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this point on, the rest of the proof coincides with the proof of proposition 11.16;
we only mention that, at the point when x(e) is defined, one can assign to it
any value if l(e) = 0.

12 Semi-factoriality of nodal curves

Let S be the spectrum of a discrete valuation ring R having perfect fraction
field K, residue field k and uniformizer t. Let f : X → S be a nodal curve
whose special fibre has split singularities, and Γ = (V,E) be the dual graph
of the special fibre Xk. For any v ∈ V , we denote by Xv the corresponding
irreducible component of the special fibre Xk.

Definition 12.1. The labelled graph of X → S is the N∞-labelled graph (Γ, l)
whose labelling l assigns to each edge of Γ the thickness (see section 7.1) of
the corresponding singular point of Xk.

Our aim is to relate the property of being circuit-coprime for the graph (Γ, l)
to the semi-factoriality of f : X → S. To this end, we are going to provide a
dictionary between the geometry of X/S and the combinatorial objects intro-
duced in section 11.

Denote by Divk(X ) the group of Weil divisors on X supported on the special
fibre Xk. It is the free abelian group generated by the irreducible components
of Xk. Hence we obtain a natural isomorphism Divk(X )→ ZV .

Let C(X ) be the group of Cartier divisors on X whose restriction to the generic
fibre XK is trivial. We claim that the natural map C(X )→ Divk(X ) is injec-
tive. This follows from ([GD67], 21.6.9 (i)) under the assumption that X is
normal, which is not satisfied if X/S has singular generic fibre. However, the
proof only requires that for all x ∈ Xk, depth(OX ,x) = 1 implies dimOX ,x = 1.
This is immediately checked: let x ∈ Xk with dimOX ,x 6= 1; then x is a closed
point of Xk. By S-flatness of X , the uniformizer t is not a zero divisor in
OX ,x; as Xk is reduced, OX ,x/tOX ,x is reduced. Every reduced noetherian
ring of dimension 1 is Cohen-Macaulay, hence depth(OX ,x/tOX ,x) = 1, and
we deduce by [Sta16]TAG 0AUI that depth(OX ,x) = 2, establishing the claim.
Hence C(X ) is in a natural way a subgroup of Divk(X ).

Finally, denote by E(X ) the kernel of the restriction map Pic(X )→ Pic(XK),
so that E(X ) is the group of isomorphism classes of line bundles on X that
are generically trivial. We have an exact sequence of groups

0→ Z→ C(X )→ E(X )→ 0
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where the first map sends 1 to div(t) and the second map sends D to OX (D).
Indeed, every principal Cartier divisor supported on the special fibre belongs
to Zdiv(t). For this we can reduce to showing that every regular function
on X that is generically invertible is of the form tnu for some n ∈ Z≥0 and
u ∈ OX (X )×. By [Sta16]TAG 0AY8 we have f∗OX = OS , from which the
claim easily follows.

Lemma 12.2. Hypotheses as in the beginning of this section.

i) The natural isomorphism Divk(X ) → ZV identifies C(X ) ⊂ Divk(X )
with the subgroup C ⊂ ZV of Cartier vertex labellings (definition 11.6).

Let
0→ Z→ C δ−→ ZV

be the exact sequence of lemma 11.8, where δ is the multi-degree operator
(definition 11.7).

ii) The isomorphism C(X )→ C induces an exact sequence

0→ Z→ C(X )
δX−−→ ZV .

The first arrow is the map 1 7→ div(t); the map δX factors via the map
E(X )→ ZV , which sends a line bundle L to the vertex labelling

v 7→ degL|Xv .

Let
. . .→ Xn → . . .→ X1 → X0 = X

be the chain of blowing-ups (29). Denote by πn the composition Xn → X .

iii) For every n ≥ 0 the labelled graph of Xn → S is the n-th blow-up graph
(Γn, ln) of (Γ, l) (definition 11.17). The new vertices of (Γn, ln) corre-
spond to the irreducible components of the exceptional fibre of Xn → X .

iv) Let Cn be the group of Cartier vertex labellings on Xn. The map C(X )→
C(Xn) induced by ι : C → Cn (section 11.3) descends to the pullback map
π∗n : E(X )→ E(Xn).

