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We find that the term H1(Z1,OZ1(n)) vanishes using Mayer-Vietoris exact
sequence and the fact that H1(P1

k,OP1
k
(n)) = 0. It follows that the restriction

map Pic(Zn+1)→ Pic(Zn) is an isomorphism. Since the sheaf L|Zn+1
restricts

to the trivial sheaf on Zn, it is itself trivial, establishing the claim.

We obtain

lim
n
H0(Zn,L|Zn) ∼= lim

n
H0(Zn,OZn) ∼= lim

n
(π∗OY)⊗OX Op/mnp ∼= Ôp

the second isomorphism coming again from the formal function theorem ap-
plied to OY and the third coming from lemma 10.1. Finally, we obtain by
composition with Φ an isomorphism

lim
n

(π∗L)⊗O Op/mnp → Ôp

which induces an isomorphism π∗L ⊗O Op/mp → Op/mp = k(p), as desired.

Now we drop the assumption of strict henselianity on the base, so let S be
the spectrum of a discrete valuation ring. Let S′ be the étale local ring of S
with respect to some separable closure of the residue field of S. The cartesian
diagram

YS′
f //

π′

��

Y

π

��
XS′

g // X

has faithfully flat horizontal arrows, and YS′ → XS′ is the blowing-up at
g−1(p). Let L be a line bundle on Y as in the hypotheses. The restrictions of
f∗L to the irreducible components of the exceptional fibre of π′ have degree
zero, hence π′∗f

∗L is a line bundle. Moreover the canonical map

g∗π∗L → π′∗f
∗L

is an isomorphism, because g is flat. Hence g∗π∗L is a line bundle, and so is
π∗L by faithful flatness of g.

11 Graph theory

In this section we develop some graph-theoretic results that, together with the
results of sections 9 and 10, will be needed to prove theorem 12.3.
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11.1 Labelled graphs

Let G = (V,E) be a connected, finite graph. For the whole of this section,
we will just write “graph” to mean finite, connected graph. A circuit in G is
a closed walk in G all of whose edges and vertices are distinct except for the
first and last vertex. A path is an open walk all of whose edges and vertices
are distinct.

A tree of G is a connected subgraph T ⊂ G containing no circuit. A spanning
tree of G is a tree of G containing all of the vertices of G, that is, a maximal
tree of G. Given a spanning tree T ⊂ G, we call links the edges not belonging
to T .

Let n = |E|, m = |V |. Given a spanning tree T , the number of links of T is
easily seen to be n−m+ 1. The number

r := n−m+ 1

is called nullity of G and is equal to the first Betti number rkH1(G,Z).

Fix a spanning tree T ⊂ G. For each link c1, . . . , cr of T , the subgraph T ∪ ci
contains exactly one circuit Ci ⊂ G. We call C1, . . . , Cr fundamental circuits
of G (with respect to T ).

Let (G, l) = (V,E, l) be the datum of a graph and of a labelling of the edges
l : E → Z≥1 by positive integers. We say that (G, l) is a N-labelled graph.

11.2 Circuit matrices

Given a graph G, let e1, e2, . . . , en be its edges and γ1, . . . , γs its circuits. Fix
an arbitrary orientation of the edges of G, and an orientation of each circuit
(that is, one of the two travelling directions on the closed walk).

Definition 11.1. The circuit matrix of G is the s × n matrix MG whose
entries aij are defined as follows:

aij =



0 if the edge ej is not in γi;

1 if the edge ej is in γi and its orientation agrees

with the orientation of γi;

−1 if the edge ej is in γi and its orientation does not agree

with the orientation of γi.

