

A monodromy criterion for existence of Neron models and a result on semi-factoriality

Orecchia, G.

Citation

Orecchia, G. (2018, February 27). A monodromy criterion for existence of Neron models and a result on semi-factoriality. Retrieved from https://hdl.handle.net/1887/61150

Version:	Not Applicable (or Unknown)
License:	<u>Licence agreement concerning inclusion of doctoral thesis in the</u> <u>Institutional Repository of the University of Leiden</u>
Downloaded from:	https://hdl.handle.net/1887/61150

Note: To cite this publication please use the final published version (if applicable).

Cover Page

Universiteit Leiden

The following handle holds various files of this Leiden University dissertation: <u>http://hdl.handle.net/1887/61150</u>

Author: Orecchia, G. Title: A monodromy criterion for existence of Neron models and a result on semifactoriality Issue Date: 2018-02-27 On the other hand, the base change of \mathcal{X}/R by the étale map $R \to R' := \mathbb{Q}(i)[[t]]$ is semi-factorial, since its special fibre has split singularities and its graph is a tree. We see that, denoting by X_1 and X_2 the two components of the special fibre, the Weil divisors $s_{R'} - X_1$ and $s_{R'} - X_2$ are both Cartier, and both extend the Cartier divisor on $\mathcal{X}_{K'}$ given by $s_{K'}$.

13 Application to Néron lft-models of jacobians of nodal curves

13.1 Representability of the relative Picard functor

Let S be a scheme and $\mathcal{X} \to S$ a curve. We denote by $\operatorname{Pic}_{\mathcal{X}/S}$ the relative Picard functor, that is, the fppf-sheafification of the functor

$$(\mathbf{Sch} / S)^{opp} \to \mathbf{Sets}$$

 $T \mapsto \{\text{invertible sheaves on } \mathcal{X}_T\}/\cong$

We start with a result on representability of the Picard functor:

Theorem 13.1 ([BLR90] 9.4/1). Let $f: \mathcal{X} \to S$ be a nodal curve. Then the relative Picard functor $\operatorname{Pic}_{\mathcal{X}/S}$ is representable by an algebraic space², smooth over S.

Lemma 13.2. Let $f: \mathcal{X} \to S$ be a nodal curve admitting a section $s: S \to \mathcal{X}$. Then for any S-scheme T the natural map

$$\operatorname{Pic}(\mathcal{X} \times_S T) / \operatorname{Pic}(T) \to \operatorname{Pic}_{\mathcal{X}/S}(T)$$

is an isomorphism.

Proof. See the discussion about rigidified line bundles on [BLR90] 8.1. \Box

13.2 Néron lft-models

Let S be a Dedekind scheme, that is, a noetherian normal scheme of dimension ≤ 1 . Then S is a disjoint union of integral Dedekind schemes S_i . The ring of rational functions of S is the direct sum $K := \bigoplus_i k(\eta_i)$, where the points $\{\eta_i\}$ are the generic points of the S_i .

²Defined as in [BLR90] 8.3/4

Definition 13.3 ([BLR90], 10.1/1). Let S be a Dedekind scheme, with ring of rational functions K. Let A be a K-scheme. A Néron lft-model over S for A is the datum of a smooth separated scheme $\mathcal{A} \to S$ and a K-isomorphism $\varphi: \mathcal{A} \times_S K \to A$ satisfying the following universal property: for any smooth map of schemes $T \to S$ and K-morphism $f: T_K \to A$, there exists a unique S-morphism $F: T \to \mathcal{A}$ with $F_K = f$.

A Néron lft-model differs from a Néron model in that the former is not required to be quasi-compact.

Proposition 13.4 ([BLR90], 10.1/2). Let S be a trait and G a smooth separated S-group scheme. The following are equivalent:

- i) G is a Néron lft-model of its generic fibre;
- ii) for every essentially smooth local extension of traits $S' \to S$, with $K' = \operatorname{Frac} \Gamma(S, \mathcal{O}_S)$, the map $G(S') \to G(K')$ is surjective.

