

# A monodromy criterion for existence of Neron models and a result on semi-factoriality

Orecchia, G.

# Citation

Orecchia, G. (2018, February 27). A monodromy criterion for existence of Neron models and a result on semi-factoriality. Retrieved from https://hdl.handle.net/1887/61150

| Version:         | Not Applicable (or Unknown)                                                                                                            |
|------------------|----------------------------------------------------------------------------------------------------------------------------------------|
| License:         | <u>Licence agreement concerning inclusion of doctoral thesis in the</u><br><u>Institutional Repository of the University of Leiden</u> |
| Downloaded from: | https://hdl.handle.net/1887/61150                                                                                                      |

Note: To cite this publication please use the final published version (if applicable).

Cover Page



# Universiteit Leiden



The following handle holds various files of this Leiden University dissertation: <u>http://hdl.handle.net/1887/61150</u>

Author: Orecchia, G. Title: A monodromy criterion for existence of Neron models and a result on semifactoriality Issue Date: 2018-02-27 show in theorem 3.4 that it can be equivalently stated as a condition on the Tate module  $T_l A(K^{sep})$ , for any l invertible on S, or as a condition on the toric ranks of the fibres of the semi-abelian scheme  $\mathcal{A}/S$ .

Section 4 is devoted to the case of jacobians of curves. After recalling the results of [Hol17b], we establish the relation between toric-additivity and the property of existence of a Néron model for the jacobian (theorem 4.17).

In section 5, we work under the assumption that the base S is a Q-scheme; we attempt to relate toric-additivity and the property of existence of Néron models in the case of abelian schemes. We introduce test-Néron models and prove that they exist and are unique if  $\mathcal{A}/S$  is toric-additive (proposition 5.5 and theorem 5.6). After a result on descent of test-Néron models (proposition 5.7), we conclude the section by showing that test-Néron models are Néron models, under the assumption of toric-additivity (proposition 5.9).

# 2 Generalities

#### 2.1 Normal crossing divisors and tame fundamental group

We work over a connected, regular, locally noetherian, base scheme S.

**Definition 2.1.** Given a regular, noetherian local ring R, a regular system of parameters is a minimal subset  $\{r_1, \ldots, r_d\} \subset R$  of generators for the maximal ideal  $\mathfrak{m} \subset R$ .

**Definition 2.2.** A strict normal crossing divisor D on S is a closed subscheme  $D \subset S$  such that, for every point  $s \in S$ , the preimage of D in the local ring  $\mathcal{O}_{S,s}$  is the zero locus of a product  $r_1 \cdot \ldots \cdot r_n$ , where  $\{r_1, \ldots, r_n\}$  is a subset of a regular system of parameters  $\{r_1, \ldots, r_d\}$  of  $\mathcal{O}_{S,s}$ .

Write  $\{D_i\}_{i\in\mathcal{I}}$  for the set of irreducible components of D. Then each  $D_i$ , seen as a reduced closed subscheme of S, is regular and of codimension 1 in S; moreover, for every finite subset  $\mathcal{J} \subset \mathcal{I}$ , the intersection  $\bigcap_{j\in\mathcal{J}} D_j$  is regular, and each of its irreducible components has codimension  $|\mathcal{J}|$ .

**Definition 2.3.** A normal crossing divisor D on S is a closed subscheme  $D \subset S$  for which there exists an étale surjective morphism  $S' \to S$  such that the base change  $D \times_S S'$  is a strict normal crossing divisor on S'.

Notice that for every geometric point s of S, the pullback of a normal crossing divisor D to the spectrum of the strict henselization  $\mathcal{O}_{S,s}^{sh}$  is a strict normal crossing divisor.

**Definition 2.4.** A *trait* Z is an affine scheme with  $\mathcal{O}(Z)$  a discrete valuation ring. Suppose we are given a morphism  $f: Z \to S$  and a normal crossing divisor D on S; we say that f is *transversal to* D if for every component  $D_i$  of D,  $D_i \times_S Z$  is a reduced point or is empty.

We can now introduce the hypotheses with which we will work for most of this part:

Situation 2.5. Let S be a regular, locally noetherian connected scheme,  $D = \bigcup_{i \in \mathcal{I}} D_i$  a normal crossing divisor on S. We will denote by U the open  $S \setminus D$ , by  $\eta$  the generic point of S and by K the residue field  $k(\eta)$ . A separable closure of K will be denoted by  $K^s$ . Finally, we write  $\zeta_i$  for the generic point of the irreducible component  $D_i$  of D.

Situation 2.6. In situation 2.5, we will often reduce to the simpler case where S is the spectrum of a strictly henselian local ring R. In this case, we say that it is a *strictly local* scheme. We write s for its closed point and  $p \ge 0$  for its residue characteristic. We can write the normal crossing divisor D as a union  $\bigcup_{i=1}^{n} \operatorname{div}(r_i)$  where  $r_1, \ldots, r_n \in R$  form a subset of a regular system of parameters for R.

Suppose we are in situation 2.6. It is a consequence of Abhyankar's Lemma ([Gro71, XIII, 5.2]) that every finite etale morphism  $V \to U$ , tamely ramified over D ([Gro71, XIII, 3.2.c)]), with V connected, is dominated by a finite étale W/U given by

$$\mathcal{O}(W) = \frac{\mathcal{O}(U)[T_1, \dots, T_n]}{T_1 - r_1^{m_1}, \dots, T_n - r_n^{m_n}}$$

where the integers  $m_1, \ldots, m_n$  are coprime to p. Denoting by  $\mu_{r,U}$  the groupscheme of r-roots of unity, it follows that  $\underline{\operatorname{Aut}}_U(W) = \prod_{i=1}^n \mu_{m_i,U}$ . Then, the tame fundamental group of U is

$$\pi_1^t(U) = \prod_{l \neq p} \mathbb{Z}_l(1)^n.$$

Here  $\mathbb{Z}_l(1) = \lim \mu_{l^r}(U)$  is non-canonically isomorphic to  $\mathbb{Z}_l$ , an isomorphism being given by a choice of a compatible system  $(z_{l^r})_{r\geq 1}$  of primitive  $l^r$ -roots of unity. We will sometimes write  $\widehat{\mathbb{Z}}'(1)$  in place of  $\prod_{l\neq n} \mathbb{Z}_l(1)$ .

