
A monodromy criterion for existence of Neron models and a result on
semi-factoriality
Orecchia, G.

Citation
Orecchia, G. (2018, February 27). A monodromy criterion for existence of Neron models and a
result on semi-factoriality. Retrieved from https://hdl.handle.net/1887/61150
 
Version: Not Applicable (or Unknown)

License: Licence agreement concerning inclusion of doctoral thesis in the
Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/61150
 
Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/61150


 
Cover Page 

 
 

 
 
 

 
 
 

The following handle holds various files of this Leiden University dissertation: 
http://hdl.handle.net/1887/61150 
 
 
Author: Orecchia, G. 
Title:  A monodromy criterion for existence of Neron models and a result on semi-
factoriality 
Issue Date: 2018-02-27 

https://openaccess.leidenuniv.nl/handle/1887/1
http://hdl.handle.net/1887/61150
https://openaccess.leidenuniv.nl/handle/1887/1�


3 Toric-additivity

We work with the hypotheses of situation 2.5; we suppose that we are given an
abelian scheme A/U of relative dimension d, and a semi-abelian scheme A/S
with an isomorphism A×S U → A.

3.1 Definition of toric-additivity in the strictly local case

Assume that S is strictly local, with closed point s and residue field k = k(s) of
characteristic p ≥ 0. The divisor D has finitely many irreducible components
D1, . . . , Dn for some n ≥ 0.

We fix a prime l 6= p and consider the Tate module TlA(Ks); we recall that
it is a free Zl-module of rank 2d with an action of Gal(Ks|K), which factors

via the surjection Gal(Ks|K)→ G := πt,l1 (U) =
⊕n

i=1 Ii, where Ii = Zl(1) for
each i.

Definition 3.1. Let l 6= p be a prime. We say that the semi-abelian scheme
A/S satisfies condition F(l) if

TlA(Ks) =

n∑
i=1

TlA(Ks)⊕j 6=iIj or if n = 0. (20)

Remark 3.2.

• Whether A/S satisfies condition F(l) depends only on the generic fibre
AK/K, and on the base S;

• suppose that A/S satisfies condition F(l); let t be another geometric
point of S, belonging to D1, D2, . . . , Dm for some m ≤ n, and consider
the strict henselization S′ at t. Then the morphism

πt,l1 (U ×S S′)→ πt,l1 (U)

induced by S′ → S is the natural inclusion

m⊕
i=1

Ij →
n⊕
i=1

Ii.

It can be easily seen that
∑n
i=1 TlA(Ks)⊕j 6=iIj ⊆

∑m
i=1 TlA(Ks)⊕j 6=iIj ;

hence AS′/S′ also satisfies condition F(l).

• Condition F(l) is automatically satisfied if n = 1.
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We are going to show that the validity of condition F(l) is independent of the
chosen prime l 6= p. We first need an auxiliary lemma, which we recommend
to skip, as its only utility is to show that some specific submodules of the Tate
module are direct summands. This simplifies some later proofs.

Lemma 3.3. The Tate module TlA(Ks) satisfies the following properties:

i) There exists a decomposition of T := TlA(Ks) into a direct sum

T ∼=
⊕

J⊆{1,...,n}

TJ

where, for every J ⊆ {1, . . . , n}, the submodule of invariants T
⊕
j∈J Ij is

equal to
⊕

J′⊇J TJ′ .

ii) The submodule
∑n
i=1 TlA(Ks)⊕j 6=iIj is a direct summand of TlA(Ks).

Proof. We start with the proof of i). Notice first that, for any submodule
V ⊆ T and any subgroup H ⊆ G, the submodule of invariants V H is a direct
summand of V ; indeed, the quotient V/V H is torsion-free. Now we proceed
by induction on n. If n = 1, write T{1} := T I1 , and T∅ = T/T I1 . In this case
we have T ∼= T{1} ⊕ T∅ as wished. Now let m ≥ 2, assume that the statement
is true for n = m− 1, and let n = m. By inductive hypothesis, we can write

T ∼=
⊕

J⊆{1,...,m−1}

TJ (21)

as in the statement. Define, for every J ⊆ {1, . . . ,m},

VJ =

{
(TJ∩{1,...,m−1})

Im if m ∈ J ;

TJ/(TJ)Im if m 6∈ J.