Hence every row of MG corresponds to a circuit of G and each column to an
edge.
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Now fix a spanning tree of G. Let c1, . . . , cr be the corresponding links, where
r is the nullity of G, and C1, . . . , Cr the associated fundamental circuits. Con-
sider the r × n submatrix NG of MG given by singling out the rows corre-
sponding to fundamental circuits. One can reorder edges and circuits so that
the j-th column corresponds to the link cj for 1 ≤ j ≤ r and that the i-th
row corresponds to the circuit Ci. If we also choose the orientation of every
fundamental circuit Ci so that it agrees with the orientation of the link ci, the
matrix NG has the form

NG = [Ir|N ′]

where Ir is the identity r × r-matrix and N ′ is an integer matrix.

Definition 11.2. The matrix NG constructed above is called the fundamental
circuit matrix of G (with respect to the spanning tree T ).

It is clear that NG has rank r.

Theorem 11.3 ([TS92], Theorem 6.7.). The rank of MG is equal to the rank
of NG.

Let now (G, l) be an N-labelled graph. We generalize the definitions above to
this case.

Definition 11.4. The labelled circuit matrix of (G, l) is the s × n matrix
M(G,l) whose entries bij are defined as follows:

bij =



0 if the edge ej is not in γi;

l(ej) if the edge ej is in γi and its orientation agrees

with the orientation of γi;

−l(ej) if the edge ej is in γi and its orientation does not agree

with the orientation of γi.

The labelled fundamental circuit (lfc) matrix of (G, l) is the r×n matrix N(G,l)

constructed from M(G,l) by taking only the rows corresponding to fundamental
circuits with respect to a given spanning tree T .

We immediately see that

M(G,l) = MG · L and N(G,l) = NG · L

where L is the diagonal square matrix of order n whose (i, i)-th entry is l(ei).

Example 11.5. Consider the N-labelled graph (G, l) with oriented edges in
fig. 1.
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Figure 1: An oriented N-labelled graph (G, l)

We assign to each of its three circuits the clockwise travelling direction. We
obtain a circuit matrix of G and a labelled circuit matrix of (G, l):

MG =

1 1 −1 0 0
0 0 1 1 1
1 1 0 1 1

 M(G,l) =

3 2 −6 0 0
0 0 6 15 10
3 2 0 15 10



Choose the spanning tree with edges labelled by 3, 6 and 10. The fundamental
circuit matrix of G and lfc-matrix of (G, l) are obtained from MG and M(G,l)

by removing the third row:

NG =

[
1 1 −1 0 0
0 0 1 1 1

]
N(G,l) =

[
3 2 −6 0 0
0 0 6 15 10

]

Let M be an integer-valued matrix with a rows and b columns. There exist
matrices A ∈ GL(a,Z) and B ∈ GL(b,Z) such that

AMB =



d1 0 0 . . . 0
0 d2 0 . . . 0

0 0
. . . 0

... dk
...

0
. . .

0 . . . 0


where the diagonal entries satisfy di|di+1 for i = 1, . . . , k − 1. This is the
so-called Smith normal form of M and it is unique up to multiplication of the
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diagonal entries by units of Z. For 1 ≤ i ≤ k, the integer di is the quotient
Di/Di−1, where Di equals the greatest common divisor of all minors of order
i of M .

Going back to the matrices M(G,l) and its submatrix N(G,l), it follows from
theorem 11.3 that their Smith normal forms both have rank equal to the nullity
r of the graph G. Besides, as any row of M(G,l) is a Z-linear combination of
rows of N(G,l), we see that the numbers Di defined above are the same for
the two matrices. It follows that M(G,l) and N(G,l) have the same non-zero
numbers di appearing on the diagonal. Moreover, the numbers d1, . . . , dr are
defined up to multiplication by −1, hence do not depend on the choices of
orientation of edges or circuits, but only on the N-labelled graph (G, l).

11.3 Cartier labellings and blow-up graphs

Let (G, l) be an N-labelled graph. Let ZV be the free abelian group generated
by the set of vertices V . Any element ϕ of ZV can be interpreted as a vertex
labelling ϕ : V → Z of the graph G.

Definition 11.6. An element ϕ ∈ ZV is a Cartier vertex labelling if for every
edge e ∈ E with endpoints v, w ∈ V , l(e) divides ϕ(v)− ϕ(w).

