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The restriction EU/U is an elliptic curve, which is canonically identified with
its jacobian Pic0

EU/U ; the smooth locus Esm/S has a unique S-group scheme
structure extending the one of EU/U , and is a semi-abelian scheme.

Let ζ1, ζ2 be the generic points of D1 = {u = 0} and D2 = {v = 0} respectively,
and let s be the closed point {u = 0, v = 0}. The fibres of Esm over ζ1, ζ2, s
are all tori of dimension 1. It follows that Esm is not toric-additive.

Example 3.13. Consider the nodal projective curve E ′ ⊂ P2
S given by the

equation
Y 2Z = X3 −X2Z − uZ3.

Again, E ′U = Pic0
E′U/U

; and the smooth locus E ′sm/S is a semi-abelian scheme.

In this case, the fibre of E ′ over ζ2 is smooth; so µ(ζ1) = 1, µ(ζ2) = 0, µ(s) = 1.
Thus E ′ is toric-additive.

4 Neron models of jacobians of stable curves

4.1 Generalities

Nodal curves

Definition 4.1. A curve C over an algebraically closed field k is a proper
morphism of schemes C → Spec k, such that C is connected and its irreducible
components have dimension 1. A curve C/k is called nodal if for every non-

smooth point p ∈ C there is an isomorphism of k-algebras ÔC,p → k[[x, y]]/xy.

For a general base scheme S, a nodal curve f : C → S is a proper, flat morphism
of finite presentation, such that for each geometric point s of S the fibre Cs is
a nodal curve.

We will denote by Cns the subset of C of points at which f is not smooth.
Seeing Cns as the closed subscheme defined by the first Fitting ideal of Ω1

C/S ,

we have for a nodal curve C/S that Cns/S is finite, unramified and of finite
presentation.

We report a lemma from [Hol17b].

Lemma 4.2 ([Hol17b], Prop.2.5). Let S be locally noetherian, f : C → S be
nodal, and p a geometric point of Cns lying over s ∈ S. We have:

i) there is an isomorphism

ÔshC,p ∼=
ÔshS,s[[x, y]]

xy − α

26



for some element α in the maximal ideal of the completion ÔshS,s;

ii) the element α is in general not unique, but the ideal (α) ⊂ ÔshS,s is.

Moreover, the ideal is the image in ÔshS,s of a unique principal ideal of

OshS,s, which we call thickness of p.

We remark that, if S is regular at s, then C is regular at p if and only if α is
generated by a regular parameter of the regular ring OshS,s.

Split singularities

Let k be a field (not necessarily algebraically closed), C/k a nodal curve,
n : C ′ → C its normalization. Following [Liu02, 10.3.8], we say that p ∈ Cns is
a split ordinary double point if its preimage n−1(p) consists of k-valued points.
This implies in particular that p is k-valued. Moreover, if p belongs to two
or more components of C, then it belongs to exactly two components Z1, Z2;
these are smooth at p and meet transversally ([Liu02, 10.3.11]). We say that
C/k has split singularities if every p ∈ Cns is a split ordinary double point.

A nodal curve C/k attains split singularities after a finite separable extension
k → k′. We also remark that a nodal curve with split singularities has irre-
ducible components that are geometrically irreducible. Indeed, either C/k is
smooth, in which case it is geometrically connected and therefore geometrically
irreducible; or every irreducible component of the normalization of C contains
a k-rational point and is therefore geometrically irreducible.

Lemma 4.3. Let C → S be a nodal curve and s ∈ S such that Cs has split
singularities. Let p be a geometric point of Cs. Then the thickness (α) of p is
generated by an element of the Zariski-local ring OS,s.

Proof. The morphism f : Cns → S is finite unramified. Because Cs has split
singularities, we see by [Sta16]TAG 04DG, that there exists an open neighbour-
hood U of s such that f−1(U)→ U is a disjoint union of closed immersions. In
particular, Cns → S is a closed immersion at p, and to it we can associate an
ideal I in the Zariski-local ring OS,s. We see (for example by [Hol17b, proof
of part 2 of Prop. 2.5]) that α is the image of I in OshS,s; and moreover, since

OS,s → OshS,s is faithfully flat, I is principal, which completes the proof.