Proof.

i) Let D =
∑
v nvXv ∈ Divk(X ). We want to show the equivalence of the

two conditions:
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a) for every node p ∈ Xk lying on distinct components Xw, Xz of Xk,
the thickness τp divides nw−nz (with the convention that∞ divides
only 0);

b) D is Cartier.

As every Weil divisor D is Cartier on the generic fibre and on the regular
locus of X , we may fix a node p ∈ Xk and reduce to work on the complete
local ring ÔX ,p. We identify ÔX ,p with A = R̂[[x, y]]/xy − tτp . Let Xw

and Xz be the components of Xk through p, and let Yw, Yz be their
preimages in SpecA, which are given by the ideals (x, t) and (y, t) of A
respectively.

Assume a) is true; we are going to deduce that D is Cartier at p. We
may assume that the two components Xw and Xz are distinct, otherwise
D is given by div(tnw) locally at p and is automatically Cartier at p. As

div(x) = τpYw, we have that (nw − nz)Yw = div(x
nw−nz
τp ) is Cartier.

Therefore D− div(tnz ) =
∑
v(nv − nz)Xv is Cartier at p, and also D is.

Assume now b) and that p lies on distinct components Xw, Xz of Xk.
We may assume that the restriction of D to SpecA, nwYw + nzYz, is
the divisor of some regular function f ∈ A = R̂[[x, y]]/xy − tτp . We
first consider the case τp = ∞. As f is a unit in A[t−1], there exists
g ∈ A and n ≥ 0 such that fg = tn. Now, let fx be the image of f in
A/xA. As the latter is a unique factorization domain, fx = tm1u1 for
some unit u1 ∈ (A/xA)× and m1 ≤ n. Moreover, we have m1 = nw.
Similarly, we write fy = tm2u2 ∈ A/yA, with m2 = nz. As the images
of fx and fy in A/(x, y)A = R coincide, we find that m1 = m2, that is,
nw = nz, as desired. Now we remain with the case τp 6= ∞. Replacing
f by ft−nz , we get div(f) = (nw − nz)Yw. We want to show that τp
divides m := nw − nz. Let d = gcd(m, τp). As div(x) = τpYw, we may
replace f by a product of powers of f and x and assume that m = d.
Write τp = mα, for some α ∈ Z. We have div(fα/x) = 0, hence, as
SpecA is normal, fα/x is a unit in A. Now, reducing modulo t, one can
easily see that α has to be 1, so m = τp as desired.

ii) The composition Z → C → C(X ) sends 1 to
∑
vXv = Xk = div(t). The

map δX factors via the cokernel of Z → C(X ), which is indeed E(X ).
For the characterization of the map δX , recall first that δ : C → ZV sends
a Cartier vertex labelling ϕ to the vertex labelling

v 7→
∑

edges e
incident to v

ϕ(w)− ϕ(v)

l(e)

where w denotes the other endpoint of e. The composition δX : C(X )→
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C → ZV sends a Cartier divisor D =
∑
v nvXv to

v 7→
∑

nodes p
lying on Xv

nw − nv
τp

with τp being the thickness of the node p, Xw the second component
passing through p. We want to check that δX (D) is the vertex labelling
v 7→ degO(D)|Xv . Fix a vertex z; multiplication by tnz gives an iso-
morphism O(D) ∼= O(D′) where D′ =

