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The restriction &y /U is an elliptic curve, which is canonically identified with
its jacobian PicgU/U; the smooth locus £°™/S has a unique S-group scheme
structure extending the one of &, /U, and is a semi-abelian scheme.

Let ¢1, (2 be the generic points of D1 = {u = 0} and Dy = {v = 0} respectively,
and let s be the closed point {u = 0,v = 0}. The fibres of £*™ over (1, (2, s
are all tori of dimension 1. It follows that £°™ is not toric-additive.

Example 3.13. Consider the nodal projective curve &' C IP’% given by the
equation

Y2Z = X% - X?Z —uZ®.
Again, &, = Picg{]/U; and the smooth locus £*™ /S is a semi-abelian scheme.
In this case, the fibre of £ over (5 is smooth; so 1(¢1) =1, u(2) = 0, u(s) = 1.
Thus &’ is toric-additive.

4 Neron models of jacobians of stable curves

4.1 Generalities
Nodal curves

Definition 4.1. A curve C over an algebraically closed field k is a proper
morphism of schemes C' — Spec k, such that C'is connected and its irreducible
components have dimension 1. A curve C/k is called nodal if for every non-

smooth point p € C there is an isomorphism of k-algebras @c,p — k[[z,y]]/zy.

For a general base scheme S, a nodal curve f: C — S is a proper, flat morphism
of finite presentation, such that for each geometric point s of S the fibre C; is
a nodal curve.

We will denote by C™® the subset of C of points at which f is not smooth.
Seeing C™* as the closed subscheme defined by the first Fitting ideal of Qé /5

we have for a nodal curve C/S that C™*/S is finite, unramified and of finite
presentation.

We report a lemma from [Holl7h].

Lemma 4.2 ([Holl7b], Prop.2.5). Let S be locally noetherian, f: C — S be
nodal, and p a geometric point of C™® lying over s € S. We have:

i) there is an isomorphism



. . . . Ash .
for some element « in the mazimal ideal of the completion O%,sy

it) the element o is in general not unique, but the ideal (o)) C @ghs is.
Moreover, the ideal is the tmage in @ghs of a unique principal ideal of
Og{’s, which we call thickness of p.

We remark that, if S is regular at s, then C is regular at p if and only if « is
generated by a regular parameter of the regular ring (’)fgf%.

Split singularities

Let k£ be a field (not necessarily algebraically closed), C/k a nodal curve,
n: C' — C its normalization. Following [Liu02, 10.3.8], we say that p € C™* is
a split ordinary double point if its preimage n~!(p) consists of k-valued points.
This implies in particular that p is k-valued. Moreover, if p belongs to two
or more components of C, then it belongs to exactly two components Z;, Zs;
these are smooth at p and meet transversally ([Liu02 10.3.11]). We say that
C/k has split singularities if every p € C™* is a split ordinary double point.

A nodal curve C/k attains split singularities after a finite separable extension
k — k'. We also remark that a nodal curve with split singularities has irre-
ducible components that are geometrically irreducible. Indeed, either C/k is
smooth, in which case it is geometrically connected and therefore geometrically
irreducible; or every irreducible component of the normalization of C' contains
a k-rational point and is therefore geometrically irreducible.

Lemma 4.3. Let C — S be a nodal curve and s € S such that Cs has split
singularities. Let p be a geometric point of Cs. Then the thickness () of p is
generated by an element of the Zariski-local ring Og 5.

Proof. The morphism f: C™ — S is finite unramified. Because C; has split
singularities, we see by [Stal6]TAG 04DG, that there exists an open neighbour-
hood U of s such that f~!(U) — U is a disjoint union of closed immersions. In
particular, C™ — S is a closed immersion at p, and to it we can associate an
ideal I in the Zariski-local ring Og . We see (for example by [Holl7hbl proof
of part 2 of Prop. 2.5]) that a is the image of I in O%; and moreover, since

Og,s — Og}fs is faithfully flat, I is principal, which completes the proof. O

Lemma 4.4. Let C — S be a nodal curve over a noetherian, reqular, strictly
local scheme. Let n be the generic point of S. The generic fibre C, has split
singularities.
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Proof. The non-smooth locus C™* is finite unramified over S, hence a disjoint
union of closed subschemes of S. Let X C C™* be the part consisting of sections
S —C.

