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show in theorem that it can be equivalently stated as a condition on the
Tate module T} A(K®°P), for any [ invertible on S, or as a condition on the
toric ranks of the fibres of the semi-abelian scheme A/S.

Section [ is devoted to the case of jacobians of curves. After recalling the
results of [Holl7h], we establish the relation between toric-additivity and the
property of existence of a Néron model for the jacobian (theorem [4.17)).

In section [5] we work under the assumption that the base S is a Q-scheme; we
attempt to relate toric-additivity and the property of existence of Néron models
in the case of abelian schemes. We introduce test-Néron models and prove
that they exist and are unique if A/S is toric-additive (proposition and
theorem. After a result on descent of test-Néron models (propositi,
we conclude the section by showing that test-Néron models are Néron models,
under the assumption of toric-additivity (proposition .

2 Generalities

2.1 Normal crossing divisors and tame fundamental group

We work over a connected, regular, locally noetherian, base scheme S.

Definition 2.1. Given a regular, noetherian local ring R, a regular system of
parameters is a minimal subset {r1,...,74} C R of generators for the maximal
ideal m C R.

Definition 2.2. A strict normal crossing divisor D on S is a closed subscheme
D C S such that, for every point s € S, the preimage of D in the local ring
Og,s is the zero locus of a product ry - ... - r,, where {r1,...,r,} is a subset
of a regular system of parameters {ry,...,rq} of Og s.

Write {D;};ez for the set of irreducible components of D. Then each D;, seen
as a reduced closed subscheme of S, is regular and of codimension 1 in .S
moreover, for every finite subset J C Z, the intersection [ e Dj is regular,
and each of its irreducible components has codimension |7 |.

Definition 2.3. A normal crossing divisor D on S is a closed subscheme
D cC S for which there exists an étale surjective morphism S’ — S such that
the base change D x g S’ is a strict normal crossing divisor on S’.

Notice that for every geometric point s of S, the pullback of a normal crossing

divisor D to the spectrum of the strict henselization ng‘s is a strict normal

crossing divisor.



Definition 2.4. A trait Z is an affine scheme with O(Z) a discrete valuation
ring. Suppose we are given a morphism f: Z — S and a normal crossing
divisor D on S; we say that f is transversal to D if for every component D;
of D, D; xg Z is a reduced point or is empty.

We can now introduce the hypotheses with which we will work for most of this
part:

Situation 2.5. Let S be a regular, locally noetherian connected scheme, D =
Uiez Di a normal crossing divisor on S. We will denote by U the open S\ D,
by 7 the generic point of S and by K the residue field k(n). A separable closure
of K will be denoted by K?. Finally, we write (; for the generic point of the
irreducible component D; of D.

Situation 2.6. In situation [2.5] we will often reduce to the simpler case where
S is the spectrum of a strictly henselian local ring R. In this case, we say that
it is a strictly local scheme. We write s for its closed point and p > 0 for
its residue characterstic. We can write the normal crossing divisor D as a
union | J-_, div(r;) where 71,...,7, € R form a subset of a regular system of
parameters for R.

Suppose we are in situation [2.6] It is a consequence of Abhyankar’s Lemma
([GroT1l XIII, 5.2]) that every finite etale morphism V' — U, tamely ramified
over D (|Gro71, XIII, 3.2.c)]), with V' connected, is dominated by a finite étale
W/U given by

o)1, .., Ty)
oWw) =
(W) T -, Ty — g
where the integers my, ..., m, are coprime to p. Denoting by j, ¢y the group-

scheme of r-roots of unity, it follows that Auty (W) =[]\, ftm,,v. Then, the
tame fundamental group of U is

() =[] z(1)"

l#p

Here Z;(1) = lim p;-(U) is non-canonically isomorphic to Z;, an isomorphism
being given by a choice of a compatible system (zr),>1 of primitive {"-roots
of unity. We will sometimes write Z'(1) in place of [, Zi(1).

For a prime [ # p, the factor Z;(1)" of 7% (U)) is the biggest pro-I quotient of
7t (U) and will be denoted by «0''(U). It is the automorphism group of the
fibre functor of finite étale morphisms V' — U of degree a power of [.



2.2 Néron models of abelian schemes
The definition of Néron model

Let now S be any scheme, U C S an open and A/U an abelian scheme.

