

A monodromy criterion for existence of Neron models and a result on semi-factoriality

Orecchia, G.

Citation

Orecchia, G. (2018, February 27). *A monodromy criterion for existence of Neron models and a result on semi-factoriality*. Retrieved from https://hdl.handle.net/1887/61150

Version: Not Applicable (or Unknown)

License: License agreement concerning inclusion of doctoral thesis in the

Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/61150

Note: To cite this publication please use the final published version (if applicable).

Cover Page

Universiteit Leiden

The following handle holds various files of this Leiden University dissertation: http://hdl.handle.net/1887/61150

Author: Orecchia, G.

Title: A monodromy criterion for existence of Neron models and a result on semi-

factoriality

Issue Date: 2018-02-27

5 Néron models of abelian schemes in characteristic zero

In this section, we consider a connected, locally noetherian, regular base scheme S, a normal crossing divisor D on S, an abelian scheme A/U of relative dimension d and a semi-abelian scheme A/S with a given isomorphism $A \times_S U \to A$. We will retain the notation used in the previous sections.

5.1 Test-Néron models

Definition 5.1. Let \mathcal{N}/S be a smooth, separated group algebraic space of finite type with an isomorphism $\mathcal{N} \times_S U \to A$; we say that it is a *test-Néron model* for A over S if, for every strictly henselian trait Z and morphism $Z \to S$ transversal to D (definition 2.4), the pullback $\mathcal{N} \times_S Z$ is the Néron model of its generic fibre.

It is clear that the property of being a test-Néron model is smooth-local on the base, and is also preserved by taking the localization at a point of the base, or the strict henselization at a geometric point.

We will start by working on a strictly local base. Recall that in this case, for a prime l different from the residue characteristic p at the closed point, the Tate module $T_lA(K^s)$ is acted on by $G = \bigoplus_{i=1}^n I_i = \bigoplus_{i=1}^n \widehat{\mathbb{Z}}'(1)$, the tame fundamental group of U.

Lemma 5.2. For any subset $\mathcal{E} \subseteq \{1, ..., n\}$ and any $m \in \mathbb{Z}$, there is a canonical injective group homomorphism

$$\varphi_{\mathcal{E}} \colon \frac{A[m](K^s)^{\oplus_{i \in \mathcal{E}} I_i}}{T_l A(K^s)^{\oplus_{i \in \mathcal{E}} I_i} \otimes \mathbb{Z}/m\mathbb{Z}} \to \bigoplus_{i \in \mathcal{E}} \frac{A[m](K^s)^{I_i}}{T_l A(K^s)^{I_i} \otimes \mathbb{Z}/m\mathbb{Z}}.$$
 (25)

If A/S is toric-additive, for any $\mathcal{E} \subseteq \{1, ..., n\}$ the homomorphism $\varphi_{\mathcal{E}}$ is an isomorphism.

Remark 5.3. Recall the characterization of the group of components of Néron models in section 2.4. If S_i is a strict henselization at the generic point ζ_i of D_i , then there exists a Néron model \mathcal{N}_i/S_i for $A \times_S S_i$. The *i*-th summand of the right-hand side of (5.2) is the group of components of \mathcal{N}_i over the closed point of S_i . On the other hand, if ζ is the generic point of $\bigcap_{i \in \mathcal{E}} D_i$, and if A_K/K admits a Néron model over a strict henselization $\mathcal{O}_{S,\overline{\zeta}}^{sh}$, then the left hand side is its group of components over the closed point.

Proof. First, it follows easily from lemma 3.3 that $(T_lA(K^s)^{\bigoplus_{i\in\mathcal{E}}I_i})\otimes\mathbb{Z}/m\mathbb{Z} = \bigcap_{i\in\mathcal{E}} (T_lA(K^s)^{I_i}\otimes\mathbb{Z}/m\mathbb{Z})$. Given this, it is evident that the group homomorphism 25 is injective.

Let us assume that \mathcal{A}/S is toric-additive. Then we have a decomposition of $T := T_l A(K^S)$ into a direct sum $V_1 \oplus \ldots \oplus V_n$ as in theorem 3.4. For a \mathbb{Z}_l -module M, we will write $M_{(m)}$ for $M \otimes_{\mathbb{Z}_l} \mathbb{Z}/m\mathbb{Z}$.

Now, if \mathcal{E} is empty the statement of the lemma is obviously satisfied; otherwise, we can rename the components D_i , so that $\mathcal{E} = \{1, 2, ..., r\} \subseteq \{1, ..., n\}$ for some $1 \leq r \leq n$.

The left-hand side of eq. (25) is

$$\begin{split} \frac{(V_{1,(m)} \oplus \ldots \oplus V_{n,(m)})^{\bigoplus_{i \in \mathcal{E}} I_i}}{(V_1 \oplus \ldots \oplus V_n)^{\bigoplus_{i \in \mathcal{E}} I_i} \otimes \mathbb{Z}/m\mathbb{Z}} = \\ &= \frac{(V_{1,(m)})^{I_1} \oplus \ldots \oplus (V_{r,(m)})^{I_r} \oplus V_{r+1,(m)} \oplus \ldots \oplus V_{n,(m)}}{(V_1)^{I_1}_{(m)} \oplus \ldots \oplus (V_r)^{I_r}_{(m)} \oplus V_{r+1,(m)} \oplus \ldots \oplus V_{n,(m)}} = \\ &= \frac{(V_{1,(m)})^{I_1}}{(V_1)^{I_1}_{(m)}} \oplus \ldots \oplus \frac{(V_{r,(m)})^{I_r}}{(V_r)^{I_r}_{(m)}}. \end{split}$$

The right hand side is

$$\bigoplus_{i=1}^{r} \frac{V_{1,(m)} \oplus \ldots \oplus (V_{i,(m)})^{I_{i}} \oplus \ldots \oplus V_{n,(m)}}{V_{1,(m)} \oplus \ldots \oplus (V_{i})_{(m)}^{I_{i}} \oplus \ldots \oplus V_{n,(m)}} = \frac{(V_{1,(m)})^{I_{1}}}{(V_{1})_{(m)}^{I_{1}}} \oplus \ldots \oplus \frac{(V_{r,(m)})^{I_{r}}}{(V_{r})_{(m)}^{I_{r}}}.$$

So we have obtained the same expression on both sides, and $\varphi_{\mathcal{E}}$ induces the identity between them.

Next, we make a choice of a compatible system of primitive roots of units; equivalently, we choose a topological generator for $\mathbb{Z}'(1)$. This gives us, for each $i = 1, \ldots, n$, a topological generator e_i of I_i .

