number of observations per species was small (see funnel plot

in Appendix S1). With an increasing number of observations,

SD within species approached an average, trait specific level.

To avoid confounding effects due to cases with very few

observations per species, only species with at least five trait

entries were used in statistical analyses (with exception of leaf

longevity, where two entries per species were taken as the

minimum number because species with multiple entries were

very rare). The number of measurements per PFT was suffi-

cient in all cases. Statistical analyses were performed in R

(R Development Core Team, 2009).

Results

Data coverage in the TRY database

As of March 31, 2011 the TRY data repository contains

2.88 million trait entries for 69 000 plant species, accom-

panied by 3.0 million ancillary data entries [not all data

from the databases listed in Table 1 and summarized in

Table 2 could be used in the subsequent analyses,

Fig. 1 The TRY process of data sharing. Researcher C contri-

butes plant trait data to TRY (1) and becomes a member of the

TRY consortium (2). The data are transferred to the Staging Area,

where they are extracted and imported, dimensionally and

taxonomically cleaned, checked for consistency against all other

similar trait entries and complemented with covariates from

external databases [3; Tax, taxonomic databases, IPNI/TROPI-

COS accessed via TaxonScrubber (Boyle, 2006); Clim, climate

databases, e.g. CRU; Geo, geographic databases]. Cleaned and

complemented data are transferred to the Data Repository (4). If

researcher C wants to retain full ownership, the data are labelled

accordingly. Otherwise they obtain the status ‘freely available

within TRY’. Researcher C can request her/his own data – now

cleaned and complemented – at any time (5). If she/he has

contributed a minimum amount of data (currently 4500 entries),

she/he automatically is entitled to request data other than her/

his own from TRY. In order to receive data she/he has to submit

a short proposal explaining the project rationale and the data

requirements to the TRY steering committee (6). Upon accep-

tance (7) the proposal is published on the Intranet of the TRY

website (title on the public domain) and the data management

automatically identifies the potential data contributors affected

by the request. Researcher C then contacts the contributors who

have to grant permission to use the data and to indicate whether

they request coauthorship in turn (8). All this is handled via

standard e-mails and forms. The permitted data are then pro-

vided to researcher C (9), who is entitled to carry out and publish

the data analysis (10). To make trait data also available to

vegetation modellers – one of the pioneering motivations of

the TRY initiative – modellers (e.g. modeller E) are also allowed

to directly submit proposals (11) without prior data submission

provided the data are to be used for model parameter estimation

and evaluation only. We encourage contributors to change the

status of their data from ‘own’ to ‘free’ (12) as they have

successfully contributed to publications. With consent of con-

tributors this part of the database is being made publicly avail-

able without restriction. So far look-up tables for several

qualitative traits (see Table 2) have been published on the

website of the TRY initiative (http://www.try-db.org). Meta-

data are also provided without restriction (13).
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because some recently contributed datasets were still

being checked and cleaned in the data staging area (see

Fig. 1)]. About 2.8 million of the trait entries have been

measured in natural environment, o100 000 in experi-

mental conditions (e.g. glasshouse, climate or open-top

chambers). About 2.3 million trait entries are for quan-

titative traits, while 0.6 million entries are for qualitative

traits (Table 2). Qualitative traits, like plant growth

form, are often treated as distinct and invariant within

species (even though in some cases they are more

variable than studies suggest, e.g. flower colour or

dispersal mode), and they are often used as covariates

in analyses, as when comparing evergreen vs. decid-

uous (Wright et al., 2005) or resprouting vs. nonre-

sprouting plants (Pausas et al., 2004). The qualitative

traits with the highest species coverage in the TRY

dataset are the five traits used for PFT classification

and leaf compoundness: woodiness (44 000 species),

plant growth form (40 000), leaf compoundness

(35 000), leaf type (34 000), photosynthetic pathway

(32 000) and leaf phenology type (16 000); followed by

N-fixation capacity (11 000) and dispersal syndrome

(10 000). Resprouting capacity is noted for 3000 species

(Description of qualitative traits: Plant dispersal

syndrome: dispersed by wind, water, animal; N-fixation

capacity: able/not able to fix atmospheric N2; leaf

compoundness: simple versus compound, resprouting

capacity: able/not able to resprout).

The quantitative traits with the highest species cover-

age are seed size (27 000 species), plant height (18 000),

leaf size (17 000), wood density (12 000), SLA (9000),

plant longevity (8000), leaf nitrogen content (7000) and

leaf phosphorus content (5000). Leaf photosynthetic

capacity is characterized for more than 2000 species.

Some of these traits are represented by a substantial

number of entries per species, e.g. SLA has on average

10 entries per species, leaf N, P and photosynthetic

capacity have about eight resp. five entries per species,

with a maximum of 1470 entries for leaf nitrogen per

dry mass (Nm) for Pinus sylvestris.