Lemma 13.5. Let $\mathcal{X} \to S$ be a nodal curve over a trait. Let $\operatorname{cl}(e_K) \subset \operatorname{Pic}_{\mathcal{X}/S}$ be the schematic closure of the unit section e_K : Spec $K \to \operatorname{Pic}_{\mathcal{X}_K/K}$. Then the fppf-quotient sheaf $\mathcal{N} = \operatorname{Pic}_{\mathcal{X}/S} / \operatorname{cl}(e_K)$ is representable by a smooth separated S-group scheme. Moreover, the quotient morphism $\operatorname{Pic}_{\mathcal{X}/S} \to \mathcal{N}$ is étale.

Proof. As $\operatorname{cl}(e_K)$ is flat over S, the fppf-quotient of sheaves $\mathcal{N} = \operatorname{Pic}_{\mathcal{X}/S} / \operatorname{cl}(e_K)$ is a group algebraic space, smooth over S because $\operatorname{Pic}_{\mathcal{X}/S}$ is; as $\operatorname{cl}(e_K)$ is closed in $\operatorname{Pic}_{\mathcal{X}/S}$, \mathcal{N} is separated over S. In particular, \mathcal{N} is a separated group algebraic space locally of finite type over S, so it is a group scheme by [Ana73], Chapter IV, Theorem 4.B. Finally, to show that $\operatorname{Pic}_{\mathcal{X}/S} \to \mathcal{N}$ is étale we prove that $\operatorname{cl}(e_K)$ is étale over S. As the property is étale local on S, we may assume that $\mathcal{X} \to S$ has special fibre with split singularities. The multidegree map $E(\mathcal{X}) \to \mathbb{Z}^V$ (lemma 12.2, ii)) is injective, hence the intersection of $\operatorname{cl}(e_K)$ with the identity component $\operatorname{Pic}_{\mathcal{X}/S}^O \subset \operatorname{Pic}_{\mathcal{X}/S}$ is trivial and it follows that $\operatorname{cl}(e_K)$ is étale over S.

Given a nodal curve $\mathcal{X} \to S$ over a trait, we can associate to it the labelled graph (Γ, l) of the base change $\mathcal{X} \times_S S' \to S'$, where S' is the spectrum of the strict henselization of $\Gamma(S, \mathcal{O}_S)$ with respect to some algebraic closure of the residue field k. The graph (Γ, l) does not depend on the choice of an algebraic closure of k.

Theorem 13.6. Let $\mathcal{X} \to S$ be a nodal curve over a trait with perfect fraction field K. The S-group scheme $\mathcal{N} = \operatorname{Pic}_{\mathcal{X}/S} / \operatorname{cl}(e_K)$ is a Néron lft-model for $\operatorname{Pic}_{\mathcal{X}_K/K}$ over S if and only if the labelled graph (Γ, l) of $\mathcal{X} \to S$ is circuitcoprime. *Proof.* Let $S^{sh} \to S$ be a strict henselization of S with respect to some algebraic closure of the residue field, and denote by K^{sh} its fraction field. If (Γ, l) is not circuit-coprime, the map

$$\operatorname{Pic}(\mathcal{X}_{S^{sh}}) \to \operatorname{Pic}(\mathcal{X}_{K^{sh}})$$

is not surjective, by theorem 12.3. Now, as the special fibre of $\mathcal{X}_{S^{sh}}/S^{sh}$ is generically smooth, $\mathcal{X}_{S^{sh}} \to S^{sh}$ admits a section; hence, we can apply lemma 13.2 and find that

$$\operatorname{Pic}_{\mathcal{X}/S}(S^{sh}) \to \operatorname{Pic}_{\mathcal{X}_K/K}(K^{sh})$$

is not surjective. As the quotient $\operatorname{Pic}_{\mathcal{X}/S} \to \mathcal{N}$ is an étale surjective morphism of S^{sh} -algebraic spaces (lemma 13.5), the map $\operatorname{Pic}_{\mathcal{X}/S}(S^{sh}) \to \mathcal{N}(S^{sh})$ is surjective. We deduce that $\mathcal{N}(S^{sh}) \to \operatorname{Pic}_{\mathcal{X}_K/K}(K^{sh})$ is not surjective. Then for some étale extension of discrete valuation rings $S' \to S$, $\mathcal{N}(S') \to \operatorname{Pic}_{\mathcal{X}_K/K}(K')$ is not surjective, hence \mathcal{N} is not a Néron model of $\operatorname{Pic}_{\mathcal{X}_K/K}$.