We denote by C ⊂ ZV the subgroup of Cartier vertex labellings.

Definition 11.7. We call multidegree operator the group homomorphism
δ : C → ZV which sends ϕ ∈ C to

v 7→
∑

edges e
incident to v

ϕ(w)− ϕ(v)

l(e)

where w denotes the other endpoint of e (which is v itself if e is a loop).

Lemma 11.8. The kernel of δ consists of the constant vertex labellings, hence
there is an exact sequence

0→ Z→ C δ−→ ZV .

Proof. Any constant vertex labelling is in the kernel of δ. Conversely, let
ϕ ∈ ker δ and let v ∈ V be a vertex where ϕ attains its maximum. Then for
all the vertices w adjacent to v one has ϕ(w) = ϕ(v). Since the graph is finite
and connected, one can repeat the argument and find that ϕ is a constant
labelling.
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Remark 11.9. When the edge-labelling l : E → Z≥1 is constant with value 1,
the multidegree operator δ coincides with the Laplacian operator of the graph
G.

Definition 11.10. Given an N-labelled graph (G, l) = (V,E, l) we define the

total blow-up graph (G̃, l̃) = (Ṽ , Ẽ, l̃) to be the N-labelled graph constructed as
follows starting from (G, l): every edge e ∈ E is replaced by a path consisting

of l(e) edges, and l̃ : Ẽ → Z is set to be the constant labelling with value 1.

Example 11.11. Figure 2 shows an N-labelled graph (a) and its total blow-up
graph (b).

2
2

1

3

2

(a)

1

1 1

1

1

1

1

1
1

1

(b)

Figure 2: An N-labelled graph G (a) and its total blow-up graph G̃ (b).

We call old vertices the vertices in the image of the inclusion map V ↪→ Ṽ .
We call new vertices the remaining vertices.

Notice that every new vertex is incident to exactly two edges, and belongs to
a unique path (corresponding to some edge e ∈ E) connecting two old vertices

of Ṽ . Just as before we consider the group of Cartier vertex labellings C̃ of

(G̃, l̃), and the multidegree operator δ̃ : C̃ → ZṼ .

We obtain a morphism of exact sequences

0 // Z //

id

��

C δ //

ι
��

ZV

ε
��

0 // Z // C̃ δ̃ // ZṼ

(30)

The map ε : ZV → ZṼ is given by extending vertex-labellings by zero on the
set of new vertices. The map ι : C → C̃ sends a Cartier vertex labelling ϕ
on G to the Cartier vertex labelling ι(ϕ) on G̃ whose value at old vertices
in inherited by ϕ, and extended by linear interpolation to the new vertices.
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More precisely: if e is an edge of G with endpoints v, w which is replaced in
G̃ by a path consisting of vertices v = v0, v1, . . . , vl(e) = w, we set for each
k = 0, . . . , l(e)

ι(ϕ)(vk) =
(l(e)− k)ϕ(v) + kϕ(w)

l(e)
.

The Cartier condition on ϕ implies that this labelling takes integer values.

Let H = coker δ, H̃ = coker δ̃. The commutative diagram above yields a group
homomorphism ε : H → H̃.

Lemma 11.12. The group homomorphism ε : H → H̃ is injective.

Proof. Let α ∈ ZV be a vertex labelling and let ε(α) ∈ ZṼ be its extension

by zero. Assume that there exists a Cartier vertex labelling ϕ̃ ∈ C̃ such that
ε(α) = δ̃(ϕ̃). Then δ̃(ϕ̃) takes value zero on all new vertices of G̃. Hence, if v

is a new vertex of G̃ adjacent to two verteces v′ and v′′, we have ϕ̃(v′)−ϕ̃(v) =
ϕ̃(v)−ϕ̃(v′′). We immediately see that ϕ̃ is an interpolation of a Cartier vertex

labelling ϕ ∈ C, i.e. ϕ̃ is in the image of ι. Since ε : ZV → ZṼ is injective,
α = δ(ϕ).

