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Chi vuole guardare bene la terra
deve tenersi alla distanza
necessaria.

Italo Calvino, Il barone rampante

General introduction

Reduction of elliptic curves

Consider an elliptic curve E defined over the field of rational numbers Q, given
by some polynomial equation in P2

Q

f(x, y) = y2 + a1xy + a3y − x3 − a2x
2 − a4x− a5 = 0

with a1, a2, a3, a4, a5 ∈ Q. A fundamental technique for studying E (for ex-
ample, for finding its group of rational points) is to study the reduction of E
modulo different primes numbers. As the rational coefficients a1, . . . , a5 need
not be integers, it is a priori not clear how one should reduce the equation
modulo a prime p.

One way to do this, is to apply a linear change of coordinates so that the de-
nominators of the coefficients a1, . . . , a5 are not divisible by p; and then reduce
the resulting equation f ′ modulo p to obtain a polynomial with coefficients in
Fp. There is no unique choice of linear change of coordinates: however, one can
be picked that minimizes the maximal power of p that divides the discriminant
of f ′. The polynomial f ′ is called a minimal Weierstrass model for E at the
prime p. In fact, it turns out that the curve Ep/Fp defined by the reduction of
f ′ modulo p does not depend on which minimal Weierstrass model we choose.

One significant advantage of this approach is that we obtain a reduction map
modulo p on the Q-valued points of E; namely, there is a well defined reduction
function

redp : E(Q)→ Ep(Fp). (1)

Thus, minimal Weierstrass models give a good notion of reduction modulo p.
Their drawback is that the curve Ep/Fp need not be smooth: for every prime
p dividing the discriminant of f(x, y), the reduction Ep has a singular point.
In this case, Ep is not an elliptic curve, and does not admit a group structure.

A first remedy to this issue is to remove the singular point from Ep. The

resulting subcurve E
sm

p is smooth, and admits a unique group structure com-
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patible with the one on E. In other words, we have gained back the group
structure and smoothness at the expenses of projectivity. However, we have
lost something else along the way, that is, the reduction map redp. Indeed the

function E(Q)→ Ep(Fp) does not in general factor via E
sm

p (Fp).

Néron models

Néron models, introduced in 1964 by Andrè Néron in his paper [Nér64], provide
a canonical way of reducing E modulo a prime p, while preserving smoothness,
group structure, and reduction map redp. In fact, the definition makes sense in
the more general setting of an abelian variety A defined over the fraction field
K of a connected Dedekind scheme S of dimension 1. By definition, a Néron
model for AK is a smooth, separated scheme N/S restricting to A over K,
satisfying a universal property: for every smooth scheme T → S and morphism
ϕK : TK → AK , there exists a unique morphism ϕ : T → N extending ϕK .

There is a good reason for asking that the extension property applies to smooth
points TK → AK and not only, say, to K-valued points of AK : namely, the
property ensures that Néron model are unique up to unique isomorphism, and
inherit a group structure from AK .

It is a theorem that Néron models of abelian varieties exist. On the other
hand, although the definiton of Néron model makes sense for arbitrary smooth
schemes of finite type over K, even reasonable schemes like P1

K do not admit
a Néron model.

In the special case of an elliptic curve E over the fraction field K of a discrete
valuation ring R, the Néron model N over S = SpecR has a very concrete
description: one first constructs the minimal Weierstrass modelW/S; its mini-
mal desingularization E/S is the minimal regular model of EK over S. In turn,
its smooth locus Esm/S is the Néron model of EK . The identity component
of N/S is the smooth locus of the minimal Weierstrass model W/S.

Among the numerous applications of Néron models in arithmetic geometry, the
first we want to mention Serre and Tate’s “Néron-Ogg-Shafarevich criterion”
for good reduction of abelian varieties: an abelian variety AK admits a proper,
smooth (hence abelian) model A/S if and only if for some (equivalently, any)
prime l different from the residue characteristic of S, the l-adic Tate module
TlA(Ksep) is unramified (i.e., the inertia group acts trivially on it). Another
important application of Néron models is the semi-stable reduction theorem,
stating that an abelian variety A/K admits a semi-abelian model after some
finite extension K → K ′.
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Néron models of jacobians

One particular class of abelian varieties are jacobians of smooth curves. Given
a smooth curve C over K, we indicate by JK/K its jacobian, an abelian variety
of dimension equal to the genus of CK .

In the case when CK is an elliptic curve, the Abel-Jacobi map CK → JK is
an isomorphism, and we have seen how the Néron model of CK = JK has an
easy description in terms of the minimal regular model C/S of CK .

When CK is a curve of higher genus, Raynaud has shown that it is still possible
to describe the Néron model N/S of JK by means of any regular model C/S.

Namely, one considers the relative Picard sheaf Pic
[0]
C/S that parametrizes line

bundles of total degree zero on each fibre, and takes the quotient by the étale

group scheme given by the closure E ⊂ Pic
[0]
C/S of the unit section e : SpecK →

Pic0
CK/K . The quotient sheaf is representable by a smooth separated scheme

of finite type, which is the Néron model of JK . A detailed explanation can be
found in [BLR90, 9.5].

In recent years, the question has arisen of whether Néron models of jacobians
of curves exist also when the base scheme S has arbitrary dimension. Holmes
showed in [Hol17b] that the answer is in general no: he related the existence
of Néron models to a combinatorial condition, called alignment, on the dual
graphs of the fibres, that is automatically satisfied if dimS = 1. The con-
struction of a stack M̃g,n of aligned n-pointed stable curves and the related
techniques have been fundamental in tackling problems such as resolving the
Abel-Jacobi map Mg,n 99K J , where J is the unique semi-abelian extension
of the universal Jacobian (see [Hol17a] for details).

This thesis

This document is divided in two parts, each one with its own introduction
placed at the beginning of the relative part (sections 1 and 6):

• Part I: A monodromy criterion for existence of Néron models;

• Part II: Semi-factorial nodal curves and Néron lft-models.

In part I, I consider the problem of existence of Néron models of abelian
schemes over bases of arbitrarily high dimension. For an abelian scheme de-
generating to a semi-abelian scheme over a normal crossing divisor, I introduce
a condition, called toric-additivity, on the action of monodromy on the l-adic
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Tate module (for a prime l invertible on S). I show that toric-additivity is
closely related to the property of existence of a Néron model.

In part II, I go back to the case of a base S of dimension 1, and I try to
generalize Raynaud’s construction of the Néron model of a jacobian to the
case of a nodal curve C/K admitting a nodal model C/S. The content of Part
II appears in the paper [Ore17].

The two parts are the result of two distinct projects I pursued during my
doctorate, and as such, they can be read independently one from another. In
order to accommodate the reader, I repeated some of the definitions in the two
parts, to ensure that each of them constitutes a self-contained document. The
definitions are in any case consistent throughout the thesis; however, to avoid
possible confusion, it must be pointed out that in part II I define a circuit of
a graph to be what I called a cycle in part I. The latter is more appropriate
terminology; however, the term circuit-coprime was coined in [Ore17] and I
preferred not to change it since it already appears in a published manuscript.
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Part I

A monodromy criterion for
existence of Néron models

1 Introduction

We study the existence of Néron models of abelian varieties over a regular base
of dimension possibly greater than 1. The question of their existence has first
been raised in [Hol17b]: he considered the case of a nodal curve C/S, smooth
over an open dense U ⊂ S, and asked whether the jacobian J := Pic0

CU/U
admits a Néron model over S. The answer to this question turned out to be
related to a restrictive combinatorial condition on the dual graphs of the fibres
of C/S, called alignment. More precisely, one has

Theorem 1.1 ([Hol17b], theorem 5.16, theorem 5.2). Suppose S is regular.

i) if J/U admits a Néron model over S, then C/S is aligned;

ii) if moreover the total space C is regular, and C/S is aligned, then J/U
admits a Néron model over S.

As the existence of a Néron model only depends on S and on the generic fibre
JK , the question arises naturally of whether alignment can be read only in
terms of JK and S. This is what we try to achieve in this paper, in the case
where the degeneracy locus of C/S is a normal crossing divisor, by studying the
Galois action on the Tate module TlJ(Ksep) of the generic fibre, for a prime
l invertible on S. We introduce a new condition, called toric-additivity, on
TlJ(Ksep), which is necessary and sufficient for the existence of a Néron model
of J/U over S (the necessity is subject to restrictions on the base characteristic,
though).

Toric-additivity is in general neither stronger nor weaker than alignment; how-
ever, it is equivalent to it in the case where the total space C is regular. Its
advantage is that it allows us to treat also the case where C is not regular and
does not admit a desingularization. Moreover, as it is a condition on the Tate
module of the generic fibre JK , it behaves well with respect to various types of
base change, with respect to blowing-ups of C, and with respect to isogenies.

Another upshot of toric-additivity is that it can be formulated as a property of
a general abelian scheme A/U admitting a semi-abelian prolongation A/S. We
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obtain a partial generalization of the results for jacobians of curves to this more
general setting: we show that, if the base S has everywhere characteristic zero
(i.e. it is a Q-scheme), toric-additivity is a sufficient condition for the existence
of a Néron model for A over S. The converse is still an open question.

1.1 Toric-additivity

We consider a connected, regular, locally noetherian base scheme S with a
normal crossing divisor D = ∪i∈IDi and an abelian scheme A over the open
complement U = S \D, admitting a semi-abelian prolongation A over S. We
introduce a condition on A/S called toric-additivity (definitions 3.5 and 3.7),
which is defined étale locally on S, and can be expressed in two equivalent
ways (see theorem 3.4) when S is the étale local ring at a geometric point:

• by imposing a strict condition on how the toric rank of the fibres of A/S
varies on D. Roughly, if D1, . . . , Dn are irreducible components of D,
the toric rank at the generic point of D1 ∩ . . . ∩Dn should be the sum
of the toric ranks at the generic points of the Di’s.

• by asking that, for some prime l invertible on S (equivalently, for all
such primes), the biggest pro-l quotient of the tame fundamental group,

πt,l1 (U) =
⊕

i∈I Zl(1), acts in a certain way on the Tate module TlA(Ksep)
of the generic fibre. Namely, there should be a decomposition TlA(Ksep) =⊕

i∈I Vi such that the i-th direct summand of πt,l1 (U) acts trivially on
all Vj with j 6= i.

1.2 Results

We first consider the case of a nodal curve C/S, smooth over U . In this case,
the abelian scheme A/U is the jacobian J := Pic0

CU/U , and its semi-abelian

prolongation A/S is the scheme Pic0
C/S representing the fppf-sheaf on S of

invertible sheaves on C that have degree zero on each component of the fibres
of C/S.

Theorem 1.2 (theorem 4.17).

a) If Pic0
C/S is toric-additive, then J admits a Néron model over S.

b) If moreover S is an excellent Q-scheme, the converse is also true.

The strategy of proof follows these lines: we show that if the hypotheses of a)
or b) are satisfied, there exists a blow-up C′ → C, such that C′/S is still a nodal
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curve, smooth over U , and C′ is regular. As the properties of admitting a Néron
model or of being toric-additive are not affected by the desingularization, we
have reduced to the case where the relative curve has regular total space. In
this case, it can be shown that alignment and toric-additivity are equivalent,
and we apply theorem 1.1.

We partially extend these results to the general case of an abelian scheme A/U
admitting a semi-abelian prolongation on S.

Theorem 1.3 (theorem 5.8). Assume S is a Q-scheme. If A/S is toric-
additive, then A/U admits a Néron model over S.

The theorem is proved by explicitly constructing a Néron model for A. The
construction is carried out by means of an auxiliary object, a test-Néron model
N/S. This is, roughly, defined to be a smooth, separated group-space, which
is a model for A, and such that, for every strictly henselian discrete valua-
tion ring R and morphism SpecR→ S meeting D transversally, the pullback
NZ/Z is a Néron model of its generic fibre. We show that toric-additivity
implies the existence of test-Néron models; and that test-Néron models are
Néron models. We remark that for this last fact, it is crucial that test-Néron
are defined to be group objects; there are examples of objects that are simi-
lar to test-Néron models, in that they satisfy a similar property with respect
to transversal traits, but fail to be a Néron model because they do not ad-
mit a group structure: an example is the balanced Picard stack Pd,g → Mg

constructed by Caporaso in [Cap08].

Whether toric-additivity is also a necessary condition for the existence of a
Néron model is still an open question; the main obstacle is showing that a
Néron model is always a test-Néron model.

1.3 Outline

In section 2, we first recall the definition of a Néron model (definition 2.7)
and state a number of properties regarding the behaviour of Néron models
under different sorts of base change. In the rest of the section, we follow
closely Exposé IX of [GRR72], titled Modèles de Néron et monodromie, where
the authors investigate the relation between the reduction type of the Néron
model and the Galois action on the Tate module; we show that a number of
results that are proved there stay true when the base has dimension higher
than 1. Among these there is the characterization of the l-primary part of the
group of components of a Néron model in terms of the Tate module TlA(Ksep)
of the generic fibre, for a prime l invertible on S (section 2.4).

In section 3, we introduce the condition of toric-additivity (definition 3.5). We
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show in theorem 3.4 that it can be equivalently stated as a condition on the
Tate module TlA(Ksep), for any l invertible on S, or as a condition on the
toric ranks of the fibres of the semi-abelian scheme A/S.

Section 4 is devoted to the case of jacobians of curves. After recalling the
results of [Hol17b], we establish the relation between toric-additivity and the
property of existence of a Néron model for the jacobian (theorem 4.17).

In section 5, we work under the assumption that the base S is a Q-scheme; we
attempt to relate toric-additivity and the property of existence of Néron models
in the case of abelian schemes. We introduce test-Néron models and prove
that they exist and are unique if A/S is toric-additive (proposition 5.5 and
theorem 5.6). After a result on descent of test-Néron models (proposition 5.7),
we conclude the section by showing that test-Néron models are Néron models,
under the assumption of toric-additivity (proposition 5.9).

2 Generalities

2.1 Normal crossing divisors and tame fundamental group

We work over a connected, regular, locally noetherian, base scheme S.

Definition 2.1. Given a regular, noetherian local ring R, a regular system of
parameters is a minimal subset {r1, . . . , rd} ⊂ R of generators for the maximal
ideal m ⊂ R.

Definition 2.2. A strict normal crossing divisor D on S is a closed subscheme
D ⊂ S such that, for every point s ∈ S, the preimage of D in the local ring
OS,s is the zero locus of a product r1 · . . . · rn, where {r1, . . . , rn} is a subset
of a regular system of parameters {r1, . . . , rd} of OS,s.

Write {Di}i∈I for the set of irreducible components of D. Then each Di, seen
as a reduced closed subscheme of S, is regular and of codimension 1 in S;
moreover, for every finite subset J ⊂ I, the intersection

⋂
j∈J Dj is regular,

and each of its irreducible components has codimension |J |.

Definition 2.3. A normal crossing divisor D on S is a closed subscheme
D ⊂ S for which there exists an étale surjective morphism S′ → S such that
the base change D ×S S′ is a strict normal crossing divisor on S′.

Notice that for every geometric point s of S, the pullback of a normal crossing
divisor D to the spectrum of the strict henselization OshS,s is a strict normal
crossing divisor.
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Definition 2.4. A trait Z is an affine scheme with O(Z) a discrete valuation
ring. Suppose we are given a morphism f : Z → S and a normal crossing
divisor D on S; we say that f is transversal to D if for every component Di

of D, Di ×S Z is a reduced point or is empty.

We can now introduce the hypotheses with which we will work for most of this
part:

Situation 2.5. Let S be a regular, locally noetherian connected scheme, D =⋃
i∈I Di a normal crossing divisor on S. We will denote by U the open S \D,

by η the generic point of S and by K the residue field k(η). A separable closure
of K will be denoted by Ks. Finally, we write ζi for the generic point of the
irreducible component Di of D.

Situation 2.6. In situation 2.5, we will often reduce to the simpler case where
S is the spectrum of a strictly henselian local ring R. In this case, we say that
it is a strictly local scheme. We write s for its closed point and p ≥ 0 for
its residue characterstic. We can write the normal crossing divisor D as a
union

⋃n
i=1 div(ri) where r1, . . . , rn ∈ R form a subset of a regular system of

parameters for R.

Suppose we are in situation 2.6. It is a consequence of Abhyankar’s Lemma
([Gro71, XIII, 5.2]) that every finite etale morphism V → U , tamely ramified
over D ([Gro71, XIII, 3.2.c)]), with V connected, is dominated by a finite étale
W/U given by

O(W ) =
O(U)[T1, . . . , Tn]

T1 − rm1
1 , . . . , Tn − rmnn

where the integers m1, . . . ,mn are coprime to p. Denoting by µr,U the group-
scheme of r-roots of unity, it follows that AutU (W ) =

∏n
i=1 µmi,U . Then, the

tame fundamental group of U is

πt1(U) =
∏
l 6=p

Zl(1)n.

Here Zl(1) = limµlr (U) is non-canonically isomorphic to Zl, an isomorphism
being given by a choice of a compatible system (zlr )r≥1 of primitive lr-roots

of unity. We will sometimes write Ẑ′(1) in place of
∏
l 6=p Zl(1).

For a prime l 6= p, the factor Zl(1)n of πt1(U)) is the biggest pro-l quotient of

πt1(U) and will be denoted by πt,l1 (U). It is the automorphism group of the
fibre functor of finite étale morphisms V → U of degree a power of l.
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2.2 Néron models of abelian schemes

The definition of Néron model

Let now S be any scheme, U ⊂ S an open and A/U an abelian scheme.

Definition 2.7. A Néron model for A over S is a smooth, separated algebraic
space 1 N/S of finite type, together with an isomorphism N ×S U → A,
satisfying the following universal property: for every smooth morphism of
schemes T → S and U -morphism f : TU → A, there exists a unique morphism
g : T → N such that g|U = f.

It follows immediately from the definition that a Néron model is unique up to
unique isomorphism; moreover, applying its defining universal property to the
morphisms m : A ×U A → A, i : A → A, and 0A : U → A defining the group
structure of A, we see that N/S inherits from A a unique S-group-space
structure.

We also introduce a similar object, which satisfies a weaker universal property:

Definition 2.8. A weak Néron model for A over S is a smooth, separated
algebraic spaceN/S of finite type, together with an isomorphismN×SU → A,
satisfying the following universal property: every section U → A extends
uniquely to a section S → N .

In particular, a Néron model is a weak Néron model. Notice that in the case
of weak Néron models, we do not have any uniqueness statement, and they
need not inherit a group structure from A.

We point out that our definition 2.8 of weak Néron model differs slightly from
the one normally found in the literature: the latter requires that the universal
property is satisfied for all T → S finite étale.

Base change properties

We proceed to analyse how Néron models behave under different types of base
change. In general, the property of being a Néron model is not stable under
arbitrary base change. However, we have that:

Lemma 2.9. Let N/S be a Néron model of A/U ; let S′ → S be a smooth
morphism and U ′ = U ×S S′. Then the base change N ×S S′ is a Néron model
of AU ′ .

1defined as in [Sta16]TAG 025Y.)
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Proof. Let X → S′ be a smooth scheme with a morphism f : XU ′ → AU ′ ; by
composition with the smooth morphism S′ → S we obtain a smooth scheme
X → S and a map X ×S U → AU , which extends uniquely to an S-morphism
X → N . This is the datum of an S′-morphism X → N ×S S′ extending f .

Lemma 2.10. Let N/S be a smooth, separated algebraic space of finite type
with an isomorphism N ×S U → A. Let S′ → S be a faithfully flat morphism
and write U ′ = U ×S S′. If N ×S S′ is a Néron model of A×U U ′, then N/S
is a Néron model of A.

Proof. We first show thatN/S satisfies the universal property of Néron models
when the smooth morphism T → S is the identity. So, let f : U → A be a
section of A/U . To show that f extends to a section S → N we only need to
check that the schematic closure X of f(U) inside N is faithfully flat over S:
indeed, X → S is birational and separated; if it is also flat and surjective it
is automatically an isomorphism. Now, by base change of f we get a closed
immersion f ′ : U ′ → A×U U ′, which extends to a section g′ : S′ → N ×S S′ by
hypothesis. The schematic image g′(S′) is necessarily the schematic closure
of f ′(U ′) inside N ×S S′; since taking the schematic closure commutes with
faithfully flat base change, we have g′(S′) = X×SS′. We deduce that X → S is
faithfully flat, as its base change via S′ → S is such. Hence f : U → A extends
to a section g : S → N . The uniqueness of the extension is a consequence of
the separatedness of N .

Next, let T → S be smooth and let f : TU → A. In order to extend f to a
morphism g : T → N , it is enough to show that N ×S T satisfies the extension
property for sections TU → A×U TU . By the previous paragraph, it is enough
to know that (N ×S T ) ×S S′ = (N ×S S′) ×S T is a Néron model of (A ×U
TU )×U U ′. This is true by lemma 2.9, concluding the proof.

Lemma 2.11. Let A/U be abelian, f : S′ → S a smooth surjective morphism,
U ′ = U ×S S′, and N ′/S′ a Néron model of A ×S S′. Then there exists a
Néron model N/S for A.