Lemma 4.4. Let C → S be a nodal curve over a noetherian, regular, strictly
local scheme. Let η be the generic point of S. The generic fibre Cη has split
singularities.
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Proof. The non-smooth locus Cns is finite unramified over S, hence a disjoint
union of closed subschemes of S. Let X ⊆ Cns be the part consisting of sections
S → C.

We claim that the open subscheme C \X is normal. We will show it by using
Serre’s criterion for normality ([Liu02, 8.2.23]). First, as X has been removed,
C \X is regular at its points of codimension 1. Condition S2 follows from the
fact that C \X is locally complete intersection over a regular, noetherian base,
hence Cohen-Macaulay by [Liu02, 8.2.18]. This proves the claim.

Our next claim is that the normalization π : C′ → C is finite and unramified.
Since these are properties fpqc-local on the target, and since we already know
that π induces an isomorphism over C \ X, it is enough to check the claim
over the completion of the strict henselization of points of X. Let x be such a

point and s its image in S. Then ÔshC,x ∼=
ÔshS,s[[u,v]]

uv . Its integral closure is the
inclusion

ÔshS,s[[u, v]]

uv
→ ÔshS,s[[u]]× ÔshS,s[[v]];

the corresponding morphism of spectra is indeed finite and unramified, proving
the claim.

Now, let Y be the preimage of X via π : C′ → C. We have that Y is finite,
unramified over X, and in particular finite étale over S. Hence Y is a disjoint
union of sections S → C′. The restriction of π to the generic fibre C′ηCη is
a normalization morphism, and we see that the preimage Yη of Xη = (Cη)ns

consists of k(η)-valued points, as we wished to show.

The relative Picard scheme

Given a nodal curve C → S we denote by Pic0
C/S the degree-zero relative Picard

functor; it is constructed as the fppf-sheaf associated to the functor

P 0
C/S : Sch /S → Ab

T → S 7→ Pic0(C ×S T )

where by definition Pic0(C ×S T ) is the group of isomorphism classes of in-
vertible sheaves L on C ×S T such that, for every geometric point t of T and
irreducible component X of the fibre Ct, degL|X = 0.

It turns out that the degree-zero Picard functor Pic0
C/S of a nodal curve has
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an easy description if C/S admits a section. In this case, it is given by

Pic0
C/S : Sch /S → Ab

T → S 7→ Pic0(C ×S T )

Pic(T )

If C/S is a smooth curve, it is well known that Pic0
C/S is represented by an

abelian scheme, called the jacobian of C/S. If C/S is only nodal, then Pic0
C/S

is represented by a semi-abelian scheme ([BLR90, 9.4/1]).

Generalities on graphs

We use this subsection to list some graph-theoretical notions, since we are
going to work with dual graphs of nodal curves. In what follows, we will
simply use the word graph to refer to a finite, connected, undirected graph
G = (V,E).

A path on G is a walk on G in which all edges are distinct, and that never goes
twice through the same vertex, except possibly for the first and last; a cycle
is a path that starts and ends at the same vertex. A loop is a cycle consisting
of only one edge.

A tree is a subgraph of G that does not contain cycles. We say that a tree
T ⊂ G is a spanning tree if it contains all vertices of G, in which case it is
a maximal tree. Given a spanning tree T ⊂ G, the edges of G that are not
contained in T are called links with respect to T . The number of links of
G is independent of the chosen spanning tree and is equal to the first Betti
number h1(G,Z). If a spanning tree T is fixed, for each of the links e1, . . . , er
with respect to T , the subgraph T ∪ ei contains only one cycle Ci. The cycles
C1, . . . , Cr are called fundamental cycles with respect to T .

The dual graph of a curve

Let C be a curve with split singularities over a field k. We define the dual graph
of C as the graph Γ = (V,E) with V = { irreducible components of C}, E =
{p ∈ Cns}; the extremal vertices of an edge p are the components containing
p, which are indeed either one or two.

The following well-known fact gives a geometric interpretation to the first Betti
number of the dual graph of a curve.

Lemma 4.5 ([BLR90], 9.2/8). Let C/k be a nodal curve over a field, Γ the
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dual graph of C ×k k, h1(Γ,Z) its first Betti number. Then

h1(Γ,Z) = µ := toric rank of Pic0
C/k .