About 40% of the trait entries (1.3 million) are georef-

erenced, allowing trait entries to be related to ancillary

information from external databases such as climate,

soil, or biome type. Although latitude and longitude are

often recorded with high precision, the accuracy is

unknown. The georeferenced entries are associated

with 8502 individual measurement sites, with sites in

746 of the 4200 2� 21 land grid cells of e.g. a typical

climate model (Fig. 2). Europe has the highest density of

measurements, and there is good coverage of some

other regions, but there are obvious gaps in boreal

regions, the tropics, northern and central Africa, parts

of South America, southern and western Asia. In tropi-

cal South America, the sites fall in relatively few grid

cells, but there are high numbers of entries per cell. This

is an effect of systematic sampling efforts by long-term

projects such as LBA (The Large Scale Biosphere-

Atmosphere Experiment in Amazonia: http://www.

lba.inpa.gov.br/lba) or RAINFOR (Amazon Forest

Inventory Network: http://www.geog.leeds.ac.uk/

projects/rainfor). For two individual traits, the spatial

coverage is shown in Fig. 3. Here we additionally

provide coverage in climate space, identifying biomes

for which we lack data (e.g. temperate rainforests).

More information about data coverage of individual

traits is available on the website of the TRY initiative

(http://www.try-db.org).

General pattern of trait variation: test for normality

For 52 traits, the coverage of database entries was

sufficient to quantify general pattern of density distri-

butions in terms of skewness and kurtosis, and to apply

the Jarque–Bera test for normality (Table 3). On the

original scale all traits but one are positively skewed,

indicating distributions tailed to high values. After log-

transformation, the distributions of 20 traits are still

positively skewed, while 32 traits show slightly nega-

-180˚ -90˚ 0˚ 90˚ 180˚

−60˚

−30˚

0˚

30˚

60˚

90˚

0 2 4 10 10000

-180˚ -90˚ 0˚ 90˚ 180˚

−60˚

−30˚

0˚

30˚

60˚

90˚

0 100 1000 10000 100000

Fig. 2 Data density of georeferenced trait entries. Top, number

of sites per 2� 21 grid cell; bottom, number of trait entries per

grid cell.
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tive skewness. For 49 of the 52 traits, the Jarque–Bera

test indicates an improvement of normality by log-

transformation of trait values – only for three traits

normality was deteriorated (leaf phenolics, tannins

and carbon content per dry mass; Table 3). The distribu-

tion of leaf phenolics and tannins content per dry mass

is in between normal and log-normal: positively skewed

on the original scale, negatively skewed on log-scale.

Leaf carbon content per dry mass has a theoretical range

from 0 to 1000 mg g�1. The mean value, about

476 mg g�1, is in the centre of the theoretical range,

and the variation of trait values is small (Table 4).
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Fig. 3 Data density for (a) specific leaf area (SLA) (1862 sites) and (b) leaf nitrogen content per dry mass (3458 sites), and data density in
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Table 4 Mean values and ranges for 52 traits with substantial coverage, based on individual trait entries, after exclusion of outliers

and duplicates

Trait

Number

of entries Unit

Mean

value SDlg

2.5%

Quantile Median

97.5%

Quantile

Seed dry mass 49 837 mg 2.38 1.08 0.02 1.95 526

Canopy height observed 37 516 m 1.62 0.92 0.04 1.5 30

Whole leaf phosphorus content 426 mg 0.0685 0.83 0.0018 0.08 1.96

Leaf area 71 929 mm2 1404.0 0.81 25 2025 36 400

Maximum plant height 26 625 m 1.84 0.78 0.1 1.25 40

Leaf dry mass 24 663 mg 38.9 0.78 0.96 43.5 1063.9

Whole leaf nitrogen content 961 mg 1.31 0.77 0.03 1.69 27.6

Conduit (vessel and tracheid) area 2974 mm2 0.00349 0.63 0.00024 0.0032 0.04

Leaf Mn content per dry mass 3159 mg g�1 0.189 0.58 0.01 0.19 2.13

Maximum plant longevity 1854 year 155.8 0.55 6.22 175 1200

Leaf Al content per dry mass 3203 mg g�1 0.128 0.55 0.02 0.1 4.49

Leaf Na content per dry mass 3086 mg g�1 0.200 0.55 0.01 0.2 3.24

Conduit (vessel and tracheid) density 5301 mm�2 37.6 0.54 4 38 380

Seed terminal velocity 1108 m s�1 1.08 0.42 0.17 1.4 4.69

Releasing height 18 472 m 0.347 0.42 0.05 0.35 2

Leaf lifespan (longevity) 1540 month 9.40 0.41 2 8.5 60

Leaf tannins content per dry mass* 394 % 2.01 0.41 0.19 2.35 8.04

Wood phosphorus content per dry

mass

1016 mg g�1 0.0769 0.37 0.02 0.05 0.56

Leaf respiration per dry mass 2005 mmol g�1 s�1 0.0097 0.36 0.0025 0.0097 0.04

Seed length 8770 mm 1.80 0.34 0.4 1.8 9

Photosynthesis per leaf dry mass

(Amaxm
)