Proof. Write S′′ := S′ ×S S′, p1, p2 : S′′ → S′ for the two projections and
q : S′′ → S for f ◦ p1 = f ◦ p2. By lemma 2.9, both p∗1N and p∗2N are Néron
models of q∗A. By the uniqueness of Néron models, we obtain a descent
datum for N ′ along S′ → S. Effectiveness of descent data for algebraic spaces
([Sta16]TAG 0ADV) yields a smooth, separated algebraic space N/S of finite
type. By lemma 2.10, this is a Néron model for A/U .

Although Néron models are not stable under base change (not even flat), they
are preserved by localizations, as we see in the following lemma:
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Lemma 2.12. Assume S is locally noetherian. Let s be a point (resp. geomet-

ric point) of S and S̃ the spectrum of the localization (resp. strict henselization)

at s. Suppose that N/S is a Néron model for A/U . Then N ×S S̃ is a Néron

model for A×U Ũ , where Ũ = S̃ ×S U .

Proof. Let Ỹ → S̃ be a smooth scheme and f̃ : ỸŨ → AŨ a morphism. We may

assume that Ỹ is of finite type over S̃, hence of finite presentation. By [GD67,
3, 8.8.2] there exist an open neighbourhood (resp. étale neighbourhood) S′

of s, a scheme Y ′ → S′ restricting to Ỹ over S̃, and a (U ×S S′)-morphism

f ′ : Y ′ ×S′ (U ×S S′)→ N ×S (U ×S S′) restricting to f̃ on Ũ . By lemma 2.9,
N ×S S′ is a Néron model of N ×S (U ×S S′), hence we get a unique extension

g′ : Y ′ → N×SS′ of f ′. The base-change of g′ via S̃ → S′ gives us the required
unique extension of f̃ .

Proposition 2.13. Assume that S is regular. If A/S is a an abelian algebraic
space, then it is a Néron model of its restriction A×S U .

Proof. Using lemma 2.10, we may assume that S is strictly local and that
A/S is a scheme. We identify A with its double dual A′′ = Pic0

A′/S . Now let
T → S be smooth and f : TU → AU . Then f corresponds to an element of
AU (TU ) = Pic0

A′/S(TU ) = Pic0(A′TU )/Pic0(TU ). Let LU be an invertible sheaf
with fibres of degree 0 on A′TU mapping to f in AU (TU ). As A′T is regular,
LU extends to an invertible sheaf of degree 0 on A′T , which yields a T -point
of A′′ = A extending f . The uniqueness of the extension follows from the
separatedness of A/S.

We conclude the subsection by stating the main theorem about Néron models
in the case where the base S is of dimension 1.

Theorem 2.14 ([BLR90], 1.4/3). Let S be a connected Dedekind scheme with
fraction field K and let A/K be an abelian variety. Then there exists a Néron
model N over S for A/K.

2.3 Semi-abelian models and the action of inertia

Semi-abelian schemes

Definition 2.15. Let κ be a field and G/κ a smooth, commutative κ-group
scheme of finite type. We say that G/κ is semi-abelian if it fits into an exact
sequence of fppf-sheaves over κ
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0→ T → G→ B → 0 (2)

where T/κ is a torus and B/κ an abelian variety. We call µ := dimT the toric
rank of G and α := dimB its abelian rank. These two numbers do not depend
on the choice of exact sequence (2), and are stable under base field extensions.
Notice that G is automatically geometrically connected.

For a general base scheme S, a smooth commutative S-group scheme G/S of
finite type is semi-abelian if for all points s ∈ S, the fibre Gs/k(s) is semi-
abelian.

Given a semi-abelian scheme G/S, we define for later use a function

µ : S → Z≥0 (3)

which associates to a point s ∈ S the toric rank of Gs. It can be shown that it
is an upper semi-continuous function.

Analogously we can define
α : S → Z≥0 (4)

for the abelian rank of fibres. The sum µ+ α is the locally constant function
with value the relative dimension of G/S.

Situation 2.16. For the rest of part I, we assume that we are in situation 2.5
and that we are also given

• an abelian scheme A/U of relative dimension d ≥ 0;

• a smooth, separated S-group scheme of finite presentation A/S, together
with an isomorphism A ×S U → A, such that the fibrewise-connected
component of identity A0/S is semi-abelian.

The assumption that such a semi-abelian extension of A exists tells us a lot
about the structure of a Néron model N/S of A (provided that it exists):

Lemma 2.17. Suppose A/U admits a Néron model N/S. Then the canonical
morphism A → N is an open immersion, and induces an isomorphism from
A0 to the fibrewise-connected component of identity N 0.

Proof. The fact that A → N is an open immersion follows from [GRR72, IX,
Prop. 3.1.e]. For every point s ∈ S of codimension 1, the restriction of N 0

to the local ring OS,s is the Néron model of its generic fibre, by lemma 2.12.
It follows by [Ray70b, XI, 1.15] that the induced morphism A0 → N 0 is an
isomorphism.

In particular, the fibrewise-connected component of N 0/S is semi-abelian.
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The Tate module

For the rest of section 2, we will assume that S is strictly local, with closed
point s and residue field k = k(s) of characteristic p ≥ 0.

Let l be a prime different from p and r ≥ 0 an integer; we denote by A[lr] the
kernel of the multiplication map

lr : A → A.

It is a closed subgroup scheme ofA, étale and quasi-finite over S. Its restriction
A[lr]U/U is a finite, étale U -group scheme of order l2rd. Because its order is
coprime to p, A[lr]U/U is tamely ramified over D. It follows that the action
of Gal(Ks|K) on A[lr](Ks) factors via the quotient map

Gal(Ks|K)→ πt1(U) = Ẑ′(1)n.

We write G for πt1(U) and Ii for the i-th copy of Ẑ′(1), so that G =
⊕n

i=1 Ii.

Let TlA be the l-adic sheaf limrA[lr] on S. The group of Ks-valued points of
its generic fibre is the Tate module

TlA(Ks) = limA[lr](Ks),

a free Zl-module of rank 2d, which inherits a continuous action of πt1(U).

Now, over the closed point s ∈ S there exists an exact sequence

0→ T → A0
s → B → 0

as in (2); for a prime l 6= p, A0
s is l-divisible and it follows that we have an

exact sequence of l-adic sheaves

0→ TlT → TlA0
s → TlB → 0

which in turn gives an exact sequence of Zl-modules

0→ TlT (k)→ TlA0
s(k)→ TlB(k)→ 0 (5)

Write µ and α for µ(s) and α(s). Taking ranks in the exact sequence (5), we
have

• rkTlT (k) = µ,

• rkTlB(k) = 2α,

• rkTlA0
s(k) = µ+ 2α = 2d− µ.
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The following lemma is particularly useful:

Lemma 2.18. The inclusion of l-adic sheaves TlA0 ↪→ TlA restricts to an
equality over the closed point s; that is,

(TlA)s = (TlA0)s (6)

Proof. To prove this, it is enough to check that TlAs(k) = TlA0
s(k). If (xv)v

is an element of the left-hand side, each xv is a lv-torsion element of As(k)
infinitely divisible by l. Let Φ be the group of components of As; it is a
finite abelian group, by the assumption that A is of finite presentation. Let
ϕv be the image of xv in Φ; then ϕv belongs to the lv-torsion subgroup of Φ.
Moreover ϕv is infinitely divisible by l; it follows that ϕv = 0, and that xv lies
in A0

s(k).

The fixed part of the Tate module

Consider again the lr-torsion subscheme A[lr]/S. As S is henselian, there is a
canonical decomposition

A[lr] = A[lr]f t A[lr]′

where A[lr]f/S, called the fixed part of A[lr], is finite over S and A[lr]′s = ∅.
It can be shown that A[lr]f is a subgroup-scheme of A[lr], étale over S. As S
is strictly-henselian, it is a disjoint union of copies of S, and we find

A[lr]f (Ks) = A[lr]f (K) = A[lr]f (S) = A[lr]fs (k) = A[lr]s(k). (7)

We define the fixed part of TlA as the limit TlAf = limA[lr]f ; this is a free
l-adic sheaf, whose group ofKs-valued point is a submodule of the Tate module

TlAf (Ks) =: TlA(Ks)f ⊆ TlA(Ks).

By taking the limit in (7) and applying lemma 2.18, we find

TlA(Ks)f = TlAf (S) = TlAs(k) = TlA0
s(k). (8)

This last equality enables us to determine the rank of the fixed submodule of
the Tate module,

rkTlA
f (Ks) = 2d− µ = rkTlA(Ks)− µ (9)
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Moreover, we have that

TlA0
s(k)⊗ Z/lrZ = A0

s[l
r](k) (10)

since A0
s(k) is l-divisible. Hence,

TlA(Ks)f ⊗Zl Z/lrZ = A0
s[l
r](k). (11)

In other words, TlA
f (Ks)⊗Zl Z/lrZ is the submodule of A[lr](Ks) consisting

of those points that extend to sections of the fibrewise-connected component
of identity A0.

The following proposition gives us an alternative interpretation of the fixed
part of TlA(Ks):

Proposition 2.19. The submodule TlA(Ks)f is the submodule TlA(Ks)G ⊆
TlA(Ks) of elements fixed by G = πt1(U).

Proof. We treat first the case dimS = 1; so S is the spectrum of a discrete
valuation ring. In this case, A/K admits a Néron model, N/S. By assumption,
the fibrewise-connected component of identity A0 is semi-abelian, and we have
an identification N 0 = A0 (lemma 2.17).

Now, equality (8) and lemma 2.18 tell us that

TlA(Ks)f = TlA0
s(k) = TlN 0

s (k) = TlNs(k).

By Hensel’s lemma, Ns[lr](k) = N [lr](S) and by the definition of Néron
model the latter is equal to NK [lr](K) = A[lr](Ks)G. Hence, TlA(Ks)G =
limA[lr](Ks)G is equal to TlNs(k) and we are done.

Let now S have dimension dimS ≥ 2. First, observe that TlA(Ks)f ⊆
TlA(Ks)G: indeed, as TlAf is free, its Ks-valued point are actually K-valued.
We show the reverse inclusion. We start by claiming that there exists a
closed subscheme Z ⊂ S, regular and of dimension 1, such that Z 6⊆ D.
For this, let {t1, . . . , tn} be a system of regular parameters of O(S), cut-
ting out the divisor D. We complete the above set to a maximal system
{t1, . . . , tn, tn+1, . . . , tdimS} of regular parameters and let Z = Z(t1 − t2, t2 −
t3, . . . , tn−1 − tn, tn+1, tn+2, . . . , tdimS). Now, O(Z) is a strictly henselian dis-
crete valuation ring, and the generic point ζ of Z lies in U . We let L =
k(ζ) and H = Gal(Ls|L) for some separable closure L ↪→ Ls. Since A[lr]
is finite étale over U , we have A[lr](K) ⊆ A[lr](L) and by passing to the
limit we obtain TlA(Ks)G ⊆ TlA(Ls)H . Moreover, by the dimension 1 case,
TlA(Ls)H = Tl(AZ)(Ls)f = TlAs(k); the latter is equal to TlA(Ks)f , con-
cluding the proof.
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The toric part of the Tate module

Denote by Ts the biggest subtorus of the semiabelian scheme A0
s; we have an

inclusion of the lr-torsion
Ts[lr] ⊆ A0

s[l
r].

As the restriction functor between the category of finite étale S-schemes and
the category of finite étale k-schemes is an equivalence of categories, we obtain
a canonical finite étale S-subscheme of A0[lr], called the toric part of A0[lr],

A0[lr]t ↪→ A0[lr]f ↪→ A0[lr]

such that A0[lr]t ⊗S k = Ts[lr].

Taking the limit, we find a free subsheaf TlAt of limA0[lr]f = limA[lr]f =
TlAf . Then, passing to the generic fibre, we obtain a submodule TlA(Ks)t of
TlA(Ks)f = TlA(Ks)G ⊆ TlA(Ks), which we call toric part of TlA(Ks). Its
rank is of course the rank of the Zl-module TlTs(k), that is

rkTlA(Ks)t = µ. (12)

To summarize, we have a filtration of the Tate module

0
µ−→ TlA(Ks)t

2α−−→ TlA(Ks)f
µ−→ TlA(Ks)

where the numbers on top of the arrows are the ranks of the successive quo-
tients in the filtration.

The dual abelian variety and Weil pairing

We will now only work with the semi-abelian scheme A0 ⊂ A; for this reason,
we will write simply A for it, rather than A0. Consider the dual abelian variety
A′K of AK . By [MB85, IV, 7.1], there exists a unique semi-abelian schemeA′/S
extending A′K . Let ϕ : AK → A′K be an isogeny; it extends uniquely to an
isogeny A → A′, inducing isogenies

Ts → T ′s , Bs → B′s

between the toric and abelian parts of As and A′s. We deduce the equality
between the toric and abelian ranks

µ = µ′ α = α′.

By [MB85, II, 3.6] the natural functor

BIEXT (A,A′;Gm,S)→ BIEXT (AK ,A′K ;Gm,K)
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is an equivalence of categories; thus the Poincaré biextension on AK ×K A′K
extends uniquely to a biextension on A×SA′, and we obtain for l 6= p a perfect
pairing

TlA× TlA′ → Tl(Gm) = Zl(1) (13)

of l-adic sheaves on S extending the Weil pairing χ : TlA(Ks) × TlA′(Ks) →
Zl(1).

Lemma 2.20 (Orthogonality theorem). The toric part TlA(Ks)t is the or-
thogonal of the fixed part TlA

′(Ks)f = TlA
′(Ks)G via the pairing χ.

Proof. The proof follows the one given in [GRR72, IX, 2.4]: notice that, by
comparing the ranks, we only need to check that TlA(Ks)t ⊆ (TlA

′(Ks)f )⊥.

We obtain TlA(Ks)t and TlA
′(Ks)f by passing to the Ks-valued points of the

generic fibres of TlAt and TlAf . Therefore, we only need that the restriction
of the pairing (13),

TlAt × TlA′f → Tl(Gm,S)

is the zero pairing. As TlAt and TlAf are constant l-adic sheaves, we may
check this by restricting to the closed fibre. Now, the pairing

TlTs × TlA′s → Tl(Gm,k)

is identically zero by [GRR72, VIII, 4.10].

For each generic point ζi of the irreducible components D1, . . . , Dn of the
divisor D, we can consider a strict henselization Si → S at some geometric
point ζi lying over ζi. Over Si, we can define the l-adic shaves

Tl(ASi)
t ↪→ Tl(ASi)

f ↪→ TlASi .

We define TlA(Ks)ti and TlA(Ks)fi to be the groups of Ks-valued points of
the generic fibre of Tl(ASi)

t and Tl(ASi)
f respectively; they are submodules

of TlA(Ks), of rank µi and 2d − µi respectively; moreover, TlA(Ks)ti and
TlA

′(Ks)fi are orthogonal to each other with respect to the pairing χ. By
proposition 2.19, we have TlA

′(Ks)fi = TlA
′(Ks)Ii ; indeed, Ii = πt1(Si \

{ζi}). Now, as we evidently have TlA
′(Ks)G =

⋂n
i=1 TlA

′(Ks)Ii , by taking
orthogonals with respect to χ we find the relation between toric parts

TlA(Ks)t =

n∑
i=1

TlA(Ks)ti . (14)

Taking ranks and using (12), we find that the function µ : S → Z≥0 satisfies
the relation

µ(s) ≤
n∑
i=1

µ(ζi). (15)
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The action of G on the Tate module is unipotent

We use the orthogonality lemma 2.20 to describe more explicitly the action of
G on the Tate module.

Proposition 2.21. There exists a submodule V of T = TlA(Ks) such that G
acts trivially on V and on the quotient T/V .

Proof. Clearly, G acts trivially on V = TG. Now, as TG is orthogonal to
T ′t (where T ′ = TlA

′(Ks)) via the pairing χ, we obtain a perfect pairing
T/TG × T ′t → Zl(1) which identifies T/TG with HomZl(T

′t,Zl(1)). As T ′t ⊂
T ′G, we conclude that G acts trivially on T/TG.

It follows from the above proposition that the action of G on TlA(Ks) is
unipotent of level 2: that is, writing

ρ : G→ Aut(TlA(Ks)⊗Zl Ql),

we have for every g ∈ G
(ρ(g)− id)2 = 0.

Because the profinite group G acts on a Ql-vector space unipotently and con-
tinuously, the image of ρ is a pro-l-group. Thus, the action of G factors via
its biggest pro-l-quotient

G = Ẑ(1)n = πt1(U)→ πt,l1 (U) = Zl(1)n.

2.4 The group of components of a Néron model

Our objective now is to give an explicit description of the group of compo-
nents of a Néron model, in terms of the Tate modules of A. In [GRR72, IX,
11] a description is provided of the full group of components in the case where
the base has dimension 1. The case of a regular base of higher dimension is
completely analogous; we will follow closely [GRR72], but will restrict our at-
tention only to the prime-to-p part of the group of components; the description
of the p-primary part involves more complicated theory.

We are still under the hypotheses of situation 2.16, with S strictly local, and
now we assume that the abelian scheme A/U admits a Néron model N/S. We
denote by Φ the étale S-group scheme of connected components of N/S. It
fits into an exact sequence of fppf-sheaves

0→ N 0 → N → Φ→ 0.
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Clearly, the restriction of Φ to U is the trivial group scheme.

We are interested in the fibre of Φ over the closed point s ∈ S; this is the étale
k-group scheme of finite type

Φs =
Ns
N 0
s

.

As k is algebraically closed, Φs is determined by its group of k-rational points
Φ := Φs(k), which is a finite abelian group. We have

Φ =
Ns(k)

N 0
s (k)

=
N (S)

N 0(S)
=

A(U)

A(U)0
(16)

where by A(U)0 we denote the subset of A(U) of U -points specializing to
S-points of the identity component N 0. Notice that the second equality is a
consequence of Hensel’s lemma and the third of the defining property of Néron
models.

We let l be a prime different from the residue characteristic p = char k(s) and
n ≥ 0 be an integer. Taking ln-torsion in the exact sequence

0→ A(U)0 → A(U)→ Φ→ 0

gives a long exact sequence

0→ A[ln](U)0 → A[ln](U)→ Φ[ln]→ A(U)0/lnA(U)0 → . . . .

Multiplication by ln on the fiberwise-connected component of identity N 0 is
an étale and surjective morphism; it follows that N 0(S) = A(U)0 is l-divisible;
hence

Φ[ln] =
A[ln](U)

A[ln](U)0
(17)

Now, because A[ln] is finite étale over U , we have A[ln](U) = A[ln](K). Writ-
ing T for TlA(Ks), we see that A[ln](U) = (T ⊗ Z/lnZ)G, so we have an
expression for the part of eq. (17) above the fraction line.

Let’s turn to study A[ln](U)0. This is equal to A[ln](K)0 (again, the exponent 0
denotes those elements specializing to the identity component N 0). The latter,
by the defining property of Néron models, is simply N 0[ln](S). Now, every
section of a quasi-finite separated scheme over S factors via its fixed part, so
N 0[ln](S) = N 0[ln]f (S). Because N 0(S) is l-divisible, we have N 0[ln]f (S) =
(TlN 0)f (S)⊗Zl Z/lnZ. Now, (TlN 0)f (S) is equal to TlA(Ks)f , which in turn
is equal to TlA(Ks)G by proposition 2.19.

This shows that A[ln](K)0 = TlA(Ks)G⊗ZlZ/lnZ. We have found the relation
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Φ[ln] =
(T ⊗ Z/lnZ)

G

TG ⊗ Z/lnZ
. (18)

By taking the colimit over the powers of l we find that the l-primary part lΦ
of the group of components is given by

lΦ = colimn Φ[ln] =
(T ⊗Ql/Zl)G

TG ⊗Ql/Zl
. (19)

Example 2.22. We give an example in which we compute the 2-torsion of
the group of components of the Néron model of an elliptic curve, in the case of
dimS = 1. Let R = k[[t]] for some algebraically closed field k of characteristic
zero. Let S = SpecR, K be the fraction field of R, and consider the elliptic
curve E/K given in P2

K by

Y 2Z = (X − Z)(X2 − t2Z2).

The same equation gives a nodal model E/S; it follows that E = Pic0
E/K

admits a semi-abelian prolongation, given by Esm = Pic0
E/S .

Let N/S be the Néron model of E over S; the open immersion Esm → N
identifies Esm with N 0. Let Φ be the group of components of the closed fibre
of N .

We work with the prime l = 2; by equation (18), the 2-torsion of Φ is given by

Φ[2] =
E[2](K)

T2E(K)⊗ Z/2Z
.

The Tate module T2E(K) is a free Z2-module of rank 2. Its K-rational part
T2E(K) ⊂ T2E(K) is free, of rank 2 dimE − µ = 2− 1 = 1. Thus, T2E(K)⊗
Z/2Z is a free Z/2Z-submodule of rank 1 of T2E(K)⊗ Z/2Z = E[2](K).

On the other hand, E[2](K) = {(0, 1, 0), (1, 0, 1), (t, 0, 1), (−t, 0, 1)} = E[2](K) ∼=
(Z/2Z)2. We deduce that

Φ[2] ∼= Z/2Z.