Lemma 5.4. Assume that A is toric-additive. Then, for any subset $\mathcal{E} \subseteq \{1,\ldots,n\}$ and any $m \in \mathbb{Z}$, we have

$$\frac{A[m](K^s)^{\oplus_{i\in\mathcal{E}}I_i}}{T_lA(K^s)^{\oplus_{i\in\mathcal{E}}I_i}\otimes\mathbb{Z}/m\mathbb{Z}} = \frac{A[m](K^s)^{\sum_{i\in\mathcal{E}}e_i}}{T_lA(K^s)^{\sum_{i\in\mathcal{E}}e_i}\otimes\mathbb{Z}/m\mathbb{Z}}$$

Proof. We have a decomposition

$$T_1A(K^s) = V_1 \oplus V_2 \oplus \ldots \oplus V_n$$

as in theorem 3.4. Again, for a \mathbb{Z}_l -module M, we write $M_{(m)} = M \otimes_{\mathbb{Z}_l} \mathbb{Z}/m\mathbb{Z}$; if $\mathcal{E} = \emptyset$ we are done, so we assume that $\mathcal{E} = \{1, \ldots, r\} \subseteq \{1, \ldots, n\}$ for some $1 \leq r \leq n$. The left hand side is

$$\frac{(V_{1,(m)})^{I_1} \oplus \ldots \oplus V_{r,(m)})^{I_r} \oplus V_{r+1,(m)} \oplus \ldots \oplus V_{n,(m)}}{(V_1)_{(m)}^{I_1} \oplus \ldots \oplus (V_r)_{(m)}^{I_r} \oplus V_{r+1,(m)} \oplus \ldots \oplus V_{n,(m)}}$$

The right hand side is

$$\frac{(V_{1,(m)})^{\sum_{1}^{r} e_{i}} \oplus \ldots \oplus (V_{n,(m)})^{\sum_{1}^{r} e_{i}}}{(V_{1})_{(m)}^{\sum_{1}^{r} e_{i}} \oplus \ldots \oplus (V_{n})_{(m)}^{\sum_{1}^{r} e_{i}}} =
= \frac{(V_{1,(m)})^{e_{1}} \oplus \ldots \oplus (V_{r,(m)})^{e_{r}} \oplus V_{r+1,(m)} \oplus \ldots \oplus V_{n,(m)}}{(V_{1})_{(m)}^{e_{1}} \oplus \ldots \oplus (V_{r})_{(m)}^{e_{r}} \oplus V_{r+1,(m)} \oplus \ldots \oplus V_{n,(m)}}$$

which concludes the proof.

We now return to the hypotheses as in the beginning of the section, so S is not local anymore. From this moment, we will assume that S is a \mathbb{Q} -scheme, so it has residue characteristic 0 at every point. We will use the previous lemmas to prove existence and uniqueness of test-Néron models, under the hypothesis of toric-additivity of the base.

Proposition 5.5. Suppose that S is a \mathbb{Q} -scheme and that A/S is toricadditive. If N/S and N'/S are two test-Néron models for A, there exists a unique isomorphism $N \to N'$ that restricts to the isomorphism $N_U \to N_U'$.

Proof. The uniqueness is automatic, because \mathcal{N}' is separated and \mathcal{N}_U is schematically-dense in \mathcal{N} . For the existence part, we proceed by induction on the dimension of the base. In the case of dim S=1, let S^{sh} be a strict henselization of the trait S. The base change of a test-Néron model to S^{sh} is a Néron model. By lemma 2.10, \mathcal{N} and \mathcal{N}' are themselves Néron models over S, and therefore there exists an isomorphism $\mathcal{N} \to \mathcal{N}'$.

Now let dim S=M and assume the statement is true for dim S< M. We claim that we can reduce to the case of a strictly local base S. Suppose that for every geometric point s of S we can construct an isomorphism $f_s: \mathcal{N}_{X_s} \to \mathcal{N}'_{X_s}$ where X_s is the spectrum of the strict henselization at s. Then we can spread out f_s to an isomorphism $f': \mathcal{N}_{S'} \to \mathcal{N}'_{S'}$ for some étale cover S' of S. Let $S'':=S'\times_S S', p_1, p_2: S'' \to S'$ be the two projections and $q: S'' \to S$. Because test-Néron models are stable under étale base change, $q^*\mathcal{N}$ and $q^*\mathcal{N}'$ are test-Néron models. The two isomorphisms $p_1^*f, p_2^*f: q^*\mathcal{N} \to q^*\mathcal{N}'$ necessarily coincide, thus f descends to an isomorphism $\mathcal{N} \to \mathcal{N}'$, which proves our claim.

Let then S be strictly local, of dimension M, with closed point s. The open $V = S \setminus \{s\}$ has dimension M-1; since \mathcal{A}_V/V is toric-additive, by inductive hypothesis there is a unique isomorphism $f_V \colon \mathcal{N}_V \to \mathcal{N}'_V$. We would like to extend it to the whole of S.

Let Z be a regular, closed subscheme of S of dimension 1, transversal to D. The existence of such $Z \subset S$ is easily checked. As Z is a strictly henselian trait, the pullbacks of \mathcal{N} and \mathcal{N}' to Z are Néron models of their generic fibre, hence there is a unique isomorphism $\alpha \colon \mathcal{N}_Z \to \mathcal{N}'_Z$. Now let $\underline{\Phi}$ and $\underline{\Phi}'$ be the étale S-group schemes of components of \mathcal{N} and \mathcal{N}' ; and let $\underline{\Phi}$ and $\underline{\Phi}'$ be the groups $\underline{\Phi}_s(k)$ and $\underline{\Phi}'_s(k)$ respectively. The restriction of α to the fibre over s induces an isomorphism $\underline{\Phi} \to \underline{\Phi}'$.

We show next that the isomorphism $\Phi \to \Phi'$ is independent of the choice of $Z \subset S$. Let's call L the fraction field of $\Gamma(Z, \mathcal{O}_Z)$. The morphism $Z \to S$ induces a group homomorphism

$$\pi_1(Z \setminus \{z\}) = \operatorname{Gal}(\overline{L}|L) = \widehat{\mathbb{Z}}(1) \to \pi_1(S \setminus D) = \bigoplus_{i=1}^n I_i = \bigoplus_{i=1}^n \widehat{\mathbb{Z}}(1)$$
 (26)

which sends a topological generator e of $\pi_1(Z \setminus \{z\})$ to a sum $\sum_{i=1}^n e_i$ of topological generators of the direct summands of $\pi_1(S \setminus D)$, since Z is transversal to D. By section 2.4, both Φ and Φ' are canonically isomorphic to

$$\bigoplus_{l \text{ prime}} \frac{(T_l A(\overline{L}) \otimes \mathbb{Q}_l/\mathbb{Z}_l)^{\operatorname{Gal}(\overline{L}|L)}}{T_l A(\overline{L})^{\operatorname{Gal}(\overline{L}|L)} \otimes \mathbb{Q}_l/\mathbb{Z}_l}.$$

We have a canonical isomorphism of \mathbb{Z}_l -modules $T_lA(\overline{K}) \to T_lA(\overline{L})$, compatible with the homomorphism 26, so that e acts on an element of $T_lA(\overline{L})$ as $\sum_{i=1}^n e_i$ acts on its image in $T_lA(\overline{K})$. Hence, writing G for $\pi_1(S \setminus D)$, Φ and Φ' are given by

$$\bigoplus_{l \text{ prime}} \frac{(T_l A(\overline{K}) \otimes \mathbb{Q}_l/\mathbb{Z}_l)^{\sum_{i=1}^n e_i}}{T_l A(\overline{K})^{\sum_{i=1}^n e_i} \otimes \mathbb{Q}_l/\mathbb{Z}_l} = \bigoplus_{l \text{ prime}} \frac{(T_l A(\overline{K}) \otimes \mathbb{Q}_l/\mathbb{Z}_l)^G}{T_l A(\overline{K})^G \otimes \mathbb{Q}_l/\mathbb{Z}_l}$$

the equality coming from the assumption of toric-additivity and lemma 5.4. This shows that the isomorphism $\Phi \to \Phi'$ is independent of the choice of $Z \subset S$. For this reason, we will write Φ for both groups Φ and Φ' .