2384 lmol g�1 s�1 0.115 0.34 0.02 0.12 0.49

Leaf mechanical resistance: tear

resistance

722 N mm�1 0.814 0.34 0.19 0.76 5.11

Leaf Ca content per dry mass 3594 mg g�1 9.05 0.34 1.57 9.83 34.7

Vessel diameter 3102 mm 51.4 0.32 15 50 220

Stomatal conductance per leaf area 1032 mmol m�1 s�1 241.0 0.31 52.4 243.7 895.7

Root nitrogen content per dry mass 1158 mg g�1 9.67 0.31 2.6 9.3 36.1

Leaf Si content per dry mass 1027 mg g�1 0.163 0.29 0.04 0.17 0.53

Leaf Zn content per dry mass 3080 mg g�1 0.0226 0.28 0.0065 0.02 0.1

Leaf respiration per dry mass at 25 1C 1305 mmol g�1 s�1 0.0092 0.28 0.0035 0.0082 0.03

Leaf K content per dry mass 3993 mg g�1 8.44 0.27 2.56 8.3 28.2

Photosynthesis per leaf N content

(AmaxN
)

3074 lmol g�1 s�1 10.8 0.27 1.59 6.32 19.2

Leaf phenolics content per dry mass* 454 % 12.1 0.26 2.43 11.9 25.1

Specific leaf area (SLA) 45 733 mm2 mg�1 16.6 0.26 4.5 17.4 47.7

Leaf K content per area 231 g m�2 0.760 0.26 0.24 0.72 2.60

Leaf Mg content per dry mass 3360 mg g�1 2.61 0.25 0.83 2.64 8.0

Leaf Fe content per dry mass 3040 mg g�1 0.077 0.25 0.02 0.07 0.26

Photosynthesis per leaf area (Amaxa
) 2883 lmol m�2 s�1 10.3 0.24 3.28 10.5 29

Leaf respiration per area 1201 mmol m�2 s�1 1.19 0.24 0.38 1.2 3.4

Leaf phosphorus content per dry mass

(Pm)

17 057 mg g�1 1.23 0.24 0.40 1.25 3.51

Leaf thickness 2815 mm 0.211 0.24 0.08 0.19 0.7

Conduit lumen area per sapwood area 2210 mm2 mm�2 0.137 0.23 0.04 0.14 0.37

Leaf phosphorus content per area 5083 g m�2 0.104 0.23 0.03 0.1 0.28

Vessel element length 2964 mm 549.5 0.21 200 555 1350

Leaf nitrogen/phosphorus (N/P) ratio 11 200 g g�1 12.8 0.21 5.33 12.6 33.2

Leaf nitrogen content per area (Na) 12 860 g m�2 1.59 0.19 0.64 1.63 3.6

Wood nitrogen content per dry mass 1210 mg g�1 1.20 0.19 0.55 1.21 2.95

Leaf S content per dry mass 1023 mg g�1 1.66 0.18 0.78 1.59 4.75

Continued
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Nevertheless, according to the Jarque–Bera test,

also on a logarithmic scale all traits show some degree

of deviation from normal distributions (indicated by

small P-values, Table 3). Seed mass, for example, is

still positively skewed after log-transformation (Table

3). This is due to substantial differences in the number

of database entries and seed masses between grasses/

herbs, shrubs and trees (Fig. 4a). Maximum plant

height in the TRY database has a strong negative

kurtosis after log-transformation (Table 3). This is

due to a bimodal distribution: one peak for herbs/

grass and one for trees (Fig. 4b). The number of height

entries for shrubs is comparatively small – which may

be due to a small number or abundance of shrub

species in situ (i.e. a real pattern) but is more likely

due to a relative ‘undersampling’ of shrubs (i.e. an

artefact of data collection). Within the growth forms

herbs/grass and shrubs, height distribution is ap-

proximately log-normal. For trees the distribution is

skewed to low values, because there are mechanical

constrictions to grow taller than 100 m. The distribu-

tion of SLA after log-transformation is negatively

skewed with positive kurtosis (Table 3) – an imprint

of needle-leaved trees and shrubs besides the major-

ity of broadleaved plants (Fig. 4c). The distribution of

leaf nitrogen content per dry mass after log-transfor-

mation has small skewness, but negative kurtosis

(Table 3) – the data are less concentrated around the

mean than normal (Fig. 4d). In several cases, sample

size is sufficient to characterize the distribution at

different levels of aggregation, down to the species

level. Again we find approximately log-normal dis-

tributions (e.g. SLA and Nm for Pinus sylvestris; Fig. 4c

and d).

Ranges of trait variation

There are large differences in variation across traits

(Table 4). The standard deviation (SD) expressed on a

logarithmic scale ranges from 0.03 for leaf carbon con-

tent per dry mass (resp. about 8% on the original scale)

to 1.08 for seed mass (resp. �95% and 1 1100% on the

original scale). Note two characteristics of SD on the

logarithmic scale: (1) it corresponds to an asymmetric

distribution on the original scale: small range to low

values, large range to high values; (2) it can be com-

pared directly across traits. For more information, see

supporting information Appendix S2. Leaf carbon con-

tent per dry mass, stem density and leaf density show

the lowest variation, followed by the concentration of

macronutrients (nitrogen, phosphorus), fluxes and

conductance (photosynthesis, stomatal conductance,

respiration), the concentration of micronutrients (e.g.

aluminium, manganese, sodium), traits related to

length (plant height, plant and leaf longevity), and traits

related to leaf area. Mass-related traits show the highest

variation (seed mass, leaf dry mass, N and P content of

the whole leaf – in contrast to concentration per leaf dry

mass or per leaf area). The observations reveal a general

tendency towards higher variation with increasing trait

dimensionality (length oarea omass; for more infor-

mation, see Appendix S3).