Moreover, the points (0, 1, 0) and (1, 0, 1) extend to S-points of Esm = N 0;
while (t, 0, 1) and (−t, 0, 1) do not, as they specialize to the non-smooth point
of E/S. They do extend to S-points of N though, whose restriction to the
closed fibre is contained in the only 2-torsion component different from the
identity component.
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3 Toric-additivity

We work with the hypotheses of situation 2.5; we suppose that we are given an
abelian scheme A/U of relative dimension d, and a semi-abelian scheme A/S
with an isomorphism A×S U → A.

3.1 Definition of toric-additivity in the strictly local case

Assume that S is strictly local, with closed point s and residue field k = k(s) of
characteristic p ≥ 0. The divisor D has finitely many irreducible components
D1, . . . , Dn for some n ≥ 0.

We fix a prime l 6= p and consider the Tate module TlA(Ks); we recall that
it is a free Zl-module of rank 2d with an action of Gal(Ks|K), which factors

via the surjection Gal(Ks|K)→ G := πt,l1 (U) =
⊕n

i=1 Ii, where Ii = Zl(1) for
each i.

Definition 3.1. Let l 6= p be a prime. We say that the semi-abelian scheme
A/S satisfies condition F(l) if

TlA(Ks) =

n∑
i=1

TlA(Ks)⊕j 6=iIj or if n = 0. (20)

Remark 3.2.

• Whether A/S satisfies condition F(l) depends only on the generic fibre
AK/K, and on the base S;

• suppose that A/S satisfies condition F(l); let t be another geometric
point of S, belonging to D1, D2, . . . , Dm for some m ≤ n, and consider
the strict henselization S′ at t. Then the morphism

πt,l1 (U ×S S′)→ πt,l1 (U)

induced by S′ → S is the natural inclusion

m⊕
i=1

Ij →
n⊕
i=1

Ii.

It can be easily seen that
∑n
i=1 TlA(Ks)⊕j 6=iIj ⊆

∑m
i=1 TlA(Ks)⊕j 6=iIj ;

hence AS′/S′ also satisfies condition F(l).

• Condition F(l) is automatically satisfied if n = 1.
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We are going to show that the validity of condition F(l) is independent of the
chosen prime l 6= p. We first need an auxiliary lemma, which we recommend
to skip, as its only utility is to show that some specific submodules of the Tate
module are direct summands. This simplifies some later proofs.

Lemma 3.3. The Tate module TlA(Ks) satisfies the following properties:

i) There exists a decomposition of T := TlA(Ks) into a direct sum

T ∼=
⊕

J⊆{1,...,n}

TJ

where, for every J ⊆ {1, . . . , n}, the submodule of invariants T
⊕
j∈J Ij is

equal to
⊕

J′⊇J TJ′ .

ii) The submodule
∑n
i=1 TlA(Ks)⊕j 6=iIj is a direct summand of TlA(Ks).

Proof. We start with the proof of i). Notice first that, for any submodule
V ⊆ T and any subgroup H ⊆ G, the submodule of invariants V H is a direct
summand of V ; indeed, the quotient V/V H is torsion-free. Now we proceed
by induction on n. If n = 1, write T{1} := T I1 , and T∅ = T/T I1 . In this case
we have T ∼= T{1} ⊕ T∅ as wished. Now let m ≥ 2, assume that the statement
is true for n = m− 1, and let n = m. By inductive hypothesis, we can write

T ∼=
⊕

J⊆{1,...,m−1}

TJ (21)

as in the statement. Define, for every J ⊆ {1, . . . ,m},

VJ =

{
(TJ∩{1,...,m−1})

Im if m ∈ J ;

TJ/(TJ)Im if m 6∈ J.

It is easy to show that T ∼=
⊕

J⊆{1,...,m} VJ . Now, let J ⊆ {1, . . . ,m}. Suppose
first that m 6∈ J . Then we have

T
⊕
j∈J Ij ∼=

⊕
J⊆J′⊆{1,...,m−1}

TJ′ ∼=
⊕

J⊆J′⊆{1,...,m−1}

TJ′/(TJ′)
Im ⊕ (TJ′)

Im ∼=

∼=
⊕

J⊆J′⊆{1,...,m−1}

VJ′ ⊕ VJ′∪{m} ∼=
⊕

J⊆J′⊆{1,...,m}

VJ′ .

If instead m ∈ J , then

T
⊕
j∈J Ij ∼= (T

⊕
j∈J\{m} Ij )Im ∼=

⊕
J\{m}⊆J′⊆{1,...,m}

(VJ′)
Im .
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Now, for a subset J ′ ⊆ {1, . . . ,m}, (VJ′)
Im 6= 0 only if m ∈ J ′; in this case,

(VJ′)
Im = VJ′ . It follows that

T
⊕
j∈J Ij ∼=

⊕
J⊆J′⊆{1,...,m}

VJ′ .

This proves i).

For ii), notice that for all i = 1, . . . , n, we have

T
⊕
j 6=i Ij ∼= T{1,...,n} ⊕ T{1,...,n}\{i}

and
n∑
i=1

T
⊕
j 6=i Ij ∼= T{1,...,n} ⊕

n⊕
i=1

T{1,...,n}\{i}.

Because of the decomposition of part i), we see that
∑n
i=1 T

⊕
j 6=i Ij is indeed

a direct summand of T .

Recall the upper semi-continuous function (3) µ : S → Z≥0. It takes the value
µ(s) at the closed point of S, and the value µ(ζi) at each generic point ζi of
Di.

Recall the inequality (15),

µ(s) ≤
n∑
i=1

µ(ζi). (22)

Theorem 3.4. Let S be a regular, strictly local scheme, with closed point s
of residue characteristic p ≥ 0, D =

⋃n
i=1Di a normal crossing divisor on S.

Let A be an abelian scheme over U = S \D, of relative dimension d, admitting
a semi-abelian prolongation A/S. Let l 6= p be a prime.

The following conditions are equivalent:

a) A/S satisfies condition F(l).

b) For i = 1, . . . , n, let ζi be the generic point of Di. The function µ : S →
Z≥0 satisfies

µ(s) =

n∑
i=1

µ(ζi).

c) Let G = πt1(U) =
⊕
Ii with Ii = Ẑ′(1). The Tate module TlA(Ks)

decomposes as a direct sum

TlA(Ks) = V1 ⊕ V2 ⊕ . . .⊕ Vn
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of G-invariant submodules, such that for each i = 1, . . . , n and each
j 6= i, Ii ⊂ G acts trivially on Vj.

Proof. We will write shorthand T for TlA(Ks), µ for µ(s) and µi for µ(ζi). Let
us start with the equivalence a) ⇔ b); we are going to proceed by induction
on the number n. The case n = 0 being trivial, let first n = 1: in this case,
condition F(l) is automatically satisfied. We have to check that µ = µ1, i.e.
the toric rank at the closed point s is the same as the toric rank at the generic
point of the (irreducible) divisor D. We know by eq. (22) that µ ≤ µ1; since
µ : S → Z≥0 is upper-semicontinuous, we have the equality.

Let now N be an integer ≥ 2 and assume that the equivalence a) ⇔ b) is
true when n = N − 1; we show that it is true for n = N . In general we have
T ⊇

∑n
i=1 T

⊕j 6=iIj , with equality if condition F(l) is satisfied. We compare
the ranks of the two sides. On the one hand, the rank of T is 2d. Now write
Ti for T⊕j 6=iIj . We have

rk

n∑
i=1

Ti =

n∑
i=1

rkTi +

n∑
k=2

(−1)k
∑

J⊂{1,...,n},#J=k

rk
⋂
j∈J

Tj

by an inclusion-exclusion argument. However, for every J ⊂ {1, . . . , n} with
#J ≥ 2,

⋂
j∈J Tj = TG. The equality above becomes

rk

n∑
i=1

Ti =

n∑
i=1

rkTi +

n∑
k=2

(−1)k
(
n

k

)
rkTG.

For every i = 1, . . . , n, rkTi = 2d − µ(ti) ≥ 2d −
∑
j 6=i µj , where ti is the

generic point of
⋂
j 6=iDj . Also,

∑n
k=2(−1)k

(
n
k

)
= 1− n, and rkTG = 2d− µ.

We obtain

rk

n∑
i=1

Ti ≥ 2nd−(n−1)

n∑
i=1

µi+(1−n)(2d−µ) = 2d+(n−1)(µ−
n∑
i=1

µi). (23)

We have previously remarked that if condition F(l) is satisfied, then it is
satisfied also over Si, the strict henselization at a geometric point lying over
ti; in this case, we can apply the inductive hypothesis: the inequality µ(ti) ≤∑
j 6=i µj is an equality and thus eq. (23) is an equality as well.

We have obtained a chain of inequalities

rkT = 2d ≥ rk

n∑
i=1

Ti ≥ 2d+ (n− 1)(µ−
n∑
i=1

µi).
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If condition F(l) is satisfied, both ≥ signs in the line above are equalities,
and therefore (n − 1)(µ −

∑n
i=1 µi) = 0. Since n − 1 > 0, we have indeed

µ =
∑n
i=1 µi. Conversely, if µ =

∑n
i=1 µi, both inequalities are forced to be

equalities; in particular rkT = rk
∑n
i=1 Ti. By lemma 3.3,

∑n
i=1 Ti is a direct

summand of T ; hence T =
∑n
i=1 Ti, which is condition F(l). This proves

a)⇔ b).

Next, assume that a decomposition of T as in c) exists. Then, for every

1 ≤ i ≤ n, Vi ⊆ T
⊕
j 6=i Ij , and condition F(l) is evidently satisfied; so we have

c)⇒ a).

Finally, we prove b)⇒ c). Consider the canonical maps

α :

n⊕
i=1

T ti →
n∑
i=1

T ti = T t; β : T/TG →
n⊕
i=1

T/T Ii .

Clearly, α is surjective and β is injective. However, because we have µ =∑n
i=1 µi, comparing ranks we see that α is an isomorphism. The same is true

for the analogous map

α′ :

n⊕
i=1

T ′ti → T ′t,

where T ′ = TlA
′(Ks) and A′K is the dual abelian variety. By lemma 2.20,

TG (resp. T Ii) is orthogonal to T ′t (resp. T ′ti) with respect to the pairing
χ. Hence, β is obtained from α′ by applying the functor HomZl( · ,Zl(1)). It
follows that β is an isomorphism as well.

Notice that for every i = 1, . . . , n, the inverse morphism β−1 identifies
⊕

j 6=i T/T
Ij

with the submodule T Ii/TG of T/TG. Moreover, since TG is a direct factor
of T , we can choose a section h : T/TG → T . As h maps T Ii/TG into T Ii , we
see that the image of

⊕
j 6=i T/T

Ij via h ◦ β−1 is contained in T Ii .

Write TG = T t ⊕ W for some submodule W ; and write Wi := T ti ⊕ (h ◦
β−1)(T/T Ii) for each i. Then T = W ⊕W1 ⊕W2 ⊕ . . . ⊕Wn. For each i, Ii
acts trivially on TG, hence on W and T tj for all j. Moreover, we have shown
that for j 6= i, Ii acts trivially on (h ◦ β−1)(T/T Ij ). Therefore Ii acts trivially
on Wj for j 6= i.

Now, we may write V1 = W ⊕W1, and Vi = Wi for all i ≥ 2. It remains only
to show that Vi is Ii-invariant. For this, let ei be a topological generator of Ii.
For every x ∈ T , y ∈ T Ii , we have

χ(eix− x, y) = χ(x, eiy − y) = χ(x, 0) = 1.

Therefore eix − x ∈ (T Ii)⊥ = T ti for every x ∈ T . In particular, for every
x ∈ Vi, eix ∈ Vi + T ti = Vi, as we wished to show.
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A consequence of theorem 3.4 a) ⇔ b), is that the validity of condition F(l)
is independent of the choice of prime l 6= p. It is sensible to introduce a new
name for the condition:

Definition 3.5. We say that the semi-abelian scheme A/S is toric-additive
if the three equivalent conditions of theorem 3.4 are satisfied for some prime
number l 6= p (equivalently, for all such primes l).

Notice that, although we talk of “toric-additivity of the semi-abelian scheme
A/S”, toric-additivity depends only on the generic fibre AK (in fact, on its
torsion Ks-points) and on S. This is a consequence of theorem 3.4, but follows
also from the fact that a semi-abelian extension A/S of AK is unique up to
unique isomorphism ([Del85, Théorème pag.132]).

Lemma 3.6. Let m1, . . . ,mn be positive integers and B be the Γ(S,OS)-
algebra

B =
Γ(S,OS)[T1, . . . , Tn]

Tm1
1 − r1, . . . , T

mn
n − rn

(24)

Write T = SpecB and let f : T → S be the induced morphism of schemes.
Then A/S is toric-additive if and only if AT /T is toric-additive.

Proof. Notice that T is a regular strictly local scheme, so it makes sense to say
that AT /T is toric-additive. Now, clearly f−1(D)→ D is a homeomorphism,
thus A/S satisfies condition ii) of theorem 3.4 if and only if AT /T does.

3.2 Global definition of toric additivity

We have defined toric-additivity over a strictly local base. We now remove
this hypotheses and consider the more general case of situation 2.5.

Definition 3.7. We say that A/S is toric-additive at a geometric point s of
S, if the base change A ⊗S SpecOshS,s to the strict henselization at s is toric-
additive as in definition 3.5. We say that A/S is toric-additive if it is so at all
geometric points s of S.

It is evident that toric-additivity is a property étale-local on the target. We
actually have the stronger statement:

Lemma 3.8. Toric-additivity is local on the target for the smooth topology.
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Proof. Given f : T → S smooth and surjective, the base change D×S T is still
a normal crossing divisor. Let x be a geometric point of T and call fx the
induced morphism

X := SpecOshT,x → Y := SpecOshS,f(x).

The image of a generic point ζi of Di×SX via fx is a generic point of Di×S Y ;
moreover the function µ : X → Z≥0 factors via Y . Thus it is clear that A×S
X/X is toric-additive if and only if A×S Y/Y is. We deduce that A×S T/T
is toric-additive if and only if A/S is.

Lemma 3.9. Toric-additivity of A/S is an open condition on S.

Proof. Suppose that A/S is toric-additive at a geometric point s. It is enough
to show that A/S is toric-additive on an étale neighbourhood of s, since étale
morphisms are open. We choose an étale neighbourhood of finite type W → S
of s such that DW = D×SW is a strict normal crossing divisor and such that
s belongs to all irreducible components D1, . . . , Dn of DW . Let t be another
geometric point of W ; we want to show that AW /W is toric-additive at t. This
is true if t 6∈ DW , so we may assume without loss of generality that t belongs
to D1, . . . , Dm for some 1 ≤ m ≤ n. Let ζ be a geometric point lying over the
generic point of D1∩D2∩. . .∩Dm; write Wζ ,Wt,Ws for the spectra of the strict
henselizations of W at ζ, t, s respectively. The morphism Wζ →W factors via
Ws; hence, by remark 3.2, AW /W is toric-additive at ζ. We also have a natural
map Wζ →Wt. Choose a prime l different from the residue characteristics at

t. The induced morphism πt,l1 (Wζ ∩ U) = Zl(1)m → πt,l1 (Wt ∩ U) = Zl(1)m is
the identity. Because AW /W is toric-additive at ζ, it follows that it is also at
t, as we wished to show.

Lemma 3.10. Let A and B be two abelian schemes over U , admitting semi-
abelian prolongations A/S and B/S respectively. Suppose that over the generic
fibre of S, there exists an isogeny f : AK → BK . Then A/S is toric-additive
if and only if B/S is so.

Proof. We may assume that the base S is strictly local of residue characteristic
p ≥ 0. For a prime l 6= p not dividing the degree of f , f induces an isomorphism
of Galois modules TlA(Ks)→ TlB(Ks).

Lemma 3.11. Let

0→ A′ → A→ A′′ → 0

be an exact sequence of semi-abelian schemes over S, whose restriction to U
is abelian. Then A′ and A′′ are toric-additive if and only if A is so.
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Proof. We may assume that S is the spectrum of a strictly henselian local ring,
with closed point s of residue characteristic p ≥ 0. Let l 6= p be a prime and
T ′, T, T ′′ be the l-adic Tate modules TlA

′(Ks), TlA(Ks), TlA
′′(Ks), endowed

with a natural action of G = πt,l(U). As A′(Ks) is l-divisible, we obtain an
exact sequence of G-modules

0→ T ′ → T → T ′′ → 0.

Consider the induced map ϕ : H1(G,T ′) → H1(G,T ); we claim that it is
injective. An element of H1(G,T ′) is represented by a crossed homomorphism
f : G→ T ′ in Z1(G,T ′). Suppose that its image in Z1(G,T ) is a coboundary;
then there exists a t ∈ T with f(σ) = σt− t for all σ ∈ G. Now, σt− t belongs
to TG, because (σ−1)2 = 0 for all σ ∈ G. It follows that kerϕ ⊂ H1(G,T ′G) =
Hom(G,T ′G). As the map Hom(G,T ′G) → Hom(G,TG) is injective, we have
kerϕ = 0, which proves the claim.

It follows that we have an exact sequence of G-invariant submodules,

0→ T ′G → TG → T ′′G → 0.

Taking ranks, we find that µ(s) = µ′(s) + µ′′(s), where µ, µ′, µ′′ : S → Z≥0

are the toric rank functions for A,A′,A′′ respectively. Thus, these functions
satisfy µ = µ′ + µ′′.

Let now ζ1, . . . , ζn be the generic points of the components D1, . . . , Dn of D.
If A′ and A′′ are toric-additive, we have µ(s) = µ′(s) + µ′′(s) =

∑n
i=1 µ

′(ζi) +∑n
i=1 µ(ζi) =

∑n
i=1 µ(ζi), which implies that A is toric-additive.

Conversely, if A is toric-additive, then µ(s) =
∑n
i=1 µ(ζi). Hence, µ′(s) +

µ′′(s) =
∑n
i=1 µ

′(ζi)+
∑n
i=1 µ

′′(ζi). This can be rewritten as µ′(s)−
∑n
i=1 µ

′(ζi) =∑n
i=1 µ

′′(ζi)−µ′′(s); here, eq. (15) tells us that the left-hand side is non-positive
and that the right-hand side is non-negative; hence they are both zero, and
the proof is complete.

3.3 Two examples

We give two examples, one of a semi-abelian scheme that is toric-additive, and
one of one that is not. Let k be an algebraically closed field of characteristic
zero, S = Spec k[[u, v]], and let D be the vanishing locus of uv.

Example 3.12. Consider the nodal projective curve E ⊂ P2
S given by the

equation
Y 2Z = X3 −X2Z − uvZ3.
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The restriction EU/U is an elliptic curve, which is canonically identified with
its jacobian Pic0

EU/U ; the smooth locus Esm/S has a unique S-group scheme
structure extending the one of EU/U , and is a semi-abelian scheme.

Let ζ1, ζ2 be the generic points of D1 = {u = 0} and D2 = {v = 0} respectively,
and let s be the closed point {u = 0, v = 0}. The fibres of Esm over ζ1, ζ2, s
are all tori of dimension 1. It follows that Esm is not toric-additive.

Example 3.13. Consider the nodal projective curve E ′ ⊂ P2
S given by the

equation
Y 2Z = X3 −X2Z − uZ3.

Again, E ′U = Pic0
E′U/U

; and the smooth locus E ′sm/S is a semi-abelian scheme.

In this case, the fibre of E ′ over ζ2 is smooth; so µ(ζ1) = 1, µ(ζ2) = 0, µ(s) = 1.
Thus E ′ is toric-additive.

4 Neron models of jacobians of stable curves

4.1 Generalities

Nodal curves

Definition 4.1. A curve C over an algebraically closed field k is a proper
morphism of schemes C → Spec k, such that C is connected and its irreducible
components have dimension 1. A curve C/k is called nodal if for every non-

smooth point p ∈ C there is an isomorphism of k-algebras ÔC,p → k[[x, y]]/xy.

For a general base scheme S, a nodal curve f : C → S is a proper, flat morphism
of finite presentation, such that for each geometric point s of S the fibre Cs is
a nodal curve.

We will denote by Cns the subset of C of points at which f is not smooth.
Seeing Cns as the closed subscheme defined by the first Fitting ideal of Ω1

C/S ,

we have for a nodal curve C/S that Cns/S is finite, unramified and of finite
presentation.

We report a lemma from [Hol17b].

Lemma 4.2 ([Hol17b], Prop.2.5). Let S be locally noetherian, f : C → S be
nodal, and p a geometric point of Cns lying over s ∈ S. We have:

i) there is an isomorphism

ÔshC,p ∼=
ÔshS,s[[x, y]]

xy − α
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for some element α in the maximal ideal of the completion ÔshS,s;

ii) the element α is in general not unique, but the ideal (α) ⊂ ÔshS,s is.

Moreover, the ideal is the image in ÔshS,s of a unique principal ideal of

OshS,s, which we call thickness of p.

We remark that, if S is regular at s, then C is regular at p if and only if α is
generated by a regular parameter of the regular ring OshS,s.