We claim that the open subscheme C \ X is normal. We will show it by using
Serre’s criterion for normality ([Liu02, 8.2.23]). First, as X has been removed,
C\ X is regular at its points of codimension 1. Condition Sy follows from the
fact that C\ X is locally complete intersection over a regular, noetherian base,
hence Cohen-Macaulay by [Liu02, 8.2.18]. This proves the claim.

Our next claim is that the normalization 7: C’ — C is finite and unramified.
Since these are properties fpgc-local on the target, and since we already know
that 7 induces an isomorphism over C \ X, it is enough to check the claim
over the completion of the strict henselization of points of X. Let x be such a

. o . A O [[u,
point and s its image in S. Then Oéhx = #

inclusion

. Its integral closure is the

8l G 1) x G0l

the corresponding morphism of spectra is indeed finite and unramified, proving
the claim.

Now, let Y be the preimage of X via w: C’ — C. We have that Y is finite,
unramified over X, and in particular finite étale over S. Hence Y is a disjoint
union of sections S — C’. The restriction of 7 to the generic fibre C,’,C,7 is
a normalization morphism, and we see that the preimage Y, of X, = (C,)™*
consists of k(n)-valued points, as we wished to show.

O

The relative Picard scheme

Given a nodal curve C — S we denote by Pica /g the degree-zero relative Picard
functor; it is constructed as the fppf-sheaf associated to the functor

Pdg: Sch /S — Ab
T—S +— Pic(CxgT)
where by definition Pic’(C xg T) is the group of isomorphism classes of in-

vertible sheaves £ on C xg T such that, for every geometric point ¢ of T" and
irreducible component X of the fibre C;, deg £x = 0.

It turns out that the degree-zero Picard functor Pich /s of a nodal curve has
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an easy description if C/S admits a section. In this case, it is given by

Pic¢/s: Sch/S — Ab
Pic’(C x5 T)

r=5 Pic(T)

If C/S is a smooth curve, it is well known that Picg/s is represented by an

abelian scheme, called the jacobian of C/S. If C/S is only nodal, then Picg/s
is represented by a semi-abelian scheme ([BLR90, 9.4/1]).

Generalities on graphs

We use this subsection to list some graph-theoretical notions, since we are
going to work with dual graphs of nodal curves. In what follows, we will
simply use the word graph to refer to a finite, connected, undirected graph

G=(V,E).

A path on G is a walk on G in which all edges are distinct, and that never goes
twice through the same vertex, except possibly for the first and last; a cycle
is a path that starts and ends at the same vertex. A loop is a cycle consisting
of only one edge.

A tree is a subgraph of G that does not contain cycles. We say that a tree
T C G is a spanning tree if it contains all vertices of G, in which case it is
a maximal tree. Given a spanning tree T" C G, the edges of G that are not
contained in T are called links with respect to 7. The number of links of
G is independent of the chosen spanning tree and is equal to the first Betti
number h!(G,Z). If a spanning tree T is fixed, for each of the links ey, ..., e,
with respect to T', the subgraph T U e; contains only one cycle C;. The cycles
Ci,...,C, are called fundamental cycles with respect to T

The dual graph of a curve

Let C be a curve with split singularities over a field k. We define the dual graph
of C as the graph I = (V, E) with V' = { irreducible components of C}, F =
{p € C™*}; the extremal vertices of an edge p are the components containing
p, which are indeed either one or two.

The following well-known fact gives a geometric interpretation to the first Betti
number of the dual graph of a curve.

Lemma 4.5 ([BLRI0|, 9.2/8). Let C/k be a nodal curve over a field, T the
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dual graph of C x k, h*(T',Z) its first Betti number. Then

YT, Z) = p := toric rank of Pic%/k.