Now, the surjective morphism

$$(T_l A(\overline{K}) \otimes \mathbb{Q}_l/\mathbb{Z}_l)^G \to \Phi$$

splits; letting N be the order of Φ , we obtain a surjective morphism between the N-torsion subgroups

$$A[N](K) = A[N](\overline{K})^G \to \Phi.$$

We pick a section $\Phi \to A[N](K)$ and denote by B its image. Consider the schematic closures \mathcal{B} and \mathcal{B}' of B inside \mathcal{N} and \mathcal{N}' respectively. Then \mathcal{B} is a closed subgroup scheme of the étale S-group scheme $\mathcal{N}[N]$; in fact, it is the union $\sqcup_{\varphi \in \Phi} V_{\varphi}$ of some of its connected components. As $V_{\varphi} \to S$ is flat, separated and birational, it is an open immersion. As $\mathcal{N}[N]$ is finite over U, the restriction of $V_{\varphi} \to S$ to U is surjective, hence an isomorphism. In particular, it is given by some section $U \to A$, which restricts to a section $\operatorname{Spec} L \to A_{\operatorname{Spec} L}$ over the generic point of Z. As \mathcal{N}_Z is a Néron model of its generic fibre, this section extends to a section $Z \to \mathcal{N}_Z$. This latter section is for sure contained in the schematic closure of V_{φ} , which is V_{φ} itself. This shows that $V_{\varphi} \to S$ is surjective, and in particular an isomorphism. Therefore, \mathcal{B} is simply given by a disjoint union $\sqcup_{\varphi \in \Phi} b_{\varphi}$ of torsion sections $b_{\varphi} \colon S \to \mathcal{N}$, and the restriction \mathcal{B}_s is canonically isomorphic to $\underline{\Phi}_s$. Similarly, we write $\mathcal{B}' = \sqcup_{\varphi \in \Phi} b'_{\varphi}$.

Let $\mathcal{A} \subset \mathcal{N}$ and $\mathcal{A}' \subset \mathcal{N}'$ be the fibrewise-connected components of identity. By uniqueness of semi-abelian extensions, there is a unique isomorphism $\mathcal{A} \to \mathcal{A}'$. Now let $\mathcal{M} = \bigcup_{\varphi \in \Phi} (b_{\varphi} + \mathcal{A}) \subseteq \mathcal{N}$. It is an open subgroup S-scheme of \mathcal{N} , and on the closed fibre we have $\mathcal{M}_s = \mathcal{N}_s$, since $\mathcal{B}_s = \underline{\Phi}_s$. In particular, $\mathcal{N} = \mathcal{N}_V \cup \mathcal{M}$. Writing similarly $\mathcal{M}' = \bigcup_{\varphi \in \Phi} (b'_{\varphi} + \mathcal{A}') \subseteq \mathcal{N}'$, we have $\mathcal{N}' = \mathcal{N}'_V \cup \mathcal{M}'$.

Now, we construct an isomorphism $\mathcal{M} \to \mathcal{M}'$ simply by sending b_{φ} to b'_{φ} and by means of the isomorphism $\mathcal{A} \to \mathcal{A}'$. To obtain an isomorphism $\mathcal{N} \to \mathcal{N}'$ it is enough to show that $\mathcal{N}_V \to \mathcal{N}'_V$ and $\mathcal{M} \to \mathcal{M}'$ agree on the intersection $\mathcal{N}_V \cap \mathcal{M} = \mathcal{M}_V$. This is clear: indeed, the isomorphism $\mathcal{N}_V \to \mathcal{N}'_V$ agrees with the restriction $\mathcal{A}_V \to \mathcal{A}'_V$, and it sends the schematic closure of B inside \mathcal{N}_V to the schematic closure of B inside \mathcal{N}'_V ; that is, it restricts to an isomorphism $\mathcal{B}_V \to \mathcal{B}'_V$ sending b_{φ} to b'_{φ} .

Theorem 5.6. Suppose that S is a \mathbb{Q} -scheme, and that A/S is toric-additive. Then there exists a test-Néron model \mathcal{N}/S for A.

Proof. Our proof is constructive; we subdivide it in steps.

Step 1: constructing the group Ψ . Let s be a geometric point of S, and write X_s for the spectrum of the strict henselization at s. Let K_s be the field of fractions of X_s , that is, the maximal extension of K unramified at s, and \overline{K} an algebraic closure of K_s . Let \mathcal{J}_s be the finite set of components of the strict normal crossing divisor $D \times_S X_s$.

For every prime l, the action of $\operatorname{Gal}(\overline{K}|K_s)$ factors via the quotient $\operatorname{Gal}(\overline{K}|K_s) \to G := \pi_1(U \times_S X_s) = \bigoplus_{i \in \mathcal{J}_s} I_i$ where $I_i = \widehat{\mathbb{Z}}(1)$.

We set

$$\Psi := \bigoplus_{l \ prime} \bigoplus_{i \in \mathcal{J}_s} \frac{\left(T_l A(\overline{K}) \otimes \mathbb{Q}_l / \mathbb{Z}_l \right)^{I_i}}{T_l A(\overline{K})^{I_i} \otimes \mathbb{Q}_l / \mathbb{Z}_l}$$
 (27)

The abelian group Ψ is finite, as each of its summands is the l-primary part of the group of components of the Néron model of A_{K_s} over the local ring at the generic point of D_i , which exists by theorem 2.14.

By lemma 5.2,

$$\Psi = \bigoplus_{l \; prime} \frac{\left(T_l A(\overline{K}) \otimes \mathbb{Q}_l / \mathbb{Z}_l\right)^{\bigoplus_{i \in \mathcal{J}_s} I_i}}{T_l A(\overline{K})^{\bigoplus_{i \in \mathcal{J}_s} I_i} \otimes \mathbb{Q}_l / \mathbb{Z}_l}.$$

The surjective morphism

$$\bigoplus_{l} ((T_l A(\overline{K}) \otimes \mathbb{Q}_l / \mathbb{Z}_l)^{\bigoplus_{i \in \mathcal{J}_s} I_i}) \to \Psi$$

splits; therefore, denoting by N the order of Ψ , we obtain a surjective morphism between the N-torsion subgroups

$$\pi \colon A[N](K_s) = A[N](\overline{K})^{\bigoplus_{i \in \mathcal{J}_s} I_i} \to \Psi.$$

We consider the set of sections $S := \{\alpha \colon \Psi \to A[N](K_s) \text{ such that } \pi \circ \alpha = \mathrm{id} \}$: it is a torsor under the finite group $\bigoplus_l (T_l A(K_s) \otimes \mathbb{Z}/N\mathbb{Z})$, and as such it is finite. As the group Ψ is finite as well, there exists a finite extension $K \to K'$, unramified over s, such that every section $\Psi \to A[N](K_s)$ factors via A[N](K'). Notice that S is non-empty, as the quotient map π splits; thus we can fix a section $\alpha \colon \Psi \to A[N](K')$.

Step 2: spreading out to an étale neighbourhood of s. The normalization of S inside K' is unramified over the image of s in S, hence étale over it ([Sta16]TAG 0BQK), so we obtain an étale neighbourhood S' of s, which we may assume to be connected, with fraction field K'. We write \mathcal{J}' for the set of irreducible components of $D \times_S S'$. There is a natural function $\mathcal{J}_s \to \mathcal{J}'$: up to restricting S', we may assume that it is bijective. Indeed, its surjectivity corresponds to the fact that every component of $D \times_S S'$ contains (the image of) s; imposing also injectivity means asking that $D \times_S S'$ is a *strict* normal crossing divisor. Thus, we need not distinguish between \mathcal{J}_s and \mathcal{J}' and we will simply write \mathcal{J} for this set.

