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X \ Y0 and in particular over the generic fibre. For i ∈ Z≥1 we let Yi :=
(Xi)k ∩ (Xi)nreg with its reduced structure, and define Xi+1 → Xi to be the
blowing-up at Yi. We obtain a (possibly infinite) chain of proper birational
S-morphisms between nodal curves,

(πn : Xn → Xn−1)n∈Z≥1
, X0 := X (29)

which eventually stabilizes if and only if the generic fibre XK is regular.

8.3 The case of split singularities

From the calculations of the lemma 8.1 we deduce how blowing-up alters the
special fibre of a nodal curve whose special fibre has split singularities. Let
X → S be such a curve and let p ∈ X be a non-regular point of the special
fibre. We have k(p) = k. Let π : X̃ → X be the blow-up at p, Y = Spec Ôp,
and Ỹ = Y ×X X̃ . Then πY : Ỹ → Y is the blowing-up at the closed point q
of Y . Explicit calculations show that the exceptional fibre π−1

Y (q) = π−1(p) is
a chain of projective lines meeting transversally at nodes defined over k.

We now distinguish all possible cases:

• If τp = ∞, so that p is the specialization of a node ζ of XK , π−1(p) is
given by two copies of P1

k meeting at a k-rational node p′ with τp′ =∞;

• if τp = 2, π−1(p) consists of one P1
k;

• finally, if τp > 2, then π−1(p) consists again of two copies of P1
k, meeting

at a k-rational node p′ with τp′ = τp − 2.

In all cases, the intersection points between π−1(p) and the closure of its

complement in X̃k are regular in X̃ , that is, they have thickness 1, and are
k-rational. Moreover, X̃ → S has special fibre with split singularities.

9 Extending line bundles to blowing-ups of a
nodal curve

Our first aim is to prove that for any line bundle L on the generic fibre XK ,
there exists an n ≥ 0 such that L extends to a line bundle on the surface Xn of
the chain of nodal curves (29). In order to do this, we recall and slightly gener-
alize the definition of Néron’s measure for the defect of smoothness presented
in [BLR90], Chapter 3.
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Definition 9.1. Let R be a discrete valuation ring and Z an R-scheme of
finite type. Let R → R′ be a local flat morphism of discrete valuation rings.
Let a ∈ Z(R′) and denote by Ω1

Z /R the OZ -module of R-differentials. The

pullback a∗Ω1
Z /R is a finitely-generated R′-module, thus a direct sum of a

free and a torsion sub-module. We define Néron’s measure for the defect of
smoothness of Z along a as

δ(a) := length of the torsion part of a∗Ω1
Z /R

Remark 9.2. In [BLR90] 3.3, the measure for the defect of smoothness is de-
fined for points with values in the strict henselization Rsh of R (which amounts
to considering only local étale morphisms R → R′). We allow more general
maps because we will need them in the proof of theorem 9.5.

The following two lemmas generalize two analogous results in [BLR90] 3.3,
concerning Néron’s measure for the defect of smoothness to the case of points
a ∈ Z(R′) with R′ a (possibly ramified) local flat extension of R. In the
following lemma, we denote by Zsm the S-smooth locus of Z.

Lemma 9.3. Let R be a discrete valuation ring and Z an R-scheme of finite
type. Let a ∈ Z(R′) for some local flat extension R→ R′ of discrete valuation
rings. Assume that the restriction to the generic fibre aK′ : SpecK ′ → ZK′
factors through the smooth locus ZsmK′ of ZK′ . Then

δ(a) = 0⇔ a ∈ Zsm(R′)

Proof. See [BLR90] 3.3/1, for a proof in the case of smooth generic fibre and
R→ R′ a local étale map of discrete valuation rings. The same proof works for
non-smooth generic fibre, as long as aK factors through Zsm. Now notice that
a∗ΩZ /R ∼= (a′)∗ΩZR′ /R′ , where a′ : SpecR′ → ZR′ is the section induced by
a. We conclude by the fact that the smooth locus of Z /R is preserved under
the faithfully flat base change SpecR′ → SpecR.

Proposition 9.4. Let R be a discrete valuation ring, Z /R a nodal curve,
f : R→ R′ a finite locally free extension of discrete valuation rings with ram-
ification index r ∈ Z≥1. Suppose a ∈ Z(R′) is such that the restriction to
the generic fibre aK′ factors through the smooth locus of ZK , and that the
restriction to the special fibre ak is contained in the non-regular locus Znreg.
Let π : Z̃ → Z be the blowing-up at the closed point p = a∩Zk with its reduced
structure and denote by ã ∈ Z̃(R′) the unique lifting of a to Z̃. Then, either

ã is contained in the regular locus of Z̃, or

δ(ã) ≤ max(δ(a)− r, 0).
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Proof. For R′ = R, proposition 9.4 is a particular case of [BLR90] 3.6/3. The
strategy of the proof is to reduce to this case.