Labelled dual graphs

Given a nodal curve f : C → S and a point s of S such that Cs has split
singularities, we write Γs = (Vs, Es) for the dual graph associated to the fibre
Cs. Using the notation of [Hol17b], we write Ls for the monoid of principal
ideals of the (Zariski-)local ring OS,s; then we let ls : Es → Ls be the function
associating to each edge of Γs the thickness of the corresponding singular point
of Cs (which indeed is an ideal of OS,s, by lemma 4.3). The pair (Γs, ls) is the
labelled graph of C → S at the geometric point s.

Let now ζ, s be two points of S, such that s is contained in the closure {ζ} ⊂ S,
and such that the fibres Cζ , Cs have split singularities. Then the labelled graph
(Γζ , lζ) of Cζ is obtained from the labelled graph (Γs, ls) of Cs by: 1)contracting
all edges of Γs that are labelled by an ideal of OS,s whose image in OS,ζ is the
unit ideal; 2)for every edge e of Γs that does not get contracted, we label the
corresponding edge of Γζ by the image in OS,ζ of the label of e.

4.2 Holmes’ condition of alignment

Definition 4.6 ([Hol17b], definition 2.11). Let C → S be a nodal curve and
s a geometric point of S. We say that C/S is aligned at s if for every cycle
γ ⊂ Γs and every pair of edges e, e′ of γ, there exist integers n, n′ such that

l(e)n = l(e′)n
′
.

We say that C/S is aligned if it is aligned at every geometric point of S.

Theorem 4.7 ([Hol17b], theorem 5.16, theorem 5.2). Let S be regular, U ⊂ S
a dense open, f : C → S a nodal curve, with fU : CU → U smooth.

i) If the jacobian Pic0
CU/U admits a Néron model over S, then C/S is

aligned;

ii) if C is regular and C/S is aligned, then Pic0
CU/U admits a Néron model

over S.

We are soon going to show how the condition of alignment is closely related
to toric-additivity of Pic0

CK/K . For the moment, we will consider a graph Γ =
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(V,E), a set of n ≥ 1 different colours C := {c1, c2, . . . , cn}, and a colouring of
the edges χ : E → C. We say that (Γ, χ) is aligned if for every cycle γ ⊂ Γ, the
restriction of χ to γ is constant; in other words, if every cycle is monochromatic.

The following lemma gives us a criterion for alignment that is easier to check.
The proof is due to Raymond van Bommel.

Lemma 4.8. Let (Γ, χ : E → C = {c1, c2, . . . , cn}) be a graph with a colouring
of the edges. Fix a spanning tree T . Then (Γ, χ) is aligned if and only if every
fundamental cycle is monochromatic.

Proof. What we have to prove is that if every fundamental cycle is monochro-
matic, then (Γ, χ) is aligned, as the converse statement is obvious. We show
that we can reduce to the case n = 2 (two colours). If there is only one colour
the statement is clearly true. Suppose now the statement is false for some
n > 2: that is, (Γ, χ) is not aligned but all fundamental cycles are monochro-
matic. Then there is some cycle γ in Γ that takes at least two distinct colours,
c1 and c2. We can now pretend that c2, c3, . . . , cn are different hues of one
colour c′, and that our graph Γ is coloured with only two colours, c1 and c′.
Then, γ still takes two distinct colours, and all fundamental cycles are still
monochromatic; this implies that the statement is false for n = 2. Thus we
have reduced to proving the statement for n = 2 colours.

Let (Γ, χ : E → {yellow, pink}) be a coloured graph, and assume all funda-
mental cycles are monochromatic. We construct a new graph, which we call
G, in the following way: the set of vertices of G consists of the disjoint union
of two copies, Vy and Vp, of the set of vertices V of Γ. We connect the vertices
with edges as follows: first, if v is a vertex of Γ, we create an edge ev linking
the corresponding vertices vy and vp in Vy and Vp. Next, if e is an yellow
edge of Γ linking vertices v and w, we create an edge ey between vy and wy;
if instead e is pink, we create an edge ep between vp and wp. This completes
the construction of G.

We call Gy and Gp the subgraphs of G with underlying set of vertices Vy and
Vp respectively. We will call the edges ev linking Gy and Gp vertical edges,
and the others horizontal edges. Now, consider the subgraph W of G given
by the union of all vertical edges, and of all horizontal edges corresponding
to edges of the spanning tree T . Clearly, W spans G, is connected, and does
not contain cycles, otherwise T would itself contain a cycle. Hence W is a
spanning tree for G; it follows that the links of G with respect to W are in
bijection with the links of Γ with respect to T . Since the fundamental cycles of
Γ are monochromatic, the fundamental cycles of G consist only of horizontal
edges.