It is easy to show that T ∼=
⊕

J⊆{1,...,m} VJ . Now, let J ⊆ {1, . . . ,m}. Suppose
first that m 6∈ J . Then we have

T
⊕
j∈J Ij ∼=

⊕
J⊆J′⊆{1,...,m−1}

TJ′ ∼=
⊕

J⊆J′⊆{1,...,m−1}

TJ′/(TJ′)
Im ⊕ (TJ′)

Im ∼=

∼=
⊕

J⊆J′⊆{1,...,m−1}

VJ′ ⊕ VJ′∪{m} ∼=
⊕

J⊆J′⊆{1,...,m}

VJ′ .

If instead m ∈ J , then

T
⊕
j∈J Ij ∼= (T

⊕
j∈J\{m} Ij )Im ∼=

⊕
J\{m}⊆J′⊆{1,...,m}

(VJ′)
Im .
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Now, for a subset J ′ ⊆ {1, . . . ,m}, (VJ′)
Im 6= 0 only if m ∈ J ′; in this case,

(VJ′)
Im = VJ′ . It follows that

T
⊕
j∈J Ij ∼=

⊕
J⊆J′⊆{1,...,m}

VJ′ .

This proves i).

For ii), notice that for all i = 1, . . . , n, we have

T
⊕
j 6=i Ij ∼= T{1,...,n} ⊕ T{1,...,n}\{i}

and
n∑
i=1

T
⊕
j 6=i Ij ∼= T{1,...,n} ⊕

n⊕
i=1

T{1,...,n}\{i}.

Because of the decomposition of part i), we see that
∑n
i=1 T

⊕
j 6=i Ij is indeed

a direct summand of T .

Recall the upper semi-continuous function (3) µ : S → Z≥0. It takes the value
µ(s) at the closed point of S, and the value µ(ζi) at each generic point ζi of
Di.

Recall the inequality (15),

µ(s) ≤
n∑
i=1

µ(ζi). (22)

Theorem 3.4. Let S be a regular, strictly local scheme, with closed point s
of residue characteristic p ≥ 0, D =

⋃n
i=1Di a normal crossing divisor on S.

Let A be an abelian scheme over U = S \D, of relative dimension d, admitting
a semi-abelian prolongation A/S. Let l 6= p be a prime.

The following conditions are equivalent:

a) A/S satisfies condition F(l).

b) For i = 1, . . . , n, let ζi be the generic point of Di. The function µ : S →
Z≥0 satisfies

µ(s) =

n∑
i=1

µ(ζi).

c) Let G = πt1(U) =
⊕
Ii with Ii = Ẑ′(1). The Tate module TlA(Ks)

decomposes as a direct sum

TlA(Ks) = V1 ⊕ V2 ⊕ . . .⊕ Vn
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of G-invariant submodules, such that for each i = 1, . . . , n and each
j 6= i, Ii ⊂ G acts trivially on Vj.

Proof. We will write shorthand T for TlA(Ks), µ for µ(s) and µi for µ(ζi). Let
us start with the equivalence a) ⇔ b); we are going to proceed by induction
on the number n. The case n = 0 being trivial, let first n = 1: in this case,
condition F(l) is automatically satisfied. We have to check that µ = µ1, i.e.
the toric rank at the closed point s is the same as the toric rank at the generic
point of the (irreducible) divisor D. We know by eq. (22) that µ ≤ µ1; since
µ : S → Z≥0 is upper-semicontinuous, we have the equality.

Let now N be an integer ≥ 2 and assume that the equivalence a) ⇔ b) is
true when n = N − 1; we show that it is true for n = N . In general we have
T ⊇

∑n
i=1 T

⊕j 6=iIj , with equality if condition F(l) is satisfied. We compare
the ranks of the two sides. On the one hand, the rank of T is 2d. Now write
Ti for T⊕j 6=iIj . We have

rk

n∑
i=1

Ti =

n∑
i=1

rkTi +

n∑
k=2

(−1)k
∑

J⊂{1,...,n},#J=k

rk
⋂
j∈J

Tj

by an inclusion-exclusion argument. However, for every J ⊂ {1, . . . , n} with
#J ≥ 2,

⋂
j∈J Tj = TG. The equality above becomes

rk

n∑
i=1

Ti =

n∑
i=1

rkTi +

n∑
k=2

(−1)k
(
n

k

)
rkTG.