Definition 2.7. A Néron model for A over S is a smooth, separated algebraic
space E| N/S of finite type, together with an isomorphism N xg U — A,
satisfying the following universal property: for every smooth morphism of
schemes T — S and U-morphism f: Ty — A, there exists a unique morphism
g: T — N such that gy = f.

It follows immediately from the definition that a Néron model is unique up to
unique isomorphism; moreover, applying its defining universal property to the
morphisms m: A xy A — Aji: A — A, and 04: U — A defining the group
structure of A, we see that A//S inherits from A a unique S-group-space
structure.

We also introduce a similar object, which satisfies a weaker universal property:

Definition 2.8. A weak Néron model for A over S is a smooth, separated
algebraic space N'/S of finite type, together with an isomorphism N'x sU — A,
satisfying the following universal property: every section U — A extends
uniquely to a section S — N.

In particular, a Néron model is a weak Néron model. Notice that in the case
of weak Néron models, we do not have any uniqueness statement, and they
need not inherit a group structure from A.

We point out that our definition [2.8 of weak Néron model differs slightly from
the one normally found in the literature: the latter requires that the universal
property is satisfied for all T'— S finite étale.

Base change properties

We proceed to analyse how Néron models behave under different types of base
change. In general, the property of being a Néron model is not stable under
arbitrary base change. However, we have that:

Lemma 2.9. Let N'/S be a Néron model of AJU; let S — S be a smooth
morphism and U’ = U x5 S’. Then the base change N x g S’ is a Néron model
Of AU’-

Ldefined as in [Stal6]TAG 025Y.)


http://stacks.math.columbia.edu/tag/025Y

Proof. Let X — S’ be a smooth scheme with a morphism f: Xy — Ay-; by
composition with the smooth morphism S’ — S we obtain a smooth scheme
X — S and amap X xgU — Ay, which extends uniquely to an S-morphism
X — N. This is the datum of an S’-morphism X — N x g5’ extending f. O

Lemma 2.10. Let N'/S be a smooth, separated algebraic space of finite type
with an isomorphism N xg U — A. Let 8’ — S be a faithfully flat morphism
and write U = U xg S'. If N xg S’ is a Néron model of A xy U’, then N'/S
is a Néron model of A.

Proof. We first show that A//S satisfies the universal property of Néron models
when the smooth morphism 7" — S is the identity. So, let f: U — A be a
section of A/U. To show that f extends to a section S — N we only need to
check that the schematic closure X of f(U) inside A is faithfully flat over S:
indeed, X — S is birational and separated; if it is also flat and surjective it
is automatically an isomorphism. Now, by base change of f we get a closed
immersion f': U’ — A xy U’, which extends to a section ¢’: S" — N x5S’ by
hypothesis. The schematic image ¢'(S”) is necessarily the schematic closure
of f/(U’) inside N xg S’; since taking the schematic closure commutes with
faithfully flat base change, we have ¢’(S’) = X xg.5’. We deduce that X — S'is
faithfully flat, as its base change via S’ — S is such. Hence f: U — A extends
to a section g: S — N. The uniqueness of the extension is a consequence of
the separatedness of \.

Next, let T" — S be smooth and let f: Ty — A. In order to extend f to a
morphism ¢g: T — N, it is enough to show that N x g T satisfies the extension
property for sections Ty — A Xy Ty. By the previous paragraph, it is enough
to know that (N xgT) xg S' = (N xg S§") xg T is a Néron model of (A Xy
Ty) xy U’. This is true by lemma concluding the proof. O

Lemma 2.11. Let A/U be abelian, f: S" — S a smooth surjective morphism,
U =Uxg8, and N'/S" a Néron model of A xg S’. Then there exists a
Néron model N'/S for A.

Proof. Write 8" := 8" xg S’, p1,p2: S” — S’ for the two projections and
q: 8" — S for fop; = fops. By lemma both piA and piN are Néron
models of ¢*A. By the uniqueness of Néron models, we obtain a descent
datum for N along S’ — S. Effectiveness of descent data for algebraic spaces
([Stal6]TAG 0ADV) yields a smooth, separated algebraic space N//S of finite
type. By lemma this is a Néron model for A/U. O

Although Néron models are not stable under base change (not even flat), they
are preserved by localizations, as we see in the following lemma:


http://stacks.math.columbia.edu/tag/0ADV

Lemma 2.12. Assume S is locally noetherian. Let s be a point (resp. geomet-
ric point) of S and S the spectrum of the localization (resp. strict henselization)
at s. Suppose that N'/S is a Néron model for AJU. Then N Xg S is a Néron
model for A Xy Tj’, where U = §><S U.

