

A monodromy criterion for existence of Neron models and a result on semi-factoriality

Orecchia, G.

Citation

Orecchia, G. (2018, February 27). *A monodromy criterion for existence of Neron models and a result on semi-factoriality*. Retrieved from https://hdl.handle.net/1887/61150

Note: To cite this publication please use the final published version (if applicable).

Cover Page

Universiteit Leiden

The following handle holds various files of this Leiden University dissertation: <http://hdl.handle.net/1887/61150>

Author: Orecchia, G. **Title:** A monodromy criterion for existence of Neron models and a result on semifactoriality **Issue Date**: 2018-02-27

this point on, the rest of the proof coincides with the proof of proposition 11.16; we only mention that, at the point when $x(e)$ is defined, one can assign to it any value if $l(e) = 0$.

12 Semi-factoriality of nodal curves

Let S be the spectrum of a discrete valuation ring R having perfect fraction field K, residue field k and uniformizer t. Let $f: \mathcal{X} \to S$ be a nodal curve whose special fibre has split singularities, and $\Gamma = (V, E)$ be the dual graph of the special fibre \mathcal{X}_k . For any $v \in V$, we denote by X_v the corresponding irreducible component of the special fibre \mathcal{X}_k .

Definition 12.1. The *labelled graph* of $\mathcal{X} \to S$ is the N_∞-labelled graph (Γ, l) whose labelling l assigns to each edge of Γ the thickness (see section 7.1) of the corresponding singular point of \mathcal{X}_k .

Our aim is to relate the property of being circuit-coprime for the graph (Γ, l) to the semi-factoriality of $f: \mathcal{X} \to S$. To this end, we are going to provide a dictionary between the geometry of \mathcal{X}/S and the combinatorial objects introduced in section 11.

Denote by $Div_k(\mathcal{X})$ the group of Weil divisors on X supported on the special fibre X_k . It is the free abelian group generated by the irreducible components of \mathcal{X}_k . Hence we obtain a natural isomorphism $\text{Div}_k(\mathcal{X}) \to \mathbb{Z}^V$.

Let $\mathcal{C}(\mathcal{X})$ be the group of Cartier divisors on X whose restriction to the generic fibre \mathcal{X}_K is trivial. We claim that the natural map $\mathcal{C}(\mathcal{X}) \to \text{Div}_k(\mathcal{X})$ is injective. This follows from ([GD67], 21.6.9 (i)) under the assumption that $\mathcal X$ is normal, which is not satisfied if \mathcal{X}/S has singular generic fibre. However, the proof only requires that for all $x \in \mathcal{X}_k$, depth $(\mathcal{O}_{\mathcal{X},x}) = 1$ implies dim $\mathcal{O}_{\mathcal{X},x} = 1$. This is immediately checked: let $x \in \mathcal{X}_k$ with dim $\mathcal{O}_{\mathcal{X},x} \neq 1$; then x is a closed point of \mathcal{X}_k . By S-flatness of \mathcal{X}_k , the uniformizer t is not a zero divisor in $\mathcal{O}_{\mathcal{X},x}$; as \mathcal{X}_k is reduced, $\mathcal{O}_{\mathcal{X},x}/t\mathcal{O}_{\mathcal{X},x}$ is reduced. Every reduced noetherian ring of dimension 1 is Cohen-Macaulay, hence depth $(\mathcal{O}_{\mathcal{X},x}/t\mathcal{O}_{\mathcal{X},x})=1$, and we deduce by [Sta16][TAG 0AUI](http://stacks.math.columbia.edu/tag/0AUI) that depth $(\mathcal{O}_{\mathcal{X},x}) = 2$, establishing the claim. Hence $\mathcal{C}(\mathcal{X})$ is in a natural way a subgroup of $\text{Div}_k(\mathcal{X})$.

