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show in theorem 3.4 that it can be equivalently stated as a condition on the
Tate module TlA(Ksep), for any l invertible on S, or as a condition on the
toric ranks of the fibres of the semi-abelian scheme A/S.

Section 4 is devoted to the case of jacobians of curves. After recalling the
results of [Hol17b], we establish the relation between toric-additivity and the
property of existence of a Néron model for the jacobian (theorem 4.17).

In section 5, we work under the assumption that the base S is a Q-scheme; we
attempt to relate toric-additivity and the property of existence of Néron models
in the case of abelian schemes. We introduce test-Néron models and prove
that they exist and are unique if A/S is toric-additive (proposition 5.5 and
theorem 5.6). After a result on descent of test-Néron models (proposition 5.7),
we conclude the section by showing that test-Néron models are Néron models,
under the assumption of toric-additivity (proposition 5.9).

2 Generalities

2.1 Normal crossing divisors and tame fundamental group

We work over a connected, regular, locally noetherian, base scheme S.

Definition 2.1. Given a regular, noetherian local ring R, a regular system of
parameters is a minimal subset {r1, . . . , rd} ⊂ R of generators for the maximal
ideal m ⊂ R.

Definition 2.2. A strict normal crossing divisor D on S is a closed subscheme
D ⊂ S such that, for every point s ∈ S, the preimage of D in the local ring
OS,s is the zero locus of a product r1 · . . . · rn, where {r1, . . . , rn} is a subset
of a regular system of parameters {r1, . . . , rd} of OS,s.

Write {Di}i∈I for the set of irreducible components of D. Then each Di, seen
as a reduced closed subscheme of S, is regular and of codimension 1 in S;
moreover, for every finite subset J ⊂ I, the intersection

⋂
j∈J Dj is regular,

and each of its irreducible components has codimension |J |.

Definition 2.3. A normal crossing divisor D on S is a closed subscheme
D ⊂ S for which there exists an étale surjective morphism S′ → S such that
the base change D ×S S′ is a strict normal crossing divisor on S′.

Notice that for every geometric point s of S, the pullback of a normal crossing
divisor D to the spectrum of the strict henselization OshS,s is a strict normal
crossing divisor.
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Definition 2.4. A trait Z is an affine scheme with O(Z) a discrete valuation
ring. Suppose we are given a morphism f : Z → S and a normal crossing
divisor D on S; we say that f is transversal to D if for every component Di

of D, Di ×S Z is a reduced point or is empty.

We can now introduce the hypotheses with which we will work for most of this
part:

Situation 2.5. Let S be a regular, locally noetherian connected scheme, D =⋃
i∈I Di a normal crossing divisor on S. We will denote by U the open S \D,

by η the generic point of S and by K the residue field k(η). A separable closure
of K will be denoted by Ks. Finally, we write ζi for the generic point of the
irreducible component Di of D.

Situation 2.6. In situation 2.5, we will often reduce to the simpler case where
S is the spectrum of a strictly henselian local ring R. In this case, we say that
it is a strictly local scheme. We write s for its closed point and p ≥ 0 for
its residue characterstic. We can write the normal crossing divisor D as a
union

⋃n
i=1 div(ri) where r1, . . . , rn ∈ R form a subset of a regular system of

parameters for R.

Suppose we are in situation 2.6. It is a consequence of Abhyankar’s Lemma
([Gro71, XIII, 5.2]) that every finite etale morphism V → U , tamely ramified
over D ([Gro71, XIII, 3.2.c)]), with V connected, is dominated by a finite étale
W/U given by

O(W ) =
O(U)[T1, . . . , Tn]

T1 − rm1
1 , . . . , Tn − rmnn

where the integers m1, . . . ,mn are coprime to p. Denoting by µr,U the group-
scheme of r-roots of unity, it follows that AutU (W ) =

∏n
i=1 µmi,U . Then, the

tame fundamental group of U is

πt1(U) =
∏
l 6=p

Zl(1)n.