Proof. Let Y — S be a smooth scheme and f: 17[7 — A amorphism. We may
assume that Y is of finite type over S , hence of finite presentation. By [GDG67,
3, 8.8.2] there exist an open neighbourhood (resp étale neighbourhood) S’
of s, a scheme Y’ — §' restricting to Y over S, and a (U xs S’)-morphism
Y xg (Uxg8) = N xg (U xgS') restricting to f on U. By lemma
N xg 8" is a Néron model of N x g (U x5 S’), hence we get a unique extension
g Y" = N xgS of f'. The base-change of ¢’ via S5 gives us the required
unique extension of f. O

Proposition 2.13. Assume that S is regular. If A/S is a an abelian algebraic
space, then it is a Néron model of its restriction A xg U.

Proof. Using lemma [2.10] we may assume that S is strictly local and that
A/S is a scheme. We identify A with its double dual A” = Pic%, /5. Now let
T — S be smooth and f: Ty — Ay. Then f corresponds to an element of
Au(Ty) = Pic&,/S(TU) = Pico(.A’TU)/ Pic’(Ty). Let Ly be an invertible sheaf
with fibres of degree 0 on A7, mapping to f in Ay (Ty). As A7 is regular,
Ly extends to an invertible sheaf of degree 0 on A’., which yields a T-point
of A” = A extending f. The uniqueness of the extension follows from the
separatedness of A/S. O

We conclude the subsection by stating the main theorem about Néron models
in the case where the base S is of dimension 1.

Theorem 2.14 ([BLR90], 1.4/3). Let S be a connected Dedekind scheme with
fraction field K and let A/K be an abelian variety. Then there exists a Néron
model N over S for A/K.

2.3 Semi-abelian models and the action of inertia
Semi-abelian schemes

Definition 2.15. Let s be a field and G/k a smooth, commutative k-group
scheme of finite type. We say that G/k is semi-abelian if it fits into an exact
sequence of fppf-sheaves over k



0-T—-G—-B—=0 (2)

where T'/k is a torus and B/k an abelian variety. We call p := dim T the toric
rank of G and « := dim B its abelian rank. These two numbers do not depend
on the choice of exact sequence , and are stable under base field extensions.
Notice that G is automatically geometrically connected.

For a general base scheme S, a smooth commutative S-group scheme G/S of
finite type is semi-abelian if for all points s € S, the fibre G,/k(s) is semi-
abelian.

Given a semi-abelian scheme G/S, we define for later use a function
w: S = Zx>o 3)

which associates to a point s € S the toric rank of G,. It can be shown that it
is an upper semi-continuous function.

Analogously we can define

a: S = Zso (4)
for the abelian rank of fibres. The sum p + « is the locally constant function
with value the relative dimension of G/S.

Situation 2.16. For the rest of part I, we assume that we are in situation [2.5
and that we are also given

e an abelian scheme A/U of relative dimension d > 0;

e a smooth, separated S-group scheme of finite presentation .4/S, together
with an isomorphism A xg U — A, such that the fibrewise-connected
component of identity A°/S is semi-abelian.

The assumption that such a semi-abelian extension of A exists tells us a lot
about the structure of a Néron model N'/S of A (provided that it exists):

Lemma 2.17. Suppose A/U admits a Néron model N'/S. Then the canonical
morphism A — N is an open immersion, and induces an isomorphism from
A° to the fibrewise-connected component of identity N.

Proof. The fact that A — A is an open immersion follows from [GRR72| IX,
Prop. 3.1.e]. For every point s € S of codimension 1, the restriction of N
to the local ring Og s is the Néron model of its generic fibre, by lemma m
It follows by [Ray70b, XI, 1.15] that the induced morphism A% — AN7? is an
isomorphism. O

In particular, the fibrewise-connected component of A'°/S is semi-abelian.