For every i = 1, . . . , n, rkTi = 2d − µ(ti) ≥ 2d −
∑
j 6=i µj , where ti is the

generic point of
⋂
j 6=iDj . Also,

∑n
k=2(−1)k

(
n
k

)
= 1− n, and rkTG = 2d− µ.

We obtain

rk

n∑
i=1

Ti ≥ 2nd−(n−1)

n∑
i=1

µi+(1−n)(2d−µ) = 2d+(n−1)(µ−
n∑
i=1

µi). (23)

We have previously remarked that if condition F(l) is satisfied, then it is
satisfied also over Si, the strict henselization at a geometric point lying over
ti; in this case, we can apply the inductive hypothesis: the inequality µ(ti) ≤∑
j 6=i µj is an equality and thus eq. (23) is an equality as well.

We have obtained a chain of inequalities

rkT = 2d ≥ rk

n∑
i=1

Ti ≥ 2d+ (n− 1)(µ−
n∑
i=1

µi).
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If condition F(l) is satisfied, both ≥ signs in the line above are equalities,
and therefore (n − 1)(µ −

∑n
i=1 µi) = 0. Since n − 1 > 0, we have indeed

µ =
∑n
i=1 µi. Conversely, if µ =

∑n
i=1 µi, both inequalities are forced to be

equalities; in particular rkT = rk
∑n
i=1 Ti. By lemma 3.3,

∑n
i=1 Ti is a direct

summand of T ; hence T =
∑n
i=1 Ti, which is condition F(l). This proves

a)⇔ b).

Next, assume that a decomposition of T as in c) exists. Then, for every

1 ≤ i ≤ n, Vi ⊆ T
⊕
j 6=i Ij , and condition F(l) is evidently satisfied; so we have

c)⇒ a).

Finally, we prove b)⇒ c). Consider the canonical maps

α :

n⊕
i=1

T ti →
n∑
i=1

T ti = T t; β : T/TG →
n⊕
i=1

T/T Ii .

Clearly, α is surjective and β is injective. However, because we have µ =∑n
i=1 µi, comparing ranks we see that α is an isomorphism. The same is true

for the analogous map

α′ :

n⊕
i=1

T ′ti → T ′t,

where T ′ = TlA
′(Ks) and A′K is the dual abelian variety. By lemma 2.20,

TG (resp. T Ii) is orthogonal to T ′t (resp. T ′ti) with respect to the pairing
χ. Hence, β is obtained from α′ by applying the functor HomZl( · ,Zl(1)). It
follows that β is an isomorphism as well.

Notice that for every i = 1, . . . , n, the inverse morphism β−1 identifies
⊕

j 6=i T/T
Ij

with the submodule T Ii/TG of T/TG. Moreover, since TG is a direct factor
of T , we can choose a section h : T/TG → T . As h maps T Ii/TG into T Ii , we
see that the image of

⊕
j 6=i T/T

Ij via h ◦ β−1 is contained in T Ii .

Write TG = T t ⊕ W for some submodule W ; and write Wi := T ti ⊕ (h ◦
β−1)(T/T Ii) for each i. Then T = W ⊕W1 ⊕W2 ⊕ . . . ⊕Wn. For each i, Ii
acts trivially on TG, hence on W and T tj for all j. Moreover, we have shown
that for j 6= i, Ii acts trivially on (h ◦ β−1)(T/T Ij ). Therefore Ii acts trivially
on Wj for j 6= i.

Now, we may write V1 = W ⊕W1, and Vi = Wi for all i ≥ 2. It remains only
to show that Vi is Ii-invariant. For this, let ei be a topological generator of Ii.
For every x ∈ T , y ∈ T Ii , we have

χ(eix− x, y) = χ(x, eiy − y) = χ(x, 0) = 1.

Therefore eix − x ∈ (T Ii)⊥ = T ti for every x ∈ T . In particular, for every
x ∈ Vi, eix ∈ Vi + T ti = Vi, as we wished to show.
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A consequence of theorem 3.4 a) ⇔ b), is that the validity of condition F(l)
is independent of the choice of prime l 6= p. It is sensible to introduce a new
name for the condition:

Definition 3.5. We say that the semi-abelian scheme A/S is toric-additive
if the three equivalent conditions of theorem 3.4 are satisfied for some prime
number l 6= p (equivalently, for all such primes l).

Notice that, although we talk of “toric-additivity of the semi-abelian scheme
A/S”, toric-additivity depends only on the generic fibre AK (in fact, on its
torsion Ks-points) and on S. This is a consequence of theorem 3.4, but follows
also from the fact that a semi-abelian extension A/S of AK is unique up to
unique isomorphism ([Del85, Théorème pag.132]).