Our aim now is to give necessary and sufficient conditions on the N-labelled
graph (G, l) for the map ε : H → H̃ to be surjective (hence an isomorphism).

11.4 Circuit-coprime graphs

Definition 11.13. Let (G, l) = (V,E, l) be an N-labelled graph. We say that
(G, l) is circuit-coprime if for every circuit C ⊂ G, gcd{l(e)|e is an edge of C} =
1.

Example 11.14. In fig. 3 the N-labelled graph (a) is circuit-coprime, whereas
the N -labelled graph (b) is not, as it contains a loop labelled by 3 in addition
to a circuit labelled by 6, 10 and 10.

Lemma 11.15. Let (G, l) = (V,E, l) be an N-labelled graph. Denote by r
its nullity. The Smith normal form of the matrix M(G,l) has diagonal entries
d1 = d2 = . . . = dr = 1 if and only if (G, l) is circuit-coprime.

Proof. Assume first that (G, l) is not circuit-coprime. Let C be a circuit whose
labels have greatest common divisor D 6= 1. Pick an edge e of C. The subgraph
C \ e is a tree; let T be a spanning tree of G containing it. Then e is a link
for T , and C is its associated fundamental circuit. The lfc-matrix N(G,l) has a
row corresponding to the circuit C, hence all entries of this row are divisible
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Figure 3: A circuit-coprime N-labelled graph (a) and an N -labelled graph that
is not circuit-coprime (b).

by D. Then the linear map f : Zn → Zr defined by N(G,l) is not surjective;
hence the linear map associated to the Smith normal form of N(G,l) is not
surjective either. Therefore, some (necessarily non-zero) diagonal entry of the
Smith normal form of N(G,l) is different from ±1. As previously remarked,
the Smith normal forms of M(G,l) and N(G,l) have the same non-zero diagonal
entries, hence dr 6= ±1.

Conversely, assume that G is circuit-coprime. After fixing some spanning tree
T , consider the lfc-matrix N(G,l). We only need to prove that the diagonal
entries of the Smith normal form of N(G,l) are all 1, which amounts to proving
that the greatest common divisor d of the minors of order r of the lfc-matrix
N(G,l) is 1.

As we have seen in section 11.2, we have the relation

N(G,l) = NG · L.

Let N ′ be a maximal square submatrix of N(G,l). Then N ′ corresponds to
r edges of G, which we denote ei1 , ei2 , . . . , eir . Let N ′′ be the corresponding
square submatrix of NG. We have the relation

detN ′ =

r∏
j=1

l(eij ) detN ′′

By [TS92], Theorem 6.15, all minors of NG are either 1, 0 or −1, hence detN ′′

is either 1, 0 or −1. Moreover, by [TS92], Theorem 6.10, a square submatrix
of order r of NG has determinant ±1 if and only if the corresponding r edges
are the complement of a spanning tree. Hence detN ′ = ±

∏r
i=1 l(eij ) if the

edges ei1 , ei2 , . . . , eir form the complement of a spanning tree of G, otherwise
detN ′ = 0. We claim that

d := gcd{detN ′|N ′ is an r × r square submatrix of N(G,l)} = 1.
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Let p be a prime number and denote by Ep the set of edges e of G whose label
l(e) is divisible by p. Because (G, l) is circuit-coprime, Ep contains no circuit;
hence Ep is contained in some spanning tree T of G. There are exactly r edges,
e1, e2, . . . , er, that do not belong to T . These give a square r × r submatrix
of N(G,l) whose determinant is

∏r
i=1 l(ei) 6≡ 0 (mod p), since e1, . . . , er 6∈ Ep.

Hence p - d. It follows that d = 1; since di|di+1 for all i = 1, . . . , r − 1 and
dr|d, we obtain the result.