For a prime  $l \neq p$ , the factor  $\mathbb{Z}_l(1)^n$  of  $\pi_1^t(U)$  is the biggest pro-*l* quotient of  $\pi_1^t(U)$  and will be denoted by  $\pi_1^{t,l}(U)$ . It is the automorphism group of the fibre functor of finite étale morphisms  $V \to U$  of degree a power of *l*.

### 2.2 Néron models of abelian schemes

#### The definition of Néron model

Let now S be any scheme,  $U \subset S$  an open and A/U an abelian scheme.

**Definition 2.7.** A Néron model for A over S is a smooth, separated algebraic space  ${}^{1} \mathcal{N}/S$  of finite type, together with an isomorphism  $\mathcal{N} \times_{S} U \to A$ , satisfying the following universal property: for every smooth morphism of schemes  $T \to S$  and U-morphism  $f: T_U \to A$ , there exists a unique morphism  $g: T \to \mathcal{N}$  such that  $g_{|U} = f$ .

It follows immediately from the definition that a Néron model is unique up to unique isomorphism; moreover, applying its defining universal property to the morphisms  $m: A \times_U A \to A, i: A \to A$ , and  $0_A: U \to A$  defining the group structure of A, we see that  $\mathcal{N}/S$  inherits from A a unique S-group-space structure.

We also introduce a similar object, which satisfies a weaker universal property:

**Definition 2.8.** A weak Néron model for A over S is a smooth, separated algebraic space  $\mathcal{N}/S$  of finite type, together with an isomorphism  $\mathcal{N} \times_S U \to A$ , satisfying the following universal property: every section  $U \to A$  extends uniquely to a section  $S \to \mathcal{N}$ .

In particular, a Néron model is a weak Néron model. Notice that in the case of weak Néron models, we do not have any uniqueness statement, and they need not inherit a group structure from A.

We point out that our definition 2.8 of weak Néron model differs slightly from the one normally found in the literature: the latter requires that the universal property is satisfied for all  $T \to S$  finite étale.

#### Base change properties

We proceed to analyse how Néron models behave under different types of base change. In general, the property of being a Néron model is not stable under arbitrary base change. However, we have that:

**Lemma 2.9.** Let  $\mathcal{N}/S$  be a Néron model of A/U; let  $S' \to S$  be a smooth morphism and  $U' = U \times_S S'$ . Then the base change  $\mathcal{N} \times_S S'$  is a Néron model of  $A_{U'}$ .

<sup>&</sup>lt;sup>1</sup>defined as in [Sta16]TAG 025Y.)

*Proof.* Let  $X \to S'$  be a smooth scheme with a morphism  $f: X_{U'} \to \mathcal{A}_{U'}$ ; by composition with the smooth morphism  $S' \to S$  we obtain a smooth scheme  $X \to S$  and a map  $X \times_S U \to A_U$ , which extends uniquely to an S-morphism  $X \to \mathcal{N}$ . This is the datum of an S'-morphism  $X \to \mathcal{N} \times_S S'$  extending f.  $\Box$ 

**Lemma 2.10.** Let  $\mathcal{N}/S$  be a smooth, separated algebraic space of finite type with an isomorphism  $\mathcal{N} \times_S U \to A$ . Let  $S' \to S$  be a faithfully flat morphism and write  $U' = U \times_S S'$ . If  $\mathcal{N} \times_S S'$  is a Néron model of  $A \times_U U'$ , then  $\mathcal{N}/S$ is a Néron model of A.

Proof. We first show that  $\mathcal{N}/S$  satisfies the universal property of Néron models when the smooth morphism  $T \to S$  is the identity. So, let  $f: U \to A$  be a section of A/U. To show that f extends to a section  $S \to \mathcal{N}$  we only need to check that the schematic closure X of f(U) inside  $\mathcal{N}$  is faithfully flat over S: indeed,  $X \to S$  is birational and separated; if it is also flat and surjective it is automatically an isomorphism. Now, by base change of f we get a closed immersion  $f': U' \to A \times_U U'$ , which extends to a section  $g': S' \to \mathcal{N} \times_S S'$  by hypothesis. The schematic image g'(S') is necessarily the schematic closure of f'(U') inside  $\mathcal{N} \times_S S'$ ; since taking the schematic closure commutes with faithfully flat base change, we have  $g'(S') = X \times_S S'$ . We deduce that  $X \to S$  is faithfully flat, as its base change via  $S' \to S$  is such. Hence  $f: U \to A$  extends to a section  $g: S \to \mathcal{N}$ . The uniqueness of the extension is a consequence of the separatedness of  $\mathcal{N}$ .

Next, let  $T \to S$  be smooth and let  $f: T_U \to A$ . In order to extend f to a morphism  $g: T \to \mathcal{N}$ , it is enough to show that  $\mathcal{N} \times_S T$  satisfies the extension property for sections  $T_U \to A \times_U T_U$ . By the previous paragraph, it is enough to know that  $(\mathcal{N} \times_S T) \times_S S' = (\mathcal{N} \times_S S') \times_S T$  is a Néron model of  $(A \times_U T_U) \times_U U'$ . This is true by lemma 2.9, concluding the proof.

**Lemma 2.11.** Let A/U be abelian,  $f: S' \to S$  a smooth surjective morphism,  $U' = U \times_S S'$ , and  $\mathcal{N}'/S'$  a Néron model of  $A \times_S S'$ . Then there exists a Néron model  $\mathcal{N}/S$  for A.