Here Zl(1) = limµlr (U) is non-canonically isomorphic to Zl, an isomorphism
being given by a choice of a compatible system (zlr )r≥1 of primitive lr-roots

of unity. We will sometimes write Ẑ′(1) in place of
∏
l 6=p Zl(1).

For a prime l 6= p, the factor Zl(1)n of πt1(U)) is the biggest pro-l quotient of

πt1(U) and will be denoted by πt,l1 (U). It is the automorphism group of the
fibre functor of finite étale morphisms V → U of degree a power of l.
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2.2 Néron models of abelian schemes

The definition of Néron model

Let now S be any scheme, U ⊂ S an open and A/U an abelian scheme.

Definition 2.7. A Néron model for A over S is a smooth, separated algebraic
space 1 N/S of finite type, together with an isomorphism N ×S U → A,
satisfying the following universal property: for every smooth morphism of
schemes T → S and U -morphism f : TU → A, there exists a unique morphism
g : T → N such that g|U = f.

It follows immediately from the definition that a Néron model is unique up to
unique isomorphism; moreover, applying its defining universal property to the
morphisms m : A ×U A → A, i : A → A, and 0A : U → A defining the group
structure of A, we see that N/S inherits from A a unique S-group-space
structure.

We also introduce a similar object, which satisfies a weaker universal property:

Definition 2.8. A weak Néron model for A over S is a smooth, separated
algebraic spaceN/S of finite type, together with an isomorphismN×SU → A,
satisfying the following universal property: every section U → A extends
uniquely to a section S → N .

In particular, a Néron model is a weak Néron model. Notice that in the case
of weak Néron models, we do not have any uniqueness statement, and they
need not inherit a group structure from A.

We point out that our definition 2.8 of weak Néron model differs slightly from
the one normally found in the literature: the latter requires that the universal
property is satisfied for all T → S finite étale.

Base change properties

We proceed to analyse how Néron models behave under different types of base
change. In general, the property of being a Néron model is not stable under
arbitrary base change. However, we have that:

Lemma 2.9. Let N/S be a Néron model of A/U ; let S′ → S be a smooth
morphism and U ′ = U ×S S′. Then the base change N ×S S′ is a Néron model
of AU ′ .

1defined as in [Sta16]TAG 025Y.)
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Proof. Let X → S′ be a smooth scheme with a morphism f : XU ′ → AU ′ ; by
composition with the smooth morphism S′ → S we obtain a smooth scheme
X → S and a map X ×S U → AU , which extends uniquely to an S-morphism
X → N . This is the datum of an S′-morphism X → N ×S S′ extending f .

Lemma 2.10. Let N/S be a smooth, separated algebraic space of finite type
with an isomorphism N ×S U → A. Let S′ → S be a faithfully flat morphism
and write U ′ = U ×S S′. If N ×S S′ is a Néron model of A×U U ′, then N/S
is a Néron model of A.

Proof. We first show thatN/S satisfies the universal property of Néron models
when the smooth morphism T → S is the identity. So, let f : U → A be a
section of A/U . To show that f extends to a section S → N we only need to
check that the schematic closure X of f(U) inside N is faithfully flat over S:
indeed, X → S is birational and separated; if it is also flat and surjective it
is automatically an isomorphism. Now, by base change of f we get a closed
immersion f ′ : U ′ → A×U U ′, which extends to a section g′ : S′ → N ×S S′ by
hypothesis. The schematic image g′(S′) is necessarily the schematic closure
of f ′(U ′) inside N ×S S′; since taking the schematic closure commutes with
faithfully flat base change, we have g′(S′) = X×SS′. We deduce that X → S is
faithfully flat, as its base change via S′ → S is such. Hence f : U → A extends
to a section g : S → N . The uniqueness of the extension is a consequence of
the separatedness of N .

Next, let T → S be smooth and let f : TU → A. In order to extend f to a
morphism g : T → N , it is enough to show that N ×S T satisfies the extension
property for sections TU → A×U TU . By the previous paragraph, it is enough
to know that (N ×S T ) ×S S′ = (N ×S S′) ×S T is a Néron model of (A ×U
TU )×U U ′. This is true by lemma 2.9, concluding the proof.