∑
v(nv − nz)Xv. We reduce to

computing the contribution to degO(D′)|Xz coming from (nv − nz)Xv,
where v ∈ V is some vertex different from z. The contribution is zero if
Xv and Xz do not intersect; otherwise, let p ∈ Xv ∩Xz, with thickness
τp. Notice that τp|nv − nz. Locally at p, the divisor (nv − nz)Xv is
given by the fractional ideal I = (x(nv−nz)/τp , tnv−nz ) = (x(nv−nz)/τp)

of ÔX ,p ∼= R̂[[x, y]]/xy − tτp . Restricting to the branch y = 0, t = 0, we

obtain the fractional ideal I ⊗ ÔX ,p/y = (x(nv−nz)/τp) of k[[x]], hence a
contribution of (nv − nz)/τp to the degree of O(D′)|Xz . Summing over
all the nodes in Xv ∩Xz, we recover the map δX .

iii) This can be read directly in the description of the effect of blowing-up
on the special fibre provided in section 8.3.

iv) The commutative diagram

0 // Z //

id

��

C(X ) //

ι

��

E(X ) //

ι

��

0

0 // Z // C(Xn) // E(Xn) // 0

yields a map ι : E(X ) → E(Xn). Such map fits into the commutative
diagram

E(X )
δX //

ι

��

ZV

ε

��
E(Xn)

δXn // ZVn

where ε : ZV → ZVn is the extension by zero map, and the two horizontal
maps are induced by the exact sequences as in ii) for X and Xn. They
associate to a line bundle its multi-degree on the special fibre, and are
injective. The pullback map π∗n : E(X ) → E(Xn) makes the diagram
above commutative as well; it follows that it coincides with ι.
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Theorem 12.3. Let X → S be a nodal curve over a trait with perfect fraction
field K, and assume that the special fibre Xk has split singularities.

i) If the labelled graph (Γ, l) is circuit-coprime then X → S is semi-factorial.

ii) Suppose that Γ(S,OS) is strictly-henselian. If X is semi-factorial over
S, then the labelled graph (Γ, l) is circuit-coprime.

Proof. We start with part i). Suppose Γ is circuit-coprime. Let L be a line
bundle on XK . By theorem 9.5, there exists an integer n ≥ 0 such that L
extends to a line bundle L̃ on Xn. Let (Γn, ln) be the labelled graph of Xn,
which is the n-th blow-up graph of Γ. Denote by α ∈ ZVn the vertex-labelling
assigning to each vertex v the degree of the restriction of L̃ to the component
of (Xn)k corresponding to v. By proposition 11.21, the map H → Hn is
an isomorphism; hence there exists a Cartier vertex labelling ϕ on (Γn, ln)
such that δ(ϕ) + α is in the image of the map ZV → ZVn . Equivalently (by
lemma 12.2) there exists a Cartier divisor D ∈ C(Xn), such that δXn(D) + α
is in the image of ZV → ZVn , i.e., δX (D) + α has value zero on all new

vertices of Γn. This means precisely that OXn(D) ⊗ L̃ has degree zero on
every component of the exceptional locus of πn : Xn → X . By proposition 10.2,
L := (πn)∗(L̃⊗O(D)) is a line bundle on X , which restricts to L on the generic
fibre.

Let’s turn to part ii). Suppose that Γ is not circuit-coprime. Then there exists
n ≥ 0 such that the map H → Hn is not surjective. Let α be a basis element
of ZVn such that the image of α in Hn = ZVn/δn(Cn) is not in the image of
H → Hn. Then α takes value 1 on some vertex v of Γn and value zero on all
other vertices. The vertex v corresponds to an exceptional component C ∼= P1

k

of πn : Xn → X . Let p be a k-rational point of (Xn)smk lying on C, which exists
as k is separably closed. Since the base is henselian, p can be extended to a
section s : S → Xn. The image D ⊂ Xn of s defines a Cartier divisor. Let
L := O(D)|K be its restriction to the generic fibre. Assume by contradiction
that L can be extended to a line bundle L on X . Then F := O(D)⊗π∗nL−1 is
generically trivial. Let D′ be a Cartier divisor supported on the special fibre of
Xn such that O(D′) ∼= F . Then D′ corresponds to a Cartier-vertex labelling
ϕ of Γn, and α− δn(ϕ) is the vertex-labelling associated to the multidegree of
π∗nL. As π∗nL has degree zero on every component of the exceptional fibre of
πn : Xn → X , α−δn(ϕ) has value zero on every new vertex of Γn. In particular,
αδn(ϕ) is in the image of H → Hn, and so is α, yielding a contradiction.