Proof. Write  $S'' := S' \times_S S'$ ,  $p_1, p_2: S'' \to S'$  for the two projections and  $q: S'' \to S$  for  $f \circ p_1 = f \circ p_2$ . By lemma 2.9, both  $p_1^*\mathcal{N}$  and  $p_2^*\mathcal{N}$  are Néron models of  $q^*A$ . By the uniqueness of Néron models, we obtain a descent datum for  $\mathcal{N}'$  along  $S' \to S$ . Effectiveness of descent data for algebraic spaces ([Sta16]TAG 0ADV) yields a smooth, separated algebraic space  $\mathcal{N}/S$  of finite type. By lemma 2.10, this is a Néron model for A/U.

Although Néron models are not stable under base change (not even flat), they are preserved by localizations, as we see in the following lemma:

**Lemma 2.12.** Assume S is locally noetherian. Let s be a point (resp. geometric point) of S and  $\widetilde{S}$  the spectrum of the localization (resp. strict henselization) at s. Suppose that  $\mathcal{N}/S$  is a Néron model for A/U. Then  $\mathcal{N} \times_S \widetilde{S}$  is a Néron model for  $A \times_U \widetilde{U}$ , where  $\widetilde{U} = \widetilde{S} \times_S U$ .

Proof. Let  $\widetilde{Y} \to \widetilde{S}$  be a smooth scheme and  $\widetilde{f}: \widetilde{Y}_{\widetilde{U}} \to A_{\widetilde{U}}$  a morphism. We may assume that  $\widetilde{Y}$  is of finite type over  $\widetilde{S}$ , hence of finite presentation. By [GD67, 3, 8.8.2] there exist an open neighbourhood (resp. étale neighbourhood) S'of s, a scheme  $Y' \to S'$  restricting to  $\widetilde{Y}$  over  $\widetilde{S}$ , and a  $(U \times_S S')$ -morphism  $f': Y' \times_{S'} (U \times_S S') \to \mathcal{N} \times_S (U \times_S S')$  restricting to  $\widetilde{f}$  on  $\widetilde{U}$ . By lemma 2.9,  $\mathcal{N} \times_S S'$  is a Néron model of  $\mathcal{N} \times_S (U \times_S S')$ , hence we get a unique extension  $g': Y' \to \mathcal{N} \times_S S'$  of f'. The base-change of g' via  $\widetilde{S} \to S'$  gives us the required unique extension of  $\widetilde{f}$ .

**Proposition 2.13.** Assume that S is regular. If A/S is a na abelian algebraic space, then it is a Néron model of its restriction  $A \times_S U$ .

Proof. Using lemma 2.10, we may assume that S is strictly local and that  $\mathcal{A}/S$  is a scheme. We identify  $\mathcal{A}$  with its double dual  $\mathcal{A}'' = \operatorname{Pic}_{\mathcal{A}'/S}^0$ . Now let  $T \to S$  be smooth and  $f: T_U \to \mathcal{A}_U$ . Then f corresponds to an element of  $A_U(T_U) = \operatorname{Pic}_{\mathcal{A}'/S}^0(T_U) = \operatorname{Pic}^0(\mathcal{A}'_{T_U}) / \operatorname{Pic}^0(T_U)$ . Let  $\mathcal{L}_U$  be an invertible sheaf with fibres of degree 0 on  $\mathcal{A}'_{T_U}$  mapping to f in  $\mathcal{A}_U(T_U)$ . As  $\mathcal{A}'_T$  is regular,  $\mathcal{L}_U$  extends to an invertible sheaf of degree 0 on  $\mathcal{A}'_T$ , which yields a T-point of  $\mathcal{A}'' = \mathcal{A}$  extending f. The uniqueness of the extension follows from the separatedness of  $\mathcal{A}/S$ .

We conclude the subsection by stating the main theorem about Néron models in the case where the base S is of dimension 1.

**Theorem 2.14** ([BLR90], 1.4/3). Let S be a connected Dedekind scheme with fraction field K and let A/K be an abelian variety. Then there exists a Néron model N over S for A/K.

#### 2.3 Semi-abelian models and the action of inertia

#### Semi-abelian schemes

**Definition 2.15.** Let  $\kappa$  be a field and  $G/\kappa$  a smooth, commutative  $\kappa$ -group scheme of finite type. We say that  $G/\kappa$  is *semi-abelian* if it fits into an exact sequence of fppf-sheaves over  $\kappa$ 

$$0 \to T \to G \to B \to 0 \tag{2}$$

where  $T/\kappa$  is a torus and  $B/\kappa$  an abelian variety. We call  $\mu := \dim T$  the *toric* rank of G and  $\alpha := \dim B$  its abelian rank. These two numbers do not depend on the choice of exact sequence (2), and are stable under base field extensions. Notice that G is automatically geometrically connected.

For a general base scheme S, a smooth commutative S-group scheme  $\mathcal{G}/S$  of finite type is *semi-abelian* if for all points  $s \in S$ , the fibre  $\mathcal{G}_s/k(s)$  is semi-abelian.

Given a semi-abelian scheme  $\mathcal{G}/S$ , we define for later use a function

$$\mu \colon S \to \mathbb{Z}_{\ge 0} \tag{3}$$

which associates to a point  $s \in S$  the toric rank of  $\mathcal{G}_s$ . It can be shown that it is an upper semi-continuous function.

Analogously we can define

$$\alpha \colon S \to \mathbb{Z}_{\ge 0} \tag{4}$$

for the abelian rank of fibres. The sum  $\mu + \alpha$  is the locally constant function with value the relative dimension of  $\mathcal{G}/S$ .

Situation 2.16. For the rest of part I, we assume that we are in situation 2.5 and that we are also given

- an abelian scheme A/U of relative dimension  $d \ge 0$ ;
- a smooth, separated S-group scheme of finite presentation  $\mathcal{A}/S$ , together with an isomorphism  $\mathcal{A} \times_S U \to A$ , such that the fibrewise-connected component of identity  $\mathcal{A}^0/S$  is semi-abelian.