Proposition 11.16. Let (G, l) = (V,E, l) be an N-labelled graph. The group

homomorphism ε : H → H̃ is an isomorphism if and only if (G, l) is circuit-
coprime.

Proof. We already know that ε : H → H̃ is injective by lemma 11.12. It is

surjective if and only if for every vertex-labelling α ∈ ZṼ , there exists ϕ̃ ∈ C̃
such that δ̃(ϕ̃) + α is in the image of the extension-by-zero map ε : ZV → ZṼ ,

i.e. δ̃(ϕ̃) +α is supported on the set of old vertices. We may of course assume

that α belongs to the canonical basis of ZṼ . That is, α = χv for some vertex
v of G̃, where

χv(w) =

{
1 if w = v

0 if w 6= v.

If v is an old vertex of G̃, χv is an extension by zero of a vertex-labelling on G,
so we may assume that v is a new vertex. Then v belongs to some path P ⊂ G̃
associated to some edge e ∈ E. Denote by w0, w1, . . . , wl(e) the vertices of the
path P , so that w0 and wl(e) are old vertices, and the numbering of the indices
follows the order of the vertices on the path. For every i = 1, . . . , l(e), let

αi = χwi − χw0 ∈ ZṼ be the vertex-labelling that has value 1 at wi, value −1
at w0, and value 0 everywhere else. Then it is easy to check that the images
αi of the αi in H̃ satisfy kα1 = αk for all k = 1, . . . , l(e). Hence, if α1 is in

the image of ε : H → H̃, so are all the αi for 1 ≤ i ≤ l(e). This shows that we
can take v to be equal to w1; hence χv = χw1 takes value 1 on a new vertex v
adjacent to an old vertex, and value zero at all other vertices.

We ask whether an element ϕ̃ ∈ C̃ exists such that δ̃(ϕ̃) + χw1
is supported

only on the old vertices. In other words, δ̃(ϕ̃) must be zero on all new vertices
except for the vertex w1, where it has to take the value −1. This is equivalent
to asking that, for every new vertex z, adjacent to vertices z1, z2,{

ϕ̃(z)− ϕ̃(z1) = ϕ̃(z2)− ϕ̃(z) if z 6= w1

(ϕ̃(z1)− ϕ̃(z)) + (ϕ̃(z2)− ϕ̃(z)) = −1 if z = w1

(31)

holds.
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We claim that such a ϕ̃ exists if and only if there exists a vertex-labelling ϕ of
the graph G, such that, for every edge e ∈ E with endpoints v0, v1,

{
ϕ(v1)− ϕ(v0) ≡ 0 mod l(e) if e 6= e

ϕ(v1)− ϕ(v0) ≡ 1 mod l(e) if e = e, v0 = w0, v1 = wl(e)
(32)

where we have identified the old vertices w0, wl(e) with the corresponding ver-
tices in G. Indeed, given ϕ̃ one obtains ϕ simply by restriction to old vertices.
Conversely, given a ϕ as in (37), ϕ̃ is obtained as follows: for an edge e 6= e,
we define ϕ̃ on the corresponding path {z0 = v0, z1, z2, . . . , zl(e) = v1} by:

∀k = 0, 1, . . . , l(e), ϕ̃(zk) =
kϕ(v1) + (l(e)− k)ϕ(v0)

l(e)
.

On the path {w0 = v0, w1, . . . , wl(e) = v1} corresponding to the edge e, we set
instead

ϕ̃(wk) =

{
kϕ(v1)+(l(e)−k)(ϕ(v0)+1)

l(e) if k ∈ {1, 2, . . . , l(e)}
ϕ̃(v0) if k = 0;

which establishes the claim.