Finally, denote by $E(\mathcal{X})$ the kernel of the restriction map $Pic(\mathcal{X}) \to Pic(\mathcal{X}_K)$, so that $E(\mathcal{X})$ is the group of isomorphism classes of line bundles on X that are generically trivial. We have an exact sequence of groups

$$
0 \to \mathbb{Z} \to \mathcal{C}(\mathcal{X}) \to E(\mathcal{X}) \to 0
$$

 \Box

where the first map sends 1 to div(t) and the second map sends D to $\mathcal{O}_{\mathcal{X}}(D)$. Indeed, every principal Cartier divisor supported on the special fibre belongs to \mathbb{Z} div(t). For this we can reduce to showing that every regular function on X that is generically invertible is of the form $t^n u$ for some $n \in \mathbb{Z}_{\geq 0}$ and $u \in \mathcal{O}_{\mathcal{X}}(\mathcal{X})^{\times}$. By [Sta16[\]TAG 0AY8](http://stacks.math.columbia.edu/tag/0AY8) we have $f_*\mathcal{O}_{\mathcal{X}} = \mathcal{O}_S$, from which the claim easily follows.

Lemma 12.2. Hypotheses as in the beginning of this section.

i) The natural isomorphism $\text{Div}_k(\mathcal{X}) \to \mathbb{Z}^V$ identifies $\mathcal{C}(\mathcal{X}) \subset \text{Div}_k(\mathcal{X})$ with the subgroup $C \subset \mathbb{Z}^V$ of Cartier vertex labellings (definition 11.6).

Let

$$
0 \to \mathbb{Z} \to \mathcal{C} \xrightarrow{\delta} \mathbb{Z}^V
$$

be the exact sequence of lemma 11.8, where δ is the multi-degree operator $(definition 11.7).$

ii) The isomorphism $\mathcal{C}(\mathcal{X}) \to \mathcal{C}$ induces an exact sequence

$$
0 \to \mathbb{Z} \to \mathcal{C}(\mathcal{X}) \xrightarrow{\delta_{\mathcal{X}}} \mathbb{Z}^V.
$$

The first arrow is the map $1 \mapsto \text{div}(t)$; the map $\delta_{\mathcal{X}}$ factors via the map $E(\mathcal{X}) \to \mathbb{Z}^V$, which sends a line bundle $\mathcal L$ to the vertex labelling

$$
v \mapsto \deg \mathcal{L}_{|X_v}.
$$

Let

$$
\ldots \to \mathcal{X}_n \to \ldots \to \mathcal{X}_1 \to \mathcal{X}_0 = \mathcal{X}
$$

be the chain of blowing-ups (29). Denote by π_n the composition $\mathcal{X}_n \to \mathcal{X}$.

- iii) For every $n \geq 0$ the labelled graph of $\mathcal{X}_n \to S$ is the n-th blow-up graph (Γ_n, l_n) of (Γ, l) (definition 11.17). The new vertices of (Γ_n, l_n) correspond to the irreducible components of the exceptional fibre of $\mathcal{X}_n \to \mathcal{X}$.
- iv) Let \mathcal{C}_n be the group of Cartier vertex labellings on \mathcal{X}_n . The map $\mathcal{C}(\mathcal{X}) \to$ $\mathcal{C}(\mathcal{X}_n)$ induced by $\iota: \mathcal{C} \to \mathcal{C}_n$ (section 11.3) descends to the pullback map $\pi_n^*: E(\mathcal{X}) \to E(\mathcal{X}_n).$

Proof.

i) Let $D = \sum_{v} n_v X_v \in Div_k(\mathcal{X})$. We want to show the equivalence of the two conditions:

- a) for every node $p \in \mathcal{X}_k$ lying on distinct components X_w, X_z of \mathcal{X}_k , the thickness τ_p divides $n_w - n_z$ (with the convention that ∞ divides only 0);
- b) D is Cartier.

As every Weil divisor D is Cartier on the generic fibre and on the regular locus of X, we may fix a node $p \in \mathcal{X}_k$ and reduce to work on the complete local ring $\mathcal{O}_{\mathcal{X},p}$. We identify $\mathcal{O}_{\mathcal{X},p}$ with $A = R[[x, y]]/xy - t^{\tau_p}$. Let X_w and X_z be the components of \mathcal{X}_k through p, and let Y_w , Y_z be their preimages in Spec A, which are given by the ideals (x, t) and (y, t) of A respectively.