Lemma 2.11. Let A/U be abelian, f : S′ → S a smooth surjective morphism,
U ′ = U ×S S′, and N ′/S′ a Néron model of A ×S S′. Then there exists a
Néron model N/S for A.

Proof. Write S′′ := S′ ×S S′, p1, p2 : S′′ → S′ for the two projections and
q : S′′ → S for f ◦ p1 = f ◦ p2. By lemma 2.9, both p∗1N and p∗2N are Néron
models of q∗A. By the uniqueness of Néron models, we obtain a descent
datum for N ′ along S′ → S. Effectiveness of descent data for algebraic spaces
([Sta16]TAG 0ADV) yields a smooth, separated algebraic space N/S of finite
type. By lemma 2.10, this is a Néron model for A/U .

Although Néron models are not stable under base change (not even flat), they
are preserved by localizations, as we see in the following lemma:
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Lemma 2.12. Assume S is locally noetherian. Let s be a point (resp. geomet-

ric point) of S and S̃ the spectrum of the localization (resp. strict henselization)

at s. Suppose that N/S is a Néron model for A/U . Then N ×S S̃ is a Néron

model for A×U Ũ , where Ũ = S̃ ×S U .

Proof. Let Ỹ → S̃ be a smooth scheme and f̃ : ỸŨ → AŨ a morphism. We may

assume that Ỹ is of finite type over S̃, hence of finite presentation. By [GD67,
3, 8.8.2] there exist an open neighbourhood (resp. étale neighbourhood) S′

of s, a scheme Y ′ → S′ restricting to Ỹ over S̃, and a (U ×S S′)-morphism

f ′ : Y ′ ×S′ (U ×S S′)→ N ×S (U ×S S′) restricting to f̃ on Ũ . By lemma 2.9,
N ×S S′ is a Néron model of N ×S (U ×S S′), hence we get a unique extension

g′ : Y ′ → N×SS′ of f ′. The base-change of g′ via S̃ → S′ gives us the required
unique extension of f̃ .

Proposition 2.13. Assume that S is regular. If A/S is a an abelian algebraic
space, then it is a Néron model of its restriction A×S U .

Proof. Using lemma 2.10, we may assume that S is strictly local and that
A/S is a scheme. We identify A with its double dual A′′ = Pic0

A′/S . Now let
T → S be smooth and f : TU → AU . Then f corresponds to an element of
AU (TU ) = Pic0

A′/S(TU ) = Pic0(A′TU )/Pic0(TU ). Let LU be an invertible sheaf
with fibres of degree 0 on A′TU mapping to f in AU (TU ). As A′T is regular,
LU extends to an invertible sheaf of degree 0 on A′T , which yields a T -point
of A′′ = A extending f . The uniqueness of the extension follows from the
separatedness of A/S.

We conclude the subsection by stating the main theorem about Néron models
in the case where the base S is of dimension 1.

Theorem 2.14 ([BLR90], 1.4/3). Let S be a connected Dedekind scheme with
fraction field K and let A/K be an abelian variety. Then there exists a Néron
model N over S for A/K.

2.3 Semi-abelian models and the action of inertia

Semi-abelian schemes

Definition 2.15. Let κ be a field and G/κ a smooth, commutative κ-group
scheme of finite type. We say that G/κ is semi-abelian if it fits into an exact
sequence of fppf-sheaves over κ
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0→ T → G→ B → 0 (2)

where T/κ is a torus and B/κ an abelian variety. We call µ := dimT the toric
rank of G and α := dimB its abelian rank. These two numbers do not depend
on the choice of exact sequence (2), and are stable under base field extensions.
Notice that G is automatically geometrically connected.

For a general base scheme S, a smooth commutative S-group scheme G/S of
finite type is semi-abelian if for all points s ∈ S, the fibre Gs/k(s) is semi-
abelian.

Given a semi-abelian scheme G/S, we define for later use a function

µ : S → Z≥0 (3)

which associates to a point s ∈ S the toric rank of Gs. It can be shown that it
is an upper semi-continuous function.