Denote by t a uniformizer for R, and by u a uniformizer for R′, with ur = t
in R′. Since Z(R′) = ZR′(R′) the section a can be interpreted as a section
b ∈ ZR′(R′). Because Ω1

ZR′ /R′
∼= Ω1

Z /R ⊗R R
′, we have δ(a) = δ(b). The flat

map f : R→ R′ induces a cartesian diagram

Z̃R′ //

πR′

��

Z̃

π

��
ZR′

g // Z

where πR′ : Z̃R′ → ZR′ is the blowing-up of the preimage g−1(p) of p via
g : ZR′ → Z. Then the lifting ã ∈ Z(R′) factors via the unique lifting of b

to b̃ ∈ Z̃R′(R′). All we need to prove is that δ(̃b) ≤ max{δ(b) − r, 0}. We
may work locally around p, and assume Z = SpecA for some R-algebra A,
and write ZR′ = SpecB with B = A ⊗R R′. By restricting Z, we may also
assume that p is the only non-smooth point of Z. We let (t, x1, . . . , xn) ⊂ A
be the maximal ideal corresponding to p. The ideal of the closed subscheme
g−1(p) ⊂ ZR′ = SpecB is then I = (ur, x1, . . . , xn) ⊂ B, so in particular
g−1(p) is a non-reduced point for r > 1.

We want to decompose the blowing-up πR′ : Z̃R′ → ZR′ into a chain of r
blowing-ups and then apply to each of these the known case described in the
beginning. We construct the chain as follows: we first blow up the ideal
I1 = (u, x1, . . . , xn) ⊂ B and obtain a blowing-up map Z1 → ZR′ . The
scheme Z1 is a closed subscheme of PnB , whose defining homogeneous ideal is
the kernel of the map of graded B-algebras

B[u(1), x
(1)
1 , . . . , x(1)

n ]→ ⊕d≥0I
d
1

given by sending u(1) to u and x
(1)
i to xi for all i = 1, . . . , n. The locus

D+(u(1)) ⊂ Z1 where u(1) does not vanish is affine, and we denote it by Y1. We

blow up its closed subscheme given by the ideal (u, x
(1)
1 /u(1), x

(1)
2 /u(1), . . . , x

(1)
n /u(1)),

and obtain a map
Z2 → Y1.

Next we consider the affine Y2 := D+(u(2)) ⊂ Z2 and reiterating the procedure
r times, we end up with a chain of morphisms

Yr → Yr−1 → . . .→ Y1 → ZR′

of affine schemes.
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Every blow-up Yi+1 → Yi is the blow-up at a closed point, with reduced
structure. Moreover, by the description in section 8.3, we can see that every
Yi has only one non-regular point pi in the special fibre; working étale locally
one sees that Yi+1 → Yi is exactly the blowing-up at pi.

Let’s now relate this chain of maps to the blowing-up Z̃R′ → ZR′ given by the
ideal (ur, x1, . . . , xn). Combining the relations

x
(j−1)
i

u(j−1)
u(j) = ux

(j)
i

for all j = 1, . . . , r (where we also set x
(0)
i := xi and u(0) := u), we obtain in

Yr the equality

xi =
x

(r)
i

u(r)
ur

for all i = 1, . . . , n. Hence the ideal sheaf (ur, x1, . . . , xn) on ZR′ has preimage
in Yr which is free of rank 1, generated by ur. By the universal property of
blowing-up we obtain a unique map α : Yr → Z̃R′ such that the diagram

Z̃R′

��
Yr

α

==

// ZR′

commutes. Next, we focus on the blow-up map Z̃R′ → ZR. The scheme Z̃R′
is a closed subscheme of PnB , whose defining homogeneous ideal is the kernel
of the map of graded B-algebras

B[v, y1, . . . , yn]→ ⊕d≥0I
d

given by sending v to ur and yi to xi for all i = 1, . . . , n. So we have relations
vxi = uryi for all i = 1, . . . , n. Then the map α∗ : OX̃R′ → OYr sends yi to

x
(r)
i and v to u(r). We restrict our attention to the open affine Y ⊂ Z̃R′ where
v does not vanish. Since v is mapped by α∗ to u(r), which does not vanish
on Yr, the map α factors as a map α′ : Yr → Y followed by the inclusion
Y ⊂ Z̃R′ . Now we produce an inverse to α′. One checks that the ideal sheaf
(u, x1, . . . , xn) of ZR′ becomes free in Y (generated by u), hence we obtain a
unique map Y → Y1 compatible with the maps to ZR′ . Then the argument
can be reiterated to produce a commutative diagram

Y

��
rr tt }}

Yr // Yr−1
// . . . // Y1

// ZR′
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In particular we obtain a map β : Y → Yr. It is an easy check that the maps
α′ and β produced between Y and Yr are inverse one to another, hence they
give an isomorphism Yr → Y.