Split singularities

Let k be a field (not necessarily algebraically closed), C/k a nodal curve,
n : C ′ → C its normalization. Following [Liu02, 10.3.8], we say that p ∈ Cns is
a split ordinary double point if its preimage n−1(p) consists of k-valued points.
This implies in particular that p is k-valued. Moreover, if p belongs to two
or more components of C, then it belongs to exactly two components Z1, Z2;
these are smooth at p and meet transversally ([Liu02, 10.3.11]). We say that
C/k has split singularities if every p ∈ Cns is a split ordinary double point.

A nodal curve C/k attains split singularities after a finite separable extension
k → k′. We also remark that a nodal curve with split singularities has irre-
ducible components that are geometrically irreducible. Indeed, either C/k is
smooth, in which case it is geometrically connected and therefore geometrically
irreducible; or every irreducible component of the normalization of C contains
a k-rational point and is therefore geometrically irreducible.

Lemma 4.3. Let C → S be a nodal curve and s ∈ S such that Cs has split
singularities. Let p be a geometric point of Cs. Then the thickness (α) of p is
generated by an element of the Zariski-local ring OS,s.

Proof. The morphism f : Cns → S is finite unramified. Because Cs has split
singularities, we see by [Sta16]TAG 04DG, that there exists an open neighbour-
hood U of s such that f−1(U)→ U is a disjoint union of closed immersions. In
particular, Cns → S is a closed immersion at p, and to it we can associate an
ideal I in the Zariski-local ring OS,s. We see (for example by [Hol17b, proof
of part 2 of Prop. 2.5]) that α is the image of I in OshS,s; and moreover, since

OS,s → OshS,s is faithfully flat, I is principal, which completes the proof.

Lemma 4.4. Let C → S be a nodal curve over a noetherian, regular, strictly
local scheme. Let η be the generic point of S. The generic fibre Cη has split
singularities.
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Proof. The non-smooth locus Cns is finite unramified over S, hence a disjoint
union of closed subschemes of S. Let X ⊆ Cns be the part consisting of sections
S → C.

We claim that the open subscheme C \X is normal. We will show it by using
Serre’s criterion for normality ([Liu02, 8.2.23]). First, as X has been removed,
C \X is regular at its points of codimension 1. Condition S2 follows from the
fact that C \X is locally complete intersection over a regular, noetherian base,
hence Cohen-Macaulay by [Liu02, 8.2.18]. This proves the claim.

Our next claim is that the normalization π : C′ → C is finite and unramified.
Since these are properties fpqc-local on the target, and since we already know
that π induces an isomorphism over C \ X, it is enough to check the claim
over the completion of the strict henselization of points of X. Let x be such a

point and s its image in S. Then ÔshC,x ∼=
ÔshS,s[[u,v]]

uv . Its integral closure is the
inclusion

ÔshS,s[[u, v]]

uv
→ ÔshS,s[[u]]× ÔshS,s[[v]];

the corresponding morphism of spectra is indeed finite and unramified, proving
the claim.

Now, let Y be the preimage of X via π : C′ → C. We have that Y is finite,
unramified over X, and in particular finite étale over S. Hence Y is a disjoint
union of sections S → C′. The restriction of π to the generic fibre C′ηCη is
a normalization morphism, and we see that the preimage Yη of Xη = (Cη)ns

consists of k(η)-valued points, as we wished to show.

The relative Picard scheme

Given a nodal curve C → S we denote by Pic0
C/S the degree-zero relative Picard

functor; it is constructed as the fppf-sheaf associated to the functor

P 0
C/S : Sch /S → Ab

T → S 7→ Pic0(C ×S T )

where by definition Pic0(C ×S T ) is the group of isomorphism classes of in-
vertible sheaves L on C ×S T such that, for every geometric point t of T and
irreducible component X of the fibre Ct, degL|X = 0.

It turns out that the degree-zero Picard functor Pic0
C/S of a nodal curve has
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an easy description if C/S admits a section. In this case, it is given by

Pic0
C/S : Sch /S → Ab

T → S 7→ Pic0(C ×S T )

Pic(T )

If C/S is a smooth curve, it is well known that Pic0
C/S is represented by an

abelian scheme, called the jacobian of C/S. If C/S is only nodal, then Pic0
C/S

is represented by a semi-abelian scheme ([BLR90, 9.4/1]).

Generalities on graphs

We use this subsection to list some graph-theoretical notions, since we are
going to work with dual graphs of nodal curves. In what follows, we will
simply use the word graph to refer to a finite, connected, undirected graph
G = (V,E).

A path on G is a walk on G in which all edges are distinct, and that never goes
twice through the same vertex, except possibly for the first and last; a cycle
is a path that starts and ends at the same vertex. A loop is a cycle consisting
of only one edge.

A tree is a subgraph of G that does not contain cycles. We say that a tree
T ⊂ G is a spanning tree if it contains all vertices of G, in which case it is
a maximal tree. Given a spanning tree T ⊂ G, the edges of G that are not
contained in T are called links with respect to T . The number of links of
G is independent of the chosen spanning tree and is equal to the first Betti
number h1(G,Z). If a spanning tree T is fixed, for each of the links e1, . . . , er
with respect to T , the subgraph T ∪ ei contains only one cycle Ci. The cycles
C1, . . . , Cr are called fundamental cycles with respect to T .

The dual graph of a curve

Let C be a curve with split singularities over a field k. We define the dual graph
of C as the graph Γ = (V,E) with V = { irreducible components of C}, E =
{p ∈ Cns}; the extremal vertices of an edge p are the components containing
p, which are indeed either one or two.

The following well-known fact gives a geometric interpretation to the first Betti
number of the dual graph of a curve.

Lemma 4.5 ([BLR90], 9.2/8). Let C/k be a nodal curve over a field, Γ the
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dual graph of C ×k k, h1(Γ,Z) its first Betti number. Then

h1(Γ,Z) = µ := toric rank of Pic0
C/k .

Labelled dual graphs

Given a nodal curve f : C → S and a point s of S such that Cs has split
singularities, we write Γs = (Vs, Es) for the dual graph associated to the fibre
Cs. Using the notation of [Hol17b], we write Ls for the monoid of principal
ideals of the (Zariski-)local ring OS,s; then we let ls : Es → Ls be the function
associating to each edge of Γs the thickness of the corresponding singular point
of Cs (which indeed is an ideal of OS,s, by lemma 4.3). The pair (Γs, ls) is the
labelled graph of C → S at the geometric point s.

Let now ζ, s be two points of S, such that s is contained in the closure {ζ} ⊂ S,
and such that the fibres Cζ , Cs have split singularities. Then the labelled graph
(Γζ , lζ) of Cζ is obtained from the labelled graph (Γs, ls) of Cs by: 1)contracting
all edges of Γs that are labelled by an ideal of OS,s whose image in OS,ζ is the
unit ideal; 2)for every edge e of Γs that does not get contracted, we label the
corresponding edge of Γζ by the image in OS,ζ of the label of e.

4.2 Holmes’ condition of alignment

Definition 4.6 ([Hol17b], definition 2.11). Let C → S be a nodal curve and
s a geometric point of S. We say that C/S is aligned at s if for every cycle
γ ⊂ Γs and every pair of edges e, e′ of γ, there exist integers n, n′ such that

l(e)n = l(e′)n
′
.

We say that C/S is aligned if it is aligned at every geometric point of S.

Theorem 4.7 ([Hol17b], theorem 5.16, theorem 5.2). Let S be regular, U ⊂ S
a dense open, f : C → S a nodal curve, with fU : CU → U smooth.

i) If the jacobian Pic0
CU/U admits a Néron model over S, then C/S is

aligned;

ii) if C is regular and C/S is aligned, then Pic0
CU/U admits a Néron model

over S.

We are soon going to show how the condition of alignment is closely related
to toric-additivity of Pic0

CK/K . For the moment, we will consider a graph Γ =
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(V,E), a set of n ≥ 1 different colours C := {c1, c2, . . . , cn}, and a colouring of
the edges χ : E → C. We say that (Γ, χ) is aligned if for every cycle γ ⊂ Γ, the
restriction of χ to γ is constant; in other words, if every cycle is monochromatic.

The following lemma gives us a criterion for alignment that is easier to check.
The proof is due to Raymond van Bommel.

Lemma 4.8. Let (Γ, χ : E → C = {c1, c2, . . . , cn}) be a graph with a colouring
of the edges. Fix a spanning tree T . Then (Γ, χ) is aligned if and only if every
fundamental cycle is monochromatic.

Proof. What we have to prove is that if every fundamental cycle is monochro-
matic, then (Γ, χ) is aligned, as the converse statement is obvious. We show
that we can reduce to the case n = 2 (two colours). If there is only one colour
the statement is clearly true. Suppose now the statement is false for some
n > 2: that is, (Γ, χ) is not aligned but all fundamental cycles are monochro-
matic. Then there is some cycle γ in Γ that takes at least two distinct colours,
c1 and c2. We can now pretend that c2, c3, . . . , cn are different hues of one
colour c′, and that our graph Γ is coloured with only two colours, c1 and c′.
Then, γ still takes two distinct colours, and all fundamental cycles are still
monochromatic; this implies that the statement is false for n = 2. Thus we
have reduced to proving the statement for n = 2 colours.

Let (Γ, χ : E → {yellow, pink}) be a coloured graph, and assume all funda-
mental cycles are monochromatic. We construct a new graph, which we call
G, in the following way: the set of vertices of G consists of the disjoint union
of two copies, Vy and Vp, of the set of vertices V of Γ. We connect the vertices
with edges as follows: first, if v is a vertex of Γ, we create an edge ev linking
the corresponding vertices vy and vp in Vy and Vp. Next, if e is an yellow
edge of Γ linking vertices v and w, we create an edge ey between vy and wy;
if instead e is pink, we create an edge ep between vp and wp. This completes
the construction of G.

We call Gy and Gp the subgraphs of G with underlying set of vertices Vy and
Vp respectively. We will call the edges ev linking Gy and Gp vertical edges,
and the others horizontal edges. Now, consider the subgraph W of G given
by the union of all vertical edges, and of all horizontal edges corresponding
to edges of the spanning tree T . Clearly, W spans G, is connected, and does
not contain cycles, otherwise T would itself contain a cycle. Hence W is a
spanning tree for G; it follows that the links of G with respect to W are in
bijection with the links of Γ with respect to T . Since the fundamental cycles of
Γ are monochromatic, the fundamental cycles of G consist only of horizontal
edges.

Now, suppose by contradiction that Γ contains a non-monochromatic cycle γ.
Then γ defines a unique cycle γ′ on G, and γ′ necessarily contains some vertical
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edge, as γ is not monochromatic. However, by [Die05, 1.9.6], fundamental
cycles form a basis of the cycle space (i.e. every cycle is a composition of
fundamental cycles). As fundamental cycles of G do not contain vertical edges,
γ′ cannot contain vertical edges. This is a contradiction and the lemma is
proved.

Lemma 4.9. Let Γ be a graph with a colouring of the edges χ : E → C =
{c1, c2, . . . , cn}. For every 1 ≤ i ≤ n let Γi be the graph obtained by contracting
every edge whose colour is not ci. Then

h1(Γ,Z) ≤
n∑
i=1

h1(Γi,Z)

with equality if and only if (Γ, χ) is aligned.

Proof. Fix a spanning tree T for Γ; we write Ti for the image of T in the
contraction Γi. Notice that Ti need not be a tree; however, it is a subgraph of
Γi containing every vertex of Γi; therefore, if Ti is a tree it is also spanning;
and in any case Ti contains a spanning tree for Γi.

Claim 4.10. (Γ, χ) is aligned if and only if for all i = 1, . . . , n, Ti is a (span-
ning) tree in Γi.

Suppose that (Γ, χ) is aligned and fix some i. We want to show that Ti is a
tree in the contraction Γi. We can contract one edge at a time and see what
happens to the image of T in the contraction. On the one hand, contracting
an edge that is contained in T does not produce new cycles in the image of T .
Now let e ∈ E be a link with respect to T , and suppose that e gets contracted
in Γi. Then χ(e) 6= ci. Let P be the unique path in T connecting the two
extremal vertices of e. Then the union of P and e forms a cycle γ, which does
not take the colour ci by the alignment hypothesis. Hence γ gets contracted
to a point in Γi and once again no new cycle is produced in the image of T .
Therefore Ti is a tree.

Conversely, suppose that (Γ, χ) is not aligned. By lemma 4.8, there is a fun-
damental cycle γ that takes two distinct colours, say c1 and c2. Let e be the
only link contained in γ; we may assume χ(e) = c1. Thus, e is contracted in
Γ2. However, γ is not contracted to a point in Γ2, since it contains some edge
with colour c2. It follows that T2 is not a tree. This establishes the claim.

Now, h1(Γ,Z) is equal to the number of links with respect to T . We write
h1(Γ,Z) = b1 + . . . + bn, where bi is the number of links of colour ci. In the
contraction Γi, the only links that are not contracted are those of colour ci.
Since Ti contains a spanning tree for Γi, we have h1(Γi,Z) ≥ bi, with equality
if Ti is a tree. Hence h1(Γ,Z) ≤ h1(Γ1,Z) + . . .+ h1(Γn,Z). Moreover, by the
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claim, (Γi, χ) is aligned if and only if for every i = 1, . . . , n, h1(Γi,Z) = bi.
This in turn is equivalent to h1(Γ,Z) = h1(Γ1,Z) + . . . + h1(Γn,Z), which
completes the proof.

4.3 Relation between toric-additivity and alignment

We now consider a connected, locally noetherian, regular base scheme S with
a normal crossing divisor D ⊂ S, and a nodal curve C/S, such that the base
change CU/U := S \D is smooth.

If S′ → S is a strict henselization at some geometric point s of S, and D ∩ S′
is given by regular parameters t1, . . . , tn ∈ O(S′), then the thickness of any
non-smooth point p ∈ Cs is generated by tm1

1 · . . . · tmnn for some non-negative
integers m1, . . . ,mn. In particular, C is regular at p if and only if its thickness
is generated by ti for some 1 ≤ i ≤ n.

Proposition 4.11. Suppose that the total space C is regular. Then C/S is
aligned if and only if Pic0

CK/K is toric-additive.

Proof. As both alignment and toric-additivity are checked over the strict henseliza-
tions at geometric points of S, we may assume that S is strictly local. Let
Γs = (Vs, Es) be the dual graph of the fibre of C over the closed point s ∈ S,
and ls : Es → Ls the labelling of the edges, taking value in the monoid Ls of
principal ideals of OS(S). We have already remarked that, since C is regular,
the labels can only take the values (t1), . . . , (tn) ∈ Ls. This means that C/S
is aligned if and only if every cycle of Γ has edges with the same label.

Now, let {Di}i=1,...,n be the components of the divisor D. Each of them is
cut out by a regular element ti ∈ OS(S) and is itself a regular, strictly local
scheme. Let ζi be the generic point of Di. By lemma 4.4, the curve Cζi
has split singularities; its labelled graph (Γζi , lζi) is obtained from (Γs, ls) by
contracting edges according to the procedure in section 4.1. Interpreting the
different labels as colours, we can apply lemma 4.9 and conclude that C/S is
aligned at s if and only if h1(Γ,Z) =

∑n
i=1 h

1(Γi,Z). By lemma 4.5, we see
that µ(s) =

∑n
i=1 µ(ζi), which is the condition for toric-additivity at s. This

finishes the proof.

4.4 Toric-additivity and desingularization of curves

Let S be a connected, locally noetherian, regular base scheme S with a normal
crossing divisor D = D1 ∪ . . . ∪Dn ⊂ S, and let C/S be a nodal curve, such
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that the base change CU/U := S \D is smooth.

In [dJ96, 3.6], it is proven that if C → S has split fibres, there exists a blow-up
ϕ : C′ → C such that C′ → S is still a nodal curve, and C′ is regular. The
condition of splitness implies that the irreducible components of the geometric
fibres are smooth; or equivalently, that the dual graphs of the geometric fibres
do not admit loops. We are going to introduce a condition on C/S, weaker
than splitness, and show that a statement analogous to the one in [dJ96, 3.6]
holds for curves satisfying this condition.

Definition 4.12. Let C → S be a nodal curve. We say that C/S is disciplined
if, for every geometric point s of S, and p ∈ Cnss , at least one of the following
is satisfied:

i) p belongs to two irreducible components of Cs;

ii) the thickness of p is a power of a regular parameter of OshS,s.

We give first an auxiliary lemma:

Lemma 4.13. Hypothesis as in the beginning of the subsection; suppose also
that S is strictly local and that C/S is disciplined. Let p ∈ Cnss be a non-smooth
point of the fibre over the closed point, such that p does not satisfy condition
ii) of definition 4.12. Let X1, X2 be the distinct irreducible components of
the closed fibre Cs containing p. Then there exists i ∈ {1, . . . , n} and Y1, Y2

irreducible components of Cζi such that X1 6⊂ Y 2 ⊃ X2 and X2 6⊂ Y 1 ⊃ Y1.

Proof. Let (Γs, ls) be the labelled graph of Cs. By hypothesis, the edge e(p)
corresponding to p has distinct extremal vertices, v1 and v2, and label tm1

1 ·
. . . · tmll , with 2 ≤ l ≤ n and m1, . . . ,ml ≥ 1. The fibres over the generic
points ζ1, . . . , ζn have split singularities by lemma 4.4, so we can consider
their labelled graphs (Γi, li). What we want to prove is that there exists
i ∈ {1, . . . , l} such that v1 and v2 are mapped to distinct vertices of (Γi, li) via
the procedure described in section 4.1.

Suppose the contrary; as e(p) is not contracted in any Γi, there exists a cycle
γ in Γs, containing e(p), such that for all 1 ≤ i ≤ l, all edges e 6= e(p) of γ are
contracted in Γi. Let ζ12 be the generic point of D1 ∩D2; all edges e 6= e(p) of
γ are contracted in Γ12, the labelled graph of Cζ12 , and in particular v1 and v2

are mapped to the same vertex. The edge e(p) is therefore mapped to a loop,
with label tm1

1 tm2
2 . However, this contradicts the fact that C → S is disciplined

at ζ12.
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We introduce now some notation: given a scheme X, we will denote by
Sing(X) ⊆ X the set of points that are not regular. We say that the cen-
ter of a blow-up π : Y → X is the complement of the largest open U ⊂ X such
that π−1(U)→ U is an isomorphism.

Lemma 4.14. Hypotheses as in the beginning of the subsection. Suppose
f : C → S is disciplined. Then there is an étale surjective g : S′ → S and a
blow-up ϕ : C′ → C ×S S′ such that

• the center of ϕ is contained in Sing(C ×S S′);

• C′ is a nodal curve over S′, smooth over g−1(U);

• C′ is regular.

Proof. First, notice that the order in which the blow-ups of the curve and the
étale covers of the base are taken does not matter, as blowing-up commutes
with étale base change. After replacing S by a suitable étale cover, we may
assume that D is a strict normal crossing divisor. We can now apply [dJ96,
3.3.2] and assume that Sing(C) ⊂ C has codimension at least 3. As a conse-
quence of lemma 4.4, after a further étale covering, we may assume that for
every generic point ζ of D, the fibre Cζ has split singularities.

Now, let E be an irreducible component of CD = C ×S D and let π : C′ → C be
the blow-up of C along E. If p ∈ E is a regular point of C, f is an isomorphism
at p, because E is cut out by one equation. Otherwise, the completion of the
strict henselization at (a geometric point lying over) p is of the form

ÔshC,p ∼=
Ôsh
S,f(p)

[[x, y]]

xy − tm1
1 · . . . · tmll

with t1, . . . , tn regular parameters cutting out D, 1 ≤ l ≤ n and positive
integers m1, . . . ,ml. In fact, because the singular locus has codimension at
least three, we have l ≥ 2, and m1 = . . . = ml = 1.

The ideal of the pullback of E to ÔshC,p is either (ti) for some 1 ≤ i ≤ l, or
one between (x, ti) and (y, ti) for some 1 ≤ i ≤ l. In the first case, π is an
isomorphism at p. In the second case, one can compute explicitly the blowing
up of SpecOshC,p at the ideal (x, ti) (or (y, ti)) and find that f ′ : C′ → S is still a
nodal curve, disciplined, with Sing(C) of codimension at least three, and such
that for every generic point ζ of D the fibre Cζ has split singularities. We omit
the explicit computations.

Let Y ⊂ C be the center of π : C′ → C. Then Y consists only of non-regular
points, hence it has codimension at least 3. As f : C′ → S is a curve, the fibres
of π have dimension at most 1, hence π−1(Y ) has codimension at least 2 in
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C. It follows that there is a bijection between the irreducible components of
CD and C′D, given by taking the preimage under π. Now, π−1(E) is a divisor,
and for any other irreducible component E′ of CD that is a divisor, π−1(E′) is
also a divisor. We conclude that π∗ : C∗ → C, the composition of the blowing-
ups of all irreducible component of CD, is such that every component of C∗D
is a divisor. Besides, as previously noticed, f∗ : C∗ → S is a nodal curve,
disciplined, and Sing(C∗) has codimension at least three.