Analogously we can define
α : S → Z≥0 (4)

for the abelian rank of fibres. The sum µ+ α is the locally constant function
with value the relative dimension of G/S.

Situation 2.16. For the rest of part I, we assume that we are in situation 2.5
and that we are also given

• an abelian scheme A/U of relative dimension d ≥ 0;

• a smooth, separated S-group scheme of finite presentation A/S, together
with an isomorphism A ×S U → A, such that the fibrewise-connected
component of identity A0/S is semi-abelian.

The assumption that such a semi-abelian extension of A exists tells us a lot
about the structure of a Néron model N/S of A (provided that it exists):

Lemma 2.17. Suppose A/U admits a Néron model N/S. Then the canonical
morphism A → N is an open immersion, and induces an isomorphism from
A0 to the fibrewise-connected component of identity N 0.

Proof. The fact that A → N is an open immersion follows from [GRR72, IX,
Prop. 3.1.e]. For every point s ∈ S of codimension 1, the restriction of N 0

to the local ring OS,s is the Néron model of its generic fibre, by lemma 2.12.
It follows by [Ray70b, XI, 1.15] that the induced morphism A0 → N 0 is an
isomorphism.

In particular, the fibrewise-connected component of N 0/S is semi-abelian.
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The Tate module

For the rest of section 2, we will assume that S is strictly local, with closed
point s and residue field k = k(s) of characteristic p ≥ 0.

Let l be a prime different from p and r ≥ 0 an integer; we denote by A[lr] the
kernel of the multiplication map

lr : A → A.

It is a closed subgroup scheme ofA, étale and quasi-finite over S. Its restriction
A[lr]U/U is a finite, étale U -group scheme of order l2rd. Because its order is
coprime to p, A[lr]U/U is tamely ramified over D. It follows that the action
of Gal(Ks|K) on A[lr](Ks) factors via the quotient map

Gal(Ks|K)→ πt1(U) = Ẑ′(1)n.

We write G for πt1(U) and Ii for the i-th copy of Ẑ′(1), so that G =
⊕n

i=1 Ii.

Let TlA be the l-adic sheaf limrA[lr] on S. The group of Ks-valued points of
its generic fibre is the Tate module

TlA(Ks) = limA[lr](Ks),

a free Zl-module of rank 2d, which inherits a continuous action of πt1(U).

Now, over the closed point s ∈ S there exists an exact sequence

0→ T → A0
s → B → 0

as in (2); for a prime l 6= p, A0
s is l-divisible and it follows that we have an

exact sequence of l-adic sheaves

0→ TlT → TlA0
s → TlB → 0

which in turn gives an exact sequence of Zl-modules

0→ TlT (k)→ TlA0
s(k)→ TlB(k)→ 0 (5)

Write µ and α for µ(s) and α(s). Taking ranks in the exact sequence (5), we
have

• rkTlT (k) = µ,

• rkTlB(k) = 2α,

• rkTlA0
s(k) = µ+ 2α = 2d− µ.
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The following lemma is particularly useful:

Lemma 2.18. The inclusion of l-adic sheaves TlA0 ↪→ TlA restricts to an
equality over the closed point s; that is,

(TlA)s = (TlA0)s (6)

Proof. To prove this, it is enough to check that TlAs(k) = TlA0
s(k). If (xv)v

is an element of the left-hand side, each xv is a lv-torsion element of As(k)
infinitely divisible by l. Let Φ be the group of components of As; it is a
finite abelian group, by the assumption that A is of finite presentation. Let
ϕv be the image of xv in Φ; then ϕv belongs to the lv-torsion subgroup of Φ.
Moreover ϕv is infinitely divisible by l; it follows that ϕv = 0, and that xv lies
in A0

s(k).