If the graph G is a tree it is clear that such a ϕ can be found. If there are
circuits in G, the existence of a solution ϕ depends of course on the labels
of the circuits. Fix an orientation on G, so that we have source and target
functions s, t : E → V , and so that s(e) = w0, t(e) = wl(e). Assume that a
vertex-labelling ϕ of G satisfying the conditions (37) exists. In particular we
have that ϕ(t(e))− ϕ(s(e)) ≡ 1 mod l(e). For every edge e ∈ E let

x(e) :=

{
ϕ(t(e))−ϕ(s(e))

l(e) if e 6= e
ϕ(t(e))−ϕ(s(e))−1

l(e) if e = e

Let C ⊂ G be a circuit consisting of vertices v0, v1, . . . , vs = v0 connected by
edges e0, e1, e2, . . . , es = e0, so that ei connects vi and vi+1 for every i ∈ Z/sZ.
Notice that the increasing numbering gives an orientation to C. We have

(ϕ(vs)− ϕ(vs−1)) + (ϕ(vs−1)− ϕ(vs−2)) + . . .+ (ϕ(v1)− ϕ(vs)) = 0.

Setting

ai =

{
1 if t(ei) = vi+1, s(ei) = vi

−1 if t(ei) = vi, s(ei) = vi+1

(33)

for every i ∈ Z/sZ, we obtain ∑
aixei l(ei) = 0
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if the edge e does not belong to the circuit C, whereas if e ∈ C we have∑
aixei l(ei) =

{
−1 if the orientations of C and e agree;

1 if the orientations of C and e do not agree;

Let C1, . . . , Cm be the circuits of G. Choose an orientation for each circuit, so
that we can form the labelled circuit matrix M(G,l) associated to G. We see
that the vector x = (x1, . . . , xn) is a solution of

M(G,l)x = b(e)

where b(e) = (b1, . . . , bm) with

bi =



0 if e 6∈ Ci;
−1 if e ∈ Ci and the orientation of e agrees with the

orientation of Ci;

1 if e ∈ Ci and the orientation of e does not agree with the

orientation of Ci.

Conversely, a solution x ∈ Zn to the system M(G,l)x = b(e) yields a vertex

labelling ϕ as in (37). We conclude that the map ε : H → H̃ is surjective if
and only if for every edge e ∈ E, there is a solution x ∈ Zn to

M(G,l)x = b(e).

After having chosen a spanning tree T and formed the lfc-matrix N(G,l), this
is in turn equivalent to the map Zn → Zr defined by N(G,l) being surjective.
Indeed, the set {b(e)|e is a link of T} is a basis for Zr. Now, N(G,l) is surjective
if and only if its Smith normal form (or equivalently the one of M(G,l)) has
only 1’s on the diagonal. By lemma 11.15, we conclude.

11.5 N∞-labelled graphs

We want to generalize the results of the previous subsection to labelled graphs
whose labels can attain the value ∞. Denote by N∞ the set Z≥1 ∪ {∞}. Let
(G, l) = (V,E, l) be the datum of a graph, with set of vertices V and set of
edges E, and of a function l : E → N∞. We say that (G, l) is an N∞-labelled
graph.

The notions of Cartier vertex labelling 11.6 and multidegree operator 11.7
carry over to this setting without change, imposing that the only integer di-
visible by ∞ is 0, and setting 0

∞ = 0 in the definition of multidegree operator.
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In particular, if a vertex-labelling on (G, l) is Cartier, it attains the same value
at the two extremal vertices of an edge with label ∞.

Definition 11.17. Given an N∞-labelled graph (G, l) = (V,E, l) we define the
first-blow-up graph G1 = (V1, E1, l1) to be the N∞-labelled graph constructed
as follows starting from (G, l): every edge e ∈ E with l(e) = 1 is preserved
unaltered; every edge e ∈ E with l(e) ≥ 2 is replaced by a path consisting of
an edge labelled by 1, followed by an edge labelled by l(e) − 2 (which could
equal 0 or ∞), followed by an edge labelled by 1.

We define inductively for every integer n ≥ 1 the n-th blow-up graph Gn =
(Vn, En, ln) as the first-blow-up graph of Gn−1.