Tenet 1: Aggregation at the species level represents the
major fraction of trait variation

There is substantial intraspecific variation for each of

the 10 selected traits (Table 5): for single species the

standard deviation is above 0.3 on logarithmic scale, e.g.

Table 4. (Contd.)

Trait

Number

of entries Unit

Mean

value SDlg

2.5%

Quantile Median

97.5%

Quantile

Leaf nitrogen content per dry mass

(Nm)

33 880 mg g�1 17.4 0.18 7.99 17.4 38.5

Leaf dry matter content (LDMC) 16 185 g g�1 0.213 0.17 0.1 0.21 0.42

Leaf density 1372 g cm�3 0.426 0.15 0.2 0.43 0.77

Leaf carbon/nitrogen (C/N) ratio 2498 g g�1 23.4 0.14 12.39 23.5 42.2

Wood density 26 391 mg mm�3 0.597 0.12 0.33 0.6 0.95

Leaf carbon content per dry mass* 7856 mg g�1 476.1 0.03 404.5 476.3 540.8

*Mean values for leaf phenolics, tannins and carbon content were calculated on the original scale, the SD is, provided on log-scale,

for comparability.

Values for AmaxN
were calculated based on database entries for Amax and leaf N content per area, resp. dry mass. Mean values have

been calculated as arithmetic means on a logarithmic scale and retransformed to original scale. SD, standard deviation on log10-

scale. Traits are sorted by decreasing SD. Bold: traits for which we quantified the fraction of variance explained by species and PFT

(cf. Table 5, Fig. 5).
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SD 5 0.34 for maximum plant height of Phyllota

phyllicoides (�55% and 1 121% on the original scale),

but based on only six observations and SD 5 0.32 in case

of Dodonaea viscosa (n 5 26). The SD of Nm for Poa

pratensis is 0.17 (n 5 63), which is almost equal to the

range of all data reported for this trait, but this is an

exceptional case. The trait and species with the most

observations is nitrogen content per dry mass for Pinus

sylvestris with 1470 entries (SD 5 0.088, �18% and

1 22%). The variation in this species spans almost half

the overall variation observed for this trait (SD 5 0.18),

covering the overall mean (Fig. 4d). For several trait-

species combinations, the number of measurements is

high enough for detailed analyses of the variation with-

in species (e.g. on an environmental gradient).

The mean SD at the species-level is highest for plant

height (0.18) and lowest for leaf longevity (0.03, but

few observations per species, Table 5). For all ten traits

the mean SD within species is smaller than the SD

between species mean values (Table 5). Based on

ANOVA, mean trait values are significantly different

between species: at the global scale 60–98% of trait

variance occurs interspecific (between species, Fig. 5).

Nevertheless, for three traits (Pm, Na, Amaxa ) almost 40%

Plant height (m)

SLA (mm2 mg–1)

O
bs

er
va

tio
ns

O
bs

er
va

tio
ns

Nm (mg g–1)
1 10 100 10 100

Seed mass (mg)
1010.10.0110 00010010.010.0001 100

(a)

(b)

(c) (d)

Fig. 4 Examples of trait frequency distributions for four ecologically relevant traits (Westoby, 1998; Wright et al., 2004). Upper panels: (a)

seed mass and (b) plant height for all data and three major plant growth forms (white, all database entries; light grey, herbs/grasses; dark

grey, trees; black, shrubs). Rug-plots provide data ranges hidden by overlapping histograms. Lower panels: (c) Specific leaf area (SLA)

and (d) leaf nitrogen content per dry mass [Nm, white, all database entries excluding outliers (including experimental conditions); light

grey, database entries from natural environment (excluding experimental conditions); medium grey, growth form trees; dark grey, PFT

needle-leaved evergreen; black, Pinus sylvestris].
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of the variance occurs intraspecific (within species,

Fig. 5).

Tenet 2: Basic PFTs capture a sufficiently important
fraction of trait variation to represent functional diversity

For all 10 traits, the PFT mean values are significantly

different between PFTs (Table 5). Four traits show larger

variation between PFT mean values than within PFTs

(plant height, seed mass, leaf longevity, AmaxN
), two

traits show similar variation between PFT means and

within PFTs (SLA, Amaxm ). As a consequence, more than

60% of the observed variance occurs between PFTs for

plant height and leaf longevity, and about 40% of the

variation occurs between PFTs for seed mass, SLA,

Amaxm
and AmaxN

(Fig. 5). The high fraction of explained

variance for these six traits reflects the definition of PFTs

based on the closely related qualitative traits: plant

growth form, leaf phenology (evergreen/deciduous),

leaf type (needle-leaved/broadleaved) and photosyn-

thetic pathway (C3/C4). For theses traits, PFTs such as

those commonly used in vegetation models, capture a

considerable fraction of observed variation with rele-

vant internal consistency. However, for certain traits the

majority of variation occurs within PFTs: four traits

show smaller variation between than within PFTs,

causing substantial overlap across PFTs (Nm, Na, Pm,

Amaxa ). In these cases only about 20–30% of the variance

is explained by PFT, and about 70–80% of variation

occurs within PFTs.