The fixed part of the Tate module

Consider again the lr-torsion subscheme A[lr]/S. As S is henselian, there is a
canonical decomposition

A[lr] = A[lr]f t A[lr]′

where A[lr]f/S, called the fixed part of A[lr], is finite over S and A[lr]′s = ∅.
It can be shown that A[lr]f is a subgroup-scheme of A[lr], étale over S. As S
is strictly-henselian, it is a disjoint union of copies of S, and we find

A[lr]f (Ks) = A[lr]f (K) = A[lr]f (S) = A[lr]fs (k) = A[lr]s(k). (7)

We define the fixed part of TlA as the limit TlAf = limA[lr]f ; this is a free
l-adic sheaf, whose group ofKs-valued point is a submodule of the Tate module

TlAf (Ks) =: TlA(Ks)f ⊆ TlA(Ks).

By taking the limit in (7) and applying lemma 2.18, we find

TlA(Ks)f = TlAf (S) = TlAs(k) = TlA0
s(k). (8)

This last equality enables us to determine the rank of the fixed submodule of
the Tate module,

rkTlA
f (Ks) = 2d− µ = rkTlA(Ks)− µ (9)
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Moreover, we have that

TlA0
s(k)⊗ Z/lrZ = A0

s[l
r](k) (10)

since A0
s(k) is l-divisible. Hence,

TlA(Ks)f ⊗Zl Z/lrZ = A0
s[l
r](k). (11)

In other words, TlA
f (Ks)⊗Zl Z/lrZ is the submodule of A[lr](Ks) consisting

of those points that extend to sections of the fibrewise-connected component
of identity A0.

The following proposition gives us an alternative interpretation of the fixed
part of TlA(Ks):

Proposition 2.19. The submodule TlA(Ks)f is the submodule TlA(Ks)G ⊆
TlA(Ks) of elements fixed by G = πt1(U).

Proof. We treat first the case dimS = 1; so S is the spectrum of a discrete
valuation ring. In this case, A/K admits a Néron model, N/S. By assumption,
the fibrewise-connected component of identity A0 is semi-abelian, and we have
an identification N 0 = A0 (lemma 2.17).

Now, equality (8) and lemma 2.18 tell us that

TlA(Ks)f = TlA0
s(k) = TlN 0

s (k) = TlNs(k).

By Hensel’s lemma, Ns[lr](k) = N [lr](S) and by the definition of Néron
model the latter is equal to NK [lr](K) = A[lr](Ks)G. Hence, TlA(Ks)G =
limA[lr](Ks)G is equal to TlNs(k) and we are done.

Let now S have dimension dimS ≥ 2. First, observe that TlA(Ks)f ⊆
TlA(Ks)G: indeed, as TlAf is free, its Ks-valued point are actually K-valued.
We show the reverse inclusion. We start by claiming that there exists a
closed subscheme Z ⊂ S, regular and of dimension 1, such that Z 6⊆ D.
For this, let {t1, . . . , tn} be a system of regular parameters of O(S), cut-
ting out the divisor D. We complete the above set to a maximal system
{t1, . . . , tn, tn+1, . . . , tdimS} of regular parameters and let Z = Z(t1 − t2, t2 −
t3, . . . , tn−1 − tn, tn+1, tn+2, . . . , tdimS). Now, O(Z) is a strictly henselian dis-
crete valuation ring, and the generic point ζ of Z lies in U . We let L =
k(ζ) and H = Gal(Ls|L) for some separable closure L ↪→ Ls. Since A[lr]
is finite étale over U , we have A[lr](K) ⊆ A[lr](L) and by passing to the
limit we obtain TlA(Ks)G ⊆ TlA(Ls)H . Moreover, by the dimension 1 case,
TlA(Ls)H = Tl(AZ)(Ls)f = TlAs(k); the latter is equal to TlA(Ks)f , con-
cluding the proof.
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The toric part of the Tate module

Denote by Ts the biggest subtorus of the semiabelian scheme A0
s; we have an

inclusion of the lr-torsion
Ts[lr] ⊆ A0

s[l
r].

As the restriction functor between the category of finite étale S-schemes and
the category of finite étale k-schemes is an equivalence of categories, we obtain
a canonical finite étale S-subscheme of A0[lr], called the toric part of A0[lr],

A0[lr]t ↪→ A0[lr]f ↪→ A0[lr]

such that A0[lr]t ⊗S k = Ts[lr].