Step 3: constructing the subgroup-scheme $\mathcal{H} \subseteq \mathcal{A}_{S'} \times_{S'} \Psi_{S'}$. We call $H \subseteq A[N](K') \times \Psi$ the image of Ψ via $(\alpha, \mathrm{id}) \colon \Psi \to A[N](K') \times \Psi$; we let \mathcal{H}/S' be the schematic closure of H inside $\mathcal{A}_{S'} \times_{S'} \Psi_{S'}$ (where $\Psi_{S'}$ denotes the constant group scheme over S' associated to the finite abelian group Ψ). It is a closed subgroup scheme of the étale S'-group scheme $\mathcal{A}_{S'}[N] \times_{S'} \Psi_{S'}$ and

a disjoint union $\sqcup_{j\in\Psi}V_j$ of some of its connected components; moreover, over the generic point of S', each V_j restricts to a copy of Spec K'. As $V_j \to S'$ is flat, separated and birational, it is an open immersion; thus $\mathcal{H} = \sqcup_{j\in\Psi}V_j \to S'$ is a disjoint union of open immersions. In fact, if we write $U' = U \times_S S'$, the base change $A_{U'}$ is an abelian scheme; therefore $A_{U'}[N] \times_{U'} \Psi_{U'}$ is finite, and each $V_j \to S'$ is an isomorphism over U'. This can be restated by saying that the composition

$$\mathcal{H}_{U'} \to \mathcal{A}_{U'} \times_{U'} \Psi_{U'} \to \Psi_{U'}$$

is an isomorphism.

Step 4: taking the quotient by \mathcal{H} . Consider now the fppf-quotient

$$\mathcal{N}^{\alpha} := \frac{\mathcal{A}_{S'} \times_{S'} \Psi_{S'}}{\mathcal{H}}.$$

First, we claim that its restriction $\mathcal{N}_{U'}^{\alpha}$ is canonically isomorphic to $A_{U'}$. Indeed, we observed that $\mathcal{H}_{U'} = \Psi_{U'}$, and the quotient morphism for $\Psi_{U'} \to \mathcal{A}_{U'} \times_{U'} \Psi_{U'}$, $\psi \mapsto (\alpha(\psi), \psi)$ is $\mathcal{A}_{U'} \times_{U'} \Psi_{U'} \to \mathcal{A}_{U'}$, $(a, \psi) \mapsto a - \alpha(\psi)$, which proves the claim.

Because \mathcal{H} is étale, \mathcal{N}^{α} is automatically an algebraic space; we claim that it is actually representable by a scheme. As the quotient morphism $p \colon \mathcal{A}_{S'} \times_{S'} \Psi_{S'} \to \mathcal{N}^{\alpha}$ is an \mathcal{H} -torsor, p is étale. In particular the restriction of p to the connected component of identity, $\mathcal{A}_{S'} \times \{0\} \to \mathcal{N}^{\alpha}$, is étale; it is also separated, and an isomorphism over U. It follows that it is an open immersion. Hence, all other components $\mathcal{A}_{S'} \times \{\psi\}$ map to \mathcal{N}^{α} via an open immersion. The disjoint union $\bigsqcup_{\psi \in \Psi} \mathcal{A}_{S'} \times_{S'} \{\psi\}$ surjects onto \mathcal{N}^{α} , and this gives us an open cover of \mathcal{N}^{α} by schemes.

In summary, we have obtained an S'-group scheme \mathcal{N}^{α} , which restricts to A over U'; moreover, it is S'-smooth, of finite presentation, and separated, since \mathcal{H} is closed in the separated scheme $\mathcal{A}_{S'} \times_{S'} \Psi_{S'}$.

Step 5: independence of the section α . We have used the notation \mathcal{N}^{α} as a reminder of our choice of section α done above. We show that \mathcal{N}^{α} does not depend on the choice of the section $\Psi \to A[N](K')$, or to put it better, we show that given two sections α, β we obtain a canonical isomorphism $\mathcal{N}^{\alpha} \to \mathcal{N}^{\beta}$. Actually, as soon as we prove that \mathcal{N}^{α} and \mathcal{N}^{β} are test-Néron models (step 6), the existence of a canonical isomorphism between them is ensured by proposition 5.5; however, we still give an argument: suppose we choose another section $\beta \colon \Psi \to A[N](K')$ and let $H^{\beta} \subset A[N](K') \times \Psi$ be the image of Ψ via $(\beta, \mathrm{id}) \colon \Psi \to A[N](K') \times \Psi$. Then the map $f_{\beta-\alpha} \colon H^{\alpha} \to H^{\beta}$ sending $(h, \psi) \in H^{\alpha} \subseteq A[N](K') \times \Psi$ to $(h + (\beta - \alpha)\psi, \psi)$ is an isomorphism. Moreover, $\beta - \alpha$ lands inside $\bigoplus_l T_l A(K') \otimes \mathbb{Z}/N\mathbb{Z}$, the subgroup of A(K') consisting of those N-torsion points that extend to torsion sections of $\mathcal{A}_{S'}/S'$. Therefore $\beta - \alpha$ extends to a morphism of S'-group schemes $\Psi_{S'} \to \mathcal{A}_{S'}$. Now,

the isomorphism

$$\begin{pmatrix}
1 & \beta - \alpha \\
0 & 1
\end{pmatrix}$$

$$\mathcal{A}_{S'} \times_{S'} \Psi_{S'} \xrightarrow{} \mathcal{A}_{S'} \times_{S'} \Psi_{S'}$$

restricts to $f_{\beta-\alpha}$ on H^{α} and therefore also restricts to an isomorphism $\mathcal{H}^{\alpha} \to \mathcal{H}^{\beta}$ between the schematic closures of H^{α} and H^{β} in $\mathcal{A}_{S'} \times_{S'} \Psi_{S'}$. Hence, we obtain an isomorphism $\mathcal{N}^{\alpha} = (\mathcal{A}_{S'} \times_{S'} \Psi_{S'}) / \mathcal{H}^{\alpha} \to \mathcal{N}^{\beta} = (\mathcal{A}_{S'} \times_{S'} \Psi_{S'}) / \mathcal{H}^{\beta}$ between the quotients, as wished. We can therefore forget about the choice of section and use the notation \mathcal{N}/S' for the group-scheme just constructed.

Step 6: showing that \mathcal{N} is a test-Néron model. To ease notation, let us write S in place of S', $D = \bigcup_{i \in \mathcal{J}} D_i$ for the strict normal crossing divisor $D \times_S S'$. Let Z be a strictly henselian trait, with closed point z, and $g \colon Z \to S$ a morphism transversal to D. Write T for the strict henselization of S at z and $\mathcal{E} \subseteq \mathcal{J}$ for the subset of indices of components D_i that contain z. Let also \mathcal{M}/Z be the Néron model of $A \times_S Z$. The Néron mapping property gives a morphism $\mathcal{N}_Z \to \mathcal{M}$, which is an open immersion and induces an isomorphism between the fibrewise-connected components of identity, as they are both semi-abelian (lemma 2.17). Let Φ/S and Υ/Z be the étale group schemes of connected components of \mathcal{N}/S and \mathcal{M}/Z respectively. To show that $\mathcal{N}_Z \to \mathcal{M}$ is an isomorphism, we only need to check that the induced morphism $\Phi_{|Z} \to \Upsilon$ is an isomorphism. It is certainly an open immersion, so it suffices to show that $\Phi(z) \to \Upsilon(z)$ is an isomorphism.