Representation of trait variation in the context of global
vegetation models

To demonstrate how the observed trait variation is

represented in global vegetation models, we first

compare observed trait ranges of SLA to parameter

values for SLA used in 12 global vegetation models;

then we compare observed trait ranges of Nm with state

variables of nitrogen concentration calculated within

the dynamic global vegetation model O-CN (Zaehle &

Friend, 2010).

Some vegetation models separate PFTs along climatic

gradients into biomes, for which they assign different

parameter values. A rough analysis of SLA along the

latitudinal gradient (as a proxy for climate) indicates no

major impact on SLA within PFT (Fig. 6), and we further

jointly analyse SLA data by PFT. However, the range of

observed trait values for SLA per PFT is remarkably

large, except for the PFT ‘needle-leaved deciduous

trees’ (Figs 6 and 7). The parameter values from most

of the 12 models match moderately high density of SLA

observations, but most are clearly different from the

mean, and some parameter values are at the low ends of

probabilities, surprisingly far off the mean value of

observations.

The range of observed trait values for Nm per PFT is

also high (Fig. 8), except for the PFT ‘needle-leaved

evergreen trees’. Modelled state variables are in most

cases within the range of frequently observed trait

values – model values for the PFT ‘needle-leaved ever-

green trees’ match the observed distribution almost

1
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Fig. 5 Fraction of variance explained by plant functional type (PFT) or species for 10 relevant and well-covered traits. R2, fraction of

explained variance; Traits: Seed mass, seed dry mass; Plant height, maximum plant height; LL, leaf longevity; SLA, specific leaf area; Nm,

leaf nitrogen content per dry mass; Pm, leaf phosphorus content per dry mass; Na, leaf nitrogen content per area; Amaxa
, maximum

photosynthesis rate per leaf area; Amaxm
, maximum photosynthesis rate per leaf dry mass; AmaxN

, maximum photosynthesis rate per leaf

nitrogen content.
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perfectly. Nevertheless, there are considerable differ-

ences between modelled and observed distributions:

the modelled state variables are approximately nor-

mally distributed on the original scale, while the

observed trait values are log-normally distributed; the

range of modelled values is substantially smaller than

the range of observations; and the highest densities are

shifted. Apart from possible deficiencies of the O-CN

model, the deviation between observed and modelled

distributions may be due to inconsistencies between

compiled traits and modelled state variables: trait

entries in the database are not abundance-weighted

with respect to natural occurrence, and they represent

the variation of single measurements, while the model

produces ‘community’ measures. The distribution of

observed data presented here is therefore likely wider

than the abundance-weighted leaf nitrogen content of

communities in a given model grid cell.

Discussion

The TRY initiative and the current status of data coverage

The TRY initiative has been developed as a Data Ware-

house to integrate different trait databases. Neverthe-

less, TRY does not aim to replace existing databases, but

rather provides a complementary way to access these

data consistently with other trait data – it facilitates

synergistic use of different trait databases. Compared

with a Meta Database approach, which would link

a network of separate databases, the integrated data-

base (Data Warehouse) provides the opportunity to

SLA (mm2 mg–1)

La
tit

ud
e

La
tit

ud
e

SLA (mm2 mg–1) SLA (mm2 mg–1)SLA (mm2 mg–1)

Fig. 6 Worldwide range in specific leaf area (SLA) along a latitudinal gradient for the main plant functional types. Grey, all data; black,

data for the plant functional group (PFT) under scrutiny.
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standardize traits, add ancillary data, provide accepted

species names and to identify outliers and duplicate

entries. A disadvantage of the Data Warehouse ap-

proach is that some of the databases contributing to

TRY are continuously being developed (see Table 2).

However, these contributions to TRY are regularly up-

dated.

The list of traits in the TRY database is not fixed, and

it is anticipated that additional types of data will be

added to the database in the future. Examples include

sap-flow measurements, which are fluxes based on

which trait values can be calculated, just as photosynth-

esis measurements can be used to determine parameter

values of the Farquhar model (Farquhar et al., 1980), and

leaf venation, which has recently been defined in a

consistent way and appears to be correlated with

other leaf functional traits (Sack & Frole, 2006; Brodribb

et al., 2007; Blonder et al., 2011). Ancillary data, con-

tributed with the trait data, may include images. There

is also room for expansion of the phylogenetic range of

the data incorporated in the database. There is currently

little information on nonvascular autotrophic crypto-

gams in TRY (i.e. bryophytes and lichens), despite their

diversity in species, functions and ecosystem effects,

and the growing number of trait measurements being

made on species within these groups.

The qualitative traits with greatest coverage (more

than 30 000 species for woodiness, plant growth form,

leaf compoundness, leaf type, photosynthetic pathway)

represent about 10% of the estimated number of vas-

cular plant species on land. The quantitative traits with

most coverage (5000–20 000 species for e.g. seed mass,

plant height, wood density, leaf size, leaf nitrogen

content, SLA) approach 5% of named plant species.