Lemma 3.6. Let m1, . . . ,mn be positive integers and B be the Γ(S,OS)-
algebra

B =
Γ(S,OS)[T1, . . . , Tn]

Tm1
1 − r1, . . . , T

mn
n − rn

(24)

Write T = SpecB and let f : T → S be the induced morphism of schemes.
Then A/S is toric-additive if and only if AT /T is toric-additive.

Proof. Notice that T is a regular strictly local scheme, so it makes sense to say
that AT /T is toric-additive. Now, clearly f−1(D)→ D is a homeomorphism,
thus A/S satisfies condition ii) of theorem 3.4 if and only if AT /T does.

3.2 Global definition of toric additivity

We have defined toric-additivity over a strictly local base. We now remove
this hypotheses and consider the more general case of situation 2.5.

Definition 3.7. We say that A/S is toric-additive at a geometric point s of
S, if the base change A ⊗S SpecOshS,s to the strict henselization at s is toric-
additive as in definition 3.5. We say that A/S is toric-additive if it is so at all
geometric points s of S.

It is evident that toric-additivity is a property étale-local on the target. We
actually have the stronger statement:

Lemma 3.8. Toric-additivity is local on the target for the smooth topology.
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Proof. Given f : T → S smooth and surjective, the base change D×S T is still
a normal crossing divisor. Let x be a geometric point of T and call fx the
induced morphism

X := SpecOshT,x → Y := SpecOshS,f(x).

The image of a generic point ζi of Di×SX via fx is a generic point of Di×S Y ;
moreover the function µ : X → Z≥0 factors via Y . Thus it is clear that A×S
X/X is toric-additive if and only if A×S Y/Y is. We deduce that A×S T/T
is toric-additive if and only if A/S is.

Lemma 3.9. Toric-additivity of A/S is an open condition on S.

Proof. Suppose that A/S is toric-additive at a geometric point s. It is enough
to show that A/S is toric-additive on an étale neighbourhood of s, since étale
morphisms are open. We choose an étale neighbourhood of finite type W → S
of s such that DW = D×SW is a strict normal crossing divisor and such that
s belongs to all irreducible components D1, . . . , Dn of DW . Let t be another
geometric point of W ; we want to show that AW /W is toric-additive at t. This
is true if t 6∈ DW , so we may assume without loss of generality that t belongs
to D1, . . . , Dm for some 1 ≤ m ≤ n. Let ζ be a geometric point lying over the
generic point of D1∩D2∩. . .∩Dm; write Wζ ,Wt,Ws for the spectra of the strict
henselizations of W at ζ, t, s respectively. The morphism Wζ →W factors via
Ws; hence, by remark 3.2, AW /W is toric-additive at ζ. We also have a natural
map Wζ →Wt. Choose a prime l different from the residue characteristics at

t. The induced morphism πt,l1 (Wζ ∩ U) = Zl(1)m → πt,l1 (Wt ∩ U) = Zl(1)m is
the identity. Because AW /W is toric-additive at ζ, it follows that it is also at
t, as we wished to show.

Lemma 3.10. Let A and B be two abelian schemes over U , admitting semi-
abelian prolongations A/S and B/S respectively. Suppose that over the generic
fibre of S, there exists an isogeny f : AK → BK . Then A/S is toric-additive
if and only if B/S is so.

Proof. We may assume that the base S is strictly local of residue characteristic
p ≥ 0. For a prime l 6= p not dividing the degree of f , f induces an isomorphism
of Galois modules TlA(Ks)→ TlB(Ks).

Lemma 3.11. Let

0→ A′ → A→ A′′ → 0

be an exact sequence of semi-abelian schemes over S, whose restriction to U
is abelian. Then A′ and A′′ are toric-additive if and only if A is so.
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Proof. We may assume that S is the spectrum of a strictly henselian local ring,
with closed point s of residue characteristic p ≥ 0. Let l 6= p be a prime and
T ′, T, T ′′ be the l-adic Tate modules TlA

′(Ks), TlA(Ks), TlA
′′(Ks), endowed

with a natural action of G = πt,l(U). As A′(Ks) is l-divisible, we obtain an
exact sequence of G-modules

0→ T ′ → T → T ′′ → 0.