We will fix a prime l and compare the l-primary parts of the two groups, which we denote ${}_{l}\Phi(z)$ and ${}_{l}\Upsilon(z)$. Let's start with ${}_{l}\Phi(z)$. The group scheme Φ/S being given by Ψ_{S}/\mathcal{H} , we have ${}_{l}\Phi(z) = {}_{l}\Psi(z)/{}_{l}\mathcal{H}(z)$. Recall that ${}_{l}\mathcal{H}$ is the schematic closure of ${}_{l}H$ inside $\mathcal{A} \times_{S} {}_{l}\Psi_{S}$. Hence, ${}_{l}\mathcal{H}(z)$ is identified with a subgroup of ${}_{l}H$ consisting of those elements $(a,\psi) \in {}_{l}H \subset A[N](K) \times {}_{l}\Psi$ such that a extends to a section of \mathcal{A}_{T}/T . These are exactly the pairs $(a,\psi) \in {}_{l}H$ such that $a \in T_{l}A(\overline{K})^{\oplus_{i} \in \mathcal{E}^{I_{i}}} \otimes \mathbb{Z}/N\mathbb{Z}$. Therefore, ${}_{l}\mathcal{H}(z)$ is the kernel of the composition

$${}_{l}H \xrightarrow{\sim} {}_{l}\Psi = \bigoplus_{i \in \mathcal{J}} \frac{\left(T_{l}A(\overline{K}) \otimes \mathbb{Z}/N\mathbb{Z}\right)^{I_{i}}}{T_{l}A(\overline{K})^{I_{i}} \otimes \mathbb{Z}/N\mathbb{Z}} \xrightarrow{pr}$$

$$\xrightarrow{pr} \bigoplus_{i \in \mathcal{E}} \frac{\left(T_{l}A(\overline{K}) \otimes \mathbb{Z}/N\mathbb{Z}\right)^{I_{i}}}{T_{l}A(\overline{K})^{I_{i}} \otimes \mathbb{Z}/N\mathbb{Z}} = \frac{\left(T_{l}A(\overline{K}) \otimes \mathbb{Z}/N\mathbb{Z}\right)^{\bigoplus_{i \in \mathcal{E}} I_{i}}}{T_{l}A(\overline{K})^{\bigoplus_{i \in \mathcal{E}} I_{i}} \otimes \mathbb{Z}/N\mathbb{Z}}$$

from which it follows that

$${}_{l}\Phi(z) = \frac{{}_{l}\Psi(z)}{{}_{l}\mathcal{H}(z)} \cong \bigoplus_{i \in \mathcal{E}} \frac{\left(T_{l}A(\overline{K}) \otimes \mathbb{Z}/N\mathbb{Z}\right)^{I_{i}}}{T_{l}A(\overline{K})^{I_{i}} \otimes \mathbb{Z}/N\mathbb{Z}}.$$

Next, we look at ${}_{l}\Upsilon(z)$. Let's call K_Z the field of fractions of $\Gamma(Z, \mathcal{O}_Z)$. The morphism $Z \to T$ induces a group homomorphism

$$\pi_1(Z \setminus \{z\}) = \operatorname{Gal}(\overline{K}_Z | K_Z) = \widehat{\mathbb{Z}}(1) \to \pi_1(T \setminus D) = \bigoplus_{i \in \mathcal{E}} \widehat{\mathbb{Z}}(1)$$

which sends a topological generator e of $\widehat{\mathbb{Z}}(1)$ to a sum of topological generators $\sum_{i=1}^{n} e_i$, because Z meets D transversally.

Notice that there is a canonical identification $T_lA(\overline{K}_Z) = T_lA(\overline{K})$; the topological generator of $\operatorname{Gal}(\overline{K}_Z|K_Z)$ acts on the latter as $\sum_{i\in\mathcal{E}}e_i$ does. Therefore

$${}_{l}\Upsilon(z) = \frac{\left(T_{l}A(\overline{K}) \otimes \mathbb{Z}/N\mathbb{Z}\right)^{\sum_{i \in \mathcal{E}} e_{i}}}{T_{l}A(\overline{K})^{\sum_{i \in \mathcal{E}} e_{i}} \otimes \mathbb{Z}/N\mathbb{Z}}$$

By lemma 5.4 and lemma 5.2, ${}_{l}\Upsilon(z) \cong {}_{l}\Phi(z)$, as we wished to show. Hence \mathcal{N} is a test-Néron model for $A_{U'}$ over S'.

Step 7: descending \mathcal{N} along $S' \to S$. For every geometric point s of S, we have found an étale neighbourhood $S' \to S$ and a test-Néron model \mathcal{N}/S' over S'. Using uniqueness up to unique isomorphism of test-Néron models, their stability under étale base change, and effectiveness of étale descent for algebraic spaces, we obtain a smooth separated algebraic space of finite type $\widetilde{\mathcal{N}}$ over S, and an isomorphism $\widetilde{\mathcal{N}} \times_S U \to A$. Because the property of being a test-Néron model is étale-local, $\widetilde{\mathcal{N}}$ is itself a test-Néron model for A over S.

5.2 Test-Néron models and finite flat base change

In [Edi92], Edixhoven considers the case of an abelian variety A_K over the generic point of a trait S, and a tamely ramified extension of traits $\pi\colon S'\to S$ whose associated extension of fraction fields $K\to K'$ is Galois. He considers the Néron model \mathcal{N}/S of A_K and the Néron model \mathcal{N}'/S' of $A_{K'}$: after defining a certain equivariant action of $\operatorname{Gal}(K'|K)$ on the Weil restriction $\pi_*\mathcal{N}'$, he shows that \mathcal{N} is naturally identified with the subgroup-scheme of $\operatorname{Gal}(K'/K)$ -invariants of $\pi_*\mathcal{N}'$.

In this subsection, we aim to show an analogous statement for test-Néron models over a base of higher dimension and characteristic everywhere zero.

We let then S be a noetherian, regular, strictly local \mathbb{Q} -scheme, $D = \bigcup_{i=1}^n \operatorname{div}(t_i)$ a normal crossing divisor on S (thus the t_i are part of a system of regular parameters for $\mathcal{O}_S(S)$), A an abelian scheme over $U = S \setminus D$, A/S a toric-additive semi-abelian scheme extending A.

We can apply theorem 5.6 to construct a test-Néron model

$$\mathcal{N} = \frac{\mathcal{A} \times_S \Psi_S}{\mathcal{H}}.$$

Notice that the étale cover $S' \to S$ of the proof of theorem 5.6 is necessarily trivial in this case.

Consider now a finite flat cover $\pi: T \to S$ of the form

$$T = \operatorname{Spec} \frac{\mathcal{O}_S(S)[X_1, \dots, X_n]}{X_1^{m_1} - t_1, \dots, X_n^{m_n} - t_n}$$

for some positive integers m_1, \ldots, m_n . Then T is a regular strictly local scheme. We denote by K' its field of fractions. The morphism π is finite étale over U, and the preimage via $\pi \colon T \to S$ of D is the normal crossing divisor $\pi^{-1}(D) = \bigcup_{i=1}^n \operatorname{div} X_i$.

We have a commutative diagram

$$\operatorname{Gal}(\overline{K}|K') \longrightarrow \pi_1(U_T) = \bigoplus_{i=1}^n \widehat{\mathbb{Z}}(1)$$

$$\downarrow \qquad \qquad \downarrow$$

$$\operatorname{Gal}(\overline{K}|K) \longrightarrow \pi_1(U) = \bigoplus_{i=1}^n \widehat{\mathbb{Z}}(1)$$

where the right vertical arrow is given by multiplication by m_i on the *i*-th component. We will write $\pi_1(U) = \bigoplus_{i=1}^n I_i$ and identify $\pi_1(U_T)$ with its subgroup $\bigoplus_{i=1}^n m_i I_i$.