Assume a) is true; we are going to deduce that D is Cartier at p . We may assume that the two components X_w and X_z are distinct, otherwise D is given by $div(t^{n_w})$ locally at p and is automatically Cartier at p. As $\text{div}(x) = \tau_p Y_w$, we have that $(n_w - n_z) Y_w = \text{div}(x^{\frac{n_w - n_z}{\tau_p}})$ is Cartier. Therefore $D - \text{div}(t^{n_z}) = \sum_{v} (n_v - n_z) X_v$ is Cartier at p, and also D is.

Assume now b) and that p lies on distinct components X_w, X_z of \mathcal{X}_k . We may assume that the restriction of D to Spec A, $n_w Y_w + n_z Y_z$, is the divisor of some regular function $f \in A = R[[x, y]]/xy - t^{\tau_p}$. We first consider the case $\tau_p = \infty$. As f is a unit in $A[t^{-1}]$, there exists $g \in A$ and $n \geq 0$ such that $fg = t^n$. Now, let f_x be the image of f in A/xA . As the latter is a unique factorization domain, $f_x = t^{m_1}u_1$ for some unit $u_1 \in (A/xA)^{\times}$ and $m_1 \leq n$. Moreover, we have $m_1 = n_w$. Similarly, we write $f_y = t^{m_2} u_2 \in A/yA$, with $m_2 = n_z$. As the images of f_x and f_y in $A/(x, y)A = R$ coincide, we find that $m_1 = m_2$, that is, $n_w = n_z$, as desired. Now we remain with the case $\tau_p \neq \infty$. Replacing f by ft^{-n_z} , we get div $(f) = (n_w - n_z)Y_w$. We want to show that τ_p divides $m := n_w - n_z$. Let $d = \gcd(m, \tau_p)$. As $\text{div}(x) = \tau_p Y_w$, we may replace f by a product of powers of f and x and assume that $m = d$. Write $\tau_p = m\alpha$, for some $\alpha \in \mathbb{Z}$. We have $\text{div}(f^{\alpha}/x) = 0$, hence, as Spec A is normal, f^{α}/x is a unit in A. Now, reducing modulo t, one can easily see that α has to be 1, so $m = \tau_p$ as desired.

ii) The composition $\mathbb{Z} \to \mathcal{C} \to \mathcal{C}(\mathcal{X})$ sends 1 to $\sum_{v} X_v = \mathcal{X}_k = \text{div}(t)$. The map $\delta_{\mathcal{X}}$ factors via the cokernel of $\mathbb{Z} \to \mathcal{C}(\mathcal{X})$, which is indeed $E(\mathcal{X})$. For the characterization of the map $\delta_{\mathcal{X}}$, recall first that $\delta: \mathcal{C} \to \mathbb{Z}^V$ sends a Cartier vertex labelling φ to the vertex labelling

$$
v \mapsto \sum_{\substack{\text{edges } e \\ \text{incident to } v}} \frac{\varphi(w) - \varphi(v)}{l(e)}
$$

where w denotes the other endpoint of e. The composition $\delta_{\mathcal{X}}: \mathcal{C}(\mathcal{X}) \to$

 $\mathcal{C} \to \mathbb{Z}^V$ sends a Cartier divisor $D = \sum_v n_v X_v$ to

$$
v \mapsto \sum_{\substack{\text{nodes }p \\ \text{lying on } X_v}} \frac{n_w - n_v}{\tau_p}
$$