Now assume that (Γ, l) is circuit coprime. Assume first that S is strictly henselian. By proposition 13.4 it is enough to prove that for all essentially smooth local extensions $R \to R'$ of discrete valuation rings, the map

$$\mathcal{N}(R') \to \operatorname{Pic}_{\mathcal{X}_K/K}(K')$$

is surjective. As $\mathcal{X} \to S$ admits a section, we may apply lemma 13.2 and just show that $\operatorname{Pic}(\mathcal{X}_{R'}) \to \operatorname{Pic}(\mathcal{X}_{K'})$ is surjective. The map $R \to R'$ has ramification index 1, i.e. it sends a uniformizer to a uniformizer. Therefore the labelled graph (Γ', l') associated to $\mathcal{X}_{R'}$ is again circuit-coprime, and in fact $(\Gamma', l') = (\Gamma, l)$. Now we conclude by theorem 12.3.

Now let $\mathcal{X} \to S$ be any nodal curve with circuit-coprime labelled graph. Let $p: S' \to S$ be a strict henselization of S. Consider the smooth separated S-group scheme $\mathcal{N} = \operatorname{Pic}_{\mathcal{X}/S} / \operatorname{cl}(e_K)$. As taking the schematic closure commutes with flat base change, $p^*\mathcal{N}$ is canonically isomorphic to $\operatorname{Pic}_{\mathcal{X}'/S'} / \operatorname{cl}(e_{K'})$, hence is a Néron lft-model for $\operatorname{Pic}_{\mathcal{X}_{K'}/K'}$ over S'. We show that \mathcal{N} is a Néron lft-model of its generic fibre. Let $T \to S$ be a smooth S-scheme, $f: T_K \to \operatorname{Pic}_{\mathcal{X}_K/K}$ a K-morphism. The base change $p^*f: T_{K'} \to \operatorname{Pic}_{\mathcal{X}_{K'}/K'}$ extends uniquely to an S'-morphism $g: p^*T \to \mathcal{N}'$. Let $S'' := S' \times_S S'$, $p_1, p_2: S'' \to S'$ the two projections, and $q: S'' \to S$ the composition. The two maps $p_1^*g, p_2^*g: q^*T \to q^*\mathcal{N}$ both coincide with q^*f when restricted to q^*T_K . As $q^*T \to S$ is flat, q^*T_K is schematically dense in q^*T . Since moreover $q^*\mathcal{N}$ is separated, we have that $p_1^*g = p_2^*g$. Hence g descends to a morphism $T \to \mathcal{N}$ extending f. Again, the extension is unique because $\mathcal{N} \to S$ is separated and T_K is schematically dense in T.

Corollary 13.7. Let $\mathcal{X} \to S$ be a nodal curve over a trait. Let $\pi: \widetilde{\mathcal{X}} \to \mathcal{X}$ be the blowing-up of \mathcal{X} at the finite union of closed points $\mathcal{X}^{nreg} \cap \mathcal{X}_k$. Then $\mathcal{N} = \operatorname{Pic}_{\widetilde{\mathcal{X}}/S} / \operatorname{cl}(e_K)$ is a Néron lft-model for $\operatorname{Pic}_{\mathcal{X}_K/K}$ over S.

Proof. It is enough to check that the labelled graph $(\tilde{\Gamma}, \tilde{l})$ of $\tilde{\mathcal{X}} \to S$ is circuitcoprime, by the previous Theorem. As labelled graphs are preserved under étale extensions of the base trait, we may assume that $\mathcal{X} \to S$ has special fibre with split singularities. Then the same argument as in the proof of corollary 12.5 shows that $(\tilde{\Gamma}, \tilde{l})$ is circuit-coprime.

Corollary 13.8. Let $\mathcal{X} \to S$ be a nodal curve over a trait with perfect fraction field K. Let \overline{k} be a separable closure of the residue field of S and suppose that the graph of $\mathcal{X}_{\overline{k}}$ is a tree. Then $\mathcal{N} = \operatorname{Pic}_{\mathcal{X}/S} / \operatorname{cl}(e_K)$ is a Néron lft-model for $\operatorname{Pic}_{\mathcal{X}_K/K}$ over S.