Labelled dual graphs

Given a nodal curve f: C — S and a point s of S such that Cs has split
singularities, we write I's = (Vj, Ey) for the dual graph associated to the fibre
Cs. Using the notation of [Holl7b|], we write Ls for the monoid of principal
ideals of the (Zariski-)local ring Og ; then we let [;: Es — Ls be the function
associating to each edge of I'g the thickness of the corresponding singular point
of Cs (which indeed is an ideal of Og s, by lemma. The pair (T's,[s) is the
labelled graph of C — S at the geometric point s.

Let now (, s be two points of S, such that s is contained in the closure @ c S,
and such that the fibres C¢, Cs have split singularities. Then the labelled graph
(¢, l¢) of C¢ is obtained from the labelled graph (I's, [5) of Cs by: 1)contracting
all edges of I'; that are labelled by an ideal of Og ; whose image in Og ¢ is the
unit ideal; 2)for every edge e of T's that does not get contracted, we label the
corresponding edge of I'c by the image in Og ¢ of the label of e.

4.2 Holmes’ condition of alignment

Definition 4.6 ([Holl7b], definition 2.11). Let C — S be a nodal curve and
s a geometric point of S. We say that C/S is aligned at s if for every cycle
~v C I's and every pair of edges e, e’ of 7, there exist integers n,n’ such that

We say that C/S is aligned if it is aligned at every geometric point of S.
Theorem 4.7 ([Holl7h], theorem 5.16, theorem 5.2). Let S be regular, U C S
a dense open, f: C — S a nodal curve, with fiy: Cy — U smooth.
i) If the jacobian Picgu/U admits a Néron model over S, then C/S is
aligned;
it) if C is regular and C/S is aligned, then PicgU/U admits a Néron model

over S.

We are soon going to show how the condition of alignment is closely related
to toric-additivity of Pich /K - For the moment, we will consider a graph I' =
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(V, E), a set of n > 1 different colours € := {¢cq,¢o,...,¢,}, and a colouring of
the edges x: E — €. We say that (', x) is aligned if for every cycle v C I, the
restriction of x to y is constant; in other words, if every cycle is monochromatic.

The following lemma gives us a criterion for alignment that is easier to check.
The proof is due to Raymond van Bommel.

Lemma 4.8. Let (T, x: E — € ={cy,¢2,...,¢,}) be a graph with a colouring
of the edges. Fix a spanning tree T. Then (T, x) is aligned if and only if every
fundamental cycle is monochromatic.

Proof. What we have to prove is that if every fundamental cycle is monochro-
matic, then (T, x) is aligned, as the converse statement is obvious. We show
that we can reduce to the case n = 2 (two colours). If there is only one colour
the statement is clearly true. Suppose now the statement is false for some
n > 2: that is, (I, x) is not aligned but all fundamental cycles are monochro-
matic. Then there is some cycle v in I" that takes at least two distinct colours,
¢; and ¢o. We can now pretend that co,¢3,...,¢, are different hues of one
colour ¢, and that our graph I" is coloured with only two colours, ¢; and ¢'.
Then, ~ still takes two distinct colours, and all fundamental cycles are still
monochromatic; this implies that the statement is false for n = 2. Thus we
have reduced to proving the statement for n = 2 colours.

Let (I, x: E — {yellow, pink}) be a coloured graph, and assume all funda-
mental cycles are monochromatic. We construct a new graph, which we call
G, in the following way: the set of vertices of G consists of the disjoint union
of two copies, V, and V},, of the set of vertices V' of I'. We connect the vertices
with edges as follows: first, if v is a vertex of I', we create an edge e, linking
the corresponding vertices vy and v, in V}, and V,. Next, if e is an yellow
edge of I' linking vertices v and w, we create an edge e, between v, and wy;
if instead e is pink, we create an edge e, between v, and w,. This completes
the construction of G.