Assume now by contradiction that Sing(C∗) 6= ∅, and let p ∈ Sing(C∗). Then
without loss of generality the thickness at p is (t1 · . . . · tl) for some 2 ≤ l ≤
n. Consider the base change C∗T /T , where T is the spectrum of some strict
henselization at s = f∗(p). For every i let ξi be the generic point of Di∩T . By
lemma 4.13, for some i ∈ {1, . . . , l}, there are distinct components Y1, Y2 of C∗ξi
whose closure in C∗T∩Di contain p. Because the fibre C∗ζi has split singularities,
we deduce that there are components X1, X2 of C∗ζi whose closures E1, E2 in

C∗Di contain p. But then E1 and E2 are given by (x, t1) and (y, t1) in ÔshC∗,p.
In particular, they are not divisors. This is a contradiction, and therefore
Sing(C∗) = ∅.

Lemma 4.15. Hypotheses as in the beginning of the subsection. Suppose that
f : C → S is such that Pic0

C/S is toric-additive. Then C/S is disciplined.

Proof. We may assume that S is strictly local, with closed point s, and with D
given by a system of regular parameters t1 . . . , tn. Let p ∈ Cnss , with thickness
tm1
1 · . . . · tmll for some 1 ≤ l ≤ n and m1, . . . ,ml ≥ 1. We have to show that if
l ≥ 2 then p lies on two components of Cs .

Suppose by contradiction that l ≥ 2 and that p lies on only one component
of Cs. The dual graph Γ over s has a loop L corresponding to p, with label
tm1
1 · . . . · tmll . For 1 ≤ i ≤ n call Γi the dual graph of the fibre Cζi over

the generic point of Di. The loop L is preserved in the dual graphs Γi for
1 ≤ i ≤ l. Let Γ′ be the graph obtained by Γ by removing the loop L, and
define similarly Γ′i, 1 ≤ i ≤ l. We have that

h1(Γ′,Z) ≤
l∑
i=1

h1(Γ′i,Z) +

n∑
j=l+1

h1(Γj ,Z).

This inequality follows from the identification of the first Betti number with
the toric rank of the corresponding fibre of Pic0

C/S ; and from eq. (15).

For every 1 ≤ i ≤ l, h1(Γi,Z) = h1(Γ′i,Z) + 1. Since l ≥ 2, we find that
h1(Γ,Z) = h1(Γ′,Z) + 1 <

∑n
i=1 h

1(Γi,Z). In terms of toric ranks of fibres
of Pic0

C/S , the same inequality reads µ(s) <
∑n
i=1 µ(ζi). This contradicts the

fact that Pic0
CK/K is toric-additive.
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4.5 Toric-additivity and Néron models

We consider again a base S and a nodal curve C/S as in the previous subsection.
Theorem 1.1 tells us that if Pic0

CU/U admits a Néron model over S, then C/S
is aligned. However, not all aligned curves admit a Néron model for their
jacobian; in this subsection we show that curves that are not disciplined do
not admit one.

Lemma 4.16. Assume that S is an excellent Q-scheme. Suppose that C/S is
such that Pic0

CU/U admits a Néron model N over S. Then C/S is disciplined.

Proof. We may assume that S is strictly henselian, with closed point s and
residue field k = k(s). Assume by contradiction that C/S is not disciplined.
Then there is some p ∈ Cnss that belongs to only one component X of Cs,
and such that its thickness is tm1

1 · . . . · tmll with mi ≥ 1 and 2 ≤ l ≤ n. Let
q ∈ Cs(k) be a smooth k-rational point belonging to the same component as
p. By Hensel’s lemma, there exists a section σq : S → C through q. We claim

that the same is true for p: let Ŝ be the spectrum of the completion of O(S)
at its maximal ideal and consider the morphism

W := Spec ÔshC,p ∼= Spec
O(Ŝ)[[x, y]]

xy − tm1
1 · . . . · tmll

→ Ŝ.

This has a section given by x = tm1
1 , y = tm2

2 · . . . · tmll . Composing the section

with the canonical morphism W → C, gives a morphism σ̂p : Ŝ → C going
through p. Because S is excellent and henselian, it has the Artin approximation
property, and there exists a section σp : S → C which agrees with σ̂p when
restricted to the closed point s, hence going through p.

We write F := I(σp) ⊗OC O(σq) for the coherent sheaf on C given by the
tensor product of the ideal sheaf of σp with the invertible sheaf associated
to the divisor σq. It is what is called a torsion free, rank 1 sheaf in the
literature: it is S-flat, its fibres are of rank 1 at the generic points of fibres of
C, and have no embedded points. Notice that F is not an invertible sheaf, as
dimk(p) F ⊗ k(p) = 2.

Let up and uq be the restrictions of σp and σq to U . They are U -points of
the smooth curve CU/U ; the restriction of F to U is the invertible sheaf FU =
OCU (uq−up). This is the datum of a U -point α of Pic0

CU/U : indeed, Pic(U) = 0

because O(U) is a UFD, and CU/U has a section, so Pic0
CU/U (U) = Pic0(CU ).

By the definition of Néron model, there is a unique section β : S → N with
βU = α. We write J for Pic0

C/S . As J is semi-abelian, the canonical open
immersion J → N identifies J with the fibrewise-connected component of
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identity N 0 (lemma 2.17). Write ζi, i = 1 . . . , n for the generic points of the
divisors Di. Then Si := SpecOS,ζi is a trait, and the restriction NSi is a
Néron model of its generic fibre. Therefore αK extends uniquely to a section
αi : Si → NSi . As FSi is an invertible sheaf of degree 0 on every irreducible
component of Cζi , FSi is a Si-point of JSi , and αi is given by FSi . Therefore,

the restriction of α : S → N to Si factors through J = N 0 for every i = 1 . . . , n.

We denote now by Φ/S the étale group scheme of connected components of N ,
and by Φ(l) its l-primary part for a prime l. Lemma 5.2 tells us that, for every
prime l different from the residue characteristic of S, the canonical morphism
Φ(l)(s)→

⊕n
i=1 Φ(l)(ζi) is injective. By our assumption that S is a Q-scheme,

the canonical morphism

Φ(s)→
n⊕
i=1

Φ(ζi)

is injective. This implies that α lands inside J = N 0, or in other words that
FU extends to an invertible sheaf L on C such that Ls is of degree 0 on every
component.

Now, let Z → S be a closed immersion, with Z a trait, such that the generic
point ξ of Z lands into U (it is an easy check that such a closed immersion
exists). As Fξ and Lξ define the same point of Pic0

Cξ/ξ, there are isomorphisms

µξ : Fξ → Lξ and λξ : Lξ → Fξ. By the same argument as in [AK80, 7.8], µξ
and λξ extend to morphisms µ : FZ → LZ and λ : LZ → FZ , which are non-
zero on all fibres. Let’s look at the restrictions to the closed fibre, µs : Fs → Ls,
λs : Ls → Fs. We know that Fs is trivial away from the component X ⊂ Cs.
So, if we write Y for the closure in Cs of the complement of X, we may restrict
µs and λs to Y to get global sections l and l′ of LY and L∨Y respectively. Now,
if l = 0, then the restriction µX of µs to X is non-zero, because µs is non-zero.
If l 6= 0, as Ls is of degree zero on every component, we have l(y) 6∈ myLy for
every y ∈ Y , and in particular for y ∈ Y ∩X. It follows that also in this case
µX 6= 0. We can apply the same argument to l′ and conclude that λX 6= 0.
Then the compositions µX ◦λX : LX → LX and λX ◦µX : FX → FX are non-
zero. As EndOX (FX) = k = EndOX (LX), they are actually isomorphisms. It
follows that µX : FX → LX is an isomorphism. However, dimk(p) Fk(p) = 2,
while LX is an invertible sheaf. This gives us the required contradiction.

Theorem 4.17. Let S be a connected, locally noetherian, regular scheme, D
a normal crossing divisor on S, C → S a nodal curve smooth over U = S \D.

i) If Pic0
C/S is toric-additive, then Pic0

CU/U admits a Néron model over S.

ii) If moreover S is an excellent Q-scheme, the converse is also true.
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Proof. Whether we are in the hypotheses of i) and ii), we know by lemmas 4.15
and 4.16 above that C/S is disciplined; hence by lemma 4.14 there exists
an étale cover g : S′ → S and a blow-up π : C′ → CS′ which restricts to an
isomorphism over U ′ = U ×S S′, such that C′ is regular.

Assume that Pic0
C/S is toric-additive. To show the existence of a Néron model

over S, it is enough to show it over S′. The base change Pic0
CS′/S′ is toric-

additive by lemma 3.8. The blow-up π does not affect CU ′ , so Pic0
C′/S′ is still

toric-additive. We can now apply proposition 4.11 and deduce that C′/S′ is
aligned. Hence by theorem 4.7, we find that Pic0

CU′/U
′ admits a Néron model

over S′, proving i).

Now assume that S is a Q-scheme and that Pic0
CU/U admits a Néron model N

over S. Then N ′ = N ×S S′ is a Néron model for Pic0
C′U′/U ′ over S′. Hence

C′/S′ is aligned by theorem 4.7; as C′ is regular, we deduce by proposition 4.11
that Pic0

CS′/S′ is toric-additive. As toric-additivity descends along étale covers

(lemma 3.8), Pic0
C/S is toric-additive.

Corollary 4.18. Let S be a connected, locally noetherian, regular, excellent
Q-scheme, D a normal crossing divisor on S, C → S and D → S two nodal
curves, smooth over U = S \D.

Assume that over the generic point η ∈ S, there exists an isogeny

Pic0
Cη/η → Pic0

Dη/η .

Then Pic0
CU/U admits a Néron model over S if and only if Pic0

DU/U does.

Proof. By lemma 3.10, Pic0
C/S is toric-additive if and only if Pic0

D/S is. By
theorem 4.17, toric-additivity is equivalent to existence of a Néron model, and
we conclude.
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5 Néron models of abelian schemes in charac-
teristic zero

In this section, we consider a connected, locally noetherian, regular base
scheme S, a normal crossing divisor D on S, an abelian scheme A/U of rel-
ative dimension d and a semi-abelian scheme A/S with a given isomorphism
A×S U → A. We will retain the notation used in the previous sections.

5.1 Test-Néron models

Definition 5.1. Let N/S be a smooth, separated group algebraic space of
finite type with an isomorphism N ×S U → A; we say that it is a test-Néron
model for A over S if, for every strictly henselian trait Z and morphism Z → S
transversal to D (definition 2.4), the pullback N ×S Z is the Néron model of
its generic fibre.

It is clear that the property of being a test-Néron model is smooth-local on the
base, and is also preserved by taking the localization at a point of the base, or
the strict henselization at a geometric point.

We will start by working on a strictly local base. Recall that in this case, for
a prime l different from the residue characteristic p at the closed point, the
Tate module TlA(Ks) is acted on by G =

⊕n
i=1 Ii =

⊕n
i=1 Ẑ′(1), the tame

fundamental group of U .

Lemma 5.2. For any subset E ⊆ {1, . . . , n} and any m ∈ Z, there is a
canonical injective group homomorphism

ϕE :
A[m](Ks)⊕i∈EIi

TlA(Ks)⊕i∈EIi ⊗ Z/mZ
→
⊕
i∈E

A[m](Ks)Ii

TlA(Ks)Ii ⊗ Z/mZ
. (25)

If A/S is toric-additive, for any E ⊆ {1, . . . , n} the homomorphism ϕE is an
isomorphism.

Remark 5.3. Recall the characterization of the group of components of Néron
models in section 2.4. If Si is a strict henselization at the generic point ζi of
Di, then there exists a Néron model Ni/Si for A×S Si. The i-th summand of
the right-hand side of (5.2) is the group of components of Ni over the closed
point of Si. On the other hand, if ζ is the generic point of ∩i∈EDi, and if
AK/K admits a Néron model over a strict henselization Osh

S,ζ
, then the left

hand side is its group of components over the closed point.

40



Proof. First, it follows easily from lemma 3.3 that
(
TlA(Ks)

⊕
i∈E Ii

)
⊗Z/mZ =⋂

i∈E
(
TlA(Ks)Ii ⊗ Z/mZ

)
. Given this, it is evident that the group homomor-

phism 25 is injective.

Let us assume that A/S is toric-additive. Then we have a decomposition
of T := TlA(KS) into a direct sum V1 ⊕ . . . ⊕ Vn as in theorem 3.4. For a
Zl-module M , we will write M(m) for M ⊗Zl Z/mZ.

Now, if E is empty the statement of the lemma is obviously satisfied; otherwise,
we can rename the components Di, so that E = {1, 2, . . . , r} ⊆ {1, . . . , n} for
some 1 ≤ r ≤ n.

The left-hand side of eq. (25) is

(V1,(m) ⊕ . . .⊕ Vn,(m))
⊕
i∈E Ii

(V1 ⊕ . . .⊕ Vn)
⊕
i∈E Ii ⊗ Z/mZ

=

=
(V1,(m))

I1 ⊕ . . .⊕ (Vr,(m))
Ir ⊕ Vr+1,(m) ⊕ . . .⊕ Vn,(m)

(V1)I1(m) ⊕ . . .⊕ (Vr)
Ir
(m) ⊕ Vr+1,(m) ⊕ . . .⊕ Vn,(m)

=

=
(V1,(m))

I1

(V1)I1(m)

⊕ . . .⊕
(Vr,(m))

Ir

(Vr)
Ir
(m)

.

The right hand side is

r⊕
i=1

V1,(m) ⊕ . . .⊕ (Vi,(m))
Ii ⊕ . . .⊕ Vn,(m)

V1,(m) ⊕ . . .⊕ (Vi)
Ii
(m) ⊕ . . .⊕ Vn,(m)

=
(V1,(m))

I1

(V1)I1(m)

⊕ . . .⊕
(Vr,(m))

Ir

(Vr)
Ir
(m)

.

So we have obtained the same expression on both sides, and ϕE induces the
identity between them.

Next, we make a choice of a compatible system of primitive roots of units;
equivalently, we choose a topological generator for Ẑ′(1). This gives us, for
each i = 1, . . . , n, a topological generator ei of Ii.

Lemma 5.4. Assume that A is toric-additive. Then, for any subset E ⊆
{1, . . . , n} and any m ∈ Z, we have

A[m](Ks)⊕i∈EIi

TlA(Ks)⊕i∈EIi ⊗ Z/mZ
=

A[m](Ks)
∑
i∈E ei

TlA(Ks)
∑
i∈E ei ⊗ Z/mZ

Proof. We have a decomposition

TlA(Ks) = V1 ⊕ V2 ⊕ . . .⊕ Vn
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as in theorem 3.4. Again, for a Zl-module M , we write M(m) = M ⊗Zl Z/mZ;
if E = ∅ we are done, so we assume that E = {1, . . . , r} ⊆ {1, . . . , n} for some
1 ≤ r ≤ n. The left hand side is

(V1,(m))
I1 ⊕ . . .⊕ Vr,(m))

Ir ⊕ Vr+1,(m) ⊕ . . .⊕ Vn,(m)

(V1)I1(m) ⊕ . . .⊕ (Vr)
Ir
(m) ⊕ Vr+1,(m) ⊕ . . .⊕ Vn,(m)

The right hand side is

(V1,(m))
∑r

1 ei ⊕ . . .⊕ (Vn,(m))
∑r

1 ei

(V1)
∑r

1 ei
(m) ⊕ . . .⊕ (Vn)

∑r
1 ei

(m)

=

=
(V1,(m))

e1 ⊕ . . .⊕ (Vr,(m))
er ⊕ Vr+1,(m) ⊕ . . .⊕ Vn,(m)

(V1)e1(m) ⊕ . . .⊕ (Vr)
er
(m) ⊕ Vr+1,(m) ⊕ . . .⊕ Vn,(m)

which concludes the proof.

We now return to the hypotheses as in the beginning of the section, so S is not
local anymore. From this moment, we will assume that S is a Q-scheme, so it
has residue characterstic 0 at every point. We will use the previous lemmas to
prove existence and uniqueness of test-Néron models, under the hypothesis of
toric-additivity of the base.

Proposition 5.5. Suppose that S is a Q-scheme and that A/S is toric-
additive. If N/S and N ′/S are two test-Néron models for A, there exists
a unique isomorphism N → N ′ that restricts to the isomorphism NU → N ′U .

Proof. The uniqueness is automatic, becauseN ′ is separated andNU is schematically-
dense in N . For the existence part, we proceed by induction on the dimension
of the base. In the case of dimS = 1, let Ssh be a strict henselization of the
trait S. The base change of a test-Néron model to Ssh is a Néron model. By
lemma 2.10, N and N ′ are themselves Néron models over S, and therefore
there exists an isomorphism N → N ′.

Now let dimS = M and assume the statement is true for dimS < M . We claim
that we can reduce to the case of a strictly local base S. Suppose that for every
geometric point s of S we can construct an isomorphism fs : NXs → N ′Xs where
Xs is the spectrum of the strict henselization at s. Then we can spread out
fs to an isomorphism f ′ : NS′ → N ′S′ for some étale cover S′ of S. Let S′′ :=
S′×S S′, p1, p2 : S′′ → S′ be the two projections and q : S′′ → S. Because test-
Néron models are stable under étale base change, q∗N and q∗N ′ are test-Néron
models. The two isomorphisms p∗1f, p

∗
2f : q∗N → q∗N ′ necessarily coincide,

thus f descends to an isomorphism N → N ′, which proves our claim.
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Let then S be strictly local, of dimension M , with closed point s. The open
V = S \ {s} has dimension M − 1; since AV /V is toric-additive, by inductive
hypothesis there is a unique isomorphism fV : NV → N ′V . We would like to
extend it to the whole of S.

Let Z be a regular, closed subscheme of S of dimension 1, transversal to D.
The existence of such Z ⊂ S is easily checked. As Z is a strictly henselian
trait, the pullbacks of N and N ′ to Z are Néron models of their generic fibre,
hence there is a unique isomorphism α : NZ → N ′Z . Now let Φ and Φ′ be the
étale S-group schemes of components of N and N ′; and let Φ and Φ′ be the
groups Φs(k) and Φ′s(k) respectively. The restriction of α to the fibre over s
induces an isomorphism Φ→ Φ′.

We show next that the isomorphism Φ → Φ′ is independent of the choice of
Z ⊂ S. Let’s call L the fraction field of Γ(Z,OZ). The morphism Z → S
induces a group homomorphism

π1(Z \ {z}) = Gal(L|L) = Ẑ(1)→ π1(S \D) =

n⊕
i=1

Ii =

n⊕
i=1

Ẑ(1) (26)

which sends a topological generator e of π1(Z \{z}) to a sum
∑n
i=1 ei of topo-

logical generators of the direct summands of π1(S \D), since Z is transversal
to D. By section 2.4, both Φ and Φ′ are canonically isomorphic to⊕

l prime

(TlA(L)⊗Ql/Zl)Gal(L|L)

TlA(L)Gal(L|L) ⊗Ql/Zl
.

We have a canonical isomorphism of Zl-modules TlA(K) → TlA(L), compat-
ible with the homomorphism 26, so that e acts on an element of TlA(L) as∑n
i=1 ei acts on its image in TlA(K). Hence, writing G for π1(S \D), Φ and

Φ′ are given by⊕
l prime

(TlA(K)⊗Ql/Zl)
∑n
i=1 ei

TlA(K)
∑n
i=1 ei ⊗Ql/Zl

=
⊕
l prime

(TlA(K)⊗Ql/Zl)G

TlA(K)G ⊗Ql/Zl

the equality coming from the assumption of toric-additivity and lemma 5.4.
This shows that the isomorphism Φ → Φ′ is independent of the choice of
Z ⊂ S. For this reason, we will write Φ for both groups Φ and Φ′.

Now, the surjective morphism

(TlA(K)⊗Ql/Zl)G → Φ

splits; letting N be the order of Φ, we obtain a surjective morphism between
the N -torsion subgroups

A[N ](K) = A[N ](K)G → Φ.
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We pick a section Φ → A[N ](K) and denote by B its image. Consider the
schematic closures B and B′ of B inside N and N ′ respectively. Then B is
a closed subgroup scheme of the étale S-group scheme N [N ]; in fact, it is
the union tϕ∈ΦVϕ of some of its connected components. As Vϕ → S is flat,
separated and birational, it is an open immersion. As N [N ] is finite over
U , the restriction of Vϕ → S to U is surjective, hence an isomorphism. In
particular, it is given by some section U → A, which restricts to a section
SpecL→ ASpecL over the generic point of Z. As NZ is a Néron model of its
generic fibre, this section extends to a section Z → NZ . This latter section
is for sure contained in the schematic closure of Vϕ, which is Vϕ itself. This
shows that Vϕ → S is surjective, and in particular an isomorphism. Therefore,
B is simply given by a disjoint union tϕ∈Φbϕ of torsion sections bϕ : S → N ,
and the restriction Bs is canonically isomorphic to Φs. Similarly, we write
B′ = tϕ∈Φb

′
ϕ.

Let A ⊂ N and A′ ⊂ N ′ be the fibrewise-connected components of identity.
By uniqueness of semi-abelian extensions, there is a unique isomorphism A →
A′. Now let M =

⋃
ϕ∈Φ(bϕ + A) ⊆ N . It is an open subgroup S-scheme of

N , and on the closed fibre we have Ms = Ns, since Bs = Φs. In particular,
N = NV ∪ M. Writing similarly M′ =

⋃
ϕ∈Φ(b′ϕ + A′) ⊆ N ′, we have

N ′ = N ′V ∪M′.