The assumption that such a semi-abelian extension of A exists tells us a lot about the structure of a Néron model  $\mathcal{N}/S$  of A (provided that it exists):

**Lemma 2.17.** Suppose A/U admits a Néron model N/S. Then the canonical morphism  $\mathcal{A} \to \mathcal{N}$  is an open immersion, and induces an isomorphism from  $\mathcal{A}^0$  to the fibrewise-connected component of identity  $\mathcal{N}^0$ .

Proof. The fact that  $\mathcal{A} \to \mathcal{N}$  is an open immersion follows from [GRR72, IX, Prop. 3.1.e]. For every point  $s \in S$  of codimension 1, the restriction of  $\mathcal{N}^0$ to the local ring  $\mathcal{O}_{S,s}$  is the Néron model of its generic fibre, by lemma 2.12. It follows by [Ray70b, XI, 1.15] that the induced morphism  $\mathcal{A}^0 \to \mathcal{N}^0$  is an isomorphism.

In particular, the fibrewise-connected component of  $\mathcal{N}^0/S$  is semi-abelian.

#### The Tate module

For the rest of section 2, we will assume that S is strictly local, with closed point s and residue field k = k(s) of characteristic  $p \ge 0$ .

Let l be a prime different from p and  $r \ge 0$  an integer; we denote by  $\mathcal{A}[l^r]$  the kernel of the multiplication map

$$l^r \colon \mathcal{A} \to \mathcal{A}.$$

It is a closed subgroup scheme of  $\mathcal{A}$ , étale and quasi-finite over S. Its restriction  $\mathcal{A}[l^r]_U/U$  is a finite, étale U-group scheme of order  $l^{2rd}$ . Because its order is coprime to p,  $\mathcal{A}[l^r]_U/U$  is tamely ramified over D. It follows that the action of  $\operatorname{Gal}(K^s|K)$  on  $\mathcal{A}[l^r](K^s)$  factors via the quotient map

$$\operatorname{Gal}(K^s|K) \to \pi_1^t(U) = \widehat{\mathbb{Z}}'(1)^n.$$

We write G for  $\pi_1^t(U)$  and  $I_i$  for the *i*-th copy of  $\widehat{\mathbb{Z}}'(1)$ , so that  $G = \bigoplus_{i=1}^n I_i$ .

Let  $T_l \mathcal{A}$  be the *l*-adic sheaf  $\lim_r \mathcal{A}[l^r]$  on *S*. The group of  $K^s$ -valued points of its generic fibre is the *Tate module* 

$$T_l A(K^s) = \lim A[l^r](K^s),$$

a free  $\mathbb{Z}_l$ -module of rank 2d, which inherits a continuous action of  $\pi_1^t(U)$ .

Now, over the closed point  $s \in S$  there exists an exact sequence

$$0 \to T \to \mathcal{A}^0_s \to B \to 0$$

as in (2); for a prime  $l \neq p$ ,  $\mathcal{A}_s^0$  is *l*-divisible and it follows that we have an exact sequence of *l*-adic sheaves

$$0 \to T_l T \to T_l \mathcal{A}_s^0 \to T_l B \to 0$$

which in turn gives an exact sequence of  $\mathbb{Z}_l$ -modules

$$0 \to T_l T(k) \to T_l \mathcal{A}_s^0(k) \to T_l B(k) \to 0$$
(5)

Write  $\mu$  and  $\alpha$  for  $\mu(s)$  and  $\alpha(s)$ . Taking ranks in the exact sequence (5), we have

- $\operatorname{rk} T_l T(k) = \mu$ ,
- $\operatorname{rk} T_l B(k) = 2\alpha$ ,
- $\operatorname{rk} T_l \mathcal{A}_s^0(k) = \mu + 2\alpha = 2d \mu.$

The following lemma is particularly useful:

**Lemma 2.18.** The inclusion of *l*-adic sheaves  $T_l \mathcal{A}^0 \hookrightarrow T_l \mathcal{A}$  restricts to an equality over the closed point s; that is,

$$(T_l \mathcal{A})_s = (T_l \mathcal{A}^0)_s \tag{6}$$

Proof. To prove this, it is enough to check that  $T_l \mathcal{A}_s(k) = T_l \mathcal{A}_s^0(k)$ . If  $(x_v)_v$ is an element of the left-hand side, each  $x_v$  is a  $l^v$ -torsion element of  $\mathcal{A}_s(k)$ infinitely divisible by l. Let  $\Phi$  be the group of components of  $\mathcal{A}_s$ ; it is a finite abelian group, by the assumption that  $\mathcal{A}$  is of finite presentation. Let  $\varphi_v$  be the image of  $x_v$  in  $\Phi$ ; then  $\varphi_v$  belongs to the  $l^v$ -torsion subgroup of  $\Phi$ . Moreover  $\varphi_v$  is infinitely divisible by l; it follows that  $\varphi_v = 0$ , and that  $x_v$  lies in  $\mathcal{A}_s^0(k)$ .