We call G, and G, the subgraphs of G with underlying set of vertices V,, and
V, respectively. We will call the edges e, linking G, and G, vertical edges,
and the others horizontal edges. Now, consider the subgraph W of G given
by the union of all vertical edges, and of all horizontal edges corresponding
to edges of the spanning tree T'. Clearly, W spans G, is connected, and does
not contain cycles, otherwise T" would itself contain a cycle. Hence W is a
spanning tree for G; it follows that the links of G with respect to W are in
bijection with the links of I with respect to T'. Since the fundamental cycles of
I' are monochromatic, the fundamental cycles of G consist only of horizontal
edges.

Now, suppose by contradiction that I contains a non-monochromatic cycle ~.
Then ~y defines a unique cycle 4" on GG, and ' necessarily contains some vertical
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edge, as 7 is not monochromatic. However, by [Die05, 1.9.6], fundamental
cycles form a basis of the cycle space (i.e. every cycle is a composition of
fundamental cycles). As fundamental cycles of G do not contain vertical edges,
~' cannot contain vertical edges. This is a contradiction and the lemma is
proved. O

Lemma 4.9. Let T' be a graph with a colouring of the edges x: E — € =
{c1,¢9,...,¢cn}. Foreveryl <i <nletT; be the graph obtained by contracting
every edge whose colour is not ¢;. Then

W'D, 2) <> K, Z)
i=1
with equality if and only if (T, x) is aligned.

Proof. Fix a spanning tree T for I'; we write T; for the image of T in the
contraction I';. Notice that T; need not be a tree; however, it is a subgraph of
I'; containing every vertex of I';; therefore, if T; is a tree it is also spanning;
and in any case T; contains a spanning tree for I';.

Claim 4.10. (T, x) is aligned if and only if for alli=1,...,n, T; is a (span-
ning) tree in T';.

Suppose that (I', x) is aligned and fix some i. We want to show that T; is a
tree in the contraction I';. We can contract one edge at a time and see what
happens to the image of T in the contraction. On the one hand, contracting
an edge that is contained in 7" does not produce new cycles in the image of 7'
Now let e € F be a link with respect to 7', and suppose that e gets contracted
in I';. Then x(e) # ¢;. Let P be the unique path in T' connecting the two
extremal vertices of e. Then the union of P and e forms a cycle 7, which does
not take the colour ¢; by the alignment hypothesis. Hence v gets contracted
to a point in I'; and once again no new cycle is produced in the image of T
Therefore T; is a tree.

Conversely, suppose that (I', x) is not aligned. By lemma there is a fun-
damental cycle v that takes two distinct colours, say ¢; and ¢s. Let e be the
only link contained in 7; we may assume x(e) = ¢;. Thus, e is contracted in
T'y. However, v is not contracted to a point in I's, since it contains some edge
with colour co. It follows that 75 is not a tree. This establishes the claim.

Now, h!'(T',Z) is equal to the number of links with respect to 7. We write
h'(T',Z) = by + ...+ b, where b; is the number of links of colour ¢;. In the
contraction I';, the only links that are not contracted are those of colour c;.
Since T; contains a spanning tree for I';, we have h*(I';,Z) > b;, with equality
if T} is a tree. Hence h'(T',Z) < h'(T'1,Z) + ...+ h'(T'n,Z). Moreover, by the
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claim, (T, ) is aligned if and only if for every i = 1,...,n, h'(T;,Z) = b;.
This in turn is equivalent to h'(I',Z) = h'(I'y,Z) + ... + h'(T',,Z), which
completes the proof. O

4.3 Relation between toric-additivity and alignment

We now consider a connected, locally noetherian, regular base scheme S with
a normal crossing divisor D C S, and a nodal curve C/S, such that the base
change Cy /U := S\ D is smooth.

If S — S is a strict henselization at some geometric point s of S, and D NS’
is given by regular parameters tq,...,t, € O(5’), then the thickness of any
non-smooth point p € Cs is generated by ¢7"* - ... - t" for some non-negative
integers mq, ..., m,. In particular, C is regular at p if and only if its thickness
is generated by t; for some 1 < ¢ < n.

