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de Néron et un résultat sur la semi-factorialité
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Chi vuole guardare bene la terra
deve tenersi alla distanza
necessaria.

Italo Calvino, Il barone rampante

General introduction

Reduction of elliptic curves

Consider an elliptic curve E defined over the field of rational numbers Q, given
by some polynomial equation in P2

Q

f(x, y) = y2 + a1xy + a3y − x3 − a2x
2 − a4x− a5 = 0

with a1, a2, a3, a4, a5 ∈ Q. A fundamental technique for studying E (for ex-
ample, for finding its group of rational points) is to study the reduction of E
modulo different primes numbers. As the rational coefficients a1, . . . , a5 need
not be integers, it is a priori not clear how one should reduce the equation
modulo a prime p.

One way to do this, is to apply a linear change of coordinates so that the de-
nominators of the coefficients a1, . . . , a5 are not divisible by p; and then reduce
the resulting equation f ′ modulo p to obtain a polynomial with coefficients in
Fp. There is no unique choice of linear change of coordinates: however, one can
be picked that minimizes the maximal power of p that divides the discriminant
of f ′. The polynomial f ′ is called a minimal Weierstrass model for E at the
prime p. In fact, it turns out that the curve Ep/Fp defined by the reduction of
f ′ modulo p does not depend on which minimal Weierstrass model we choose.

One significant advantage of this approach is that we obtain a reduction map
modulo p on the Q-valued points of E; namely, there is a well defined reduction
function

redp : E(Q)→ Ep(Fp). (1)

Thus, minimal Weierstrass models give a good notion of reduction modulo p.
Their drawback is that the curve Ep/Fp need not be smooth: for every prime
p dividing the discriminant of f(x, y), the reduction Ep has a singular point.
In this case, Ep is not an elliptic curve, and does not admit a group structure.

A first remedy to this issue is to remove the singular point from Ep. The

resulting subcurve E
sm

p is smooth, and admits a unique group structure com-
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patible with the one on E. In other words, we have gained back the group
structure and smoothness at the expenses of projectivity. However, we have
lost something else along the way, that is, the reduction map redp. Indeed the

function E(Q)→ Ep(Fp) does not in general factor via E
sm

p (Fp).

Néron models

Néron models, introduced in 1964 by Andrè Néron in his paper [Nér64], provide
a canonical way of reducing E modulo a prime p, while preserving smoothness,
group structure, and reduction map redp. In fact, the definition makes sense in
the more general setting of an abelian variety A defined over the fraction field
K of a connected Dedekind scheme S of dimension 1. By definition, a Néron
model for AK is a smooth, separated scheme N/S restricting to A over K,
satisfying a universal property: for every smooth scheme T → S and morphism
ϕK : TK → AK , there exists a unique morphism ϕ : T → N extending ϕK .

There is a good reason for asking that the extension property applies to smooth
points TK → AK and not only, say, to K-valued points of AK : namely, the
property ensures that Néron model are unique up to unique isomorphism, and
inherit a group structure from AK .

It is a theorem that Néron models of abelian varieties exist. On the other
hand, although the definiton of Néron model makes sense for arbitrary smooth
schemes of finite type over K, even reasonable schemes like P1

K do not admit
a Néron model.

In the special case of an elliptic curve E over the fraction field K of a discrete
valuation ring R, the Néron model N over S = SpecR has a very concrete
description: one first constructs the minimal Weierstrass modelW/S; its mini-
mal desingularization E/S is the minimal regular model of EK over S. In turn,
its smooth locus Esm/S is the Néron model of EK . The identity component
of N/S is the smooth locus of the minimal Weierstrass model W/S.

Among the numerous applications of Néron models in arithmetic geometry, the
first we want to mention Serre and Tate’s “Néron-Ogg-Shafarevich criterion”
for good reduction of abelian varieties: an abelian variety AK admits a proper,
smooth (hence abelian) model A/S if and only if for some (equivalently, any)
prime l different from the residue characteristic of S, the l-adic Tate module
TlA(Ksep) is unramified (i.e., the inertia group acts trivially on it). Another
important application of Néron models is the semi-stable reduction theorem,
stating that an abelian variety A/K admits a semi-abelian model after some
finite extension K → K ′.
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Néron models of jacobians

One particular class of abelian varieties are jacobians of smooth curves. Given
a smooth curve C over K, we indicate by JK/K its jacobian, an abelian variety
of dimension equal to the genus of CK .

In the case when CK is an elliptic curve, the Abel-Jacobi map CK → JK is
an isomorphism, and we have seen how the Néron model of CK = JK has an
easy description in terms of the minimal regular model C/S of CK .

When CK is a curve of higher genus, Raynaud has shown that it is still possible
to describe the Néron model N/S of JK by means of any regular model C/S.

Namely, one considers the relative Picard sheaf Pic
[0]
C/S that parametrizes line

bundles of total degree zero on each fibre, and takes the quotient by the étale

group scheme given by the closure E ⊂ Pic
[0]
C/S of the unit section e : SpecK →

Pic0
CK/K . The quotient sheaf is representable by a smooth separated scheme

of finite type, which is the Néron model of JK . A detailed explanation can be
found in [BLR90, 9.5].

In recent years, the question has arisen of whether Néron models of jacobians
of curves exist also when the base scheme S has arbitrary dimension. Holmes
showed in [Hol17b] that the answer is in general no: he related the existence
of Néron models to a combinatorial condition, called alignment, on the dual
graphs of the fibres, that is automatically satisfied if dimS = 1. The con-
struction of a stack M̃g,n of aligned n-pointed stable curves and the related
techniques have been fundamental in tackling problems such as resolving the
Abel-Jacobi map Mg,n 99K J , where J is the unique semi-abelian extension
of the universal Jacobian (see [Hol17a] for details).

This thesis

This document is divided in two parts, each one with its own introduction
placed at the beginning of the relative part (sections 1 and 6):

• Part I: A monodromy criterion for existence of Néron models;

• Part II: Semi-factorial nodal curves and Néron lft-models.

In part I, I consider the problem of existence of Néron models of abelian
schemes over bases of arbitrarily high dimension. For an abelian scheme de-
generating to a semi-abelian scheme over a normal crossing divisor, I introduce
a condition, called toric-additivity, on the action of monodromy on the l-adic
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Tate module (for a prime l invertible on S). I show that toric-additivity is
closely related to the property of existence of a Néron model.

In part II, I go back to the case of a base S of dimension 1, and I try to
generalize Raynaud’s construction of the Néron model of a jacobian to the
case of a nodal curve C/K admitting a nodal model C/S. The content of Part
II appears in the paper [Ore17].

The two parts are the result of two distinct projects I pursued during my
doctorate, and as such, they can be read independently one from another. In
order to accommodate the reader, I repeated some of the definitions in the two
parts, to ensure that each of them constitutes a self-contained document. The
definitions are in any case consistent throughout the thesis; however, to avoid
possible confusion, it must be pointed out that in part II I define a circuit of
a graph to be what I called a cycle in part I. The latter is more appropriate
terminology; however, the term circuit-coprime was coined in [Ore17] and I
preferred not to change it since it already appears in a published manuscript.
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5.3 Test-Néron models are Néron models . . . . . . . . . . . . . . . 51

II Semi-factorial nodal curves and Néron lft-models 57
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