Example 11.18. Figure 4 shows an N∞-labelled graph (a) with its first (b)
and second (c) blow-up graphs.

2∞
1

4

(a)

1∞

1
1

1

1

1

2

1

(b)

1

1

∞
1

1
1

1

1

1

1 1

1

(c)

Figure 4: An N∞-labelled graph (a) with its first (b) and second (c) blow-up
graphs

Denote by Cn the group of Cartier vertex-labellings on (Gn, ln). Just as in
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(30), we obtain a commutative diagram

C δ //

ι1

��

ZV

ε1
��

C1
δ1 //

ι2��

ZV1

ε2��
...

��

...

��
Cn

δn //

ιn��

ZVn

εn��
...

...

The vertical maps εj are once again extension by zero; the maps ιj are defined
as follows: if e is an edge of Gj−1 which is replaced in Gj by a path consisting
of vertices v0 = v, v1, v2, v3 = w (with possibly v1 = v2, if lj−1(e) = 2), and ϕ
is Cartier vertex labelling on Gj−1, we set ιj(ϕ) to take the value ϕ(v) at v0,
(l(e)−1)ϕ(v)+ϕ(w)

l(e) at v1, ϕ(v)+(l(e)−1)ϕ(w)
l(e) at v2, ϕ(w) at v3. The diagram above

gives rise to a chain of group homomorphisms

H → H1 → H2 → . . .→ Hn → . . . (34)

between the cokernels of the rows. Each map of the chain (34) is injective; we
ask whether they are all isomorphisms, i.e. under which conditions

H → colimHi (35)

is an isomorphism.

Definition 11.19. Let (G, l) = (V,E, l) be an N∞-labelled graph. We let
(G, l◦) = (V,E, l◦) be the N0 := Z≥0-labelled graph obtained from (G, l) by
setting l◦(e) = 0 for all edges e with label l(e) =∞.

We say that (G, l) is circuit-coprime if for every circuit C ⊂ G,

gcd(l◦(e)|e is an edge of C) = 1.

Here we define the gcd of a subset S ⊂ Z to be the non-negative generator of
the ideal 〈S〉 ⊂ Z.

Remark 11.20. An N∞-labelled graph containing a circuit whose labels are
all ∞ is not circuit-coprime. Indeed, gcd(0) = 0.
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Proposition 11.21. Let (G, l) be an N∞-labelled graph. The map (35) is an
isomorphism if and only if (G, l) is circuit-coprime.

Proof. Instead of (G, l) and its blow-up graphs (G1, l1), (G2, l2), . . . we con-
sider (G, l◦), (G1, l

◦
1), (G2, l

◦
2), . . .. We keep the same notion of Cartier vertex

labelling and multidegree operator, by imposing that the only integer divisible
by 0 is 0, and that 0/0 = 0. The chain of homomorphisms 34 is also preserved.
To keep the notation light, we drop the ◦’s. From now on, the proof is a
readaptation of the content of section 11.4. First, for labelled graphs whose
labels attain the value 0, we define the labelled circuit matrix M(G,l) and la-
belled fundamental circuit matrix N(G,l) in the same way as in section 11.2.
Lemma 11.15 stays true in this setting, so we find that (G, l) is circuit-coprime
if and only if N(G,l) is surjective.

To finish the proof we only need to readapt proposition 11.16 to our new
setting. So, we want to show that N(G,l) is surjective if and only if εn : H → Hn

is surjective for all n ≥ 1. We fix an integer n big enough, so that all labels
of Gn are 1’s or 0’s. As in proposition 11.16, we let α ∈ ZVn ; we may pick
α = χv for some vertex v belonging to some path P ⊂ Gn associated to some
edge e ∈ E. Denote by w0, w1, . . . , wr the vertices of the path P . We may
still assume that v = w1. Indeed, if there is no edge in P labelled by zero,
one reasons as in proposition 11.16; otherwise, if there is an edge in P labelled
by 0, then it has to be the edge connecting ws and ws+1, with s = r−1

2 . We
may assume without loss of generality that v = wk for k ≤ s. We get that
χwk = kχw1

in Hn (as always, compare with proposition 11.16).