with τ_p being the thickness of the node p, X_w the second component passing through p. We want to check that $\delta_X(D)$ is the vertex labelling $v \mapsto \deg \mathcal{O}(D)_{|X_v}$. Fix a vertex z; multiplication by t^{n_z} gives an isomorphism $\mathcal{O}(D) \cong \mathcal{O}(D')$ where $D' = \sum_{v} (n_v - n_z) X_v$. We reduce to computing the contribution to deg $\mathcal{O}(D')_{|X_z}$ coming from $(n_v - n_z)X_v$, where $v \in V$ is some vertex different from z. The contribution is zero if \mathcal{X}_v and \mathcal{X}_z do not intersect; otherwise, let $p \in X_v \cap X_z$, with thickness τ_p . Notice that $\tau_p|n_v - n_z$. Locally at p, the divisor $(n_v - n_z)X_v$ is given by the fractional ideal $I = (x^{(n_v - n_z)/\tau_p}, t^{n_v - n_z}) = (x^{(n_v - n_z)/\tau_p})$ of $\widehat{\mathcal{O}}_{\mathcal{X},p} \cong \widehat{R}[[x,y]]/xy - t^{\tau_p}$. Restricting to the branch $y = 0, t = 0$, we obtain the fractional ideal $I \otimes \mathcal{O}_{\mathcal{X},p}/y = (x^{(n_v-n_z)/\tau_p})$ of $k[[x]]$, hence a contribution of $(n_v - n_z)/\tau_p$ to the degree of $\mathcal{O}(D')_{|X_z}$. Summing over all the nodes in $X_v \cap X_z$, we recover the map $\delta_{\mathcal{X}}$.

- iii) This can be read directly in the description of the effect of blowing-up on the special fibre provided in section 8.3.
- iv) The commutative diagram

$$
0 \longrightarrow \mathbb{Z} \longrightarrow \mathcal{C}(\mathcal{X}) \longrightarrow E(\mathcal{X}) \longrightarrow 0
$$

\n
$$
\downarrow id \qquad \qquad \downarrow \qquad \qquad \downarrow i \qquad \qquad \downarrow i \qquad \qquad \downarrow i \qquad \
$$

yields a map $\overline{\iota}: E(\mathcal{X}) \to E(\mathcal{X}_n)$. Such map fits into the commutative diagram

$$
E(\mathcal{X}) \xrightarrow{\delta \mathcal{X}} \mathbb{Z}^V
$$
\n
$$
\downarrow \bar{\iota} \qquad \downarrow \epsilon
$$
\n
$$
E(\mathcal{X}_n) \xrightarrow{\delta \mathcal{X}_n} \mathbb{Z}^{V_n}
$$

where $\epsilon \colon \mathbb{Z}^V \to \mathbb{Z}^{V_n}$ is the extension by zero map, and the two horizontal maps are induced by the exact sequences as in ii) for $\mathcal X$ and $\mathcal X_n$. They associate to a line bundle its multi-degree on the special fibre, and are injective. The pullback map $\pi_n^*: E(\mathcal{X}) \to E(\mathcal{X}_n)$ makes the diagram above commutative as well; it follows that it coincides with $\bar{\iota}$.

 \Box

Theorem 12.3. Let $\mathcal{X} \to S$ be a nodal curve over a trait with perfect fraction field K, and assume that the special fibre \mathcal{X}_k has split singularities.

- i) If the labelled graph (Γ, l) is circuit-coprime then $\mathcal{X} \to S$ is semi-factorial.
- ii) Suppose that $\Gamma(S, \mathcal{O}_S)$ is strictly-henselian. If X is semi-factorial over S, then the labelled graph (Γ, l) is circuit-coprime.