Now, suppose by contradiction that Γ contains a non-monochromatic cycle γ.
Then γ defines a unique cycle γ′ on G, and γ′ necessarily contains some vertical
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edge, as γ is not monochromatic. However, by [Die05, 1.9.6], fundamental
cycles form a basis of the cycle space (i.e. every cycle is a composition of
fundamental cycles). As fundamental cycles of G do not contain vertical edges,
γ′ cannot contain vertical edges. This is a contradiction and the lemma is
proved.

Lemma 4.9. Let Γ be a graph with a colouring of the edges χ : E → C =
{c1, c2, . . . , cn}. For every 1 ≤ i ≤ n let Γi be the graph obtained by contracting
every edge whose colour is not ci. Then

h1(Γ,Z) ≤
n∑
i=1

h1(Γi,Z)

with equality if and only if (Γ, χ) is aligned.

Proof. Fix a spanning tree T for Γ; we write Ti for the image of T in the
contraction Γi. Notice that Ti need not be a tree; however, it is a subgraph of
Γi containing every vertex of Γi; therefore, if Ti is a tree it is also spanning;
and in any case Ti contains a spanning tree for Γi.

Claim 4.10. (Γ, χ) is aligned if and only if for all i = 1, . . . , n, Ti is a (span-
ning) tree in Γi.

Suppose that (Γ, χ) is aligned and fix some i. We want to show that Ti is a
tree in the contraction Γi. We can contract one edge at a time and see what
happens to the image of T in the contraction. On the one hand, contracting
an edge that is contained in T does not produce new cycles in the image of T .
Now let e ∈ E be a link with respect to T , and suppose that e gets contracted
in Γi. Then χ(e) 6= ci. Let P be the unique path in T connecting the two
extremal vertices of e. Then the union of P and e forms a cycle γ, which does
not take the colour ci by the alignment hypothesis. Hence γ gets contracted
to a point in Γi and once again no new cycle is produced in the image of T .
Therefore Ti is a tree.

Conversely, suppose that (Γ, χ) is not aligned. By lemma 4.8, there is a fun-
damental cycle γ that takes two distinct colours, say c1 and c2. Let e be the
only link contained in γ; we may assume χ(e) = c1. Thus, e is contracted in
Γ2. However, γ is not contracted to a point in Γ2, since it contains some edge
with colour c2. It follows that T2 is not a tree. This establishes the claim.

Now, h1(Γ,Z) is equal to the number of links with respect to T . We write
h1(Γ,Z) = b1 + . . . + bn, where bi is the number of links of colour ci. In the
contraction Γi, the only links that are not contracted are those of colour ci.
Since Ti contains a spanning tree for Γi, we have h1(Γi,Z) ≥ bi, with equality
if Ti is a tree. Hence h1(Γ,Z) ≤ h1(Γ1,Z) + . . .+ h1(Γn,Z). Moreover, by the
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claim, (Γi, χ) is aligned if and only if for every i = 1, . . . , n, h1(Γi,Z) = bi.
This in turn is equivalent to h1(Γ,Z) = h1(Γ1,Z) + . . . + h1(Γn,Z), which
completes the proof.

4.3 Relation between toric-additivity and alignment

We now consider a connected, locally noetherian, regular base scheme S with
a normal crossing divisor D ⊂ S, and a nodal curve C/S, such that the base
change CU/U := S \D is smooth.

If S′ → S is a strict henselization at some geometric point s of S, and D ∩ S′
is given by regular parameters t1, . . . , tn ∈ O(S′), then the thickness of any
non-smooth point p ∈ Cs is generated by tm1

1 · . . . · tmnn for some non-negative
integers m1, . . . ,mn. In particular, C is regular at p if and only if its thickness
is generated by ti for some 1 ≤ i ≤ n.

Proposition 4.11. Suppose that the total space C is regular. Then C/S is
aligned if and only if Pic0

CK/K is toric-additive.