Now, we construct an isomorphism M→M′ simply by sending bϕ to b′ϕ and
by means of the isomorphism A → A′. To obtain an isomorphism N → N ′
it is enough to show that NV → N ′V and M→M′ agree on the intersection
NV ∩M =MV . This is clear: indeed, the isomorphism NV → N ′V agrees with
the restriction AV → A′V , and it sends the schematic closure of B inside NV
to the schematic closure of B inside N ′V ; that is, it restricts to an isomorphism
BV → B′V sending bϕ to b′ϕ.

Theorem 5.6. Suppose that S is a Q-scheme, and that A/S is toric-additive.
Then there exists a test-Néron model N/S for A.

Proof. Our proof is constructive; we subdivide it in steps.

Step 1: constructing the group Ψ. Let s be a geometric point of S, and
write Xs for the spectrum of the strict henselization at s. Let Ks be the field
of fractions of Xs, that is, the maximal extension of K unramified at s, and
K an algebraic closure of Ks. Let Js be the finite set of components of the
strict normal crossing divisor D ×S Xs.

For every prime l, the action of Gal(K|Ks) factors via the quotient Gal(K|Ks)→
G := π1(U ×S Xs) =

⊕
i∈Js Ii where Ii = Ẑ(1).
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We set

Ψ :=
⊕

l prime

⊕
i∈Js

(
TlA(K)⊗Ql/Zl

)Ii
TlA(K)Ii ⊗Ql/Zl

(27)

The abelian group Ψ is finite, as each of its summands is the l-primary part
of the group of components of the Néron model of AKs over the local ring at
the generic point of Di, which exists by theorem 2.14.

By lemma 5.2,

Ψ =
⊕

l prime

(
TlA(K)⊗Ql/Zl

)⊕
i∈Js Ii

TlA(K)
⊕
i∈Js Ii ⊗Ql/Zl

.

The surjective morphism⊕
l

((TlA(K)⊗Ql/Zl)
⊕
i∈Js Ii)→ Ψ

splits; therefore, denoting by N the order of Ψ, we obtain a surjective mor-
phism between the N -torsion subgroups

π : A[N ](Ks) = A[N ](K)
⊕
i∈Js Ii → Ψ.

We consider the set of sections S := {α : Ψ→ A[N ](Ks) such that π◦α = id}:
it is a torsor under the finite group

⊕
l(TlA(Ks) ⊗ Z/NZ), and as such it is

finite. As the group Ψ is finite as well, there exists a finite extension K → K ′,
unramified over s, such that every section Ψ→ A[N ](Ks) factors viaA[N ](K ′).
Notice that S is non-empty, as the quotient map π splits; thus we can fix a
section α : Ψ→ A[N ](K ′).

Step 2: spreading out to an étale neighbourhood of s. The normaliza-
tion of S inside K ′ is unramified over the image of s in S, hence étale over it
([Sta16]TAG 0BQK), so we obtain an étale neighbourhood S′ of s, which we
may assume to be connected, with fraction field K ′. We write J ′ for the set
of irreducible components of D ×S S′. There is a natural function Js → J ′:
up to restricting S′, we may assume that it is bijective. Indeed, its surjectivity
corresponds to the fact that every component of D×S S′ contains (the image
of) s; imposing also injectivity means asking that D ×S S′ is a strict normal
crossing divisor. Thus, we need not distinguish between Js and J ′ and we
will simply write J for this set.

Step 3: constructing the subgroup-scheme H ⊆ AS′ ×S′ ΨS′ . We call
H ⊆ A[N ](K ′) × Ψ the image of Ψ via (α, id) : Ψ → A[N ](K ′) × Ψ; we let
H/S′ be the schematic closure of H inside AS′×S′ΨS′ (where ΨS′ denotes the
constant group scheme over S′ associated to the finite abelian group Ψ). It is
a closed subgroup scheme of the étale S′-group scheme AS′ [N ] ×S′ ΨS′ and
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a disjoint union tj∈ΨVj of some of its connected components; moreover, over
the generic point of S′, each Vj restricts to a copy of SpecK ′. As Vj → S′ is
flat, separated and birational, it is an open immersion; thus H = tj∈ΨVj → S′

is a disjoint union of open immersions. In fact, if we write U ′ = U ×S S′, the
base change AU ′ is an abelian scheme; therefore AU ′ [N ]×U ′ ΨU ′ is finite, and
each Vj → S′ is an isomorphism over U ′. This can be restated by saying that
the composition

HU ′ → AU ′ ×U ′ ΨU ′ → ΨU ′

is an isomorphism.

Step 4: taking the quotient by H. Consider now the fppf-quotient

Nα :=
AS′ ×S′ ΨS′

H
.

First, we claim that its restriction Nα
U ′ is canonically isomorphic to AU ′ . In-

deed, we observed that HU ′ = ΨU ′ , and the quotient morphism for ΨU ′ →
AU ′ ×U ′ ΨU ′ , ψ 7→ (α(ψ), ψ) is AU ′ ×U ′ ΨU ′ → AU ′ , (a, ψ) 7→ a−α(ψ), which
proves the claim.

Because H is étale, Nα is automatically an algebraic space; we claim that it
is actually representable by a scheme. As the quotient morphism p : AS′ ×S′
ΨS′ → Nα is an H-torsor, p is étale. In particular the restriction of p to the
connected component of identity, AS′×{0} → Nα, is étale; it is also separated,
and an isomorphism over U . It follows that it is an open immersion. Hence, all
other components AS′ ×{ψ} map to Nα via an open immersion. The disjoint
union

⊔
ψ∈ΨAS′ ×S′ {ψ} surjects onto Nα, and this gives us an open cover of

Nα by schemes.

In summary, we have obtained an S′-group scheme Nα, which restricts to A
over U ′; moreover, it is S′-smooth, of finite presentation, and separated, since
H is closed in the separated scheme AS′ ×S′ ΨS′ .

Step 5: independence of the section α. We have used the notation
Nα as a reminder of our choice of section α done above. We show that Nα

does not depend on the choice of the section Ψ → A[N ](K ′), or to put it
better, we show that given two sections α, β we obtain a canonical isomorphism
Nα → N β . Actually, as soon as we prove that Nα and N β are test-Néron
models (step 6), the existence of a canonical isomorphism between them is
ensured by proposition 5.5; however, we still give an argument: suppose we
choose another section β : Ψ→ A[N ](K ′) and let Hβ ⊂ A[N ](K ′)×Ψ be the
image of Ψ via (β, id) : Ψ → A[N ](K ′) × Ψ. Then the map fβ−α : Hα → Hβ

sending (h, ψ) ∈ Hα ⊆ A[N ](K ′)×Ψ to (h+ (β − α)ψ,ψ) is an isomorphism.
Moreover, β − α lands inside

⊕
l TlA(K ′) ⊗ Z/NZ, the subgroup of A(K ′)

consisting of those N -torsion points that extend to torsion sections of AS′/S′.
Therefore β−α extends to a morphism of S′-group schemes ΨS′ → AS′ . Now,
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the isomorphism

AS′ ×S′ ΨS′ AS′ ×S′ ΨS′

1 β−α
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restricts to fβ−α on Hα and therefore also restricts to an isomorphism Hα →
Hβ between the schematic closures of Hα and Hβ in AS′ ×S′ ΨS′ . Hence, we
obtain an isomorphism Nα = (AS′ ×S′ ΨS′) /Hα → N β = (AS′ ×S′ ΨS′) /Hβ
between the quotients, as wished. We can therefore forget about the choice of
section and use the notation N/S′ for the group-scheme just constructed.

Step 6: showing that N is a test-Néron model. To ease notation, let
us write S in place of S′, D =

⋃
i∈J Di for the strict normal crossing divisor

D×S S′. Let Z be a strictly henselian trait, with closed point z, and g : Z → S
a morphism transversal to D. Write T for the strict henselization of S at z and
E ⊆ J for the subset of indices of components Di that contain z. Let alsoM/Z
be the Néron model of A×SZ. The Néron mapping property gives a morphism
NZ →M, which is an open immersion and induces an isomorphism between
the fibrewise-connected components of identity, as they are both semi-abelian
(lemma 2.17). Let Φ/S and Υ/Z be the étale group schemes of connected
components of N/S and M/Z respectively. To show that NZ → M is an
isomorphism, we only need to check that the induced morphism Φ|Z → Υ is
an isomorphism. It is certainly an open immersion, so it suffices to show that
Φ(z)→ Υ(z) is an isomorphism.

We will fix a prime l and compare the l-primary parts of the two groups, which
we denote lΦ(z) and lΥ(z). Let’s start with lΦ(z). The group scheme Φ/S
being given by ΨS/H, we have lΦ(z) = lΨ(z)/lH(z). Recall that lH is the
schematic closure of lH inside A ×S lΨS . Hence, lH(z) is identified with a
subgroup of lH consisting of those elements (a, ψ) ∈ lH ⊂ A[N ](K)× lΨ such
that a extends to a section of AT /T . These are exactly the pairs (a, ψ) ∈ lH
such that a ∈ TlA(K)⊕i∈EIi ⊗ Z/NZ. Therefore, lH(z) is the kernel of the
composition

lH
∼−→ lΨ =

⊕
i∈J

(
TlA(K)⊗ Z/NZ

)Ii
TlA(K)Ii ⊗ Z/NZ

pr−→

pr−→
⊕
i∈E

(
TlA(K)⊗ Z/NZ

)Ii
TlA(K)Ii ⊗ Z/NZ

=

(
TlA(K)⊗ Z/NZ

)⊕
i∈E Ii

TlA(K)
⊕
i∈E Ii ⊗ Z/NZ

from which it follows that

lΦ(z) =
lΨ(z)

lH(z)
∼=
⊕
i∈E

(
TlA(K)⊗ Z/NZ

)Ii
TlA(K)Ii ⊗ Z/NZ

.
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Next, we look at lΥ(z). Let’s call KZ the field of fractions of Γ(Z,OZ). The
morphism Z → T induces a group homomorphism

π1(Z \ {z}) = Gal(KZ |KZ) = Ẑ(1)→ π1(T \D) =
⊕
i∈E

Ẑ(1)

which sends a topological generator e of Ẑ(1) to a sum of topological generators∑n
i=1 ei, because Z meets D transversally.

Notice that there is a canonical identification TlA(KZ) = TlA(K); the topo-
logical generator of Gal(KZ |KZ) acts on the latter as

∑
i∈E ei does. Therefore

lΥ(z) =

(
TlA(K)⊗ Z/NZ

)∑
i∈E ei

TlA(K)
∑
i∈E ei ⊗ Z/NZ

By lemma 5.4 and lemma 5.2, lΥ(z) ∼= lΦ(z), as we wished to show. Hence N
is a test-Néron model for AU ′ over S′.

Step 7: descending N along S′ → S. For every geometric point s of S,
we have found an étale neighbourhood S′ → S and a test-Néron model N/S′
over S′. Using uniqueness up to unique isomorphism of test-Néron models,
their stability under étale base change, and effectiveness of étale descent for
algebraic spaces, we obtain a smooth separated algebraic space of finite type
Ñ over S, and an isomorphism Ñ ×S U → A. Because the property of being
a test-Néron model is étale-local, Ñ is itself a test-Néron model for A over
S.

5.2 Test-Néron models and finite flat base change

In [Edi92], Edixhoven considers the case of an abelian variety AK over the
generic point of a trait S, and a tamely ramified extension of traits π : S′ → S
whose associated extension of fraction fields K → K ′ is Galois. He considers
the Néron modelN/S of AK and the Néron modelN ′/S′ of AK′ : after defining
a certain equivariant action of Gal(K ′|K) on the Weil restriction π∗N ′, he
shows that N is naturally identified with the subgroup-scheme of Gal(K ′/K)-
invariants of π∗N ′.

In this subsection, we aim to show an analogous statement for test-Néron
models over a base of higher dimension and characteristic everywhere zero.

We let then S be a noetherian, regular, strictly local Q-scheme, D = ∪ni=1 div(ti)
a normal crossing divisor on S (thus the ti are part of a system of regular pa-
rameters for OS(S)), A an abelian scheme over U = S\D, A/S a toric-additive
semi-abelian scheme extending A.
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We can apply theorem 5.6 to construct a test-Néron model

N =
A×S ΨS

H
.

Notice that the étale cover S′ → S of the proof of theorem 5.6 is necessarily
trivial in this case.

Consider now a finite flat cover π : T → S of the form

T = Spec
OS(S)[X1, . . . , Xn]

Xm1
1 − t1, . . . , Xmn

n − tn

for some positive integers m1, . . . ,mn. Then T is a regular strictly local
scheme. We denote by K ′ its field of fractions. The morphism π is finite
étale over U , and the preimage via π : T → S of D is the normal crossing
divisor π−1(D) = ∪ni=1 divXi.

We have a commutative diagram

Gal(K|K ′) π1(UT ) =
⊕n

i=1 Ẑ(1)

Gal(K|K) π1(U) =
⊕n

i=1 Ẑ(1)

where the right vertical arrow is given by multiplication by mi on the i-th
component. We will write π1(U) =

⊕n
i=1 Ii and identify π1(UT ) with its

subgroup
⊕n

i=1miIi.

The fraction field K ′ of T is an extension of K of order m1 ·m2 · . . . ·mn, and
we write G for the Galois group Gal(K ′|K) =

⊕n
i=1 Ii/miIi =

⊕n
i=1 µmi .

By lemma 3.6, A×ST is still toric-additive. We follow the construction carried
out in the proof of theorem 5.6 to obtain a test-Néron model M/T : to start
with, we consider the finite abelian group

Ψ′ =
⊕

l prime

n⊕
i=1

(
TlA(K)⊗Ql/Zl

)miIi
TlA(K)miIi ⊗Ql/Zl

=
⊕

l prime

(
TlA(K)⊗Ql/Zl

)⊕ni=1miIi

TlA(K)
⊕n
i=1miIi ⊗Ql/Zl

We claim that TlA(K)Ii = TlA(K)miIi ; indeed, letting ei, be a topological
generator of Ii, and denoting still by ei the automorphism of TlA(K) induced
by ei, we know by section 2.3 that (ei−1)2 = 0. Using this relation, we obtain

emii − 1 = ((ei − 1) + 1)mi − 1 = m(ei − 1) + 1− 1 = m(ei − 1).

49



As TlA(K) is torsion-free, we see that ker(emii −1) = ker(ei−1), which proves
our claim. Hence, we actually have

Ψ′ =
⊕

l prime

(
TlA(K)⊗Ql/Zl

)⊕ni=1miIi

TlA(K)
⊕n
i=1 Ii ⊗Ql/Zl

and it follows that Ψ′ has a natural action of G.

Next, we let N = ord(Ψ′) and choose a section α : Ψ′ → A[N ](K ′). We write

H ′ for the image of Ψ′
(α,id)−−−−→ A[N ](K ′)×Ψ′ and H′ for its schematic closure

inside AT ×T Ψ′T . The fppf-quotient

M =
AT ×T Ψ′T
H′

is represented by a test-Néron model for AU ′ over T .

In order to compareM and N , we will consider the Weil restriction ofM via
π : T → S, that is, the functor π∗M : (Sch /S) → Sets given by (Y → S) 7→
M(Y ×S T ). Recall that we have an exact sequence of fppf-sheaves of abelian
groups

0→ H′ → AT ×T Ψ′T →M→ 0.

As π is a finite morphism, the higher direct images of π for the fppf-topology
vanish, and we have an exact sequence of fppf-sheaves

0→ π∗H′ → π∗AT ×S π∗Ψ′T → π∗M→ 0.

We claim that π∗M is representable by a scheme. By [Ray70b, XI, 1.16],
semi-abelian schemes are quasi-projective, hence so is AT ×T Ψ′T . Clearly
H′/T is quasi-projective as well. As π : T → S is finite and flat, π∗H′ and
π∗AT ×S π∗Ψ′T are schemes (see for example [Edi92, 2.2]). Now, π∗H′/S
is étale ([Sch94, 4.9]), and its intersection with the identity component of
π∗AT×Sπ∗Ψ′T is trivial. Reasoning as in the proof of theorem 5.6, we conclude
that π∗M has an open cover by schemes, hence it is a scheme.

We want to define an equivariant action of G on π∗M → S, where G acts
trivially on S. To do this, we let first G act on AK′ via the action of G on
K ′. By [Del85, 1.3 pag.132] the action of G extends uniquely to an equivariant
action on AT → T . We also have an obvious action of G on Ψ′ which induces
an equivariant action on Ψ′T → T . We put together these actions to find an
equivariant action of G on AT ×T Ψ′T → T : clearly H ′ is G-invariant, thus the
same is true for its schematic closure H′. Therefore the action of G descends
to an equivariant action of G on M→ T .

To define the action ofG on π∗M, we let g ∈ G act on π∗M via the composition
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π∗M×S T
(id,g)−−−→ π∗M×S T →M

g−1

−−→M.

where the second arrow is given by the identity morphism π∗M→ π∗M. This
defines the desired equivariant action of G on π∗M→ S.

Consider the functor of fixed points (π∗M)G : Sch /S → Sets, (Y → S) 7→
π∗M(Y )G. Then (π∗M)G is represented by a closed subgroup-scheme of π∗M,
smooth over S by [Edi92, 3.1].

Proposition 5.7. There is a canonical closed immersion ι : N → π∗M, which
identifies N with the subgroup-scheme of fixed points (π∗M)G.

Proof. By generalities on the Weil restriction [BLR90, pag. 198], the canonical
morphism A → π∗AT is a closed immersion. The natural injection Ψ → Ψ′

gives a closed immersion A×S ΨS → π∗AT ×S Ψ′S = π∗(AT ×T Ψ′T ). To show
that it descends to a closed immersion N → π∗M, it is enough to show that

π∗H′ ∩ (A×S ΨS) = H. (28)

We may assume that the section Ψ→ A[N ](K) used to constructH is obtained
by restriction of the section Ψ′ → A[N ](K ′) used to construct H ′: indeed
we know that it does not matter which section we choose. It follows that
H = H ′ ∩ (A(K)×K Ψ), which realizes eq. (28) on the level of generic fibres.
Now, π∗H′ is étale over S, and it is a closed subscheme of π∗AT ×S Ψ′S .
Hence, it is the schematic closure of its generic fibre, which is H ′. Then, the
intersection H∗ := π∗H′ ∩ (π∗AT ×S ΨS) is clearly still étale over S, and has
generic fibre H. Thus H∗ is the schematic closure of H in π∗AT ×S ΨS . On
the other hand, H → A×S ΨS → π∗AT ×S ΨS is a closed immersion, and H
is étale over S and has generic fibre H. As H and H∗ are both étale over S,
have same generic fibre and are both closed subschemes of π∗AT ×S ΨS , they
are equal. Since H is contained in A×S ΨS , so is H∗ and we obtain eq. (28).
This proves that we have a closed immersion ι : N → π∗M.

Now, the restriction of ι to the generic fibre is the closed immersion A →
π∗AK′ , which identifies A with (π∗AK′)

G. Since (π∗M)G and N are both
S-smooth closed subschemes of π∗M and they share the same generic fibre,
they are equal.

5.3 Test-Néron models are Néron models

The objective of this subsection is to prove the following:

Theorem 5.8. Let S be a connected, locally noetherian, regular Q-scheme, D
a normal crossing divisor on S, A an abelian scheme over U = S\D extending
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to a toric-additive semi-abelian scheme A/S. Then A admits a Néron model
over S.

In view of theorem 5.6, theorem 5.8 is an immediate corollary of the following
proposition:

Proposition 5.9. Hypotheses as in theorem 5.8. Let N/S be a test-Néron
model for A over S. Then N/S is a Néron model.

We will subdivide the proof of proposition 5.9 in two main steps (proposi-
tions 5.10 and 5.11).

Proposition 5.10. In the hypotheses of proposition 5.9, assume S has di-
mension 2. Then N/S is a weak Néron model for A.

Proof. Let σ : U → A be a section; we want to show that it extends to a section
S → N , or equivalently, that the schematic closure σ(U) ⊂ N is faithfully flat
over S. The latter may be checked locally for the fpqc topology; hence, we may
reduce to the case where S is the spectrum of a complete, strictly henselian
local ring. The normal crossing divisor D has at most 2 components, and up
to restricting U we may assume that it is given by the zero locus of uv, with
u, v regular parameters for Γ(S,OS).

Notice that the closure σ(U) may fail to be flat only over the closed points of
S, as S\{s} is of dimension 1. By the flattening technique of Raynaud-Gruson
([GR71, 5.2.2]), there exists a blowing-up S̃ → S, centered at s, such that the
schematic closure of σ(U) inside NS̃ is flat over S̃. Because S has dimension 2,

we can find a further blow-up S′ → S̃ such that the composition S′ → S is a
composition of finitely many blowing-ups, each given by blowing-up the ideal
of a closed point with its reduced structure. It follows that the exceptional
fibre E ⊂ S′ of S′ → S is a chain of projective lines meeting transversally. Let
Σ ⊂ NS′ be the schematic closure of σ(U). The morphism Σ→ S′ is flat, but
may a priori not be surjective. At this point we only know that the image of
Σ contains S′ \ E.