Proof. We start with part i). Suppose Γ is circuit-coprime. Let L be a line bundle on \mathcal{X}_K . By theorem 9.5, there exists an integer $n \geq 0$ such that L extends to a line bundle $\tilde{\mathcal{L}}$ on \mathcal{X}_n . Let (Γ_n, l_n) be the labelled graph of \mathcal{X}_n , which is the *n*-th blow-up graph of Γ. Denote by $\alpha \in \mathbb{Z}^{V_n}$ the vertex-labelling assigning to each vertex v the degree of the restriction of $\tilde{\mathcal{L}}$ to the component of $(\mathcal{X}_n)_k$ corresponding to v. By proposition 11.21, the map $H \to H_n$ is an isomorphism; hence there exists a Cartier vertex labelling φ on (Γ_n, l_n) such that $\delta(\varphi) + \alpha$ is in the image of the map $\mathbb{Z}^V \to \mathbb{Z}^{V_n}$. Equivalently (by lemma 12.2) there exists a Cartier divisor $D \in C(\mathcal{X}_n)$, such that $\delta_{\mathcal{X}_n}(D) + \alpha$ is in the image of $\mathbb{Z}^V \to \mathbb{Z}^{V_n}$, i.e., $\delta_{\mathcal{X}}(D) + \alpha$ has value zero on all new vertices of Γ_n . This means precisely that $\mathcal{O}_{\mathcal{X}_n}(D) \otimes \mathcal{L}$ has degree zero on every component of the exceptional locus of $\pi_n: \mathcal{X}_n \to \mathcal{X}$. By proposition 10.2, $\mathcal{L} := (\pi_n)_*(\mathcal{L} \otimes \mathcal{O}(D))$ is a line bundle on X, which restricts to L on the generic fibre.

Let's turn to part ii). Suppose that Γ is not circuit-coprime. Then there exists $n \geq 0$ such that the map $H \to H_n$ is not surjective. Let α be a basis element of \mathbb{Z}^{V_n} such that the image of α in $H_n = \mathbb{Z}^{V_n}/\delta_n(\mathcal{C}_n)$ is not in the image of $H \to H_n$. Then α takes value 1 on some vertex v of Γ_n and value zero on all other vertices. The vertex v corresponds to an exceptional component $C \cong \mathbb{P}^1_k$ of $\pi_n: \mathcal{X}_n \to \mathcal{X}$. Let p be a k-rational point of $(\mathcal{X}_n)_k^{sm}$ lying on C, which exists as k is separably closed. Since the base is henselian, p can be extended to a section $s: S \to \mathcal{X}_n$. The image $D \subset \mathcal{X}_n$ of s defines a Cartier divisor. Let $L := \mathcal{O}(D)_{|K}$ be its restriction to the generic fibre. Assume by contradiction that L can be extended to a line bundle L on X. Then $\mathcal{F} := \mathcal{O}(D) \otimes \pi_n^* \mathcal{L}^{-1}$ is generically trivial. Let D' be a Cartier divisor supported on the special fibre of X_n such that $\mathcal{O}(D') \cong \mathcal{F}$. Then D' corresponds to a Cartier-vertex labelling φ of Γ_n , and $\alpha - \delta_n(\varphi)$ is the vertex-labelling associated to the multidegree of π_n^* \mathcal{L} . As π_n^* \mathcal{L} has degree zero on every component of the exceptional fibre of $\pi_n: \mathcal{X}_n \to \mathcal{X}, \alpha-\delta_n(\varphi)$ has value zero on every new vertex of Γ_n . In particular, $\alpha \delta_n(\varphi)$ is in the image of $H \to H_n$, and so is α , yielding a contradiction.

 \Box

Remark 12.4. The assumption that $\Gamma(S, \mathcal{O}_S)$ is strictly-henselian can be replaced by the weaker assumption: for each irreducible component Y of \mathcal{X}_k , there exists a line bundle \mathcal{L}_Y on X whose restriction to \mathcal{X}_k has degree 1 on Y and degree 0 on all other components.

Corollary 12.5. Hypotheses as in theorem 12.3. Let $\pi: \widetilde{X} \to X$ be the blowing-up of $\mathcal X$ at the finite union of closed points $\mathcal X^{nreg} \cap \mathcal X_k$. The restriction map

$$
\mathrm{Pic}(\mathcal{X}) \to \mathrm{Pic}(\mathcal{X}_K)
$$

is surjective.

Proof. Let (Γ, l) be the labelled graph of $\mathcal{X} \to S$. The labelled graph $(\widetilde{\Gamma}, \widetilde{l})$ of $\widetilde{\mathcal{X}} \to S$ is the first-blow-up graph of Γ (definition 11.17). Every edge of $\widetilde{\Gamma}$ with a label different from 1 is adjacent to exactly two edges, both with label 1. Hence Γ is circuit-coprime, and we conclude by theorem 12.3.