Proposition 4.11. Suppose that the total space C is regular. Then C/S is
aligned if and only if Pich/K 1s toric-additive.

Proof. As both alignment and toric-additivity are checked over the strict henseliza-
tions at geometric points of S, we may assume that S is strictly local. Let

Iy = (Vi, Es) be the dual graph of the fibre of C over the closed point s € S,
and ly: Fs — L the labelling of the edges, taking value in the monoid Ly of
principal ideals of Og(S). We have already remarked that, since C is regular,
the labels can only take the values (t1),...,(tn) € Ls. This means that C/S

is aligned if and only if every cycle of I has edges with the same label.

Now, let {D;};=1,...n be the components of the divisor D. Each of them is
cut out by a regular element t; € Og(S) and is itself a regular, strictly local
scheme. Let (; be the generic point of D;. By lemma @ the curve C¢,
has split singularities; its labelled graph (I'¢,,l¢,) is obtained from (I's,ls) by
contracting edges according to the procedure in section Interpreting the
different labels as colours, we can apply lemma and conclude that C/S is
aligned at s if and only if A'(I',Z) = Y| h*(T;,Z). By lemma we see
that p(s) = >, 1(¢;), which is the condition for toric-additivity at s. This
finishes the proof.

O

4.4 Toric-additivity and desingularization of curves

Let S be a connected, locally noetherian, regular base scheme S with a normal
crossing divisor D = Dy U...U D, C S, and let C/S be a nodal curve, such
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that the base change Cy /U := S\ D is smooth.

In [dJ96, 3.6], it is proven that if C — S has split fibres, there exists a blow-up
p: C" — C such that ¢’ — S is still a nodal curve, and C’ is regular. The
condition of splitness implies that the irreducible components of the geometric
fibres are smooth; or equivalently, that the dual graphs of the geometric fibres
do not admit loops. We are going to introduce a condition on C/S, weaker
than splitness, and show that a statement analogous to the one in [dJ96l 3.6]
holds for curves satisfying this condition.

Definition 4.12. Let C — S be a nodal curve. We say that C/S is disciplined
if, for every geometric point 5 of S, and p € C2?, at least one of the following
is satisfied:

i) p belongs to two irreducible components of Cs;

ii) the thickness of p is a power of a regular parameter of (’)fg}fg.

We give first an auxiliary lemma:

Lemma 4.13. Hypothesis as in the beginning of the subsection; suppose also
that S is strictly local and that C/S is disciplined. Let p € CI* be a non-smooth
point of the fibre over the closed point, such that p does not satisfy condition
i1) of definition . Let X1, X2 be the distinct irreducible components of
the closed fibre Cs containing p. Then there exists i € {1,...,n} and Y1,Ys
irreducible components of C¢, such that X1 ¢ Yo D Xo and Xo ¢ Y1 D Y.

Proof. Let (I's,l;) be the labelled graph of Cs. By hypothesis, the edge e(p)
corresponding to p has distinct extremal vertices, v1 and vg, and label ¢]"* -

", with 2 <1 < n and my,...,m; > 1. The fibres over the generic
points (i,...,(, have split singularities by lemma [£.4] so we can consider
their labelled graphs (I';,l;). What we want to prove is that there exists
i € {1,...,1} such that v; and vy are mapped to distinct vertices of (I';,;) via
the procedure described in section

Suppose the contrary; as e(p) is not contracted in any I';, there exists a cycle
v in Ty, containing e(p), such that for all 1 <4 <[, all edges e # e(p) of v are
contracted in T';. Let (12 be the generic point of Dy N Dy; all edges e # e(p) of
« are contracted in I'12, the labelled graph of C¢,,, and in particular v; and v
are mapped to the same vertex. The edge e(p) is therefore mapped to a loop,
with label ¢7"'¢5"2. However, this contradicts the fact that C — S is disciplined
at C12.