An element ϕ̃ in Cn is such that δn(ϕn) +χw1
is supported on the old vertices

is a vertex-labelling ϕ̃ ∈ ZVn satisfying the following: for every new vertex z,
adjacent to vertices z1 and z2,{

ϕ̃(z)− ϕ̃(z1) = ϕ̃(z2)− ϕ̃(z) if z 6= w1

(ϕ̃(z1)− ϕ̃(z)) + (ϕ̃(z2)− ϕ̃(z)) = −1 if z = w1

(36)

That such a Cartier vertex-labelling exists means that there is a vertex-labelling
ϕ̃ satisfying the condition 36 above, plus the extra condition that ϕ̃(z1) = ϕ̃(z2)
for any two adjacent vertices z1, z2 connected by an edge labelled by zero.

In turn, such a ϕ̃ exists if and only if there exists a vertex-labelling ϕ of G
such that, for every edge e ∈ E with endpoints v0, v1,{

ϕ(v1)− ϕ(v0) ≡ 0 mod l(e) if e 6= e

ϕ(v1)− ϕ(v0) ≡ 1 mod l(e) if e = e, v0 = w0, v1 = wr
(37)

where we have identified the old vertices w0, wr with the corresponding vertices
in G. This is the same condition as condition 37 in proposition 11.16. From
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this point on, the rest of the proof coincides with the proof of proposition 11.16;
we only mention that, at the point when x(e) is defined, one can assign to it
any value if l(e) = 0.

12 Semi-factoriality of nodal curves

Let S be the spectrum of a discrete valuation ring R having perfect fraction
field K, residue field k and uniformizer t. Let f : X → S be a nodal curve
whose special fibre has split singularities, and Γ = (V,E) be the dual graph
of the special fibre Xk. For any v ∈ V , we denote by Xv the corresponding
irreducible component of the special fibre Xk.

Definition 12.1. The labelled graph of X → S is the N∞-labelled graph (Γ, l)
whose labelling l assigns to each edge of Γ the thickness (see section 7.1) of
the corresponding singular point of Xk.

Our aim is to relate the property of being circuit-coprime for the graph (Γ, l)
to the semi-factoriality of f : X → S. To this end, we are going to provide a
dictionary between the geometry of X/S and the combinatorial objects intro-
duced in section 11.

Denote by Divk(X ) the group of Weil divisors on X supported on the special
fibre Xk. It is the free abelian group generated by the irreducible components
of Xk. Hence we obtain a natural isomorphism Divk(X )→ ZV .

Let C(X ) be the group of Cartier divisors on X whose restriction to the generic
fibre XK is trivial. We claim that the natural map C(X )→ Divk(X ) is injec-
tive. This follows from ([GD67], 21.6.9 (i)) under the assumption that X is
normal, which is not satisfied if X/S has singular generic fibre. However, the
proof only requires that for all x ∈ Xk, depth(OX ,x) = 1 implies dimOX ,x = 1.
This is immediately checked: let x ∈ Xk with dimOX ,x 6= 1; then x is a closed
point of Xk. By S-flatness of X , the uniformizer t is not a zero divisor in
OX ,x; as Xk is reduced, OX ,x/tOX ,x is reduced. Every reduced noetherian
ring of dimension 1 is Cohen-Macaulay, hence depth(OX ,x/tOX ,x) = 1, and
we deduce by [Sta16]TAG 0AUI that depth(OX ,x) = 2, establishing the claim.
Hence C(X ) is in a natural way a subgroup of Divk(X ).

Finally, denote by E(X ) the kernel of the restriction map Pic(X )→ Pic(XK),
so that E(X ) is the group of isomorphism classes of line bundles on X that
are generically trivial. We have an exact sequence of groups

0→ Z→ C(X )→ E(X )→ 0
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