#### The fixed part of the Tate module

Consider again the  $l^r$ -torsion subscheme  $\mathcal{A}[l^r]/S$ . As S is henselian, there is a canonical decomposition

$$\mathcal{A}[l^r] = \mathcal{A}[l^r]^f \sqcup \mathcal{A}[l^r]'$$

where  $\mathcal{A}[l^r]^f/S$ , called the fixed part of  $\mathcal{A}[l^r]$ , is finite over S and  $\mathcal{A}[l^r]'_s = \emptyset$ . It can be shown that  $\mathcal{A}[l^r]^f$  is a subgroup-scheme of  $\mathcal{A}[l^r]$ , étale over S. As S is strictly-henselian, it is a disjoint union of copies of S, and we find

$$\mathcal{A}[l^r]^f(K^s) = \mathcal{A}[l^r]^f(K) = \mathcal{A}[l^r]^f(S) = \mathcal{A}[l^r]^f_s(k) = \mathcal{A}[l^r]_s(k).$$
(7)

We define the *fixed part* of  $T_l \mathcal{A}$  as the limit  $T_l \mathcal{A}^f = \lim \mathcal{A}[l^r]^f$ ; this is a free *l*-adic sheaf, whose group of  $K^s$ -valued point is a submodule of the Tate module

$$T_l \mathcal{A}^f(K^s) =: T_l A(K^s)^f \subseteq T_l A(K^s).$$

By taking the limit in (7) and applying lemma 2.18, we find

$$T_l A(K^s)^f = T_l \mathcal{A}^f(S) = T_l \mathcal{A}_s(k) = T_l \mathcal{A}_s^0(k).$$
(8)

This last equality enables us to determine the rank of the fixed submodule of the Tate module,

$$\operatorname{rk} T_l A^f(K^s) = 2d - \mu = \operatorname{rk} T_l A(K^s) - \mu \tag{9}$$

Moreover, we have that

$$T_l \mathcal{A}_s^0(k) \otimes \mathbb{Z}/l^r \mathbb{Z} = \mathcal{A}_s^0[l^r](k)$$
(10)

since  $\mathcal{A}^0_s(k)$  is *l*-divisible. Hence,

$$T_l A(K^s)^f \otimes_{\mathbb{Z}_l} \mathbb{Z}/l^r \mathbb{Z} = \mathcal{A}_s^0[l^r](k).$$
(11)

In other words,  $T_l A^f(K^s) \otimes_{\mathbb{Z}_l} \mathbb{Z}/l^r \mathbb{Z}$  is the submodule of  $A[l^r](K^s)$  consisting of those points that extend to sections of the fibrewise-connected component of identity  $\mathcal{A}^0$ .

The following proposition gives us an alternative interpretation of the fixed part of  $T_l A(K^s)$ :

**Proposition 2.19.** The submodule  $T_lA(K^s)^f$  is the submodule  $T_lA(K^s)^G \subseteq T_lA(K^s)$  of elements fixed by  $G = \pi_1^t(U)$ .

*Proof.* We treat first the case dim S = 1; so S is the spectrum of a discrete valuation ring. In this case, A/K admits a Néron model, N/S. By assumption, the fibrewise-connected component of identity  $\mathcal{A}^0$  is semi-abelian, and we have an identification  $\mathcal{N}^0 = \mathcal{A}^0$  (lemma 2.17).

Now, equality (8) and lemma 2.18 tell us that

$$T_l A(K^s)^f = T_l \mathcal{A}_s^0(k) = \mathcal{T}_l \mathcal{N}_s^0(k) = T_l \mathcal{N}_s(k).$$

By Hensel's lemma,  $\mathcal{N}_s[l^r](k) = \mathcal{N}[l^r](S)$  and by the definition of Néron model the latter is equal to  $\mathcal{N}_K[l^r](K) = A[l^r](K^s)^G$ . Hence,  $T_lA(K^s)^G = \lim A[l^r](K^s)^G$  is equal to  $T_l\mathcal{N}_s(k)$  and we are done.

Let now S have dimension dim  $S \geq 2$ . First, observe that  $T_lA(K^s)^f \subseteq T_lA(K^s)^G$ : indeed, as  $T_lA^f$  is free, its  $K^s$ -valued point are actually K-valued. We show the reverse inclusion. We start by claiming that there exists a closed subscheme  $Z \subset S$ , regular and of dimension 1, such that  $Z \not\subseteq D$ . For this, let  $\{t_1, \ldots, t_n\}$  be a system of regular parameters of  $\mathcal{O}(S)$ , cutting out the divisor D. We complete the above set to a maximal system  $\{t_1, \ldots, t_n, t_{n+1}, \ldots, t_{\dim S}\}$  of regular parameters and let  $Z = Z(t_1 - t_2, t_2 - t_3, \ldots, t_{n-1} - t_n, t_{n+1}, t_{n+2}, \ldots, t_{\dim S})$ . Now,  $\mathcal{O}(Z)$  is a strictly henselian discrete valuation ring, and the generic point  $\zeta$  of Z lies in U. We let  $L = k(\zeta)$  and  $H = \operatorname{Gal}(L^s|L)$  for some separable closure  $L \hookrightarrow L^s$ . Since  $\mathcal{A}[l^r]$  is finite étale over U, we have  $\mathcal{A}[l^r](K) \subseteq \mathcal{A}[l^r](L)$  and by passing to the limit we obtain  $T_lA(K^s)^G \subseteq T_lA(L^s)^H$ . Moreover, by the dimension 1 case,  $T_lA(L^s)^H = T_l(\mathcal{A}_Z)(L^s)^f = T_l\mathcal{A}_s(k)$ ; the latter is equal to  $T_lA(K^s)^f$ , concluding the proof.

#### The toric part of the Tate module

Denote by  $\mathcal{T}_s$  the biggest subtorus of the semiabelian scheme  $\mathcal{A}_s^0$ ; we have an inclusion of the  $l^r$ -torsion

$$\mathcal{T}_s[l^r] \subseteq \mathcal{A}_s^0[l^r].$$

As the restriction functor between the category of finite étale S-schemes and the category of finite étale k-schemes is an equivalence of categories, we obtain a canonical finite étale S-subscheme of  $\mathcal{A}^0[l^r]$ , called the *toric part* of  $\mathcal{A}^0[l^r]$ ,

$$\mathcal{A}^0[l^r]^t \hookrightarrow \mathcal{A}^0[l^r]^f \hookrightarrow \mathcal{A}^0[l^r]$$