The Tate module

For the rest of section [2] we will assume that S is strictly local, with closed
point s and residue field & = k(s) of characteristic p > 0.

Let [ be a prime different from p and r > 0 an integer; we denote by A[l"] the
kernel of the multiplication map

": A= A.

It is a closed subgroup scheme of A, étale and quasi-finite over S. Its restriction
A[l"]y/U is a finite, étale U-group scheme of order [?"¢. Because its order is
coprime to p, A[l"]y/U is tamely ramified over D. It follows that the action
of Gal(K?|K) on A[l"](K?) factors via the quotient map

Gal(K*®|K) — wt(U) = Z'(1)".
We write G for 7}(U) and I; for the i-th copy of Z’(l), so that G = @), I,.

Let T} A be the l-adic sheaf lim, A[l"] on S. The group of K*-valued points of
its generic fibre is the Tate module

TA(K®) = lim A} (K°),

a free Z;-module of rank 2d, which inherits a continuous action of 7f (U).

Now, over the closed point s € S there exists an exact sequence
0-T—-A2—=B—0

as in ; for a prime I # p, A? is I-divisible and it follows that we have an
exact sequence of [-adic sheaves

0—TT — T1A° - T;B — 0
which in turn gives an exact sequence of Z;-modules
0 — TiT(k) — T;A%k) — T;B(k) — 0 (5)

Write p and o for p(s) and a(s). Taking ranks in the exact sequence (), we
have

o rkT)T(k) = p,
o tkT}B(k) = 2a,
o tkTJA%k) = pu+2a = 2d — pu.

10



The following lemma is particularly useful:

Lemma 2.18. The inclusion of l-adic sheaves Ty A? — T A restricts to an
equality over the closed point s; that is,

Proof. To prove this, it is enough to check that Ty A(k) = T3A%(k). If (2,).
is an element of the left-hand side, each z, is a {-torsion element of A (k)
infinitely divisible by [. Let ® be the group of components of A,; it is a
finite abelian group, by the assumption that A is of finite presentation. Let
@y be the image of z, in ®; then ¢, belongs to the [Y-torsion subgroup of ®.

Moreover ¢, is infinitely divisible by [; it follows that ¢, = 0, and that x,, lies
in A%(k). O

The fixed part of the Tate module

Consider again the {"-torsion subscheme A[I"]/S. As S is henselian, there is a
canonical decomposition

All"] = A[I") U AlITY
where A[I")7 /S, called the fived part of A[l"], is finite over S and A[I"]" = 0.
It can be shown that A[I"]7 is a subgroup-scheme of A[l"], étale over S. As S

is strictly-henselian, it is a disjoint union of copies of S, and we find

AT (K®) = ATV (K) = ALY (8) = AL (k) = A)s(k). - (7)

We define the fized part of T)A as the limit T;.A47 = lim A[I"]/; this is a free
[-adic sheaf, whose group of K*-valued point is a submodule of the Tate module

T AT (K®) = TIA(K®)Y C TJA(K?®).
By taking the limit in @ and applying lemma we find

TAK®) = TLAT(S) = TiAs (k) = TLAY (k). (8)

This last equality enables us to determine the rank of the fixed submodule of
the Tate module,

rk TiAY(K®) = 2d — p =tk TLA(K®) — 9)

11



Moreover, we have that
A (k) ® Z)1"Z = AS[I")(k) (10)
since A%(k) is I-divisible. Hence,
T A(K®) @z, )17 = A°[1"](k). (11)

In other words, T} A (K*) ®z, Z/1"7Z is the submodule of A[l"](K*®) consisting
of those points that extend to sections of the fibrewise-connected component
of identity .A°.

The following proposition gives us an alternative interpretation of the fixed
part of T} A(K?):

Proposition 2.19. The submodule TyA(K*)! is the submodule TJA(K®)E C
T, A(K?) of elements fized by G = wi(U).

Proof. We treat first the case dim S = 1; so S is the spectrum of a discrete
valuation ring. In this case, A/ K admits a Néron model, N'/S. By assumption,
the fibrewise-connected component of identity A” is semi-abelian, and we have

an identification N = A° (lemma [2.17).
Now, equality and lemma tell us that

TA(K®) = DAY (k) = TIND (k) = TiNs ().