We claim that Σ → S′ is surjective. Let p ∈ E. It’s easy to show that
there exists some strictly henselian trait Z with closed point z and a closed
immersion Z → S′ mapping z to p and such that Z meets E transversally.
We call L the field of fractions of OZ(Z). The section σ : U → A restricts to
a section σL : SpecL→ AL; to establish the claim, it suffices to show that σL
extends to a section Z → NZ . We consider the composition ϕ : Z → S′ → S
and the pullbacks ϕ∗(u), ϕ∗(v) ∈ OZ(Z). Let m,n ∈ Z≥1 be their respective
valuations. Now let π : T → S be the finite flat morphism given by extracting
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an m-root of u and an n-root of v, that is,

T = Spec
OS(S)[x, y]

xm − u, yn − v
.

Then T is itself the spectrum of a regular, strictly henselian local ring and the
preimage π−1(D) is the zero locus of xy and hence a normal crossing divisor.
The pullback of A via T → S is still toric-additive (lemma 3.6) and therefore
we can construct a test Néron model M/T . Writing X = π∗M for the Weil
restriction along π and G := AutS(T ) = µm ⊕ µn, we have by proposition 5.7
that XG = N .

Now, as Z is a strictly henselian, O(Z) contains all roots of elements of O(Z)×,
and we can find uniformizers tu, tv ∈ OZ(Z) such that tmu = ϕ∗(u) and tnv =
ϕ∗(v). These elements give us a lift of ϕ : Z → S to ψ : Z → T . Then ψ
is a closed immersion meeting f−1(D) transversally. This means that the
base changeMZ/Z is a Néron model of its generic fibre. Consider the section
σL : SpecL→ AL. Composing it with the closed immersion AL = (π∗M)GL ↪→
(π∗M)L gives, by definition of Weil restriction, a morphism SpecL ×S T →
ML. Precomposing with (id, ψ) : SpecL→ SpecL×S T , we obtain a section
σ̃L : SpecL → ML. As MZ/Z is a Néron model of its generic fibre, σ̃L
extends uniquely to a section Z → MZ . This gives us a morphism of T -
schemes Z → M and by composition a T -morphism Z ×S T → Z → M,
that is, a section m ∈ X(Z) of the Weil restriction. Notice that the generic
fibre of m is σL, which lands in the part of X fixed by G; as XG = N is a
closed subscheme of X we deduce that m lands inside N . So m ∈ N (Z) is the
required extension of σL and we win.

As Σ → S′ is faithfully flat, separated and birational, it is an isomorphism.
Hence σ : U → A extends to a section σ′ : S′ → NS′ . We are going to show
that σ′ descends to a section θ : S → N . The restriction of σ′ to E maps a
connected chain of projective lines to a connected component of Ns (where s is
the closed point of S). Every connected component of Ns is isomorphic to the
semi-abelian variety N 0

s , hence does not contain projective lines. It follows
that σ′|E is constant and that it descends to a morphism Spec k(s) → Ns.
Let J be the ideal sheaf of the exceptional fibre E ⊂ S′ and define S′n ⊂ S′

to be the closed subscheme defined by J n+1 for every n ≥ 0. Similarly let
Sn := SpecOS(S)/mn+1, where m is the maximal ideal of OS(S). We have
shown that σ′|E : S′0 → N descends to a morphism θ0 : S0 → N . Now, by
smoothness of N , every morphism Sj−1 → N admits a lift Sj → N ; the set of
such lifts is given by H0(S0,Ω

1
NS0/S0

⊗OS0 m
j/mj+1). The canonical morphism

H0(S0,Ω
1
NS0/S0

⊗OS0 mj/mj+1)→ H0(S′0,Ω
1
NS′0/S

′
0
⊗OS′0 J

j/J j+1)

is an isomorphism, due to the fact that the space of global sections of J j/J j+1 =
OS′0(j) is equal to mj/mj+1. Thus the set of liftings of α ∈ HomS(Sj ,N )
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to HomS(Sj+1,N ) is naturally in bijection with the set of liftings of α|S′j ∈
HomS(S′j ,N ) to HomS(S′j+1,N ). The reductions modulo J j of σ′ : S′ → NS′
provides a compatible set of liftings of σ′|S′0

, and therefore a compatible set of

liftings of θ0; which in turn by completeness of S yield the desired morphism
S → N .

The next step is extending the result to the case of dimS > 2.

Proposition 5.11. In the hypotheses of proposition 5.9, N/S is a weak Néron
model.

Proof. As in the proof of proposition 5.10, we may assume that S is the spec-
trum of a complete strictly henselian local ring. We proceed by induction on
the dimension of S. If the dimension is 1, the statement is clearly true, and
the case of dimension 2 is the statement of proposition 5.10. So we let n ≥ 3
be the dimension of S and we suppose that the statement is true when S has
dimension n − 1. Let σ : U → A be a section. Because V = S \ {s} has
dimension n−1, and because AV is still toric-additive (lemma 3.8), σ extends
to σ : V → NV .

Next, we cut S with a hyperplane H transversal to all the components of
the normal crossing divisor D, but paying attention to choosing H so that
D ∩ H (with its reduced structure) is still a normal crossing divisor on H.
This is always possible: consider a system of regular parameters u1, u2, . . . , un
for S such that D is the zero locus of u1u2 · · ·ur for some r ≤ n; then H
can be chosen to be, for example, the hypersurface cut by u1 − un. Because
H is transversal to D, it is clear that the base change NH/H is still a test-
Néron model. By our inductive assumption on the dimension of the base,
σ|H : H ∩ U → A extends to θ0 : H → N . Now we would like to put together
the data of σ and θ0 to extend σ : V → NV to a section θ : S → N . Let J ⊂ OS
be the ideal sheaf of H and for every j ≥ 1 define Sj to be the closed subscheme
cut by J j+1. We have a morphism θ0 : H = S0 → N . By smoothness of N ,
there exists for every j ≥ 0 a lifting of θ0 to an S-morphism Sj → N . The set
of liftings of an S-morphism Sj−1 → N to an S-morphism Sj → N is given
by the global sections of the locally-free sheaf F := Ω1

N/S ⊗ J
j/J j+1 on S0.

Because dimS0 ≥ 2 and V = S \ {s}, we have H0(S0,F) = H0(V ∩ S0,FV ),
and the latter parametrizes liftings of morphisms Sj−1∩V → N to Sj∩V → N .
The section σ : V → NV gives a compatible choice of lifting for every j ≥ 0,
and we get by completeness of S a morphism S → N agreeing with σ on V ,
as we wished.

We can now conclude the proof of proposition 5.9.
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Proof of proposition 5.9. Let T → S be a smooth morphism; then AT /T is
toric-additive by lemma 3.8 and the base change NT /T is a test-Néron model.
Now, given σU : TU → A, we obtain a section TU → A ×U TU , which by
proposition 5.11 extends to a section T → NT . The latter is the datum of an
S-morphism σ : T → N extending σU .

We give a corollary of theorem 5.8.

Corollary 5.12. Let S be a connected, locally noetherian, regular Q-sccheme,
D a regular divisor on S, A an abelian scheme over U = S \D extending to a
semi-abelian scheme A/S. Then A admits a Néron model over S.

Proof. At every geometric point s of S, D has only one irreducible component.
It follows that A/S is toric-additive and we conclude by theorem 5.8.
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Part II

Semi-factorial nodal curves and
Néron lft-models

6 Introduction

Let S be the spectrum of a discrete valuation ring with fraction field K, and
let X → S be a scheme over S. Following [Pép13], we say that X → S is
semi-factorial if the restriction map

Pic(X )→ Pic(XK)

is surjective; namely, if every line bundle on the generic fibre XK can be
extended to a line bundle on X .

We consider the case of a relative curve X → S. In [Pép13], Theorem 8.1,
Pépin proved that given a geometrically reduced curve XK/K with ordinary
singularities and a proper flat model X → S, a semi-factorial flat model X ′ →
S can be obtained after a blowing-up X ′ → X with center in the special fibre.

The main result of this part is a necessary and sufficient condition for semi-
factoriality in the case where X → S is a proper, flat family of nodal curves,
whose special fibre has split nodes. It turns out that in this case semi-
factoriality is equivalent to a certain combinatorial condition involving the
dual graph of the special fibre of X/S and a labelling of its edges, which we
describe now. Let t ∈ Γ(S,OS) be a uniformizer; every node of the special
fibre is étale locally described by an equation of the form

a) xy − tn = 0 for some n ≥ 1, or

b) xy = 0 (if the node persists in the generic fibre).

Consider the dual graph Γ = (V,E) associated to the special fibre of X/S. We
label its edges by the function l : E → Z≥1 ∪ {∞}

l(e) =

{
n if the node corresponding to e is as in case a);

∞ if the node corresponding to e is as in case b).

We say that the labelled graph (Γ, l) is circuit-coprime if, after contracting
all edges with label ∞, every circuit of the graph has labels with greatest
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common divisor equal to 1. In particular, if Γ is a tree, (Γ, l) is automatically
circuit-coprime.

The following theorem is our main result:

Theorem 6.1 (theorem 12.3). If the labelled graph (Γ, l) is circuit-coprime,
the curve X → S is semi-factorial. If moreover Γ(S,OS) is strictly henselian,
the converse holds as well.

The proof (of the first statement) can be subdivided in three parts:

• we start by constructing a chain of proper birational morphisms of nodal
curves over S

. . .→ Xn → Xn−1 → . . .→ X1 → X0 := X

where every arrow is the blowing-up at the reduced closed subscheme
of non-regular closed points. A generalization (proposition 9.4) of the
smoothening techniques developed in [BLR90], Chapter 3, allows us to
show that given a line bundle L on XK there exists a positive integer n
such that L extends to a line bundle L on Xn (theorem 9.5).

• in the combinatorial heart of the proof, we provide a dictionary between
geometry and graph theory to reduce the study of the blowing-ups Xn
and line bundles on them to the study of their dual labelled graphs and
integer labellings of their edges. We show that if the labelled graph (Γ, l)
of X/S is circuit-coprime, there exists a generically trivial line bundle E
on Xn such that L ⊗ E has degree 0 on each irreducible component of
the exceptional fibre of πn : Xn → X .

• Finally, we show (proposition 10.2) that the direct image πn∗(L⊗E) is a
line bundle on X (which in particular extends L). This relies essentially
on the fact that the exceptional fibre of πn is a curve of genus zero.

As a corollary to the theorem, we refine Theorem 8.1 of [Pép13] in the case of
nodal curves X/S with special fibre having split nodes, by explicitly describing
a blowing-up with center in the special fibre that yields a semi-factorial model:

Corollary 6.2 (corollary 12.5). Let X1 → X be the blowing-up centered at the
reduced closed subscheme consisting of non-regular closed points of X . Then
the curve X1 → S is semi-factorial.

This follows immediately, observing that X1 has circuit-coprime labelled graph.
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Semi-factoriality is closely connected to Néron models of jacobians of curves.
A famous construction of Raynaud ([Ray70a]) shows that if X → S has regular
total space, a Néron model over S for the jacobian Pic0

XK/K is given by the

S-group scheme Pic
[0]
X/S / cl(e), where Pic

[0]
X/S represents line bundles of total

degree zero on X , and cl(e) is the schematic closure of the unit section e : K →
Pic0
XK/K . In [Pép13], Theorem 9.3., it is shown that the same construction

works in the case of semi-factorial curves X → S with smooth generic fibre.
Our second main theorem is a corollary of theorem 6.1:

Theorem 6.3 (theorem 13.6). Let X → S be a nodal curve over the spectrum
of a discrete valuation ring. Then PicX/S / cl(e) is a Néron lft-model over S
for PicXK/K if and only if the labelled graph (Γ, l) is circuit-coprime.

Note that there are no smoothness assumptions on the generic fibre. The ab-
breviation “lft” stands for “locally of finite type”, meaning that we do not
require the model to be quasi-compact (even if we chose to impose degree re-
strictions on PicXK/K , the resulting Néron lft-model may not be quasi-compact
in general, as XK/K may not be smooth).

6.1 Outline

In section 7 we introduce the basic definitions, including that of nodal curve
with split singularities. In section 8 we define an infinite chain of blow-ups of
a given nodal curve X/S and then show that every line bundle on the generic
fibre XK/K extends to a line bundle on one of these blow-ups (section 9). Sec-
tion 10 contains an important technical lemma on descent of line bundles along
blowing-ups. Section 11 is entirely graph-theoretic and contains the definition
of circuit-coprime labelled graphs. The combinatorial results established in
this section are then reinterpreted in section 12 in geometric terms in order to
give a necessary and sufficient condition for semi-factoriality of nodal curves.
In section 13, starting from a nodal curve X/S, we construct a Néron model
of the Picard scheme of its generic fibre.
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7 Preliminaries

7.1 Nodal curves

Definition 7.1. A curve X over an algebraically closed field k is a proper mor-
phism of schemes X → Spec k, such that X is connected and whose irreducible
components have dimension 1. A curve X/k is called nodal if for every non-

smooth point x ∈ X there is an isomorphism of k-algebras ÔX ,x → k[[x, y]]/xy.

For a general base scheme S, a nodal curve f : X → S is a proper, flat mor-
phism of finite presentation, such that for each geometric point s of S the fibre
Xs is a nodal curve.

We are interested in the case where the base scheme S is a trait, that is, the
spectrum of a discrete valuation ring. In what follows, whenever we have a
trait S, unless otherwise specified we will denote by K the fraction field of
Γ(S,OS) and by k its residue field.

Definition 7.2. Let X → Spec k be a nodal curve over a field and n : X ′ →
X be the normalization morphism. A non-regular point x ∈ X is a split
ordinary double point if the points of n−1(x) are k-rational (in particular, x is
k-rational). We say that X → Spec k has split singularities if all non-regular
points x ∈ X are split ordinary double points.

It is clear that the base change of a curve with split singularities still has split
singularities. Also, it follows from [Liu02], Corollary 10.3.22 that for any nodal
curve X → S over a trait there exists an étale base change of traits S′ → S
such that X ×S S′ → S′ has split singularities.

The following two lemmas are Corollary 10.3.22 b) and Lemma 10.3.11 of
[Liu02]:

Lemma 7.3. Let f : X → S be a nodal curve over a trait and let x ∈ X be
a split ordinary double point lying over the closed point s ∈ S. Write R for
Γ(S,OS) and m for its maximal ideal. Then

ÔX ,x ∼=
R̂[[x, y]]

xy − c

for some c ∈ mR. The ideal generated by c does not depend on the choice of c.

We define an integer τx ∈ Z≥1 ∪ {∞}, given by the valuation of c if c 6= 0 and
by ∞ if c = 0. We call τx the thickness of x. The point x is non-regular if and
only if τx ∈ Z≥2 ∪{∞}; moreover, τx =∞ if and only if x is the specialization
of a node of the generic fibre XK .
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Remark 7.4. If the hypothesis that the special fibre has split singularities
is dropped, the same result holds after replacing R and OX ,x by their strict
henselizations.

Lemma 7.5. Let X be a nodal curve over a field k, x ∈ X a split ordinary
double point such that at least two irreducible components of X pass through x.
Then x belongs to exactly two irreducible components Z1, Z2 which are smooth
at x and meet transversally.

In view of lemma 7.5, if X/k is a nodal curve with split singularities, the dual
graph G of X can be defined. The vertices of G correspond to the irreducible
components of X, while every edge e between vertices v, w corresponds to a
an ordinary double point contained in the components corresponding to v and
w.

7.2 Semi-factoriality

Definition 7.6 ([Pép13] 1.1.). Let X → S be a scheme over a trait. We say
that X is semi-factorial over S if the restriction map

Pic(X )→ Pic(XK)

is surjective.

8 Blowing-up nodal curves

Let f : X → S be a nodal curve over a trait. In this section we study the effects
of blowing-up non-regular points of X lying on the special fibre of X → S.

8.1 Blowing-up a closed non-regular point

Lemma 8.1. Let X → S be a nodal curve over a trait. Let x be a non-regular
point lying on the special fibre of X → S. The blowing-up π : X̃ → X centered
at (the reduced closed subscheme given by) x gives by composition a nodal curve

X̃ → S.

Proof. The map π : X̃ → X is proper, hence so is the composition X̃ → S.
Let x be a geometric point of X lying over x. We write A := R̂sh for the
completion at its maximal ideal of the strict henselization of R induced by x.
Similarly we let B := ÔétX ,x be the completion of the étale local ring of X at
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x. We have B ∼= A[[u, v]]/uv− c for some c ∈ A; we will assume that c = 0, as
the reader can refer to [Liu02], Example 8.3.53 for the case c 6= 0.

The blowing-up Z → SpecB at the maximal ideal m = (t, u, v) ⊂ B fits in a
cartesian diagram

Z //

��

X̃

π

��
SpecB // X

with flat horizontal maps and is given by

Z = Proj
B[S,U, V ]

I

where I is the homogenous ideal

I = (uS − tU, vS − tV, uV, vU, UV ).

The scheme Z is covered by three affine patches, given respectively by the loci
where S,U, V are invertible. Namely we have:

D+(S) ∼= Spec
A[U, V ]

UV
, D+(U) ∼= Spec

A[[u]][S]

t− uS
, D+(V ) ∼= Spec

A[[v]][S]

t− vS
.

To see that X̃ is S-flat, we check that the image of the uniformizer t ∈ R is
torsion-free in OX̃ , which is immediate upon inspection of the coordinate rings
of D+(S), D+(U), D+(V ). Also, for all field valued points y : SpecL→ SpecA
lying over the closed point of SpecA, the completed local rings at the singular
points of Zy are of the form L[[x, y]]/xy, as desired.

8.2 An infinite chain of blowing-ups

Write now Xnreg for the non-regular locus of X . By the very definition of
nodal curve, the locus Xnreg is a closed subset of X , and in particular its
intersection with the special fibre Xk ∩Xnreg is a finite union of closed points.
We inductively construct a chain of proper birational maps of nodal curves as
follows.

Construction 8.2. Let Y0 be the closed subscheme given by Xk ∩ Xnreg
with its reduced structure. Blowing-up Y0 in X we obtain a proper birational
morphism π1 : X1 → X , which restricts to an isomorphism on the dense open
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X \ Y0 and in particular over the generic fibre. For i ∈ Z≥1 we let Yi :=
(Xi)k ∩ (Xi)nreg with its reduced structure, and define Xi+1 → Xi to be the
blowing-up at Yi. We obtain a (possibly infinite) chain of proper birational
S-morphisms between nodal curves,

(πn : Xn → Xn−1)n∈Z≥1
, X0 := X (29)

which eventually stabilizes if and only if the generic fibre XK is regular.

8.3 The case of split singularities

From the calculations of the lemma 8.1 we deduce how blowing-up alters the
special fibre of a nodal curve whose special fibre has split singularities. Let
X → S be such a curve and let p ∈ X be a non-regular point of the special
fibre. We have k(p) = k. Let π : X̃ → X be the blow-up at p, Y = Spec Ôp,
and Ỹ = Y ×X X̃ . Then πY : Ỹ → Y is the blowing-up at the closed point q
of Y . Explicit calculations show that the exceptional fibre π−1

Y (q) = π−1(p) is
a chain of projective lines meeting transversally at nodes defined over k.

We now distinguish all possible cases:

• If τp = ∞, so that p is the specialization of a node ζ of XK , π−1(p) is
given by two copies of P1

k meeting at a k-rational node p′ with τp′ =∞;

• if τp = 2, π−1(p) consists of one P1
k;

• finally, if τp > 2, then π−1(p) consists again of two copies of P1
k, meeting

at a k-rational node p′ with τp′ = τp − 2.

In all cases, the intersection points between π−1(p) and the closure of its

complement in X̃k are regular in X̃ , that is, they have thickness 1, and are
k-rational. Moreover, X̃ → S has special fibre with split singularities.

9 Extending line bundles to blowing-ups of a
nodal curve

Our first aim is to prove that for any line bundle L on the generic fibre XK ,
there exists an n ≥ 0 such that L extends to a line bundle on the surface Xn of
the chain of nodal curves (29). In order to do this, we recall and slightly gener-
alize the definition of Néron’s measure for the defect of smoothness presented
in [BLR90], Chapter 3.
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Definition 9.1. Let R be a discrete valuation ring and Z an R-scheme of
finite type. Let R → R′ be a local flat morphism of discrete valuation rings.
Let a ∈ Z(R′) and denote by Ω1

Z /R the OZ -module of R-differentials. The

pullback a∗Ω1
Z /R is a finitely-generated R′-module, thus a direct sum of a

free and a torsion sub-module. We define Néron’s measure for the defect of
smoothness of Z along a as

δ(a) := length of the torsion part of a∗Ω1
Z /R

Remark 9.2. In [BLR90] 3.3, the measure for the defect of smoothness is de-
fined for points with values in the strict henselization Rsh of R (which amounts
to considering only local étale morphisms R → R′). We allow more general
maps because we will need them in the proof of theorem 9.5.