We have shown how to construct Néron lft-models for the group scheme $\operatorname{Pic}_{\mathcal{X}_K/K}$, without ever imposing bounds on the degree of line bundles; the following lemma allows us to retrieve lft-Néron models for subgroup schemes of $\operatorname{Pic}_{\mathcal{X}_K/K}$, and applies in particular to subgroup schemes that are open and closed, such as the connected component of the identity $\operatorname{Pic}_{\mathcal{X}_K/K}^{[0]}$.

Lemma 13.9. Let \mathcal{X}/S be a nodal curve over a trait, and $H \subset \operatorname{Pic}_{\mathcal{X}_K/K}$ a K-smooth closed subgroup scheme of $\operatorname{Pic}_{\mathcal{X}_K/K}$. Let $\mathcal{N} \to S$ be the Néron model of $\operatorname{Pic}_{\mathcal{X}_K/K}$. Then H admits a Néron lft-model \mathcal{H} over S, which is obtained as a group smoothening of the schematic closure of H inside \mathcal{N} .

Proof. This is a special case of [BLR90], 10.1/4.

We remark that, if the generic fibre \mathcal{X}_K/K is not smooth, $\operatorname{Pic}_{\mathcal{X}_K/K}^{[0]}$ is an extension of an abelian variety by a torus; if the torus contains a copy of $\mathbb{G}_{m,K}$, the Néron lft-model of $\operatorname{Pic}_{\mathcal{X}_K/K}^{[0]}$ is not quasi-compact.

Bibliography

- [AK80] Allen B. Altman and Steven L. Kleiman. Compactifying the Picard scheme. Adv. in Math., 35(1):50–112, 1980.
- [Ana73] Sivaramakrishna Anantharaman. Schémas en groupes, espaces homogènes et espaces algébriques sur une base de dimension 1. pages 5–79. Bull. Soc. Math. France, Mém. 33, 1973.
- [BLR90] Siegfried Bosch, Werner Lütkebohmert, and Michel Raynaud. Néron Models, volume 21 of Ergebnisse der Mathematik und ihrer Grenzgebiete. Springer-Verlag, 1990.
- [Cap08] Lucia Caporaso. Néron models and compactified Picard schemes over the moduli stack of stable curves. Amer. J. Math., 130(1):1–47, 2008.
- [Del85] Pierre Deligne. Le lemme de Gabber. Astérisque, 127:131–150, 1985. Seminar on arithmetic bundles: the Mordell conjecture (Paris, 1983/84).
- [Die05] Reinhard Diestel. Graph theory, volume 173 of Graduate Texts in Mathematics. Springer-Verlag, Berlin, third edition, 2005.
- [dJ96] A. J. de Jong. Smoothness, semi-stability and alterations. Inst. Hautes Études Sci. Publ. Math., (83):51–93, 1996.
- [Edi92] Bas Edixhoven. Néron models and tame ramification. Compositio Mathematica, 81(3):291–306, 1992.
- [GD67] Alexander Grothendieck and Jean Dieudonné. Éléments de géométrie algébrique IV, volume 20, 24, 28, 32 of Publications Mathématiques. Institute des Hautes Études Scientifiques., 1964-1967.
- [GR71] L. Gruson and M. Raynaud. Critères de platitude et de projectivité. Techniques de "platification" d'un module. *Inventiones mathematicae*, 13:1–89, 1971.
- [Gro71] Alexander Grothendieck. Revêtements étales et groupe fondamental (SGA 1), volume 224 of Lecture notes in mathematics. Springer-Verlag, 1971.
- [GRR72] Alexander Grothendieck, Michel Raynaud, and Dock Sang Rim. Groupes de monodromie en géométrie algébrique. I. Lecture Notes in Mathematics, Vol. 288. Springer-Verlag, 1972. Séminaire de Géométrie Algébrique du Bois-Marie 1967–1969 (SGA 7 I).
- [Hol17a] David Holmes. Extending the double ramification cycle by resolving the Abel-Jacobi map. 2017.