The fraction field K' of T is an extension of K of order $m_1 \cdot m_2 \cdot \ldots \cdot m_n$, and we write G for the Galois group $Gal(K'|K) = \bigoplus_{i=1}^n I_i/m_i I_i = \bigoplus_{i=1}^n \mu_{m_i}$.

By lemma 3.6, $\mathcal{A} \times_S T$ is still toric-additive. We follow the construction carried out in the proof of theorem 5.6 to obtain a test-Néron model \mathcal{M}/T : to start with, we consider the finite abelian group

$$\Psi' = \bigoplus_{l \; prime} \bigoplus_{i=1}^{n} \frac{\left(T_{l}A(\overline{K}) \otimes \mathbb{Q}_{l}/\mathbb{Z}_{l}\right)^{m_{i}I_{i}}}{T_{l}A(\overline{K})^{m_{i}I_{i}} \otimes \mathbb{Q}_{l}/\mathbb{Z}_{l}} = \bigoplus_{l \; prime} \frac{\left(T_{l}A(\overline{K}) \otimes \mathbb{Q}_{l}/\mathbb{Z}_{l}\right)^{\bigoplus_{i=1}^{n} m_{i}I_{i}}}{T_{l}A(\overline{K})^{\bigoplus_{i=1}^{n} m_{i}I_{i}} \otimes \mathbb{Q}_{l}/\mathbb{Z}_{l}}$$

We claim that $T_lA(\overline{K})^{I_i} = T_lA(\overline{K})^{m_iI_i}$; indeed, letting e_i , be a topological generator of I_i , and denoting still by e_i the automorphism of $T_lA(\overline{K})$ induced by e_i , we know by section 2.3 that $(e_i-1)^2=0$. Using this relation, we obtain

$$e_i^{m_i} - 1 = ((e_i - 1) + 1)^{m_i} - 1 = m(e_i - 1) + 1 - 1 = m(e_i - 1).$$

As $T_lA(\overline{K})$ is torsion-free, we see that $\ker(e_i^{m_i}-1) = \ker(e_i-1)$, which proves our claim. Hence, we actually have

$$\Psi' = \bigoplus_{l \ prime} \frac{\left(T_l A(\overline{K}) \otimes \mathbb{Q}_l / \mathbb{Z}_l\right)^{\bigoplus_{i=1}^n m_i I_i}}{T_l A(\overline{K}) \bigoplus_{i=1}^n I_i} \otimes \mathbb{Q}_l / \mathbb{Z}_l$$

and it follows that Ψ' has a natural action of G.

Next, we let $N = \operatorname{ord}(\Psi')$ and choose a section $\alpha \colon \Psi' \to A[N](K')$. We write H' for the image of $\Psi' \xrightarrow{(\alpha, \operatorname{id})} A[N](K') \times \Psi'$ and \mathcal{H}' for its schematic closure inside $\mathcal{A}_T \times_T \Psi'_T$. The fppf-quotient

$$\mathcal{M} = rac{\mathcal{A}_T imes_T \Psi_T'}{\mathcal{H}'}$$

is represented by a test-Néron model for $A_{U'}$ over T.

In order to compare \mathcal{M} and \mathcal{N} , we will consider the Weil restriction of \mathcal{M} via $\pi \colon T \to S$, that is, the functor $\pi_* \mathcal{M} \colon (\mathbf{Sch}/S) \to \mathbf{Sets}$ given by $(Y \to S) \mapsto \mathcal{M}(Y \times_S T)$. Recall that we have an exact sequence of fppf-sheaves of abelian groups

$$0 \to \mathcal{H}' \to \mathcal{A}_T \times_T \Psi'_T \to \mathcal{M} \to 0.$$

As π is a finite morphism, the higher direct images of π for the fppf-topology vanish, and we have an exact sequence of fppf-sheaves

$$0 \to \pi_* \mathcal{H}' \to \pi_* \mathcal{A}_T \times_S \pi_* \Psi_T' \to \pi_* \mathcal{M} \to 0.$$

We claim that $\pi_*\mathcal{M}$ is representable by a scheme. By [Ray70b, XI, 1.16], semi-abelian schemes are quasi-projective, hence so is $\mathcal{A}_T \times_T \Psi_T'$. Clearly \mathcal{H}'/T is quasi-projective as well. As $\pi\colon T\to S$ is finite and flat, $\pi_*\mathcal{H}'$ and $\pi_*\mathcal{A}_T\times_S\pi_*\Psi_T'$ are schemes (see for example [Edi92, 2.2]). Now, $\pi_*\mathcal{H}'/S$ is étale ([Sch94, 4.9]), and its intersection with the identity component of $\pi_*\mathcal{A}_T\times_S\pi_*\Psi_T'$ is trivial. Reasoning as in the proof of theorem 5.6, we conclude that $\pi_*\mathcal{M}$ has an open cover by schemes, hence it is a scheme.

We want to define an equivariant action of G on $\pi_*\mathcal{M} \to S$, where G acts trivially on S. To do this, we let first G act on $A_{K'}$ via the action of G on K'. By [Del85, 1.3 pag.132] the action of G extends uniquely to an equivariant action on $\mathcal{A}_T \to T$. We also have an obvious action of G on Ψ' which induces an equivariant action on $\Psi'_T \to T$. We put together these actions to find an equivariant action of G on $\mathcal{A}_T \times_T \Psi'_T \to T$: clearly H' is G-invariant, thus the same is true for its schematic closure \mathcal{H}' . Therefore the action of G descends to an equivariant action of G on $\mathcal{M} \to T$.

To define the action of G on $\pi_*\mathcal{M}$, we let $q \in G$ act on $\pi_*\mathcal{M}$ via the composition

$$\pi_* \mathcal{M} \times_S T \xrightarrow{(\mathrm{id},g)} \pi_* \mathcal{M} \times_S T \to \mathcal{M} \xrightarrow{g^{-1}} \mathcal{M}.$$

where the second arrow is given by the identity morphism $\pi_*\mathcal{M} \to \pi_*\mathcal{M}$. This defines the desired equivariant action of G on $\pi_*\mathcal{M} \to S$.

Consider the functor of fixed points $(\pi_*\mathcal{M})^G$: **Sch**/ $S \to$ **Sets**, $(Y \to S) \mapsto \pi_*\mathcal{M}(Y)^G$. Then $(\pi_*\mathcal{M})^G$ is represented by a closed subgroup-scheme of $\pi_*\mathcal{M}$, smooth over S by [Edi92, 3.1].

Proposition 5.7. There is a canonical closed immersion $\iota \colon \mathcal{N} \to \pi_* \mathcal{M}$, which identifies \mathcal{N} with the subgroup-scheme of fixed points $(\pi_* \mathcal{M})^G$.