Proof. As both alignment and toric-additivity are checked over the strict henseliza-
tions at geometric points of S, we may assume that S is strictly local. Let
Γs = (Vs, Es) be the dual graph of the fibre of C over the closed point s ∈ S,
and ls : Es → Ls the labelling of the edges, taking value in the monoid Ls of
principal ideals of OS(S). We have already remarked that, since C is regular,
the labels can only take the values (t1), . . . , (tn) ∈ Ls. This means that C/S
is aligned if and only if every cycle of Γ has edges with the same label.

Now, let {Di}i=1,...,n be the components of the divisor D. Each of them is
cut out by a regular element ti ∈ OS(S) and is itself a regular, strictly local
scheme. Let ζi be the generic point of Di. By lemma 4.4, the curve Cζi
has split singularities; its labelled graph (Γζi , lζi) is obtained from (Γs, ls) by
contracting edges according to the procedure in section 4.1. Interpreting the
different labels as colours, we can apply lemma 4.9 and conclude that C/S is
aligned at s if and only if h1(Γ,Z) =

∑n
i=1 h

1(Γi,Z). By lemma 4.5, we see
that µ(s) =

∑n
i=1 µ(ζi), which is the condition for toric-additivity at s. This

finishes the proof.

4.4 Toric-additivity and desingularization of curves

Let S be a connected, locally noetherian, regular base scheme S with a normal
crossing divisor D = D1 ∪ . . . ∪Dn ⊂ S, and let C/S be a nodal curve, such
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that the base change CU/U := S \D is smooth.

In [dJ96, 3.6], it is proven that if C → S has split fibres, there exists a blow-up
ϕ : C′ → C such that C′ → S is still a nodal curve, and C′ is regular. The
condition of splitness implies that the irreducible components of the geometric
fibres are smooth; or equivalently, that the dual graphs of the geometric fibres
do not admit loops. We are going to introduce a condition on C/S, weaker
than splitness, and show that a statement analogous to the one in [dJ96, 3.6]
holds for curves satisfying this condition.

Definition 4.12. Let C → S be a nodal curve. We say that C/S is disciplined
if, for every geometric point s of S, and p ∈ Cnss , at least one of the following
is satisfied:

i) p belongs to two irreducible components of Cs;

ii) the thickness of p is a power of a regular parameter of OshS,s.

We give first an auxiliary lemma:

Lemma 4.13. Hypothesis as in the beginning of the subsection; suppose also
that S is strictly local and that C/S is disciplined. Let p ∈ Cnss be a non-smooth
point of the fibre over the closed point, such that p does not satisfy condition
ii) of definition 4.12. Let X1, X2 be the distinct irreducible components of
the closed fibre Cs containing p. Then there exists i ∈ {1, . . . , n} and Y1, Y2

irreducible components of Cζi such that X1 6⊂ Y 2 ⊃ X2 and X2 6⊂ Y 1 ⊃ Y1.

Proof. Let (Γs, ls) be the labelled graph of Cs. By hypothesis, the edge e(p)
corresponding to p has distinct extremal vertices, v1 and v2, and label tm1

1 ·
. . . · tmll , with 2 ≤ l ≤ n and m1, . . . ,ml ≥ 1. The fibres over the generic
points ζ1, . . . , ζn have split singularities by lemma 4.4, so we can consider
their labelled graphs (Γi, li). What we want to prove is that there exists
i ∈ {1, . . . , l} such that v1 and v2 are mapped to distinct vertices of (Γi, li) via
the procedure described in section 4.1.

Suppose the contrary; as e(p) is not contracted in any Γi, there exists a cycle
γ in Γs, containing e(p), such that for all 1 ≤ i ≤ l, all edges e 6= e(p) of γ are
contracted in Γi. Let ζ12 be the generic point of D1 ∩D2; all edges e 6= e(p) of
γ are contracted in Γ12, the labelled graph of Cζ12 , and in particular v1 and v2

are mapped to the same vertex. The edge e(p) is therefore mapped to a loop,
with label tm1

1 tm2
2 . However, this contradicts the fact that C → S is disciplined

at ζ12.
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We introduce now some notation: given a scheme X, we will denote by
Sing(X) ⊆ X the set of points that are not regular. We say that the cen-
ter of a blow-up π : Y → X is the complement of the largest open U ⊂ X such
that π−1(U)→ U is an isomorphism.