Corollary 12.6. Hypotheses as in theorem 12.3. Suppose that the special fibre \mathcal{X}_k is of compact-type (i.e. its dual graph Γ is a tree). Then the restriction map

$$
\mathrm{Pic}(\mathcal{X}) \to \mathrm{Pic}(\mathcal{X}_K)
$$

is surjective.

Proof. The dual graph Γ of the special fibre has no circuits, hence the labelled graph (Γ, l) is circuit-coprime. \Box

In general, semi-factoriality of nodal curves over traits does not descend along ´etale base change, and we cannot drop the assumption in theorem 12.3 that the special fibre of the curve has split singularities. Here is an example.

Example 12.7. Let $R = \mathbb{Q}[[t]], K = \text{Frac } R, S = \text{Spec } R, \text{ and}$

$$
\mathcal{X} = \text{Proj } \frac{R[x, y, z]}{x^2 + y^2 - t^2 z^2}.
$$

The curve $\mathcal{X} \to S$ has smooth generic fibre \mathcal{X}_K/K , and a node $P = (t =$ $0, x = 0, y = 0, z = 1$ on the special fibre. The section $s: S \to X$ given by $x = t, y = 0, z = 1$ goes through the node P. The Cartier divisor on \mathcal{X}_K given by the image of s_K : Spec $K \to \mathcal{X}_K$ does not extend to a Cartier divisor on $\mathcal X$. Indeed, if by contradiction it extended to a Cartier divisor D on $\mathcal X$, the difference $D - s$ as Weil divisors would be a Weil divisor supported on the special fibre; hence a Weil divisor linearly equivalent to zero, since the special fibre is irreducible. Then s would be Cartier, which it is not, and we have the contradiction.

 \Box

On the other hand, the base change of \mathcal{X}/R by the étale map $R \to R' :=$ $\mathbb{Q}(i)[t]$ is semi-factorial, since its special fibre has split singularities and its graph is a tree. We see that, denoting by X_1 and X_2 the two components of the special fibre, the Weil divisors $s_{R'} - X_1$ and $s_{R'} - X_2$ are both Cartier, and both extend the Cartier divisor on $\mathcal{X}_{K'}$ given by $s_{K'}$.

13 Application to Néron lft-models of jacobians of nodal curves

13.1 Representability of the relative Picard functor

Let S be a scheme and $\mathcal{X} \to S$ a curve. We denote by $\text{Pic}_{\mathcal{X}/S}$ the relative Picard functor, that is, the fppf-sheafification of the functor

$$
(\mathbf{Sch}/S)^{opp} \rightarrow \mathbf{Sets}
$$

$$
T \rightarrow \{\text{invertible sheaves on } \mathcal{X}_T\}/\simeq
$$

We start with a result on representability of the Picard functor:

Theorem 13.1 ([BLR90] 9.4/1]. Let $f: \mathcal{X} \rightarrow S$ be a nodal curve. Then the relative Picard functor $Pic_{\mathcal{X}/S}$ is representable by an algebraic space², smooth over S.

Lemma 13.2. Let $f: \mathcal{X} \to S$ be a nodal curve admitting a section $s: S \to \mathcal{X}$. Then for any S-scheme T the natural map

$$
\operatorname{Pic}(\mathcal{X} \times_S T)/\operatorname{Pic}(T) \to \operatorname{Pic}_{\mathcal{X}/S}(T)
$$

is an isomorphism.

Proof. See the discussion about rigidified line bundles on [BLR90] 8.1. \Box

13.2 Néron lft-models

Let S be a Dedekind scheme, that is, a noetherian normal scheme of dimension \leq 1. Then S is a disjoint union of integral Dedekind schemes S_i . The *ring of rational functions* of S is the direct sum $K := \bigoplus_i k(\eta_i)$, where the points $\{\eta_i\}$ are the generic points of the S_i .

²Defined as in [BLR90] $8.3/4$