1 10 100 1 10 100

1 10 100 1 10 100

1 10 100

1 10 100

1 10 100

Fig. 7 Frequency distributions of specific leaf area (SLA, mm2 mg�1) values (grey histograms) compiled in the TRY database and

parameter values for SLA (red dashes) published in the context of the following global vegetation models: Frankfurt Biosphere Model

(Ludeke et al., 1994; Kohlmaier et al., 1997), SCM (Friend & Cox, 1995), HRBM (Kaduk & Heimann, 1996), IBIS (Foley et al., 1996; Kucharik

et al., 2000), Hybrid (Friend et al., 1997), BIOME-BGC (White et al., 2000), ED (Moorcroft et al., 2001), LPJ-GUESS (Smith et al., 2001), LPJ-

DGVM (Sitch et al., 2003), LSM (Bonan et al., 2003), SEIB–DGVM (Sato et al., 2007). n, number of SLA data in the TRY database per PFT.
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Although they represent a limited set of species

(5–10%), most probably they include the most abundant

(dominant) species. The high number of characterized

species opens up the possibility of identifying the

evolutionary branch points at which large divergences

in trait values occurred. Such analyses will improve our

understanding of trait evolution at both temporal and

spatial scales. They highlight the importance of includ-

ing trait data for autotrophs representing very different

branches of the Tree of Life (Cornelissen et al., 2007;

Lang et al., 2009) in the TRY database.

For some traits, we know that many more data exist,

which could potentially be added to the database.

Nevertheless, for some traits the lack of data reflects

difficulties in data collection. Table 2 shows some traits

where species coverage is thin, most probably because
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Fig. 8 Frequency distributions of leaf nitrogen content per dry mass for major plant functional types as compiled in the TRY database

compared with frequency distributions of the respective state variable calculated within the O-CN vegetation model (Zaehle & Friend,

2010). n, number of entries in the TRY database (left) and number of grid elements in O-CN with given PFT (right).
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the measurements are difficult or laborious. Root

measurements fall into this category. Rooting depth

(or more exactly, maximum water extraction depth) is

among the most influential plant traits in global vegeta-

tion models, yet we have estimates for only about 0.05%

of the vascular plant species. Data for other root traits is

even scarcer. However, many aboveground traits corre-

late with belowground traits (see Kerkhoff et al., 2006),

so the data in TRY do give some indication about

belowground traits. Apart from this, root traits are focus

of current studies (Paula & Pausas, 2011). Anatomical

traits also have weak coverage in general. Quantifying

anatomy from microscopic cross-sections is a slow and

painstaking work and there is currently no consensus

on which are the most valuable variables to quantify in

leaf sections, apart from standard variables such as

tissue thicknesses and cell sizes, which show important

correlations with physiological function, growth form

and climate (Givnish, 1988; Sack & Frole, 2006; Markes-

teijn et al., 2007; Dunbar-Co et al., 2009; Hao et al., 2010).

An exception is wood anatomy, where TRY contains

conduit densities and sizes for many species (about

7000 and 3000 species, respectively). Finally, allometric

or architectural relationships that describe relative bio-

mass allocation to leaves, stems, and roots through the

ontogeny of individual plants are presently scattered

across 72 different traits, each with low coverage. These

traits are essential for global vegetation models and this

is an area where progress in streamlining data collection

is needed.

Many trait data compiled in the database were not

necessarily collected according to similar or standard

protocols. Indeed many fields of plant physiology and

ecology lack consensus definitions and protocols for key

measurements. However, progress is being made as

well towards a posteriori data consolidation (e.g. Onoda

et al., 2011), as towards standardizing trait definitions

and measurement protocols, e.g. via a common plant

trait Thesaurus (Plant Trait Thesaurus: http://trait_

ontology.cefe.cnrs.fr:8080/Thesauform/), and a handbook

and website (PrometheusWiki: http://prometheuswiki.

publish.csiro.au/tiki-custom_home.php) of standard de-

finitions and protocols (Cornelissen et al., 2003b; Sack

et al., 2010).

Information about the abiotic and biotic environment

in combination with trait data is essential to allow an

assessment of environmental constraints on the varia-

tion of plant traits (Fyllas et al., 2009; Meng et al., 2009;

Ordoñez et al., 2009; Albert et al., 2010b; Poorter et al.,

2010). Some of this information has been compiled in

the TRY database. However, the information about soil,

climate and vegetation structure at measurement sites is

not well structured, because there is no general agree-

ment on what kind of environmental information is

most useful to report in addition to trait measurements.

A consensus on these issues would greatly improve the

usefulness of ancillary environmental information.

Geographic references should be a priority for non-

experimental data.

The number of observations or species with data for

all traits declines rapidly with an increasing number

of traits: fewer species have data for each trait (see

Appendix S3). In cases where multivariate analyses rely

on completely sampled trait-species matrices, this issue

poses a significant constraint on the number of traits

and/or species that can be included. Gap filling

techniques, e.g. hierarchical Bayesian approaches or

filtering techniques (Shan & Banerjee, 2008; Su &

Khoshgoftaar, 2009) offer a potential solution. On the

other hand, simulation work in phylogenetics has

shown that missing data are not by themselves proble-

matic for phylogenetic reconstruction (Wiens, 2003,

2005). Similar work could be performed in trait-based

ecology, and the emerging field of ecological informatics

(Recknagel, 2006) may help to identify representative

trait combinations while taking incomplete information

into account (e.g. Mezard, 2007) .