O
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We introduce now some notation: given a scheme X, we will denote by
Sing(X) C X the set of points that are not regular. We say that the cen-
ter of a blow-up 7: Y — X is the complement of the largest open U C X such
that 7=*(U) — U is an isomorphism.

Lemma 4.14. Hypotheses as in the beginning of the subsection. Suppose
f:C — S is disciplined. Then there is an étale surjective g: 8" — S and a
blow-up p: C' — C xg S such that

o the center of ¢ is contained in Sing(C xg S');
e C' is a nodal curve over S’, smooth over g~*(U);

e C' is reqular.

Proof. First, notice that the order in which the blow-ups of the curve and the
étale covers of the base are taken does not matter, as blowing-up commutes
with étale base change. After replacing S by a suitable étale cover, we may
assume that D is a strict normal crossing divisor. We can now apply [dJ96l
3.3.2] and assume that Sing(C) C C has codimension at least 3. As a conse-
quence of lemma (4.4} after a further étale covering, we may assume that for
every generic point C of D, the fibre C¢ has split singularities.

Now, let E be an irreducible component of Cp = C xg D and let 7: C' — C be
the blow-up of C along E. If p € E is a regular point of C, f is an isomorphism
at p, because E is cut out by one equation. Otherwise, the completion of the
strict henselization at (a geometric point lying over) p is of the form

Ol
¢.p zy —t" g

with tq1,...,t, regular parameters cutting out D, 1 < [ < n and positive
integers my,...,m;. In fact, because the singular locus has codimension at
least three, we have [ > 2, and my = ... =m; = 1.

The ideal of the pullback of E to OC5 is either (¢;) for some 1 <4 <[, or
one between (z,t;) and (y,t;) for some 1 < i < [. In the first case, 7 is an
isomorphism at p. In the second case, one can compute explicitly the blowing
up of Spec(’) at the ideal (z,t;) (or (y,t;)) and find that f': C' — S is still a
nodal curve, d1501phned, with Slng(C) of codimension at least three, and such
that for every generic point ¢ of D the fibre C¢ has split singularities. We omit
the explicit computations.

Let Y C C be the center of m: C’ — C. Then Y consists only of non-regular
points, hence it has codimension at least 3. As f: C' — S is a curve, the fibres
of m have dimension at most 1, hence 7=1(Y) has codimension at least 2 in
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C. Tt follows that there is a bijection between the irreducible components of
Cp and Cl, given by taking the preimage under 7. Now, 7~1(E) is a divisor,
and for any other irreducible component E’ of Cp that is a divisor, 7= 1(E’) is
also a divisor. We conclude that 7*: C* — C, the composition of the blowing-
ups of all irreducible component of Cp, is such that every component of Cj,
is a divisor. Besides, as previously noticed, f*: C* — S is a nodal curve,
disciplined, and Sing(C*) has codimension at least three.

Assume now by contradiction that Sing(C*) # 0, and let p € Sing(C*). Then
without loss of generality the thickness at p is (£1 - ... ;) for some 2 <[ <
n. Consider the base change Ci /T, where T is the spectrum of some strict
henselization at s = f*(p). For every i let & be the generic point of D;NT'. By
lemma 3} for some i € {1,...,1}, there are distinct components Y7, Y> of Cf,
whose closure in C7p, Contam p. Because the fibre C’g has split smgularltles
we deduce that there are components X7, Xo of CC whose closures Fq, E5 in

Cp, contain p. But then Ej and Ey are given by (z,t1) and (y,?1) in OC*,?‘
In particular, they are not divisors. This is a contradiction, and therefore
Sing(C*) = 0. H

Lemma 4.15. Hypotheses as in the beginning of the subsection. Suppose that
f:C— S is such that Picg/s is toric-additive. Then C/S is disciplined.