Taking the limit, we find a free subsheaf TlAt of limA0[lr]f = limA[lr]f =
TlAf . Then, passing to the generic fibre, we obtain a submodule TlA(Ks)t of
TlA(Ks)f = TlA(Ks)G ⊆ TlA(Ks), which we call toric part of TlA(Ks). Its
rank is of course the rank of the Zl-module TlTs(k), that is

rkTlA(Ks)t = µ. (12)

To summarize, we have a filtration of the Tate module

0
µ−→ TlA(Ks)t

2α−−→ TlA(Ks)f
µ−→ TlA(Ks)

where the numbers on top of the arrows are the ranks of the successive quo-
tients in the filtration.

The dual abelian variety and Weil pairing

We will now only work with the semi-abelian scheme A0 ⊂ A; for this reason,
we will write simply A for it, rather than A0. Consider the dual abelian variety
A′K of AK . By [MB85, IV, 7.1], there exists a unique semi-abelian schemeA′/S
extending A′K . Let ϕ : AK → A′K be an isogeny; it extends uniquely to an
isogeny A → A′, inducing isogenies

Ts → T ′s , Bs → B′s

between the toric and abelian parts of As and A′s. We deduce the equality
between the toric and abelian ranks

µ = µ′ α = α′.

By [MB85, II, 3.6] the natural functor

BIEXT (A,A′;Gm,S)→ BIEXT (AK ,A′K ;Gm,K)

13



is an equivalence of categories; thus the Poincaré biextension on AK ×K A′K
extends uniquely to a biextension on A×SA′, and we obtain for l 6= p a perfect
pairing

TlA× TlA′ → Tl(Gm) = Zl(1) (13)

of l-adic sheaves on S extending the Weil pairing χ : TlA(Ks) × TlA′(Ks) →
Zl(1).

Lemma 2.20 (Orthogonality theorem). The toric part TlA(Ks)t is the or-
thogonal of the fixed part TlA

′(Ks)f = TlA
′(Ks)G via the pairing χ.

Proof. The proof follows the one given in [GRR72, IX, 2.4]: notice that, by
comparing the ranks, we only need to check that TlA(Ks)t ⊆ (TlA

′(Ks)f )⊥.

We obtain TlA(Ks)t and TlA
′(Ks)f by passing to the Ks-valued points of the

generic fibres of TlAt and TlAf . Therefore, we only need that the restriction
of the pairing (13),

TlAt × TlA′f → Tl(Gm,S)

is the zero pairing. As TlAt and TlAf are constant l-adic sheaves, we may
check this by restricting to the closed fibre. Now, the pairing

TlTs × TlA′s → Tl(Gm,k)

is identically zero by [GRR72, VIII, 4.10].

For each generic point ζi of the irreducible components D1, . . . , Dn of the
divisor D, we can consider a strict henselization Si → S at some geometric
point ζi lying over ζi. Over Si, we can define the l-adic shaves

Tl(ASi)
t ↪→ Tl(ASi)

f ↪→ TlASi .

We define TlA(Ks)ti and TlA(Ks)fi to be the groups of Ks-valued points of
the generic fibre of Tl(ASi)

t and Tl(ASi)
f respectively; they are submodules

of TlA(Ks), of rank µi and 2d − µi respectively; moreover, TlA(Ks)ti and
TlA

′(Ks)fi are orthogonal to each other with respect to the pairing χ. By
proposition 2.19, we have TlA

′(Ks)fi = TlA
′(Ks)Ii ; indeed, Ii = πt1(Si \

{ζi}). Now, as we evidently have TlA
′(Ks)G =

⋂n
i=1 TlA

′(Ks)Ii , by taking
orthogonals with respect to χ we find the relation between toric parts

TlA(Ks)t =

n∑
i=1

TlA(Ks)ti . (14)

Taking ranks and using (12), we find that the function µ : S → Z≥0 satisfies
the relation

µ(s) ≤
n∑
i=1

µ(ζi). (15)
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The action of G on the Tate module is unipotent

We use the orthogonality lemma 2.20 to describe more explicitly the action of
G on the Tate module.