Remark 12.4. The assumption that Γ(S,OS) is strictly-henselian can be
replaced by the weaker assumption: for each irreducible component Y of Xk,
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there exists a line bundle LY on X whose restriction to Xk has degree 1 on Y
and degree 0 on all other components.

Corollary 12.5. Hypotheses as in theorem 12.3. Let π : X̃ → X be the
blowing-up of X at the finite union of closed points Xnreg∩Xk. The restriction
map

Pic(X̃ )→ Pic(XK)

is surjective.

Proof. Let (Γ, l) be the labelled graph of X → S. The labelled graph (Γ̃, l̃)

of X̃ → S is the first-blow-up graph of Γ (definition 11.17). Every edge of Γ̃
with a label different from 1 is adjacent to exactly two edges, both with label
1. Hence Γ̃ is circuit-coprime, and we conclude by theorem 12.3.

Corollary 12.6. Hypotheses as in theorem 12.3. Suppose that the special fibre
Xk is of compact-type (i.e. its dual graph Γ is a tree). Then the restriction
map

Pic(X )→ Pic(XK)

is surjective.

Proof. The dual graph Γ of the special fibre has no circuits, hence the labelled
graph (Γ, l) is circuit-coprime.

In general, semi-factoriality of nodal curves over traits does not descend along
étale base change, and we cannot drop the assumption in theorem 12.3 that
the special fibre of the curve has split singularities. Here is an example.

Example 12.7. Let R = Q[[t]], K = FracR, S = SpecR, and

X = Proj
R[x, y, z]

x2 + y2 − t2z2
.

The curve X → S has smooth generic fibre XK/K, and a node P = (t =
0, x = 0, y = 0, z = 1) on the special fibre. The section s : S → X given by
x = t, y = 0, z = 1 goes through the node P . The Cartier divisor on XK
given by the image of sK : SpecK → XK does not extend to a Cartier divisor
on X . Indeed, if by contradiction it extended to a Cartier divisor D on X ,
the difference D− s as Weil divisors would be a Weil divisor supported on the
special fibre; hence a Weil divisor linearly equivalent to zero, since the special
fibre is irreducible. Then s would be Cartier, which it is not, and we have the
contradiction.
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On the other hand, the base change of X/R by the étale map R → R′ :=
Q(i)[[t]] is semi-factorial, since its special fibre has split singularities and its
graph is a tree. We see that, denoting by X1 and X2 the two components of
the special fibre, the Weil divisors sR′ − X1 and sR′ − X2 are both Cartier,
and both extend the Cartier divisor on XK′ given by sK′ .

13 Application to Néron lft-models of jacobians
of nodal curves

13.1 Representability of the relative Picard functor

Let S be a scheme and X → S a curve. We denote by PicX/S the relative
Picard functor, that is, the fppf-sheafification of the functor

(Sch /S)opp → Sets

T 7→ {invertible sheaves on XT }/ ∼=

We start with a result on representability of the Picard functor:

Theorem 13.1 ([BLR90] 9.4/1). Let f : X → S be a nodal curve. Then the
relative Picard functor PicX/S is representable by an algebraic space2, smooth
over S.

Lemma 13.2. Let f : X → S be a nodal curve admitting a section s : S → X .
Then for any S-scheme T the natural map

Pic(X ×S T )/Pic(T )→ PicX/S(T )

is an isomorphism.

Proof. See the discussion about rigidified line bundles on [BLR90] 8.1.

13.2 Néron lft-models

Let S be a Dedekind scheme, that is, a noetherian normal scheme of dimension
≤ 1. Then S is a disjoint union of integral Dedekind schemes Si. The ring of
rational functions of S is the direct sum K :=

⊕
i k(ηi), where the points {ηi}

are the generic points of the Si.

2Defined as in [BLR90] 8.3/4
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