If we let bi be the unique lift to Yi of b0 := b : R′ → ZR′ , wither bi is in the
regular locus of Yi, or Yi+1 → Yi is the blowing-up at bi ∩ (Yi)k, in which case
we obtain, by [BLR90] 3.3/5, that δ(bi+1) ≤ max{δ(bi) − 1, 0}. Now, if for
some 1 ≤ i ≤ r the section bi is contained in the regular locus of Yi, then also
b̃ is contained in the regular locus of Y. Otherwise, δ(̃b) ≤ max{δ(b)− r, 0} as
desired.

We now have the tools to prove our main result on extending line bundles to
blowing-ups in the chain of morphisms (29).

Theorem 9.5. Let S be a trait, with perfect fraction field K, X/S a nodal
curve. Let L be a line bundle on XK . Let (πi : Xi → Xi−1)i be the chain (29)
of blow-ups. Then there exists N ≥ 0 for which L extends to a line bundle L
on XN .

Proof. Let L be an invertible sheaf on XK , and D be a Cartier divisor with
OXK (D) ∼= L. We may take D to be supported on the smooth locus of XK
([Sha13], Theorem 1.3.1) and see it as a Weil divisor. We may also assume
that D is effective, since any Weil divisor is the difference of two effective Weil
divisors.

The closed subscheme Dred given by the support of D with its reduced struc-
ture is a disjoint union of finitely many closed points of the smooth locus of
XK . We write

Dred =

s⋃
i=1

Pi

where Pi ∈ X smK (Ki) for finite (separable) extensions K ↪→ Ki, i = 1, . . . , s.
For each i = 1, . . . , s, we let Ri be the localization at some prime of the
integral closure of R in Ki, so that each Ri is a discrete valuation ring with
fraction field Ki, and R → Ri is finite locally free. The curve X/R being
proper, each Pi extends to Qi ∈ X (Ri). Write Xnsm for the non-smooth locus
of X/R and Xnreg for the non-regular locus of X . Notice that δ(Qi) > 0 if
and only if Qi ∩ Xk ∈ Xnsm, by lemma 9.3. Assume that the point Qi ∩ Xk
lies in Xnreg ⊂ Xnsm. In this case, it is one of the closed points that are
the center of the blowing-up X1 → X . By proposition 9.4, the unique lifting
Q′i of Qi to X1 either is contained in the regular locus of X1, or it satisfies
δ(Q′i) ≤ max(0, δ(Qi)− ri), where ri ≥ 1 is the ramification index of R→ Ri.
Applying repeatedly proposition 9.4, we see that there is N > 0 such that

67



each of the points Pi ∈ XK extends to Q
(N)
i ∈ X regN (Ri). Therefore the Weil

divisor D extends to a Weil divisor D̃ on XN that is supported on the union of

the Q
(N)
i , hence on the regular locus of XN . This implies that D̃ is a Cartier

divisor, and the line bundle OXn(D̃) restricts to OXK (D) ∼= L on XK . This
completes the proof.

10 Descent of line bundles along blowing-ups

Lemma 10.1. Let S be a trait and π : Y → X a proper morphism of flat
S-schemes, which restricts to an isomorphism over the generic point of S.
Assume that the special fibre Xk is reduced. Then π∗OY ∼= OX .

Proof. Consider an affine open W ⊂ X . The morphism OX (W )→ π∗OY(W )
is integral ([Liu02], Prop.3.3.18). Denoting by t a uniformizer of Γ(S,OS), we
have a commutative diagram

OX (W ) //

��

π∗OY(W )

��
OX (W )[t−1]

∼= // (π∗OY(W ))[t−1]

The two vertical arrows are injective because X and Y are S-flat; the lower ar-
row is an isomorphism because π is generically an isomorphism and (π∗OY(W ))[t−1] =
π∗(OY(W )[t−1]). It follows that the upper arrow is injective. We claim that
OX (W ) is integrally closed in OX (W )[t−1], so that the upper arrow is an iso-
morphism, which proves the lemma. Take then g ∈ OX (W )[t−1] satisfying a
monic polynomial equation gm + a1g

m−1 + . . . + am = 0 with coefficients in
OX (W ) and write g = f/tn with f ∈ OX (W ) and n ≥ 0 minimal. We want
to show that n is zero. We have

fm

tnm
+ a1

fm−1

tn(m−1)
+ . . .+ am = 0.

Suppose by contradiction n ≥ 1. Upon multiplying by tnm the above relation,
we find that fm ∈ tOX (W ). Because the special fibre of X is reduced, the ring
OX (W )/tOX(W ) is reduced, hence f ∈ tOX (W ). This violates the hypothesis
of minimality of n and we have a contradiction. Hence n = 0 and g ∈ OX (W ),
proving the claim.
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