By Hensel’s lemma, N;[I"](k) = NI"](S) and by the definition of Néron
model the latter is equal to Nx[I"](K) = A[I"](K*)Y. Hence, T}A(K?®)¢ =
lim A[I"](K*)€ is equal to T}N,(k) and we are done.

Let now S have dimension dimS > 2. First, observe that TyA(K®)f C
Ty A(K*®)%: indeed, as Ty A7 is free, its K *-valued point are actually K-valued.
We show the reverse inclusion. We start by claiming that there exists a
closed subscheme Z C S, regular and of dimension 1, such that Z ¢ D.
For this, let {¢1,...,t,} be a system of regular parameters of O(S), cut-
ting out the divisor D. We complete the above set to a maximal system
{t1,.. ., tn,tnt1,-.-,tdim s} of regular parameters and let Z = Z(t1 — ta,ts —
t3y ey tno1 — tny bt tnt2y - - -5 taims ). Now, O(Z) is a strictly henselian dis-
crete valuation ring, and the generic point ( of Z lies in U. We let L =
k() and H = Gal(L*|L) for some separable closure L < L*®. Since A[l"]
is finite étale over U, we have A[I"](K) C A[l"](L) and by passing to the
limit we obtain Ty A(K*)¢ C TyA(L®)H. Moreover, by the dimension 1 case,
TALH = Ti(Az)(L*)F = T1As(k); the latter is equal to TyA(K*)f, con-
cluding the proof. O

12



The toric part of the Tate module

Denote by T, the biggest subtorus of the semiabelian scheme A?; we have an
inclusion of the ["-torsion

T € A

As the restriction functor between the category of finite étale S-schemes and
the category of finite étale k-schemes is an equivalence of categories, we obtain
a canonical finite étale S-subscheme of A°[I"], called the toric part of A°[I"],

At AP s AO[IT)
such that A°[I"]' @5 k = T,[I"].

Taking the limit, we find a free subsheaf T;.A* of lim A°[I"]f = lim A[I"]/ =
T, A7. Then, passing to the generic fibre, we obtain a submodule T A(K*)* of
TAK®), = TIA(K*)Y C T A(K?), which we call toric part of T)A(K*). Tts
rank is of course the rank of the Z;-module T;7;(k), that is

tk TIA(K®) = p. (12)

To summarize, we have a filtration of the Tate module
0L TIAK®) 2% TYA(K®) & TJA(K?)

where the numbers on top of the arrows are the ranks of the successive quo-
tients in the filtration.

The dual abelian variety and Weil pairing

We will now only work with the semi-abelian scheme A° C A; for this reason,
we will write simply A for it, rather than A°. Consider the dual abelian variety
A% of Ag. By [MB85] IV, 7.1], there exists a unique semi-abelian scheme A’/S
extending A%. Let ¢: Ax — A be an isogeny; it extends uniquely to an
isogeny A — A’, inducing isogenies

Ts—T!, Bs— B,

between the toric and abelian parts of A, and A,. We deduce the equality
between the toric and abelian ranks

By [MBS85] II, 3.6] the natural functor
BIEXT(A, A';Gp.s) — BIEXT (A, Ar: G k)

13



is an equivalence of categories; thus the Poincaré biextension on Ax xx A%
extends uniquely to a biextension on A x g.A’, and we obtain for | # p a perfect
pairing

TiAx TI A" — T)(Gy,) = Zy(1) (13)
of l-adic sheaves on S extending the Weil pairing x: TJA(K?®) x T;A'(K?) —
Z,(1).
Lemma 2.20 (Orthogonality theorem). The toric part T,A(K*®)' is the or-
thogonal of the fized part TyA'(K*)f = T A'(K*)% via the pairing x.

Proof. The proof follows the one given in [GRR72, IX, 2.4]: notice that, by
comparing the ranks, we only need to check that Ty A(K*)! C (T A'(K*))*.