Proof. By generalities on the Weil restriction [BLR90, pag. 198], the canonical morphism $\mathcal{A} \to \pi_* \mathcal{A}_T$ is a closed immersion. The natural injection $\Psi \to \Psi'$ gives a closed immersion $\mathcal{A} \times_S \Psi_S \to \pi_* \mathcal{A}_T \times_S \Psi_S' = \pi_* (\mathcal{A}_T \times_T \Psi_T')$. To show that it descends to a closed immersion $\mathcal{N} \to \pi_* \mathcal{M}$, it is enough to show that

$$\pi_* \mathcal{H}' \cap (\mathcal{A} \times_S \Psi_S) = \mathcal{H}. \tag{28}$$

We may assume that the section $\Psi \to A[N](K)$ used to construct H is obtained by restriction of the section $\Psi' \to A[N](K')$ used to construct H': indeed we know that it does not matter which section we choose. It follows that $H = H' \cap (A(K) \times_K \Psi)$, which realizes eq. (28) on the level of generic fibres. Now, $\pi_* \mathcal{H}'$ is étale over S, and it is a closed subscheme of $\pi_* \mathcal{A}_T \times_S \Psi'_S$. Hence, it is the schematic closure of its generic fibre, which is H'. Then, the intersection $\mathcal{H}^* := \pi_* \mathcal{H}' \cap (\pi_* \mathcal{A}_T \times_S \Psi_S)$ is clearly still étale over S, and has generic fibre H. Thus \mathcal{H}^* is the schematic closure of H in $\pi_* \mathcal{A}_T \times_S \Psi_S$. On the other hand, $\mathcal{H} \to \mathcal{A} \times_S \Psi_S \to \pi_* \mathcal{A}_T \times_S \Psi_S$ is a closed immersion, and \mathcal{H} is étale over S and has generic fibre H. As \mathcal{H} and \mathcal{H}^* are both étale over S, have same generic fibre and are both closed subschemes of $\pi_* \mathcal{A}_T \times_S \Psi_S$, they are equal. Since \mathcal{H} is contained in $\mathcal{A} \times_S \Psi_S$, so is \mathcal{H}^* and we obtain eq. (28). This proves that we have a closed immersion $\iota : \mathcal{N} \to \pi_* \mathcal{M}$.

Now, the restriction of ι to the generic fibre is the closed immersion $A \to \pi_* A_{K'}$, which identifies A with $(\pi_* A_{K'})^G$. Since $(\pi_* \mathcal{M})^G$ and \mathcal{N} are both S-smooth closed subschemes of $\pi_* \mathcal{M}$ and they share the same generic fibre, they are equal.

5.3 Test-Néron models are Néron models

The objective of this subsection is to prove the following:

Theorem 5.8. Let S be a connected, locally noetherian, regular \mathbb{Q} -scheme, D a normal crossing divisor on S, A an abelian scheme over $U = S \setminus D$ extending

to a toric-additive semi-abelian scheme \mathcal{A}/S . Then A admits a Néron model over S.

In view of theorem 5.6, theorem 5.8 is an immediate corollary of the following proposition:

Proposition 5.9. Hypotheses as in theorem 5.8. Let \mathcal{N}/S be a test-Néron model for A over S. Then \mathcal{N}/S is a Néron model.

We will subdivide the proof of proposition 5.9 in two main steps (propositions 5.10 and 5.11).

Proposition 5.10. In the hypotheses of proposition 5.9, assume S has dimension 2. Then \mathcal{N}/S is a weak Néron model for A.

Proof. Let $\sigma: U \to A$ be a section; we want to show that it extends to a section $S \to \mathcal{N}$, or equivalently, that the schematic closure $\overline{\sigma(U)} \subset \mathcal{N}$ is faithfully flat over S. The latter may be checked locally for the fpqc topology; hence, we may reduce to the case where S is the spectrum of a complete, strictly henselian local ring. The normal crossing divisor D has at most 2 components, and up to restricting U we may assume that it is given by the zero locus of uv, with u, v regular parameters for $\Gamma(S, \mathcal{O}_S)$.

Notice that the closure $\overline{\sigma(U)}$ may fail to be flat only over the closed points of S, as $S \setminus \{s\}$ is of dimension 1. By the flattening technique of Raynaud-Gruson ([GR71, 5.2.2]), there exists a blowing-up $\tilde{S} \to S$, centered at s, such that the schematic closure of $\sigma(U)$ inside $\mathcal{N}_{\tilde{S}}$ is flat over \tilde{S} . Because S has dimension 2, we can find a further blow-up $S' \to \tilde{S}$ such that the composition $S' \to S$ is a composition of finitely many blowing-ups, each given by blowing-up the ideal of a closed point with its reduced structure. It follows that the exceptional fibre $E \subset S'$ of $S' \to S$ is a chain of projective lines meeting transversally. Let $\Sigma \subset \mathcal{N}_{S'}$ be the schematic closure of $\sigma(U)$. The morphism $\Sigma \to S'$ is flat, but may a priori not be surjective. At this point we only know that the image of Σ contains $S' \setminus E$.

We claim that $\Sigma \to S'$ is surjective. Let $p \in E$. It's easy to show that there exists some strictly henselian trait Z with closed point z and a closed immersion $Z \to S'$ mapping z to p and such that Z meets E transversally. We call L the field of fractions of $\mathcal{O}_Z(Z)$. The section $\sigma \colon U \to A$ restricts to a section $\sigma_L \colon \operatorname{Spec} L \to A_L$; to establish the claim, it suffices to show that σ_L extends to a section $Z \to \mathcal{N}_Z$. We consider the composition $\varphi \colon Z \to S' \to S$ and the pullbacks $\varphi^*(u), \varphi^*(v) \in \mathcal{O}_Z(Z)$. Let $m, n \in \mathbb{Z}_{\geq 1}$ be their respective valuations. Now let $\pi \colon T \to S$ be the finite flat morphism given by extracting

an m-root of u and an n-root of v, that is,

$$T = \operatorname{Spec} \frac{\mathcal{O}_S(S)[x,y]}{x^m - u, y^n - v}.$$

Then T is itself the spectrum of a regular, strictly henselian local ring and the preimage $\pi^{-1}(D)$ is the zero locus of xy and hence a normal crossing divisor. The pullback of \mathcal{A} via $T \to S$ is still toric-additive (lemma 3.6) and therefore we can construct a test Néron model \mathcal{M}/T . Writing $X = \pi_* \mathcal{M}$ for the Weil restriction along π and $G := \operatorname{Aut}_S(T) = \mu_m \oplus \mu_n$, we have by proposition 5.7 that $X^G = \mathcal{N}$.

Now, as Z is a strictly henselian, $\mathcal{O}(Z)$ contains all roots of elements of $\mathcal{O}(Z)^{\times}$, and we can find uniformizers $t_u, t_v \in \mathcal{O}_Z(Z)$ such that $t_u^m = \varphi^*(u)$ and $t_v^n = \varphi^*(v)$. These elements give us a lift of $\varphi \colon Z \to S$ to $\psi \colon Z \to T$. Then ψ is a closed immersion meeting $f^{-1}(D)$ transversally. This means that the base change \mathcal{M}_Z/Z is a Néron model of its generic fibre. Consider the section $\sigma_L \colon \operatorname{Spec} L \to A_L$. Composing it with the closed immersion $A_L = (\pi_* \mathcal{M})_L^G \hookrightarrow (\pi_* \mathcal{M})_L$ gives, by definition of Weil restriction, a morphism $\operatorname{Spec} L \times_S T \to \mathcal{M}_L$. Precomposing with $(\operatorname{id}, \psi) \colon \operatorname{Spec} L \to \operatorname{Spec} L \times_S T$, we obtain a section $\widetilde{\sigma}_L \colon \operatorname{Spec} L \to \mathcal{M}_L$. As \mathcal{M}_Z/Z is a Néron model of its generic fibre, $\widetilde{\sigma}_L$ extends uniquely to a section $Z \to \mathcal{M}_Z$. This gives us a morphism of T-schemes $Z \to \mathcal{M}$ and by composition a T-morphism $Z \times_S T \to Z \to \mathcal{M}$, that is, a section $m \in X(Z)$ of the Weil restriction. Notice that the generic fibre of m is σ_L , which lands in the part of X fixed by G; as $X^G = \mathcal{N}$ is a closed subscheme of X we deduce that m lands inside \mathcal{N} . So $m \in \mathcal{N}(Z)$ is the required extension of σ_L and we win.