Proposition 2.21. There exists a submodule V of T = TlA(Ks) such that G
acts trivially on V and on the quotient T/V .

Proof. Clearly, G acts trivially on V = TG. Now, as TG is orthogonal to
T ′t (where T ′ = TlA

′(Ks)) via the pairing χ, we obtain a perfect pairing
T/TG × T ′t → Zl(1) which identifies T/TG with HomZl(T

′t,Zl(1)). As T ′t ⊂
T ′G, we conclude that G acts trivially on T/TG.

It follows from the above proposition that the action of G on TlA(Ks) is
unipotent of level 2: that is, writing

ρ : G→ Aut(TlA(Ks)⊗Zl Ql),

we have for every g ∈ G
(ρ(g)− id)2 = 0.

Because the profinite group G acts on a Ql-vector space unipotently and con-
tinuously, the image of ρ is a pro-l-group. Thus, the action of G factors via
its biggest pro-l-quotient

G = Ẑ(1)n = πt1(U)→ πt,l1 (U) = Zl(1)n.

2.4 The group of components of a Néron model

Our objective now is to give an explicit description of the group of compo-
nents of a Néron model, in terms of the Tate modules of A. In [GRR72, IX,
11] a description is provided of the full group of components in the case where
the base has dimension 1. The case of a regular base of higher dimension is
completely analogous; we will follow closely [GRR72], but will restrict our at-
tention only to the prime-to-p part of the group of components; the description
of the p-primary part involves more complicated theory.

We are still under the hypotheses of situation 2.16, with S strictly local, and
now we assume that the abelian scheme A/U admits a Néron model N/S. We
denote by Φ the étale S-group scheme of connected components of N/S. It
fits into an exact sequence of fppf-sheaves

0→ N 0 → N → Φ→ 0.
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Clearly, the restriction of Φ to U is the trivial group scheme.

We are interested in the fibre of Φ over the closed point s ∈ S; this is the étale
k-group scheme of finite type

Φs =
Ns
N 0
s

.

As k is algebraically closed, Φs is determined by its group of k-rational points
Φ := Φs(k), which is a finite abelian group. We have

Φ =
Ns(k)

N 0
s (k)

=
N (S)

N 0(S)
=

A(U)

A(U)0
(16)

where by A(U)0 we denote the subset of A(U) of U -points specializing to
S-points of the identity component N 0. Notice that the second equality is a
consequence of Hensel’s lemma and the third of the defining property of Néron
models.

We let l be a prime different from the residue characteristic p = char k(s) and
n ≥ 0 be an integer. Taking ln-torsion in the exact sequence

0→ A(U)0 → A(U)→ Φ→ 0

gives a long exact sequence

0→ A[ln](U)0 → A[ln](U)→ Φ[ln]→ A(U)0/lnA(U)0 → . . . .

Multiplication by ln on the fiberwise-connected component of identity N 0 is
an étale and surjective morphism; it follows that N 0(S) = A(U)0 is l-divisible;
hence

Φ[ln] =
A[ln](U)

A[ln](U)0
(17)

Now, because A[ln] is finite étale over U , we have A[ln](U) = A[ln](K). Writ-
ing T for TlA(Ks), we see that A[ln](U) = (T ⊗ Z/lnZ)G, so we have an
expression for the part of eq. (17) above the fraction line.

Let’s turn to study A[ln](U)0. This is equal to A[ln](K)0 (again, the exponent 0
denotes those elements specializing to the identity component N 0). The latter,
by the defining property of Néron models, is simply N 0[ln](S). Now, every
section of a quasi-finite separated scheme over S factors via its fixed part, so
N 0[ln](S) = N 0[ln]f (S). Because N 0(S) is l-divisible, we have N 0[ln]f (S) =
(TlN 0)f (S)⊗Zl Z/lnZ. Now, (TlN 0)f (S) is equal to TlA(Ks)f , which in turn
is equal to TlA(Ks)G by proposition 2.19.