We obtain TjA(K*)! and TjA’(K*)/ by passing to the K *-valued points of the
generic fibres of T;.A* and T;.Af. Therefore, we only need that the restriction

of the pairing (13)),
TiA" x TIAT = Ty (Gu,s)

is the zero pairing. As TjA' and T} A7 are constant l-adic sheaves, we may
check this by restricting to the closed fibre. Now, the pairing
TiT: x LA, = Ti(Gn )

is identically zero by [GRRT2] VIII, 4.10]. O

For each generic point (; of the irreducible components Ds,..., D, of the
divisor D, we can consider a strict henselization S; — S at some geometric
point ¢; lying over (;. Over S;, we can define the I-adic shaves

Tl(ASz‘)t — Tl(ASl)f — TlASz

We define T} A(K*®)% and TyA(K*)’i to be the groups of K*-valued points of
the generic fibre of Tj(Ag,)* and T;(As,)’ respectively; they are submodules
of TJA(K?®), of rank p; and 2d — p; respectively; moreover, Ty A(K*®)% and
T, A'(K*)/i are orthogonal to each other with respect to the pairing y. By
proposition we have TJA'(K*)fi = TyA'(K*)i; indeed, I; = mi(S; \
{¢;}). Now, as we evidently have T}A'(K*)¢ = (I, T,A'(K*)i, by taking
orthogonals with respect to x we find the relation between toric parts

TAK®) =) TAK")". (14)

Taking ranks and using , we find that the function p: S — Z>( satisfies
the relation

u(s) < Zu(@)- (15)

14



The action of G on the Tate module is unipotent

We use the orthogonality lemma [2:20] to describe more explicitly the action of
G on the Tate module.

Proposition 2.21. There exists a submodule V' of T = T A(K*) such that G
acts trivially on V' and on the quotient T/V .

Proof. Clearly, G acts trivially on V = T%. Now, as T is orthogonal to
T (where T' = T}A’(K*®)) via the pairing x, we obtain a perfect pairing
T/TY x T'* — Z;(1) which identifies T/T% with Homg, (1", 7Z;(1)). As T" C
T'¢, we conclude that G acts trivially on 7/T¢. O

It follows from the above proposition that the action of G on Ty A(K?®) is
unipotent of level 2: that is, writing

p: G = Aut(TA(K?®) ®z, Q),

we have for every g € G
(p(g) —id)* = 0.

Because the profinite group G acts on a Q;-vector space unipotently and con-
tinuously, the image of p is a pro-l-group. Thus, the action of G factors via
its biggest pro-I-quotient

G=71)" == (U) - =Y(U) = Z,(1)™.

2.4 The group of components of a Néron model

Our objective now is to give an explicit description of the group of compo-
nents of a Néron model, in terms of the Tate modules of A. In [GRR72, IX,
11] a description is provided of the full group of components in the case where
the base has dimension 1. The case of a regular base of higher dimension is
completely analogous; we will follow closely [GRR72], but will restrict our at-
tention only to the prime-to-p part of the group of components; the description
of the p-primary part involves more complicated theory.

We are still under the hypotheses of situation with S strictly local, and
now we assume that the abelian scheme A/U admits a Néron model N'/S. We
denote by @ the étale S-group scheme of connected components of N'/S. It
fits into an exact sequence of fppf-sheaves

0NN =3 —0.

15



Clearly, the restriction of ® to U is the trivial group scheme.

We are interested in the fibre of ® over the closed point s € S; this is the étale
k-group scheme of finite type

N
O, = /\750.
As k is algebraically closed, @, is determined by its group of k-rational points
® := & _(k), which is a finite abelian group. We have
N (k) N(S) AU

- (16)

®= MOk T NO(5) T A

where by A(U)? we denote the subset of A(U) of U-points specializing to
S-points of the identity component A°. Notice that the second equality is a
consequence of Hensel’s lemma and the third of the defining property of Néron
models.

We let [ be a prime different from the residue characteristic p = char k(s) and
n > 0 be an integer. Taking ["”-torsion in the exact sequence

0= AU) - AU) - & -0
gives a long exact sequence
0 — A[I"|(U)° — A[I"|(U) — ®["] — AU)°/I"A(U)° — .. ..

Multiplication by {™ on the fiberwise-connected component of identity N© is
an étale and surjective morphism; it follows that N0(S) = A(U)Y is [-divisible;
hence AU

" = 5 17

Now, because A[l"] is finite étale over U, we have A[I"](U) = A[l"](K). Writ-
ing T for T, A(K?®), we see that A[I"|(U) = (T ® Z/I"Z)%, so we have an
expression for the part of eq. above the fraction line.