such that  $A^0[l^r]^t \otimes_S k = \mathcal{T}_s[l^r].$ 

Taking the limit, we find a free subsheaf  $T_l \mathcal{A}^t$  of  $\lim \mathcal{A}^0[l^r]^f = \lim \mathcal{A}[l^r]^f = T_l \mathcal{A}^f$ . Then, passing to the generic fibre, we obtain a submodule  $T_l \mathcal{A}(K^s)^t$  of  $T_l \mathcal{A}(K^s)^f = T_l \mathcal{A}(K^s)^G \subseteq T_l \mathcal{A}(K^s)$ , which we call *toric part* of  $T_l \mathcal{A}(K^s)$ . Its rank is of course the rank of the  $\mathbb{Z}_l$ -module  $T_l \mathcal{T}_s(k)$ , that is

$$\operatorname{rk} T_l A(K^s)^t = \mu. \tag{12}$$

To summarize, we have a filtration of the Tate module

$$0 \xrightarrow{\mu} T_l A(K^s)^t \xrightarrow{2\alpha} T_l A(K^s)^f \xrightarrow{\mu} T_l A(K^s)$$

where the numbers on top of the arrows are the ranks of the successive quotients in the filtration.

#### The dual abelian variety and Weil pairing

We will now only work with the semi-abelian scheme  $\mathcal{A}^0 \subset \mathcal{A}$ ; for this reason, we will write simply  $\mathcal{A}$  for it, rather than  $\mathcal{A}^0$ . Consider the dual abelian variety  $A'_K$  of  $A_K$ . By [MB85, IV, 7.1], there exists a unique semi-abelian scheme  $\mathcal{A}'/S$ extending  $A'_K$ . Let  $\varphi \colon A_K \to A'_K$  be an isogeny; it extends uniquely to an isogeny  $\mathcal{A} \to \mathcal{A}'$ , inducing isogenies

$$\mathcal{T}_s \to \mathcal{T}'_s, \quad \mathcal{B}_s \to \mathcal{B}'_s$$

between the toric and abelian parts of  $\mathcal{A}_s$  and  $\mathcal{A}'_s$ . We deduce the equality between the toric and abelian ranks

$$\mu = \mu' \quad \alpha = \alpha'.$$

By [MB85, II, 3.6] the natural functor

$$BIEXT(\mathcal{A}, \mathcal{A}'; \mathbb{G}_{m,S}) \to BIEXT(\mathcal{A}_K, \mathcal{A}'_K; \mathbb{G}_{m,K})$$

is an equivalence of categories; thus the Poincaré biextension on  $A_K \times_K A'_K$  extends uniquely to a biextension on  $\mathcal{A} \times_S \mathcal{A}'$ , and we obtain for  $l \neq p$  a perfect pairing

$$T_l \mathcal{A} \times T_l \mathcal{A}' \to T_l(\mathbb{G}_m) = \mathbb{Z}_l(1)$$
(13)

of *l*-adic sheaves on S extending the Weil pairing  $\chi: T_l A(K^s) \times T_l A'(K^s) \to \mathbb{Z}_l(1).$ 

**Lemma 2.20** (Orthogonality theorem). The toric part  $T_lA(K^s)^t$  is the orthogonal of the fixed part  $T_lA'(K^s)^f = T_lA'(K^s)^G$  via the pairing  $\chi$ .

*Proof.* The proof follows the one given in [GRR72, IX, 2.4]: notice that, by comparing the ranks, we only need to check that  $T_l A(K^s)^t \subseteq (T_l A'(K^s)^f)^{\perp}$ .

We obtain  $T_l A(K^s)^t$  and  $T_l A'(K^s)^f$  by passing to the  $K^s$ -valued points of the generic fibres of  $T_l \mathcal{A}^t$  and  $T_l \mathcal{A}^f$ . Therefore, we only need that the restriction of the pairing (13),

$$T_l \mathcal{A}^t \times T_l \mathcal{A}'^f \to T_l(\mathbb{G}_{m,S})$$

is the zero pairing. As  $T_l \mathcal{A}^t$  and  $T_l \mathcal{A}^f$  are constant *l*-adic sheaves, we may check this by restricting to the closed fibre. Now, the pairing

$$T_l \mathcal{T}_s \times T_l \mathcal{A}'_s \to T_l(\mathbb{G}_{m,k})$$

is identically zero by [GRR72, VIII, 4.10].

For each generic point  $\zeta_i$  of the irreducible components  $D_1, \ldots, D_n$  of the divisor D, we can consider a strict henselization  $S_i \to S$  at some geometric point  $\overline{\zeta}_i$  lying over  $\zeta_i$ . Over  $S_i$ , we can define the *l*-adic shaves

$$T_l(A_{S_i})^t \hookrightarrow T_l(A_{S_i})^f \hookrightarrow T_l\mathcal{A}_{S_i}.$$

We define  $T_lA(K^s)^{t_i}$  and  $T_lA(K^s)^{f_i}$  to be the groups of  $K^s$ -valued points of the generic fibre of  $T_l(A_{S_i})^t$  and  $T_l(A_{S_i})^f$  respectively; they are submodules of  $T_lA(K^s)$ , of rank  $\mu_i$  and  $2d - \mu_i$  respectively; moreover,  $T_lA(K^s)^{t_i}$  and  $T_lA'(K^s)^{f_i}$  are orthogonal to each other with respect to the pairing  $\chi$ . By proposition 2.19, we have  $T_lA'(K^s)^{f_i} = T_lA'(K^s)^{I_i}$ ; indeed,  $I_i = \pi_1^t(S_i \setminus \{\overline{\zeta}_i\})$ . Now, as we evidently have  $T_lA'(K^s)^G = \bigcap_{i=1}^n T_lA'(K^s)^{I_i}$ , by taking orthogonals with respect to  $\chi$  we find the relation between toric parts

$$T_l A(K^s)^t = \sum_{i=1}^n T_l A(K^s)^{t_i}.$$
 (14)

Taking ranks and using (12), we find that the function  $\mu: S \to \mathbb{Z}_{\geq 0}$  satisfies the relation

$$\mu(s) \le \sum_{i=1}^{n} \mu(\zeta_i). \tag{15}$$

#### The action of G on the Tate module is unipotent

We use the orthogonality lemma 2.20 to describe more explicitly the action of G on the Tate module.