Lemma 4.14. Hypotheses as in the beginning of the subsection. Suppose
f : C → S is disciplined. Then there is an étale surjective g : S′ → S and a
blow-up ϕ : C′ → C ×S S′ such that

• the center of ϕ is contained in Sing(C ×S S′);

• C′ is a nodal curve over S′, smooth over g−1(U);

• C′ is regular.

Proof. First, notice that the order in which the blow-ups of the curve and the
étale covers of the base are taken does not matter, as blowing-up commutes
with étale base change. After replacing S by a suitable étale cover, we may
assume that D is a strict normal crossing divisor. We can now apply [dJ96,
3.3.2] and assume that Sing(C) ⊂ C has codimension at least 3. As a conse-
quence of lemma 4.4, after a further étale covering, we may assume that for
every generic point ζ of D, the fibre Cζ has split singularities.

Now, let E be an irreducible component of CD = C ×S D and let π : C′ → C be
the blow-up of C along E. If p ∈ E is a regular point of C, f is an isomorphism
at p, because E is cut out by one equation. Otherwise, the completion of the
strict henselization at (a geometric point lying over) p is of the form

ÔshC,p ∼=
Ôsh
S,f(p)

[[x, y]]

xy − tm1
1 · . . . · tmll

with t1, . . . , tn regular parameters cutting out D, 1 ≤ l ≤ n and positive
integers m1, . . . ,ml. In fact, because the singular locus has codimension at
least three, we have l ≥ 2, and m1 = . . . = ml = 1.

The ideal of the pullback of E to ÔshC,p is either (ti) for some 1 ≤ i ≤ l, or
one between (x, ti) and (y, ti) for some 1 ≤ i ≤ l. In the first case, π is an
isomorphism at p. In the second case, one can compute explicitly the blowing
up of SpecOshC,p at the ideal (x, ti) (or (y, ti)) and find that f ′ : C′ → S is still a
nodal curve, disciplined, with Sing(C) of codimension at least three, and such
that for every generic point ζ of D the fibre Cζ has split singularities. We omit
the explicit computations.

Let Y ⊂ C be the center of π : C′ → C. Then Y consists only of non-regular
points, hence it has codimension at least 3. As f : C′ → S is a curve, the fibres
of π have dimension at most 1, hence π−1(Y ) has codimension at least 2 in
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C. It follows that there is a bijection between the irreducible components of
CD and C′D, given by taking the preimage under π. Now, π−1(E) is a divisor,
and for any other irreducible component E′ of CD that is a divisor, π−1(E′) is
also a divisor. We conclude that π∗ : C∗ → C, the composition of the blowing-
ups of all irreducible component of CD, is such that every component of C∗D
is a divisor. Besides, as previously noticed, f∗ : C∗ → S is a nodal curve,
disciplined, and Sing(C∗) has codimension at least three.

Assume now by contradiction that Sing(C∗) 6= ∅, and let p ∈ Sing(C∗). Then
without loss of generality the thickness at p is (t1 · . . . · tl) for some 2 ≤ l ≤
n. Consider the base change C∗T /T , where T is the spectrum of some strict
henselization at s = f∗(p). For every i let ξi be the generic point of Di∩T . By
lemma 4.13, for some i ∈ {1, . . . , l}, there are distinct components Y1, Y2 of C∗ξi
whose closure in C∗T∩Di contain p. Because the fibre C∗ζi has split singularities,
we deduce that there are components X1, X2 of C∗ζi whose closures E1, E2 in

C∗Di contain p. But then E1 and E2 are given by (x, t1) and (y, t1) in ÔshC∗,p.
In particular, they are not divisors. This is a contradiction, and therefore
Sing(C∗) = ∅.

Lemma 4.15. Hypotheses as in the beginning of the subsection. Suppose that
f : C → S is such that Pic0

C/S is toric-additive. Then C/S is disciplined.

Proof. We may assume that S is strictly local, with closed point s, and with D
given by a system of regular parameters t1 . . . , tn. Let p ∈ Cnss , with thickness
tm1
1 · . . . · tmll for some 1 ≤ l ≤ n and m1, . . . ,ml ≥ 1. We have to show that if
l ≥ 2 then p lies on two components of Cs .