Let’s turn to study A[I"](U)°. This is equal to A[I"](K)° (again, the exponent 0
denotes those elements specializing to the identity component N°). The latter,
by the defining property of Néron models, is simply N°[I"](S). Now, every
section of a quasi-finite separated scheme over S factors via its fixed part, so
NOI™)(S) = NO[I"]/(S). Because N(S) is I-divisible, we have N°[I"]/(S) =
(LN (S) @z, Z/1"Z. Now, (TLN?)(S) is equal to Ty A(K*)f, which in turn
is equal to Ty A(K*)“ by proposition ﬁ

This shows that A[I"](K)° = T)A(K*)% ®z, Z/1"Z. We have found the relation
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(T ® Z/1"7)°

U TG @ ZJI"L

(18)

By taking the colimit over the powers of [ we find that the [-primary part ;®
of the group of components is given by

(T ® Q/7)¢

1P = colim,, ®[I"] = TCo 0/

(19)

Example 2.22. We give an example in which we compute the 2-torsion of
the group of components of the Néron model of an elliptic curve, in the case of
dim S = 1. Let R = k[[t]] for some algebraically closed field k of characteristic
zero. Let S = Spec R, K be the fraction field of R, and consider the elliptic
curve E/K given in P2 by

Y2Z = (X - Z2)(X% - 127?).

The same equation gives a nodal model £/S; it follows that E = Pic} /K
admits a semi-abelian prolongation, given by £°™ = Picg /s

Let N/S be the Néron model of E over S; the open immersion £5™ — N
identifies £5™ with N°. Let ® be the group of components of the closed fibre
of .

We work with the prime [ = 2; by equation 7 the 2-torsion of ® is given by

E[2|(K)

*2 = TEw) o2z

The Tate module THF (K) is a free Zg-module of rank 2. Its K-rational part

T, E(K) C T,E(K) is free, of rank 2dim E — = 2 — 1 = 1. Thus, T, E(K) ®
Z/2Z is a free Z/2Z-submodule of rank 1 of To E(K) ® Z/27Z = E2|(K).

On the other hand, E[2](K) = {(0,1,0),(1,0,1), (¢,0,1),(—¢,0,1)} = E[2](K) =
(Z/27)*. We deduce that
D2] 2 7/27.

Moreover, the points (0,1,0) and (1,0,1) extend to S-points of £5™ = N7©;
while (¢,0,1) and (—t¢,0,1) do not, as they specialize to the non-smooth point
of £/S. They do extend to S-points of A/ though, whose restriction to the
closed fibre is contained in the only 2-torsion component different from the
identity component.
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3 Toric-additivity

We work with the hypotheses of situation 2.5} we suppose that we are given an
abelian scheme A/U of relative dimension d, and a semi-abelian scheme A/S
with an isomorphism A xg U — A.

3.1 Definition of toric-additivity in the strictly local case

Assume that S is strictly local, with closed point s and residue field k = k(s) of
characteristic p > 0. The divisor D has finitely many irreducible components
Dy,...,D, for somen > 0.

We fix a prime ! # p and consider the Tate module T} A(K*®); we recall that
it is a free Z;-module of rank 2d with an action of Gal(K?®|K), which factors
via the surjection Gal(K*|K) — G := 70! (U) = @7, I;, where I; = Z;(1) for
each 1.

Definition 3.1. Let [ # p be a prime. We say that the semi-abelian scheme
A/S satisfies condition % (1) if
TAK®) = TAK®*)®#% or if n = 0. (20)
i=1

Remark 3.2.

o Whether A/S satisfies condition % (/) depends only on the generic fibre
Ak /K, and on the base S;

e suppose that A/S satisfies condition % (1); let ¢ be another geometric
point of S, belonging to D1, Do, ..., D,, for some m < n, and consider
the strict henselization S’ at . Then the morphism

U x5 8") — 7' (U)

induced by S’ — S is the natural inclusion

m n

D1, D

i=1 i=1
It can be easily seen that > | TJA(K®)®i#ili C S T A(K®)®i#ili;
hence Ag/ /S’ also satisfies condition ¥ ().

e Condition % (1) is automatically satisfied if n = 1.
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