General pattern and ranges of trait distribution

Based on the TRY dataset, we characterized two general

patterns of trait density distributions: (1) plant traits are

rather log-normal than normal distributed and (2) the

range of variation tends to increase with trait-dimension-

ality. Here the analysis did benefit from compiling large

numbers of trait entries for several traits from different

aspects of plant strategy. Based on the rich sampling, we

could quantify simple general rules for trait distributions

and still identify deviations in the individual case. The

approximately log-normal distributions confirm prior

reports for individual traits (e.g. Wright et al., 2004)

and are in agreement with general observations in

biology (Kerkhoff & Enquist, 2009), although we also

observe deviation from log-normal distribution, e.g. as

an imprint of plant growth form or leaf type. Being

approximately log-normal distributed is most probably

due to the fact that plant traits often have a lower bound

of zero but no upper bound relevant for the data

distribution. This log-normal distribution has several

implications: (1) On the original scale, relationships

are to be expected multiplicative rather than additive

(Kerkhoff & Enquist, 2009, see as well Appendix S2). (2)

Log- or log–log scaled plots are not sophisticated tech-

niques to hide huge variation, but the appropriate pre-

sentation of the observed distributions (e.g. Wright et al.,

2004). On the original scale, bivariate plots of trait

distributions are to be expected heteroscedastic

(e.g. Kattge et al., 2009). (3) Trait related parameters
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and state variables in vegetation models can be assumed

log-normal distributed as well, e.g. Figs 7 and 8 (Knorr &

Kattge, 2005). For more details, see Appendix S2.

For several traits, we quantified ranges of variation:

overall variation, intra- and interspecific variation,

and variation with respect to different functional

groups. Most of the trait data compiled within the

TRY database have been measured within natural

environments and only a small fraction comes from

experiments. Therefore, the impact of experimental

growth conditions on observed trait variation is

probably small in most cases and the observed trait

variation in the TRY database comprises primarily

natural variation at the level of single organs, including

variation due to different measurement methods and, of

course, measurement errors. However, systematic sam-

pling of trait variation at single locations is a relatively

new approach (Albert et al., 2010a, b; Baraloto et al.,

2010; Hulshof & Swenson, 2010; Jung et al., 2010b;

Messier et al., 2010), and it may therefore be shown that

trait variability under natural conditions is underesti-

mated in the current dataset.

Tenets revisited

The results presented here are a first step to illuminate

two basic tenets of plant comparative ecology and

vegetation modelling at a global scale: (1) The aggrega-

tion of trait data at the species level represents the major

fraction of variation in trait values. At the same time, we

have shown surprisingly high intraspecific variation –

for some traits responsible for up to 40% of the overall

variation (Table 5, Figs 4 and 5). This variation reflects

genetic variation (among genotypes within a popula-

tion/species) and phenotypic plasticity. Through the

TRY initiative, a relevant amount of data is available

to quantify and understand trait variation beyond

aggregation on species level. The analysis presented

here is only a first step to disentangle within- and

between-species variability. It is expected that in com-

bination with more detailed analyses the TRY database

will support a paradigm shift from species to trait-

based ecology.

(2) Basic PFTs, such as those commonly used in

vegetation models capture a considerable fraction of

observed variation with relevant internal consistency.

However, for certain traits the majority of variation

occurs within PFTs –responsible for up to 75% of the

overall variation (Table 5, Figs 4–8). This variation

reflects the adaptive capacity of vegetation to environ-

mental constraints (Fyllas et al., 2009; Meng et al., 2009;

Ordoñez et al., 2009; Albert et al., 2010b; Poorter et al.,

2010) and it highlights the need for refined plant

functional classifications for Earth system modeling.

The current approach to vegetation modelling, using

few basic PFTs and one single fixed parameter value per

PFT (even if this value equals the global or regional

mean) does not account for the rather wide range of

observed values for related traits and thus does not

account for the adaptive capacity of vegetation. A more

empirically based representation of functional diversity

is expected to contribute to an improved prediction of

biome boundary shifts in a changing environment.

There are new approaches in Earth system modelling

to better account for the observed variability: suggesting

more detailed PFTs, modelling variability within PFTs or

replacing PFTs by continuous trait spectra. In the context

of this analysis we focused on a basic set of PFTs. This

schema is not immutable and there is not one given

functional classification scheme. In fact, PFTs are very

much chosen and defined along specific needs – and the

availability of information. For example, the PFTs used

in an individual based forest simulator (e.g. Chave,

1999), are by necessity very different from those used

for DGVMs. The TRY dataset will be as important for

allowing the definition of new, more detailed PFTs as for

parameterizing the existing ones. Some recent models

represent trait ranges as state variables along environ-

mental gradients rather than as fixed parameter values.