As $\Sigma \to S'$ is faithfully flat, separated and birational, it is an isomorphism. Hence $\sigma \colon U \to A$ extends to a section $\sigma' \colon S' \to \mathcal{N}_{S'}$. We are going to show that σ' descends to a section $\theta \colon S \to \mathcal{N}$. The restriction of σ' to E maps a connected chain of projective lines to a connected component of \mathcal{N}_s (where s is the closed point of S). Every connected component of \mathcal{N}_s is isomorphic to the semi-abelian variety \mathcal{N}_s^0 , hence does not contain projective lines. It follows that $\sigma'_{|E|}$ is constant and that it descends to a morphism $\operatorname{Spec} k(s) \to \mathcal{N}_s$. Let \mathcal{J} be the ideal sheaf of the exceptional fibre $E \subset S'$ and define $S'_n \subset S'$ to be the closed subscheme defined by \mathcal{J}^{n+1} for every $n \geq 0$. Similarly let $S_n := \operatorname{Spec} \mathcal{O}_S(S)/\mathfrak{m}^{n+1}$, where \mathfrak{m} is the maximal ideal of $\mathcal{O}_S(S)$. We have shown that $\sigma'_{|E|} \colon S'_0 \to \mathcal{N}$ descends to a morphism $\theta_0 \colon S_0 \to \mathcal{N}$. Now, by smoothness of \mathcal{N} , every morphism $S_{j-1} \to \mathcal{N}$ admits a lift $S_j \to \mathcal{N}$; the set of such lifts is given by $H^0(S_0, \Omega^1_{\mathcal{N}_{S_0}/S_0} \otimes_{\mathcal{O}_{S_0}} \mathfrak{m}^j/\mathfrak{m}^{j+1})$. The canonical morphism

$$H^0(S_0,\Omega^1_{\mathcal{N}_{S_0}/S_0}\otimes_{\mathcal{O}_{S_0}}\mathfrak{m}^j/\mathfrak{m}^{j+1})\to H^0(S_0',\Omega^1_{\mathcal{N}_{S_0'}/S_0'}\otimes_{\mathcal{O}_{S_0'}}\mathcal{I}^j/\mathcal{J}^{j+1})$$

is an isomorphism, due to the fact that the space of global sections of $\mathcal{J}^j/\mathcal{J}^{j+1} = \mathcal{O}_{S_0'}(j)$ is equal to $\mathfrak{m}^j/\mathfrak{m}^{j+1}$. Thus the set of liftings of $\alpha \in \operatorname{Hom}_S(S_j, \mathcal{N})$

to $\operatorname{Hom}_S(S_{j+1}, \mathcal{N})$ is naturally in bijection with the set of liftings of $\alpha_{|S'_j} \in \operatorname{Hom}_S(S'_j, \mathcal{N})$ to $\operatorname{Hom}_S(S'_{j+1}, \mathcal{N})$. The reductions modulo \mathcal{J}^j of $\sigma' \colon S' \to \mathcal{N}_{S'}$ provides a compatible set of liftings of $\sigma'_{|S'_0}$, and therefore a compatible set of liftings of θ_0 ; which in turn by completeness of S yield the desired morphism $S \to \mathcal{N}$.

The next step is extending the result to the case of dim S > 2.

Proposition 5.11. In the hypotheses of proposition 5.9, \mathcal{N}/S is a weak Néron model.

Proof. As in the proof of proposition 5.10, we may assume that S is the spectrum of a complete strictly henselian local ring. We proceed by induction on the dimension of S. If the dimension is 1, the statement is clearly true, and the case of dimension 2 is the statement of proposition 5.10. So we let $n \geq 3$ be the dimension of S and we suppose that the statement is true when S has dimension n-1. Let $\sigma \colon U \to A$ be a section. Because $V = S \setminus \{s\}$ has dimension n-1, and because \mathcal{A}_V is still toric-additive (lemma 3.8), σ extends to $\sigma \colon V \to \mathcal{N}_V$.

Next, we cut S with a hyperplane H transversal to all the components of the normal crossing divisor D, but paying attention to choosing H so that $D \cap H$ (with its reduced structure) is still a normal crossing divisor on H. This is always possible: consider a system of regular parameters u_1, u_2, \ldots, u_n for S such that D is the zero locus of $u_1u_2\cdots u_r$ for some $r\leq n$; then H can be chosen to be, for example, the hypersurface cut by $u_1 - u_n$. Because H is transversal to D, it is clear that the base change \mathcal{N}_H/H is still a test-Néron model. By our inductive assumption on the dimension of the base, $\sigma_{H}: H \cap U \to A$ extends to $\theta_{0}: H \to \mathcal{N}$. Now we would like to put together the data of σ and θ_0 to extend $\sigma \colon V \to \mathcal{N}_V$ to a section $\theta \colon S \to \mathcal{N}$. Let $\mathcal{J} \subset \mathcal{O}_S$ be the ideal sheaf of H and for every $j \geq 1$ define S_j to be the closed subscheme cut by \mathcal{J}^{j+1} . We have a morphism $\theta_0: H = S_0 \to \mathcal{N}$. By smoothness of \mathcal{N} , there exists for every $j \geq 0$ a lifting of θ_0 to an S-morphism $S_j \to \mathcal{N}$. The set of liftings of an S-morphism $S_{j-1} \to \mathcal{N}$ to an S-morphism $S_j \to \mathcal{N}$ is given by the global sections of the locally-free sheaf $\mathcal{F} := \Omega^1_{\mathcal{N}/S} \otimes \mathcal{J}^j/\mathcal{J}^{j+1}$ on S_0 . Because dim $S_0 \geq 2$ and $V = S \setminus \{s\}$, we have $H^0(S_0, \mathcal{F}) = H^0(V \cap S_0, \mathcal{F}_V)$, and the latter parametrizes liftings of morphisms $S_{i-1} \cap V \to \mathcal{N}$ to $S_i \cap V \to \mathcal{N}$. The section $\sigma: V \to \mathcal{N}_V$ gives a compatible choice of lifting for every $j \geq 0$, and we get by completeness of S a morphism $S \to \mathcal{N}$ agreeing with σ on V, as we wished.

We can now conclude the proof of proposition 5.9.

Proof of proposition 5.9. Let $T \to S$ be a smooth morphism; then \mathcal{A}_T/T is toric-additive by lemma 3.8 and the base change \mathcal{N}_T/T is a test-Néron model. Now, given $\sigma_U \colon T_U \to \mathcal{A}$, we obtain a section $T_U \to \mathcal{A} \times_U T_U$, which by proposition 5.11 extends to a section $T \to \mathcal{N}_T$. The latter is the datum of an S-morphism $\sigma \colon T \to \mathcal{N}$ extending σ_U .

We give a corollary of theorem 5.8.

Corollary 5.12. Let S be a connected, locally noetherian, regular \mathbb{Q} -sccheme, D a regular divisor on S, A an abelian scheme over $U = S \setminus D$ extending to a semi-abelian scheme \mathcal{A}/S . Then A admits a Néron model over S.

Proof. At every geometric point s of S, D has only one irreducible component. It follows that \mathcal{A}/S is toric-additive and we conclude by theorem 5.8.