Suppose by contradiction that l ≥ 2 and that p lies on only one component
of Cs. The dual graph Γ over s has a loop L corresponding to p, with label
tm1
1 · . . . · tmll . For 1 ≤ i ≤ n call Γi the dual graph of the fibre Cζi over

the generic point of Di. The loop L is preserved in the dual graphs Γi for
1 ≤ i ≤ l. Let Γ′ be the graph obtained by Γ by removing the loop L, and
define similarly Γ′i, 1 ≤ i ≤ l. We have that

h1(Γ′,Z) ≤
l∑
i=1

h1(Γ′i,Z) +

n∑
j=l+1

h1(Γj ,Z).

This inequality follows from the identification of the first Betti number with
the toric rank of the corresponding fibre of Pic0

C/S ; and from eq. (15).

For every 1 ≤ i ≤ l, h1(Γi,Z) = h1(Γ′i,Z) + 1. Since l ≥ 2, we find that
h1(Γ,Z) = h1(Γ′,Z) + 1 <

∑n
i=1 h

1(Γi,Z). In terms of toric ranks of fibres
of Pic0

C/S , the same inequality reads µ(s) <
∑n
i=1 µ(ζi). This contradicts the

fact that Pic0
CK/K is toric-additive.
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4.5 Toric-additivity and Néron models

We consider again a base S and a nodal curve C/S as in the previous subsection.
Theorem 1.1 tells us that if Pic0

CU/U admits a Néron model over S, then C/S
is aligned. However, not all aligned curves admit a Néron model for their
jacobian; in this subsection we show that curves that are not disciplined do
not admit one.

Lemma 4.16. Assume that S is an excellent Q-scheme. Suppose that C/S is
such that Pic0

CU/U admits a Néron model N over S. Then C/S is disciplined.

Proof. We may assume that S is strictly henselian, with closed point s and
residue field k = k(s). Assume by contradiction that C/S is not disciplined.
Then there is some p ∈ Cnss that belongs to only one component X of Cs,
and such that its thickness is tm1

1 · . . . · tmll with mi ≥ 1 and 2 ≤ l ≤ n. Let
q ∈ Cs(k) be a smooth k-rational point belonging to the same component as
p. By Hensel’s lemma, there exists a section σq : S → C through q. We claim

that the same is true for p: let Ŝ be the spectrum of the completion of O(S)
at its maximal ideal and consider the morphism

W := Spec ÔshC,p ∼= Spec
O(Ŝ)[[x, y]]

xy − tm1
1 · . . . · tmll

→ Ŝ.

This has a section given by x = tm1
1 , y = tm2

2 · . . . · tmll . Composing the section

with the canonical morphism W → C, gives a morphism σ̂p : Ŝ → C going
through p. Because S is excellent and henselian, it has the Artin approximation
property, and there exists a section σp : S → C which agrees with σ̂p when
restricted to the closed point s, hence going through p.

We write F := I(σp) ⊗OC O(σq) for the coherent sheaf on C given by the
tensor product of the ideal sheaf of σp with the invertible sheaf associated
to the divisor σq. It is what is called a torsion free, rank 1 sheaf in the
literature: it is S-flat, its fibres are of rank 1 at the generic points of fibres of
C, and have no embedded points. Notice that F is not an invertible sheaf, as
dimk(p) F ⊗ k(p) = 2.

Let up and uq be the restrictions of σp and σq to U . They are U -points of
the smooth curve CU/U ; the restriction of F to U is the invertible sheaf FU =
OCU (uq−up). This is the datum of a U -point α of Pic0

CU/U : indeed, Pic(U) = 0

because O(U) is a UFD, and CU/U has a section, so Pic0
CU/U (U) = Pic0(CU ).

By the definition of Néron model, there is a unique section β : S → N with
βU = α. We write J for Pic0

C/S . As J is semi-abelian, the canonical open
immersion J → N identifies J with the fibrewise-connected component of
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identity N 0 (lemma 2.17). Write ζi, i = 1 . . . , n for the generic points of the
divisors Di. Then Si := SpecOS,ζi is a trait, and the restriction NSi is a
Néron model of its generic fibre. Therefore αK extends uniquely to a section
αi : Si → NSi . As FSi is an invertible sheaf of degree 0 on every irreducible
component of Cζi , FSi is a Si-point of JSi , and αi is given by FSi . Therefore,

the restriction of α : S → N to Si factors through J = N 0 for every i = 1 . . . , n.

