

A monodromy criterion for existence of Neron models and a result on semi-factoriality

Orecchia, G.

Citation

Orecchia, G. (2018, February 27). A monodromy criterion for existence of Neron models and a result on semi-factoriality. Retrieved from https://hdl.handle.net/1887/61150

Version:	Not Applicable (or Unknown)
License:	<u>Licence agreement concerning inclusion of doctoral thesis in the</u> <u>Institutional Repository of the University of Leiden</u>
Downloaded from:	https://hdl.handle.net/1887/61150

Note: To cite this publication please use the final published version (if applicable).

Cover Page

Universiteit Leiden

The following handle holds various files of this Leiden University dissertation: <u>http://hdl.handle.net/1887/61150</u>

Author: Orecchia, G. Title: A monodromy criterion for existence of Neron models and a result on semifactoriality Issue Date: 2018-02-27

Stellingen

behorende bij het proefschrift

"A monodromy criterion for existence of Néron models and a result on semi-factoriality"

Giulio Orecchia

- 1. Let A/k be an abelian variety over a field of characteristic zero, S a regular k-scheme, and $\pi: S' \to S$ a proper birational k-morphism. Every k-morphism $S' \to A$ factors via π .
- 2. Let S be a reduced, locally noetherian, geometrically unibranch Q-scheme, and let $U \subset S$ be an open dense. Let G/S be a smooth group scheme of finite type, with semi-abelian identity component G^0 . Let H/U be a smooth subgroup scheme of G_U . Then the schematic closure $\overline{H} \subset G$ is an S-smooth subgroup scheme of G.
- 3. Let S be a regular, locally noetherian Q-scheme, $D \subset S$ a regular divisor, $U = S \setminus D$ and A/U an abelian scheme with a semiabelian model \mathcal{A}/S . The abelian scheme A admits a Néron model over S.
- 4. Let S be a regular, locally noetherian scheme, $D \subset S$ a regular divisor, $U = S \setminus D$ and C/U a smooth curve with a nodal model C/S. The jacobian $Jac_{C/U}$ admits a Néron model over S.
- 5. Let S be a regular, locally noetherian, excellent Q-scheme, D a normal crossing divisor on $S, \mathcal{C} \to S$ and $\mathcal{D} \to S$ two nodal curves, smooth over $U = S \setminus D$. Assume that over the generic point $\eta \in S$, there exists an isogeny

$$\operatorname{Pic}^{0}_{\mathcal{C}_{\eta}/\eta} \to \operatorname{Pic}^{0}_{\mathcal{D}_{\eta}/\eta}.$$

Then $\operatorname{Pic}^{0}_{\mathcal{C}_{U}/U}$ admits a Néron model over S if and only if $\operatorname{Pic}^{0}_{\mathcal{D}_{U}/U}$ does.

6. Let S be a regular, locally noetherian scheme, C/S an aligned curve with regular total space C, admitting a section $\sigma: S \to C$. Let $U \subset S$ be an open dense, such that C_U is smooth over U, and let \mathcal{N}/S be the Néron model of $\operatorname{Pic}^0_{C_U/U}$. Let \mathcal{E} be a line bundle on C and $J^{\sigma}_{\mathcal{E}}/S$ be the compactified jacobian of C/S constructed by Esteves. Denote by $J \subset J^{\sigma}_{\mathcal{E}}$ the open subspace parametrizing line bundles (equivalently, the S-smooth locus of $J^{\sigma}_{\mathcal{E}}$). Then the natural S-morphism $J \to \mathcal{N}$ is an isomorphism. 7. Let S be the spectrum of a discrete valuation ring, with generic point η . Let \mathcal{C}/S be a nodal curve, and $\mathcal{C}' \to \mathcal{C}$ the blow-up at a closed point of \mathcal{C} . Then:

i) the induced morphism $\operatorname{Pic}_{\mathcal{C}/S} \to \operatorname{Pic}_{\mathcal{C}'/S}$ is étale.

Let $e: \operatorname{Spec} k(\eta) \to \operatorname{Pic}_{\mathcal{C}_{\eta}/k(\eta)}$ be the unit section. Denote by $\operatorname{cl}(e)$ (resp. $\operatorname{cl}'(e)$) its schematic closure inside $\operatorname{Pic}_{\mathcal{C}/S}$ (resp. inside $\operatorname{Pic}_{\mathcal{C}'/S}$).

- ii) the induced morphism between the fppf-quotients $\frac{\text{Pic}_{C/S}}{\text{cl}(e)} \rightarrow \frac{\text{Pic}_{C'/S}}{\text{cl}'(e)}$ is an open immersion.
- 8. Let S be the spectrum of a discrete valuation ring, \mathcal{C}/S a nodal curve, and $\mathcal{C}' \to \mathcal{C}$ the blowing-up of \mathcal{C} at a closed point. Let \mathcal{L} be a line bundle on \mathcal{C}' such that its restriction to every irreducible component of the exceptional locus of π has degree zero. Then $\pi_*\mathcal{L}$ is a line bundle on \mathcal{C} and the natural morphism of $\mathcal{O}_{\mathcal{C}'}$ -modules $\pi^*\pi_*\mathcal{L} \to \mathcal{L}$ is an isomorphism.