Proof. We may assume that S is strictly local, with closed point s, and with D
given by a system of regular parameters 1 ..., t,. Let p € C'*, with thickness
t7" ..o t)" for some 1 <1 <nandmi,...,m > 1. We have to show that if
[ > 2 then p lies on two components of Cg

Suppose by contradiction that { > 2 and that p lies on only one component
of Cs. The dual graph I" over s has a loop L corresponding to p, with label
7t -t For 1 < i < n call T'; the dual graph of the fibre C¢, over
the generic point of D;. The loop L is preserved in the dual graphs I'; for
1 <4 < 1. Let I'” be the graph obtained by I' by removing the loop L, and
define similarly I}, 1 < ¢ <[. We have that

l n
LZ) <Y RN TLZ)+ Y BTG Z
=1

j=l+1
This inequality follows from the identification of the first Betti number with
the toric rank of the corresponding fibre of Picg /g; and from eq. .

For every 1 < i < [, h'(I';,Z) = h}(T},Z) + 1. Since | > 2, we find that
RYT,Z) = KNI, Z) +1 < > h*(T4,Z). In terms of toric ranks of fibres
of Picg/s, the same inequality reads p(s) < Y.~ u(¢;). This contradicts the
fact that Pic%K/K is toric-additive. O
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4.5 Toric-additivity and Néron models

We consider again a base S and a nodal curve C/S as in the previous subsection.
Theorem ells us that if Picgu/U admits a Néron model over S, then C/S
is aligned. However, not all aligned curves admit a Néron model for their
jacobian; in this subsection we show that curves that are not disciplined do
not admit one.

Lemma 4.16. Assume that S is an excellent Q-scheme. Suppose that C/S is
such that PicgU/U admits a Néron model N over S. Then C/S is disciplined.

Proof. We may assume that S is strictly henselian, with closed point s and
residue field & = k(s). Assume by contradiction that C/S is not disciplined.
Then there is some p € C!'* that belongs to only one component X of Cs,
and such that its thickness is t7"* - ... ¢/ with m; > 1 and 2 <1 < n. Let
q € Cs(k) be a smooth k-rational point belonging to the same component as
p. By Hensel’s lemma, there exists a section o04: S — C through ¢q. We claim
that the same is true for p: let S be the spectrum of the completion of O(S)
at its maximal ideal and consider the morphism

-~

A O(5)([z, yl] g
W := Spec O = Spec ’ — S.
S xy — "
This has a section given by « = ", y = t5"*-...-t;"". Composing the section

with the canonical morphism W — C, gives a morphism &,: S=c going
through p. Because S is excellent and henselian, it has the Artin approximation
property, and there exists a section ¢,: S — C which agrees with &, when
restricted to the closed point s, hence going through p.

We write F := Z(0,) ®o, O(04) for the coherent sheaf on C given by the
tensor product of the ideal sheaf of o, with the invertible sheaf associated
to the divisor o4. It is what is called a torsion free, rank 1 sheaf in the
literature: it is S-flat, its fibres are of rank 1 at the generic points of fibres of
C, and have no embedded points. Notice that F is not an invertible sheaf, as
dimyp) F & k(p) = 2.

Let u, and ug be the restrictions of 0, and o4 to U. They are U-points of
the smooth curve Cy /U; the restriction of F to U is the invertible sheaf Fyy =
Oc, (ug—uyp). This is the datum of a U-point « of Picgu/U: indeed, Pic(U) =0
because O(U) is a UFD, and Cy /U has a section, so Picgu/U(U) = Pic’(Cy).

By the definition of Néron model, there is a unique section 8: S — N with
Bu = a. We write J for Picg/s. As J is semi-abelian, the canonical open
immersion J — A identifies J with the fibrewise-connected component of
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identity N° (lemma . Write (;,i = 1...,n for the generic points of the
divisors D;. Then S; := SpecOg, is a trait, and the restriction Ng, is a
Néron model of its generic fibre. Therefore ax extends uniquely to a section
a;: S; = Ngs,. As Fg, is an invertible sheaf of degree 0 on every irreducible
component of CZN Fg, is a S;-point of Jg,, and « is given by Fg,. Therefore,
the restriction of a: S — N to S; factors through J = N foreveryi = 1...,n.