Consider the induced map ϕ : H1(G,T ′) → H1(G,T ); we claim that it is
injective. An element of H1(G,T ′) is represented by a crossed homomorphism
f : G→ T ′ in Z1(G,T ′). Suppose that its image in Z1(G,T ) is a coboundary;
then there exists a t ∈ T with f(σ) = σt− t for all σ ∈ G. Now, σt− t belongs
to TG, because (σ−1)2 = 0 for all σ ∈ G. It follows that kerϕ ⊂ H1(G,T ′G) =
Hom(G,T ′G). As the map Hom(G,T ′G) → Hom(G,TG) is injective, we have
kerϕ = 0, which proves the claim.

It follows that we have an exact sequence of G-invariant submodules,

0→ T ′G → TG → T ′′G → 0.

Taking ranks, we find that µ(s) = µ′(s) + µ′′(s), where µ, µ′, µ′′ : S → Z≥0

are the toric rank functions for A,A′,A′′ respectively. Thus, these functions
satisfy µ = µ′ + µ′′.

Let now ζ1, . . . , ζn be the generic points of the components D1, . . . , Dn of D.
If A′ and A′′ are toric-additive, we have µ(s) = µ′(s) + µ′′(s) =

∑n
i=1 µ

′(ζi) +∑n
i=1 µ(ζi) =

∑n
i=1 µ(ζi), which implies that A is toric-additive.

Conversely, if A is toric-additive, then µ(s) =
∑n
i=1 µ(ζi). Hence, µ′(s) +

µ′′(s) =
∑n
i=1 µ

′(ζi)+
∑n
i=1 µ

′′(ζi). This can be rewritten as µ′(s)−
∑n
i=1 µ

′(ζi) =∑n
i=1 µ

′′(ζi)−µ′′(s); here, eq. (15) tells us that the left-hand side is non-positive
and that the right-hand side is non-negative; hence they are both zero, and
the proof is complete.

3.3 Two examples

We give two examples, one of a semi-abelian scheme that is toric-additive, and
one of one that is not. Let k be an algebraically closed field of characteristic
zero, S = Spec k[[u, v]], and let D be the vanishing locus of uv.

Example 3.12. Consider the nodal projective curve E ⊂ P2
S given by the

equation
Y 2Z = X3 −X2Z − uvZ3.
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The restriction EU/U is an elliptic curve, which is canonically identified with
its jacobian Pic0

EU/U ; the smooth locus Esm/S has a unique S-group scheme
structure extending the one of EU/U , and is a semi-abelian scheme.

Let ζ1, ζ2 be the generic points of D1 = {u = 0} and D2 = {v = 0} respectively,
and let s be the closed point {u = 0, v = 0}. The fibres of Esm over ζ1, ζ2, s
are all tori of dimension 1. It follows that Esm is not toric-additive.

Example 3.13. Consider the nodal projective curve E ′ ⊂ P2
S given by the

equation
Y 2Z = X3 −X2Z − uZ3.

Again, E ′U = Pic0
E′U/U

; and the smooth locus E ′sm/S is a semi-abelian scheme.

In this case, the fibre of E ′ over ζ2 is smooth; so µ(ζ1) = 1, µ(ζ2) = 0, µ(s) = 1.
Thus E ′ is toric-additive.

4 Neron models of jacobians of stable curves

4.1 Generalities

Nodal curves

Definition 4.1. A curve C over an algebraically closed field k is a proper
morphism of schemes C → Spec k, such that C is connected and its irreducible
components have dimension 1. A curve C/k is called nodal if for every non-

smooth point p ∈ C there is an isomorphism of k-algebras ÔC,p → k[[x, y]]/xy.

For a general base scheme S, a nodal curve f : C → S is a proper, flat morphism
of finite presentation, such that for each geometric point s of S the fibre Cs is
a nodal curve.

We will denote by Cns the subset of C of points at which f is not smooth.
Seeing Cns as the closed subscheme defined by the first Fitting ideal of Ω1

C/S ,

we have for a nodal curve C/S that Cns/S is finite, unramified and of finite
presentation.

We report a lemma from [Hol17b].

Lemma 4.2 ([Hol17b], Prop.2.5). Let S be locally noetherian, f : C → S be
nodal, and p a geometric point of Cns lying over s ∈ S. We have:

i) there is an isomorphism

ÔshC,p ∼=
ÔshS,s[[x, y]]

xy − α
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