This shows that A[ln](K)0 = TlA(Ks)G⊗ZlZ/lnZ. We have found the relation

16



Φ[ln] =
(T ⊗ Z/lnZ)

G

TG ⊗ Z/lnZ
. (18)

By taking the colimit over the powers of l we find that the l-primary part lΦ
of the group of components is given by

lΦ = colimn Φ[ln] =
(T ⊗Ql/Zl)G

TG ⊗Ql/Zl
. (19)

Example 2.22. We give an example in which we compute the 2-torsion of
the group of components of the Néron model of an elliptic curve, in the case of
dimS = 1. Let R = k[[t]] for some algebraically closed field k of characteristic
zero. Let S = SpecR, K be the fraction field of R, and consider the elliptic
curve E/K given in P2

K by

Y 2Z = (X − Z)(X2 − t2Z2).

The same equation gives a nodal model E/S; it follows that E = Pic0
E/K

admits a semi-abelian prolongation, given by Esm = Pic0
E/S .

Let N/S be the Néron model of E over S; the open immersion Esm → N
identifies Esm with N 0. Let Φ be the group of components of the closed fibre
of N .

We work with the prime l = 2; by equation (18), the 2-torsion of Φ is given by

Φ[2] =
E[2](K)

T2E(K)⊗ Z/2Z
.

The Tate module T2E(K) is a free Z2-module of rank 2. Its K-rational part
T2E(K) ⊂ T2E(K) is free, of rank 2 dimE − µ = 2− 1 = 1. Thus, T2E(K)⊗
Z/2Z is a free Z/2Z-submodule of rank 1 of T2E(K)⊗ Z/2Z = E[2](K).

On the other hand, E[2](K) = {(0, 1, 0), (1, 0, 1), (t, 0, 1), (−t, 0, 1)} = E[2](K) ∼=
(Z/2Z)2. We deduce that

Φ[2] ∼= Z/2Z.

Moreover, the points (0, 1, 0) and (1, 0, 1) extend to S-points of Esm = N 0;
while (t, 0, 1) and (−t, 0, 1) do not, as they specialize to the non-smooth point
of E/S. They do extend to S-points of N though, whose restriction to the
closed fibre is contained in the only 2-torsion component different from the
identity component.
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3 Toric-additivity

We work with the hypotheses of situation 2.5; we suppose that we are given an
abelian scheme A/U of relative dimension d, and a semi-abelian scheme A/S
with an isomorphism A×S U → A.

3.1 Definition of toric-additivity in the strictly local case

Assume that S is strictly local, with closed point s and residue field k = k(s) of
characteristic p ≥ 0. The divisor D has finitely many irreducible components
D1, . . . , Dn for some n ≥ 0.

We fix a prime l 6= p and consider the Tate module TlA(Ks); we recall that
it is a free Zl-module of rank 2d with an action of Gal(Ks|K), which factors

via the surjection Gal(Ks|K)→ G := πt,l1 (U) =
⊕n

i=1 Ii, where Ii = Zl(1) for
each i.

Definition 3.1. Let l 6= p be a prime. We say that the semi-abelian scheme
A/S satisfies condition F(l) if

TlA(Ks) =

n∑
i=1

TlA(Ks)⊕j 6=iIj or if n = 0. (20)

Remark 3.2.

• Whether A/S satisfies condition F(l) depends only on the generic fibre
AK/K, and on the base S;

• suppose that A/S satisfies condition F(l); let t be another geometric
point of S, belonging to D1, D2, . . . , Dm for some m ≤ n, and consider
the strict henselization S′ at t. Then the morphism

πt,l1 (U ×S S′)→ πt,l1 (U)

induced by S′ → S is the natural inclusion

m⊕
i=1

Ij →
n⊕
i=1

Ii.

It can be easily seen that
∑n
i=1 TlA(Ks)⊕j 6=iIj ⊆

∑m
i=1 TlA(Ks)⊕j 6=iIj ;

hence AS′/S′ also satisfies condition F(l).

• Condition F(l) is automatically satisfied if n = 1.
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