We denote now by ®/5 the étale group scheme of connected components of N,
and by ®;) its [-primary part for a prime /. Lemmatells us that, for every
prime [ different from the residue characteristic of S, the canonical morphism
®()(s) = Di; P()(¢;) is injective. By our assumption that S is a Q-scheme,
the canonical morphism

®(s) — @ P(¢;)
i=1

is injective. This implies that  lands inside J = A9, or in other words that
Fu extends to an invertible sheaf £ on C such that L is of degree 0 on every
component.

Now, let Z — S be a closed immersion, with Z a trait, such that the generic
point ¢ of Z lands into U (it is an easy check that such a closed immersion
exists). As F¢ and L¢ define the same point of Picg /6 there are isomorphisms
pe: Fe — L and A\¢: L¢ — Fe. By the same argument as in [AKS80) 7.8], ¢
and )¢ extend to morphisms p: Fz — Lz and A\: Lz — Fz, which are non-
zero on all fibres. Let’s look at the restrictions to the closed fibre, pus: Fs — L,
As: Lg — Fs. We know that F is trivial away from the component X C Cs.
So, if we write Y for the closure in C4 of the complement of X, we may restrict
ps and As to Y to get global sections [ and I’ of Ly and Ly respectively. Now,
if I = 0, then the restriction ux of us to X is non-zero, because pu is non-zero.
If I #0, as L, is of degree zero on every component, we have {(y) ¢ m, L, for
every y € Y, and in particular for y € Y N X. It follows that also in this case
ux # 0. We can apply the same argument to I’ and conclude that Ax # 0.
Then the compositions px o Ax: Lx — Lx and Ax oux: Fx — Fx are non-
zero. As Endp, (Fx) =k = Endop, (Lx), they are actually isomorphisms. It
follows that pux: Fx — Lx is an isomorphism. However, dimy,) Frp) = 2,
while £x is an invertible sheaf. This gives us the required contradiction.

O

Theorem 4.17. Let S be a connected, locally noetherian, reqular scheme, D
a normal crossing divisor on S, C — S a nodal curve smooth over U = S\ D.

i) If Picg/s is toric-additive, then PicgU/U admits a Néron model over S.

it) If moreover S is an excellent Q-scheme, the converse is also true.
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Proof. Whether we are in the hypotheses of i) and ii), we know by lemmas
and above that C/S is disciplined; hence by lemma there exists
an étale cover g: S’ — S and a blow-up 7: C’ — Cg/ which restricts to an
isomorphism over U’ = U xg S’, such that C’ is regular.

Assume that PicY /s s toric-additive. To show the existence of a Néron model
over S, it is enough to show it over S’. The base change Pic%sl /s s toric-

additive by lemma The blow-up 7 does not affect Cy/, so Picg, /s 18 still
toric-additive. We can now apply proposition and deduce that C'/S’ is
aligned. Hence by theorem we find that PicU, v+ admits a Néron model
over S’, proving i).

Now assume that S is a Q-scheme and that Picgv su admits a Néron model N

over S. Then N/ = N xg S is a Néron model for Picg,U,/U, over S’. Hence
C'/S' is aligned by theorem [1.7} as C’ is regular, we deduce by proposition [£.11]
that Picd_, i g 1is toric-additive. As toric-additivity descends along étale covers

(lemma [3.8)), Picg/s is toric-additive. O

Corollary 4.18. Let S be a connected, locally noetherian, reqular, excellent
Q-scheme, D a normal crossing divisor on S, C — S and D — S two nodal
curves, smooth over U = S\ D.

Assume that over the generic point n € S, there exists an isogeny
.0 .0
Plccn/77 — Pchn/n .

Then PicgU/U admits a Néron model over S if and only if PicODU/U does.

Proof. By lemma PicQ /s s toric-additive if and only if Pic} /s is. By
theorem [£.17] toric-additivity is equivalent to existence of a Néron model, and
we conclude. O
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