**Proposition 2.21.** There exists a submodule V of  $T = T_l A(K^s)$  such that G acts trivially on V and on the quotient T/V.

Proof. Clearly, G acts trivially on  $V = T^G$ . Now, as  $T^G$  is orthogonal to  $T'^t$  (where  $T' = T_l A'(K^s)$ ) via the pairing  $\chi$ , we obtain a perfect pairing  $T/T^G \times T'^t \to \mathbb{Z}_l(1)$  which identifies  $T/T^G$  with  $\operatorname{Hom}_{\mathbb{Z}_l}(T'^t, \mathbb{Z}_l(1))$ . As  $T'^t \subset T'^G$ , we conclude that G acts trivially on  $T/T^G$ .

It follows from the above proposition that the action of G on  $T_lA(K^s)$  is unipotent of level 2: that is, writing

$$\rho \colon G \to \operatorname{Aut}(T_l A(K^s) \otimes_{\mathbb{Z}_l} \mathbb{Q}_l),$$

we have for every  $g \in G$ 

$$(\rho(g) - \mathrm{id})^2 = 0.$$

Because the profinite group G acts on a  $\mathbb{Q}_l$ -vector space unipotently and continuously, the image of  $\rho$  is a pro-l-group. Thus, the action of G factors via its biggest pro-l-quotient

$$G = \widehat{\mathbb{Z}}(1)^n = \pi_1^t(U) \to \pi_1^{t,l}(U) = \mathbb{Z}_l(1)^n.$$

#### 2.4 The group of components of a Néron model

Our objective now is to give an explicit description of the group of components of a Néron model, in terms of the Tate modules of A. In [GRR72, IX, 11] a description is provided of the full group of components in the case where the base has dimension 1. The case of a regular base of higher dimension is completely analogous; we will follow closely [GRR72], but will restrict our attention only to the prime-to-p part of the group of components; the description of the p-primary part involves more complicated theory.

We are still under the hypotheses of situation 2.16, with S strictly local, and now we assume that the abelian scheme A/U admits a Néron model  $\mathcal{N}/S$ . We denote by  $\underline{\Phi}$  the étale S-group scheme of connected components of  $\mathcal{N}/S$ . It fits into an exact sequence of fppf-sheaves

$$0 \to \mathcal{N}^0 \to \mathcal{N} \to \underline{\Phi} \to 0.$$

Clearly, the restriction of  $\underline{\Phi}$  to U is the trivial group scheme.

We are interested in the fibre of  $\underline{\Phi}$  over the closed point  $s \in S$ ; this is the étale k-group scheme of finite type

$$\underline{\Phi}_s = \frac{\mathcal{N}_s}{\mathcal{N}_s^0}.$$

As k is algebraically closed,  $\underline{\Phi}_s$  is determined by its group of k-rational points  $\Phi := \underline{\Phi}_s(k)$ , which is a finite abelian group. We have

$$\Phi = \frac{\mathcal{N}_s(k)}{\mathcal{N}_s^0(k)} = \frac{\mathcal{N}(S)}{\mathcal{N}^0(S)} = \frac{A(U)}{A(U)^0} \tag{16}$$

where by  $A(U)^0$  we denote the subset of A(U) of U-points specializing to S-points of the identity component  $\mathcal{N}^0$ . Notice that the second equality is a consequence of Hensel's lemma and the third of the defining property of Néron models.

We let l be a prime different from the residue characteristic p = char k(s) and  $n \ge 0$  be an integer. Taking  $l^n$ -torsion in the exact sequence

$$0 \to A(U)^0 \to A(U) \to \Phi \to 0$$

gives a long exact sequence

$$0 \to A[l^n](U)^0 \to A[l^n](U) \to \Phi[l^n] \to A(U)^0 / l^n A(U)^0 \to \dots$$

Multiplication by  $l^n$  on the fiberwise-connected component of identity  $\mathcal{N}^0$  is an étale and surjective morphism; it follows that  $\mathcal{N}^0(S) = A(U)^0$  is *l*-divisible; hence

$$\Phi[l^n] = \frac{A[l^n](U)}{A[l^n](U)^0}$$
(17)

Now, because  $A[l^n]$  is finite étale over U, we have  $A[l^n](U) = A[l^n](K)$ . Writing T for  $T_lA(K^s)$ , we see that  $A[l^n](U) = (T \otimes \mathbb{Z}/l^n\mathbb{Z})^G$ , so we have an expression for the part of eq. (17) above the fraction line.

Let's turn to study  $A[l^n](U)^0$ . This is equal to  $A[l^n](K)^0$  (again, the exponent 0 denotes those elements specializing to the identity component  $\mathcal{N}^0$ ). The latter, by the defining property of Néron models, is simply  $\mathcal{N}^0[l^n](S)$ . Now, every section of a quasi-finite separated scheme over S factors via its fixed part, so  $\mathcal{N}^0[l^n](S) = \mathcal{N}^0[l^n]^f(S)$ . Because  $\mathcal{N}^0(S)$  is *l*-divisible, we have  $\mathcal{N}^0[l^n]^f(S) = (T_l\mathcal{N}^0)^f(S) \otimes_{\mathbb{Z}_l} \mathbb{Z}/l^n\mathbb{Z}$ . Now,  $(T_l\mathcal{N}^0)^f(S)$  is equal to  $T_lA(K^s)^f$ , which in turn is equal to  $T_lA(K^s)^G$  by proposition 2.19.