The O-CN model (Zaehle & Friend, 2010) is an example

towards such a new generation of vegetation models,

also the NCIM model (Esser et al., 2011), or in combina-

tion with an optimality approach the VOM model

(Schymanski et al., 2009). Finally, functional diversity

may be represented by model ensemble runs with

continuous trait spectra and without PFT classification

(Kleidon et al., 2009). However, compared with current

vegetation models, these new approaches will be more

flexible with respect to the adaptive capacity of vegeta-

tion. The TRY database is expected to contribute to these

developments, which will provide a more realistic,

empirically grounded representation of plants and eco-

systems in Earth system models.

A unified database of plant traits in the context of global
biogeography

The analyses presented here are only a first step to

introduce the TRY dataset. To better understand, sepa-

rate, and quantify the different contributions to trait

variation observed in TRY, more comprehensive anal-

yses could be carried out, e.g. variance partitioning

accounting for phylogeny and disentangling functional

and regional influences or analysis of (co-)variance of

plant traits along environmental gradients. An integra-

tive exploration of ecological and biogeographical infor-

mation in TRY is expected to substantially benefit from
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progress in the science of machine learning and pattern

recognition (Mjolsness & DeCoste, 2001). In principle, we

are confronted with a similar challenge that genomics

faced after large-scale DNA sequencing techniques had

become available. Instead of thousands of sequences, our

target is feature extraction and novelty detection in

thousands of plant traits and ancillary information.

Nonlinear relations among items and the treatment of

redundancies in trait space have to be addressed. Non-

linear dimensionality reduction (Lee & Verleysen, 2007)

may shed light on the inherent structures of data com-

piled in TRY. Empirical inference of this kind is expected

to stimulate and strengthen hypothesis-driven research

(Golub, 2010; Weinberg, 2010) towards a unified ecolo-

gical assessment of plant traits and their role for the

functioning of the terrestrial biosphere.

The representation of trait observations in a spatial or

climate context in the TRY database is limited (Figs 2

and 3). This situation can be overcome using comple-

mentary data streams: trait information can be spatially

expanded with comprehensive compilations of species

occurrence data, e.g. from GBIF or herbarium sources.

For SLA and leaf nitrogen content we provide an

example for combining trait information with species

occurrence data from the GBIF database and with

climate reconstruction data derived from the CRU

database (Fig. 3). Given that the major fraction of

variation is between species, the variation of species

mean trait values may be used – but with caution – as a

proxy for trait variation, as has already been performed

in recent studies at regional and continental scales

(Swenson & Enquist, 2007; Swenson & Weiser, 2010).

Ollinger et al. (2008) derived regional maps of leaf

nitrogen content and maximum photosynthesis from

trait information in combination with eddy covariance

fluxes and remote sensing data. Based on these ap-

proaches and advanced spatial interpolation techniques

(Shekhar et al., 2004), a unified global database of plant

traits may permit spatial mapping of key plant traits at

a global scale (Reich, 2005).

The relationship between plant traits (organism-level)

and ecosystem or land surface functional properties is

crucial. Recent studies have built upon the eddy covar-

iance network globally organized as FLUXNET (a net-

work of regional networks coordinating observations

from micrometeorological tower sites: http://www.

fluxnet.ornl.gov) and inferred site specific ecosystem-

level properties from the covariation of meteorological

drivers and ecosystem-atmosphere exchange of CO2

and water (Baldocchi, 2008). These include inherent

water-use efficiency (Reichstein et al., 2007; Beer et al.,

2009), maximum canopy photosynthetic capacity

(Ollinger et al., 2008), radiation use efficiency and light

response curve parameters (Lasslop et al., 2010). How

species traits relate to these ecosystem-level character-

istics has not been investigated, but should be possible

via a combined analysis of FLUXNET and TRY data.

For example, it is possible to test the hypothesized

correlation between SLA, P, and N content of dominant

species with radiation use efficiency and inherent

water-use efficiency at the ecosystem level (as implicit

in Ollinger et al., 2008). Similarly, patterns of spatially

interpolated global fields of biosphere–atmosphere

exchange (Beer et al., 2010; Jung et al., 2010a) may be

related to spatialized plant traits in order to detect a

biotic imprint on the global carbon and water cycles.

Such increased synthetic understanding of variation in

plant traits is expected to support the development of a

new generation of vegetation models with a better

representation of vegetation structure and functional

variation (Lavorel et al., 2008; Violle & Jiang, 2009).

Conclusions and perspectives

The TRY database provides unprecedented coverage of

information on plant traits and will be a permanent

communal repository of plant trait data. The first anal-

yses presented here confirm two basic tenets of plant

comparative ecology and vegetation modelling at glo-

bal scale: (1) the aggregation of trait data at the species

level represents the major fraction of variation and (2)

PFTs cover a relevant fraction of trait variation to

represent functional diversity in the context of vegeta-

tion modelling. Nevertheless, at the same time these

results reveal for several traits surprisingly high varia-

tion within species, as well as within PFTs – a finding

which poses a challenge to large-scale biogeography

and vegetation modelling. In combination with im-

proved (geo)-statistical methods and complementary

data streams, the TRY database is expected to support

a paradigm shift in ecology from being based on species

to a focus on traits and trait syndromes. It also offers

new opportunities for research in evolutionary biology,

biogeography, and ecology. Finally, it allows the

detection of the biotic imprint on global carbon and

water cycles, and fosters a more realistic, empirically

grounded representation of plants and ecosystems in

Earth system models.
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