We denote now by Φ/S the étale group scheme of connected components of N ,
and by Φ(l) its l-primary part for a prime l. Lemma 5.2 tells us that, for every
prime l different from the residue characteristic of S, the canonical morphism
Φ(l)(s)→

⊕n
i=1 Φ(l)(ζi) is injective. By our assumption that S is a Q-scheme,

the canonical morphism

Φ(s)→
n⊕
i=1

Φ(ζi)

is injective. This implies that α lands inside J = N 0, or in other words that
FU extends to an invertible sheaf L on C such that Ls is of degree 0 on every
component.

Now, let Z → S be a closed immersion, with Z a trait, such that the generic
point ξ of Z lands into U (it is an easy check that such a closed immersion
exists). As Fξ and Lξ define the same point of Pic0

Cξ/ξ, there are isomorphisms

µξ : Fξ → Lξ and λξ : Lξ → Fξ. By the same argument as in [AK80, 7.8], µξ
and λξ extend to morphisms µ : FZ → LZ and λ : LZ → FZ , which are non-
zero on all fibres. Let’s look at the restrictions to the closed fibre, µs : Fs → Ls,
λs : Ls → Fs. We know that Fs is trivial away from the component X ⊂ Cs.
So, if we write Y for the closure in Cs of the complement of X, we may restrict
µs and λs to Y to get global sections l and l′ of LY and L∨Y respectively. Now,
if l = 0, then the restriction µX of µs to X is non-zero, because µs is non-zero.
If l 6= 0, as Ls is of degree zero on every component, we have l(y) 6∈ myLy for
every y ∈ Y , and in particular for y ∈ Y ∩X. It follows that also in this case
µX 6= 0. We can apply the same argument to l′ and conclude that λX 6= 0.
Then the compositions µX ◦λX : LX → LX and λX ◦µX : FX → FX are non-
zero. As EndOX (FX) = k = EndOX (LX), they are actually isomorphisms. It
follows that µX : FX → LX is an isomorphism. However, dimk(p) Fk(p) = 2,
while LX is an invertible sheaf. This gives us the required contradiction.

Theorem 4.17. Let S be a connected, locally noetherian, regular scheme, D
a normal crossing divisor on S, C → S a nodal curve smooth over U = S \D.

i) If Pic0
C/S is toric-additive, then Pic0

CU/U admits a Néron model over S.

ii) If moreover S is an excellent Q-scheme, the converse is also true.
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Proof. Whether we are in the hypotheses of i) and ii), we know by lemmas 4.15
and 4.16 above that C/S is disciplined; hence by lemma 4.14 there exists
an étale cover g : S′ → S and a blow-up π : C′ → CS′ which restricts to an
isomorphism over U ′ = U ×S S′, such that C′ is regular.

Assume that Pic0
C/S is toric-additive. To show the existence of a Néron model

over S, it is enough to show it over S′. The base change Pic0
CS′/S′ is toric-

additive by lemma 3.8. The blow-up π does not affect CU ′ , so Pic0
C′/S′ is still

toric-additive. We can now apply proposition 4.11 and deduce that C′/S′ is
aligned. Hence by theorem 4.7, we find that Pic0

CU′/U
′ admits a Néron model

over S′, proving i).

Now assume that S is a Q-scheme and that Pic0
CU/U admits a Néron model N

over S. Then N ′ = N ×S S′ is a Néron model for Pic0
C′U′/U ′ over S′. Hence

C′/S′ is aligned by theorem 4.7; as C′ is regular, we deduce by proposition 4.11
that Pic0

CS′/S′ is toric-additive. As toric-additivity descends along étale covers

(lemma 3.8), Pic0
C/S is toric-additive.

Corollary 4.18. Let S be a connected, locally noetherian, regular, excellent
Q-scheme, D a normal crossing divisor on S, C → S and D → S two nodal
curves, smooth over U = S \D.

Assume that over the generic point η ∈ S, there exists an isogeny

Pic0
Cη/η → Pic0

Dη/η .

Then Pic0
CU/U admits a Néron model over S if and only if Pic0

DU/U does.

Proof. By lemma 3.10, Pic0
C/S is toric-additive if and only if Pic0

D/S is. By
theorem 4.17, toric-additivity is equivalent to existence of a Néron model, and
we conclude.
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