This shows that  $A[l^n](K)^0 = T_l A(K^s)^G \otimes_{\mathbb{Z}_l} \mathbb{Z}/l^n \mathbb{Z}$ . We have found the relation

$$\Phi[l^n] = \frac{(T \otimes \mathbb{Z}/l^n \mathbb{Z})^G}{T^G \otimes \mathbb{Z}/l^n \mathbb{Z}}.$$
(18)

By taking the colimit over the powers of l we find that the l-primary part  $_{l}\Phi$  of the group of components is given by

$${}_{l}\Phi = \operatorname{colim}_{n}\Phi[l^{n}] = \frac{(T \otimes \mathbb{Q}_{l}/\mathbb{Z}_{l})^{G}}{T^{G} \otimes \mathbb{Q}_{l}/\mathbb{Z}_{l}}.$$
(19)

**Example 2.22.** We give an example in which we compute the 2-torsion of the group of components of the Néron model of an elliptic curve, in the case of dim S = 1. Let R = k[[t]] for some algebraically closed field k of characteristic zero. Let  $S = \operatorname{Spec} R$ , K be the fraction field of R, and consider the elliptic curve E/K given in  $\mathbb{P}_{K}^{2}$  by

$$Y^2 Z = (X - Z)(X^2 - t^2 Z^2).$$

The same equation gives a nodal model  $\mathcal{E}/S$ ; it follows that  $E = \operatorname{Pic}_{E/K}^{0}$ admits a semi-abelian prolongation, given by  $\mathcal{E}^{sm} = \operatorname{Pic}_{\mathcal{E}/S}^{0}$ .

Let  $\mathcal{N}/S$  be the Néron model of E over S; the open immersion  $\mathcal{E}^{sm} \to \mathcal{N}$  identifies  $\mathcal{E}^{sm}$  with  $\mathcal{N}^0$ . Let  $\Phi$  be the group of components of the closed fibre of  $\mathcal{N}$ .

We work with the prime l = 2; by equation (18), the 2-torsion of  $\Phi$  is given by

$$\Phi[2] = \frac{E[2](K)}{T_2 E(K) \otimes \mathbb{Z}/2\mathbb{Z}}.$$

The Tate module  $T_2E(\overline{K})$  is a free  $\mathbb{Z}_2$ -module of rank 2. Its K-rational part  $T_2E(K) \subset T_2E(\overline{K})$  is free, of rank  $2 \dim E - \mu = 2 - 1 = 1$ . Thus,  $T_2E(K) \otimes \mathbb{Z}/2\mathbb{Z}$  is a free  $\mathbb{Z}/2\mathbb{Z}$ -submodule of rank 1 of  $T_2E(\overline{K}) \otimes \mathbb{Z}/2\mathbb{Z} = E[2](\overline{K})$ .

On the other hand,  $E[2](K) = \{(0, 1, 0), (1, 0, 1), (t, 0, 1), (-t, 0, 1)\} = E[2](\overline{K}) \cong (\mathbb{Z}/2\mathbb{Z})^2$ . We deduce that

$$\Phi[2] \cong \mathbb{Z}/2\mathbb{Z}.$$

Moreover, the points (0, 1, 0) and (1, 0, 1) extend to S-points of  $\mathcal{E}^{sm} = \mathcal{N}^0$ ; while (t, 0, 1) and (-t, 0, 1) do not, as they specialize to the non-smooth point of  $\mathcal{E}/S$ . They do extend to S-points of  $\mathcal{N}$  though, whose restriction to the closed fibre is contained in the only 2-torsion component different from the identity component.

# 3 Toric-additivity

We work with the hypotheses of situation 2.5; we suppose that we are given an abelian scheme A/U of relative dimension d, and a semi-abelian scheme  $\mathcal{A}/S$  with an isomorphism  $\mathcal{A} \times_S U \to A$ .

#### 3.1 Definition of toric-additivity in the strictly local case

Assume that S is strictly local, with closed point s and residue field k = k(s) of characteristic  $p \ge 0$ . The divisor D has finitely many irreducible components  $D_1, \ldots, D_n$  for some  $n \ge 0$ .

We fix a prime  $l \neq p$  and consider the Tate module  $T_lA(K^s)$ ; we recall that it is a free  $\mathbb{Z}_l$ -module of rank 2d with an action of  $\operatorname{Gal}(K^s|K)$ , which factors via the surjection  $\operatorname{Gal}(K^s|K) \to G := \pi_1^{t,l}(U) = \bigoplus_{i=1}^n I_i$ , where  $I_i = \mathbb{Z}_l(1)$  for each *i*.

**Definition 3.1.** Let  $l \neq p$  be a prime. We say that the semi-abelian scheme  $\mathcal{A}/S$  satisfies condition  $\bigstar(l)$  if

$$T_l A(K^s) = \sum_{i=1}^n T_l A(K^s)^{\oplus_{j \neq i} I_j} \text{ or if } n = 0.$$
(20)

Remark 3.2.

- Whether  $\mathcal{A}/S$  satisfies condition  $\bigstar(l)$  depends only on the generic fibre  $A_K/K$ , and on the base S;
- suppose that  $\mathcal{A}/S$  satisfies condition  $\bigstar(l)$ ; let t be another geometric point of S, belonging to  $D_1, D_2, \ldots, D_m$  for some  $m \leq n$ , and consider the strict henselization S' at t. Then the morphism

$$\pi_1^{t,l}(U \times_S S') \to \pi_1^{t,l}(U)$$

induced by  $S' \to S$  is the natural inclusion

$$\bigoplus_{i=1}^m I_j \to \bigoplus_{i=1}^n I_i.$$

It can be easily seen that  $\sum_{i=1}^{n} T_{l}A(K^{s})^{\bigoplus_{j\neq i}I_{j}} \subseteq \sum_{i=1}^{m} T_{l}A(K^{s})^{\bigoplus_{j\neq i}I_{j}}$ ; hence  $\mathcal{A}_{S'}/S'$  also satisfies condition  $\bigstar(l)$ .

• Condition  $\bigstar(l)$  is automatically satisfied if n = 1.