The following two lemmas generalize two analogous results in [BLR90] 3.3,
concerning Néron’s measure for the defect of smoothness to the case of points
a ∈ Z(R′) with R′ a (possibly ramified) local flat extension of R. In the
following lemma, we denote by Zsm the S-smooth locus of Z.

Lemma 9.3. Let R be a discrete valuation ring and Z an R-scheme of finite
type. Let a ∈ Z(R′) for some local flat extension R→ R′ of discrete valuation
rings. Assume that the restriction to the generic fibre aK′ : SpecK ′ → ZK′
factors through the smooth locus ZsmK′ of ZK′ . Then

δ(a) = 0⇔ a ∈ Zsm(R′)

Proof. See [BLR90] 3.3/1, for a proof in the case of smooth generic fibre and
R→ R′ a local étale map of discrete valuation rings. The same proof works for
non-smooth generic fibre, as long as aK factors through Zsm. Now notice that
a∗ΩZ /R ∼= (a′)∗ΩZR′ /R′ , where a′ : SpecR′ → ZR′ is the section induced by
a. We conclude by the fact that the smooth locus of Z /R is preserved under
the faithfully flat base change SpecR′ → SpecR.

Proposition 9.4. Let R be a discrete valuation ring, Z /R a nodal curve,
f : R→ R′ a finite locally free extension of discrete valuation rings with ram-
ification index r ∈ Z≥1. Suppose a ∈ Z(R′) is such that the restriction to
the generic fibre aK′ factors through the smooth locus of ZK , and that the
restriction to the special fibre ak is contained in the non-regular locus Znreg.
Let π : Z̃ → Z be the blowing-up at the closed point p = a∩Zk with its reduced
structure and denote by ã ∈ Z̃(R′) the unique lifting of a to Z̃. Then, either

ã is contained in the regular locus of Z̃, or

δ(ã) ≤ max(δ(a)− r, 0).
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Proof. For R′ = R, proposition 9.4 is a particular case of [BLR90] 3.6/3. The
strategy of the proof is to reduce to this case.

Denote by t a uniformizer for R, and by u a uniformizer for R′, with ur = t
in R′. Since Z(R′) = ZR′(R′) the section a can be interpreted as a section
b ∈ ZR′(R′). Because Ω1

ZR′ /R′
∼= Ω1

Z /R ⊗R R
′, we have δ(a) = δ(b). The flat

map f : R→ R′ induces a cartesian diagram

Z̃R′ //

πR′

��

Z̃

π

��
ZR′

g // Z

where πR′ : Z̃R′ → ZR′ is the blowing-up of the preimage g−1(p) of p via
g : ZR′ → Z. Then the lifting ã ∈ Z(R′) factors via the unique lifting of b

to b̃ ∈ Z̃R′(R′). All we need to prove is that δ(̃b) ≤ max{δ(b) − r, 0}. We
may work locally around p, and assume Z = SpecA for some R-algebra A,
and write ZR′ = SpecB with B = A ⊗R R′. By restricting Z, we may also
assume that p is the only non-smooth point of Z. We let (t, x1, . . . , xn) ⊂ A
be the maximal ideal corresponding to p. The ideal of the closed subscheme
g−1(p) ⊂ ZR′ = SpecB is then I = (ur, x1, . . . , xn) ⊂ B, so in particular
g−1(p) is a non-reduced point for r > 1.

We want to decompose the blowing-up πR′ : Z̃R′ → ZR′ into a chain of r
blowing-ups and then apply to each of these the known case described in the
beginning. We construct the chain as follows: we first blow up the ideal
I1 = (u, x1, . . . , xn) ⊂ B and obtain a blowing-up map Z1 → ZR′ . The
scheme Z1 is a closed subscheme of PnB , whose defining homogeneous ideal is
the kernel of the map of graded B-algebras

B[u(1), x
(1)
1 , . . . , x(1)

n ]→ ⊕d≥0I
d
1

given by sending u(1) to u and x
(1)
i to xi for all i = 1, . . . , n. The locus

D+(u(1)) ⊂ Z1 where u(1) does not vanish is affine, and we denote it by Y1. We

blow up its closed subscheme given by the ideal (u, x
(1)
1 /u(1), x

(1)
2 /u(1), . . . , x

(1)
n /u(1)),

and obtain a map
Z2 → Y1.

Next we consider the affine Y2 := D+(u(2)) ⊂ Z2 and reiterating the procedure
r times, we end up with a chain of morphisms

Yr → Yr−1 → . . .→ Y1 → ZR′

of affine schemes.
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Every blow-up Yi+1 → Yi is the blow-up at a closed point, with reduced
structure. Moreover, by the description in section 8.3, we can see that every
Yi has only one non-regular point pi in the special fibre; working étale locally
one sees that Yi+1 → Yi is exactly the blowing-up at pi.

Let’s now relate this chain of maps to the blowing-up Z̃R′ → ZR′ given by the
ideal (ur, x1, . . . , xn). Combining the relations

x
(j−1)
i

u(j−1)
u(j) = ux

(j)
i

for all j = 1, . . . , r (where we also set x
(0)
i := xi and u(0) := u), we obtain in

Yr the equality

xi =
x

(r)
i

u(r)
ur

for all i = 1, . . . , n. Hence the ideal sheaf (ur, x1, . . . , xn) on ZR′ has preimage
in Yr which is free of rank 1, generated by ur. By the universal property of
blowing-up we obtain a unique map α : Yr → Z̃R′ such that the diagram

Z̃R′

��
Yr

α

==

// ZR′

commutes. Next, we focus on the blow-up map Z̃R′ → ZR. The scheme Z̃R′
is a closed subscheme of PnB , whose defining homogeneous ideal is the kernel
of the map of graded B-algebras

B[v, y1, . . . , yn]→ ⊕d≥0I
d

given by sending v to ur and yi to xi for all i = 1, . . . , n. So we have relations
vxi = uryi for all i = 1, . . . , n. Then the map α∗ : OX̃R′ → OYr sends yi to

x
(r)
i and v to u(r). We restrict our attention to the open affine Y ⊂ Z̃R′ where
v does not vanish. Since v is mapped by α∗ to u(r), which does not vanish
on Yr, the map α factors as a map α′ : Yr → Y followed by the inclusion
Y ⊂ Z̃R′ . Now we produce an inverse to α′. One checks that the ideal sheaf
(u, x1, . . . , xn) of ZR′ becomes free in Y (generated by u), hence we obtain a
unique map Y → Y1 compatible with the maps to ZR′ . Then the argument
can be reiterated to produce a commutative diagram

Y

��
rr tt }}

Yr // Yr−1
// . . . // Y1

// ZR′
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In particular we obtain a map β : Y → Yr. It is an easy check that the maps
α′ and β produced between Y and Yr are inverse one to another, hence they
give an isomorphism Yr → Y.

If we let bi be the unique lift to Yi of b0 := b : R′ → ZR′ , wither bi is in the
regular locus of Yi, or Yi+1 → Yi is the blowing-up at bi ∩ (Yi)k, in which case
we obtain, by [BLR90] 3.3/5, that δ(bi+1) ≤ max{δ(bi) − 1, 0}. Now, if for
some 1 ≤ i ≤ r the section bi is contained in the regular locus of Yi, then also
b̃ is contained in the regular locus of Y. Otherwise, δ(̃b) ≤ max{δ(b)− r, 0} as
desired.

We now have the tools to prove our main result on extending line bundles to
blowing-ups in the chain of morphisms (29).

Theorem 9.5. Let S be a trait, with perfect fraction field K, X/S a nodal
curve. Let L be a line bundle on XK . Let (πi : Xi → Xi−1)i be the chain (29)
of blow-ups. Then there exists N ≥ 0 for which L extends to a line bundle L
on XN .

Proof. Let L be an invertible sheaf on XK , and D be a Cartier divisor with
OXK (D) ∼= L. We may take D to be supported on the smooth locus of XK
([Sha13], Theorem 1.3.1) and see it as a Weil divisor. We may also assume
that D is effective, since any Weil divisor is the difference of two effective Weil
divisors.

The closed subscheme Dred given by the support of D with its reduced struc-
ture is a disjoint union of finitely many closed points of the smooth locus of
XK . We write

Dred =

s⋃
i=1

Pi

where Pi ∈ X smK (Ki) for finite (separable) extensions K ↪→ Ki, i = 1, . . . , s.
For each i = 1, . . . , s, we let Ri be the localization at some prime of the
integral closure of R in Ki, so that each Ri is a discrete valuation ring with
fraction field Ki, and R → Ri is finite locally free. The curve X/R being
proper, each Pi extends to Qi ∈ X (Ri). Write Xnsm for the non-smooth locus
of X/R and Xnreg for the non-regular locus of X . Notice that δ(Qi) > 0 if
and only if Qi ∩ Xk ∈ Xnsm, by lemma 9.3. Assume that the point Qi ∩ Xk
lies in Xnreg ⊂ Xnsm. In this case, it is one of the closed points that are
the center of the blowing-up X1 → X . By proposition 9.4, the unique lifting
Q′i of Qi to X1 either is contained in the regular locus of X1, or it satisfies
δ(Q′i) ≤ max(0, δ(Qi)− ri), where ri ≥ 1 is the ramification index of R→ Ri.
Applying repeatedly proposition 9.4, we see that there is N > 0 such that
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each of the points Pi ∈ XK extends to Q
(N)
i ∈ X regN (Ri). Therefore the Weil

divisor D extends to a Weil divisor D̃ on XN that is supported on the union of

the Q
(N)
i , hence on the regular locus of XN . This implies that D̃ is a Cartier

divisor, and the line bundle OXn(D̃) restricts to OXK (D) ∼= L on XK . This
completes the proof.

10 Descent of line bundles along blowing-ups

Lemma 10.1. Let S be a trait and π : Y → X a proper morphism of flat
S-schemes, which restricts to an isomorphism over the generic point of S.
Assume that the special fibre Xk is reduced. Then π∗OY ∼= OX .

Proof. Consider an affine open W ⊂ X . The morphism OX (W )→ π∗OY(W )
is integral ([Liu02], Prop.3.3.18). Denoting by t a uniformizer of Γ(S,OS), we
have a commutative diagram

OX (W ) //

��

π∗OY(W )

��
OX (W )[t−1]

∼= // (π∗OY(W ))[t−1]

The two vertical arrows are injective because X and Y are S-flat; the lower ar-
row is an isomorphism because π is generically an isomorphism and (π∗OY(W ))[t−1] =
π∗(OY(W )[t−1]). It follows that the upper arrow is injective. We claim that
OX (W ) is integrally closed in OX (W )[t−1], so that the upper arrow is an iso-
morphism, which proves the lemma. Take then g ∈ OX (W )[t−1] satisfying a
monic polynomial equation gm + a1g

m−1 + . . . + am = 0 with coefficients in
OX (W ) and write g = f/tn with f ∈ OX (W ) and n ≥ 0 minimal. We want
to show that n is zero. We have

fm

tnm
+ a1

fm−1

tn(m−1)
+ . . .+ am = 0.

Suppose by contradiction n ≥ 1. Upon multiplying by tnm the above relation,
we find that fm ∈ tOX (W ). Because the special fibre of X is reduced, the ring
OX (W )/tOX(W ) is reduced, hence f ∈ tOX (W ). This violates the hypothesis
of minimality of n and we have a contradiction. Hence n = 0 and g ∈ OX (W ),
proving the claim.

68



Proposition 10.2. Let S be a trait, X/S a nodal curve, and Y → X the
blowing-up of X at a closed point p ∈ X . Let L be a line bundle on Y such
that its restriction to every irreducible component of the exceptional locus of π
has degree zero. Then π∗L is a line bundle on X .

Proof. We first consider the case where S is the spectrum of a strictly henselian
discrete valuation ring. In this case, the special fibre of X → S has split
singularities, hence, as seen in section 8.3, the exceptional fibre E of Y → X
consists either of a projective line, or of two projective lines meeting at a
k-rational node.

The sheaf π∗L is a coherent OX -module. Since the curve X is reduced, to show
that π∗L is a line bundle it is enough to check that dimk(x) π∗L⊗OX k(x) = 1
for all x ∈ X . This clearly holds for x ∈ X different from p. We remain with
the case x = p. Denote by Op the local ring of X at p. Let

Z := Y ×X SpecOp

so that Z is the blow-up of SpecOp at its closed point. We write I for the
ideal sheaf mpOZ ⊂ OZ . For every n ≥ 1 define

Zn := Y ×X SpecOp/mnp

so we have OZn = OZ/In. In particular, Z1 is the exceptional fibre of the
blowing-up Z → SpecOp, which coincides with the exceptional fibre E of
π : Y → X .

The formal function theorem tells us that there is a natural isomorphism

Φ: lim
n

(π∗L)⊗OX Op/mnp → lim
n
H0(Zn,L|Zn).

We claim that L|Zn is trivial for all n ≥ 1. We start with the case n = 1:
the dual graph of the curve Z1 is a tree, hence Pic(Z1) is the product of the
Picard groups of the components of Z1 (this can be checked via the Mayer-
Vietoris sequence for O×, for example). In other words, a line bundle on Z1

is determined by its restrictions to the components of Z1. As Pic(P1
k) = Z via

the degree map, we have L|Z1
= OZ1 . Now let n ≥ 1 and assume that L|Zn is

trivial. There is an exact sequence of sheaves of groups on Z

0→ In/In+1 → (OZ/In+1)× → (OZ/In)× → 1

with the first map sending α to 1 + α. The ideal sheaf I is canonically iso-
morphic to the invertible sheaf OZ(1). Hence In/In+1 = OZ1

(n). Taking the
long exact sequence of cohomology we obtain

H1(Z1,OZ1(n))→ H1(Zn+1,O×Zn+1
)→ H1(Zn,O×Zn)→ 0.
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We find that the term H1(Z1,OZ1(n)) vanishes using Mayer-Vietoris exact
sequence and the fact that H1(P1

k,OP1
k
(n)) = 0. It follows that the restriction

map Pic(Zn+1)→ Pic(Zn) is an isomorphism. Since the sheaf L|Zn+1
restricts

to the trivial sheaf on Zn, it is itself trivial, establishing the claim.

We obtain

lim
n
H0(Zn,L|Zn) ∼= lim

n
H0(Zn,OZn) ∼= lim

n
(π∗OY)⊗OX Op/mnp ∼= Ôp

the second isomorphism coming again from the formal function theorem ap-
plied to OY and the third coming from lemma 10.1. Finally, we obtain by
composition with Φ an isomorphism

lim
n

(π∗L)⊗O Op/mnp → Ôp

which induces an isomorphism π∗L ⊗O Op/mp → Op/mp = k(p), as desired.

Now we drop the assumption of strict henselianity on the base, so let S be
the spectrum of a discrete valuation ring. Let S′ be the étale local ring of S
with respect to some separable closure of the residue field of S. The cartesian
diagram

YS′
f //

π′

��

Y

π

��
XS′

g // X

has faithfully flat horizontal arrows, and YS′ → XS′ is the blowing-up at
g−1(p). Let L be a line bundle on Y as in the hypotheses. The restrictions of
f∗L to the irreducible components of the exceptional fibre of π′ have degree
zero, hence π′∗f

∗L is a line bundle. Moreover the canonical map

g∗π∗L → π′∗f
∗L

is an isomorphism, because g is flat. Hence g∗π∗L is a line bundle, and so is
π∗L by faithful flatness of g.

11 Graph theory

In this section we develop some graph-theoretic results that, together with the
results of sections 9 and 10, will be needed to prove theorem 12.3.
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11.1 Labelled graphs

Let G = (V,E) be a connected, finite graph. For the whole of this section,
we will just write “graph” to mean finite, connected graph. A circuit in G is
a closed walk in G all of whose edges and vertices are distinct except for the
first and last vertex. A path is an open walk all of whose edges and vertices
are distinct.

A tree of G is a connected subgraph T ⊂ G containing no circuit. A spanning
tree of G is a tree of G containing all of the vertices of G, that is, a maximal
tree of G. Given a spanning tree T ⊂ G, we call links the edges not belonging
to T .

Let n = |E|, m = |V |. Given a spanning tree T , the number of links of T is
easily seen to be n−m+ 1. The number

r := n−m+ 1

is called nullity of G and is equal to the first Betti number rkH1(G,Z).

Fix a spanning tree T ⊂ G. For each link c1, . . . , cr of T , the subgraph T ∪ ci
contains exactly one circuit Ci ⊂ G. We call C1, . . . , Cr fundamental circuits
of G (with respect to T ).

Let (G, l) = (V,E, l) be the datum of a graph and of a labelling of the edges
l : E → Z≥1 by positive integers. We say that (G, l) is a N-labelled graph.

11.2 Circuit matrices

Given a graph G, let e1, e2, . . . , en be its edges and γ1, . . . , γs its circuits. Fix
an arbitrary orientation of the edges of G, and an orientation of each circuit
(that is, one of the two travelling directions on the closed walk).

Definition 11.1. The circuit matrix of G is the s × n matrix MG whose
entries aij are defined as follows:

aij =



0 if the edge ej is not in γi;

1 if the edge ej is in γi and its orientation agrees

with the orientation of γi;

−1 if the edge ej is in γi and its orientation does not agree

with the orientation of γi.

Hence every row of MG corresponds to a circuit of G and each column to an
edge.
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Now fix a spanning tree of G. Let c1, . . . , cr be the corresponding links, where
r is the nullity of G, and C1, . . . , Cr the associated fundamental circuits. Con-
sider the r × n submatrix NG of MG given by singling out the rows corre-
sponding to fundamental circuits. One can reorder edges and circuits so that
the j-th column corresponds to the link cj for 1 ≤ j ≤ r and that the i-th
row corresponds to the circuit Ci. If we also choose the orientation of every
fundamental circuit Ci so that it agrees with the orientation of the link ci, the
matrix NG has the form

NG = [Ir|N ′]

where Ir is the identity r × r-matrix and N ′ is an integer matrix.

Definition 11.2. The matrix NG constructed above is called the fundamental
circuit matrix of G (with respect to the spanning tree T ).

It is clear that NG has rank r.

Theorem 11.3 ([TS92], Theorem 6.7.). The rank of MG is equal to the rank
of NG.

Let now (G, l) be an N-labelled graph. We generalize the definitions above to
this case.

Definition 11.4. The labelled circuit matrix of (G, l) is the s × n matrix
M(G,l) whose entries bij are defined as follows:

bij =



0 if the edge ej is not in γi;

l(ej) if the edge ej is in γi and its orientation agrees

with the orientation of γi;

−l(ej) if the edge ej is in γi and its orientation does not agree

with the orientation of γi.

The labelled fundamental circuit (lfc) matrix of (G, l) is the r×n matrix N(G,l)

constructed from M(G,l) by taking only the rows corresponding to fundamental
circuits with respect to a given spanning tree T .

We immediately see that

M(G,l) = MG · L and N(G,l) = NG · L

where L is the diagonal square matrix of order n whose (i, i)-th entry is l(ei).

Example 11.5. Consider the N-labelled graph (G, l) with oriented edges in
fig. 1.
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Figure 1: An oriented N-labelled graph (G, l)

We assign to each of its three circuits the clockwise travelling direction. We
obtain a circuit matrix of G and a labelled circuit matrix of (G, l):

MG =

1 1 −1 0 0
0 0 1 1 1
1 1 0 1 1

 M(G,l) =

3 2 −6 0 0
0 0 6 15 10
3 2 0 15 10



Choose the spanning tree with edges labelled by 3, 6 and 10. The fundamental
circuit matrix of G and lfc-matrix of (G, l) are obtained from MG and M(G,l)

by removing the third row:

NG =

[
1 1 −1 0 0
0 0 1 1 1

]
N(G,l) =

[
3 2 −6 0 0
0 0 6 15 10

]

Let M be an integer-valued matrix with a rows and b columns. There exist
matrices A ∈ GL(a,Z) and B ∈ GL(b,Z) such that

AMB =



d1 0 0 . . . 0
0 d2 0 . . . 0

0 0
. . . 0

... dk
...

0
. . .

0 . . . 0


where the diagonal entries satisfy di|di+1 for i = 1, . . . , k − 1. This is the
so-called Smith normal form of M and it is unique up to multiplication of the
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diagonal entries by units of Z. For 1 ≤ i ≤ k, the integer di is the quotient
Di/Di−1, where Di equals the greatest common divisor of all minors of order
i of M .

Going back to the matrices M(G,l) and its submatrix N(G,l), it follows from
theorem 11.3 that their Smith normal forms both have rank equal to the nullity
r of the graph G. Besides, as any row of M(G,l) is a Z-linear combination of
rows of N(G,l), we see that the numbers Di defined above are the same for
the two matrices. It follows that M(G,l) and N(G,l) have the same non-zero
numbers di appearing on the diagonal. Moreover, the numbers d1, . . . , dr are
defined up to multiplication by −1, hence do not depend on the choices of
orientation of edges or circuits, but only on the N-labelled graph (G, l).

11.3 Cartier labellings and blow-up graphs

Let (G, l) be an N-labelled graph. Let ZV be the free abelian group generated
by the set of vertices V . Any element ϕ of ZV can be interpreted as a vertex
labelling ϕ : V → Z of the graph G.

Definition 11.6. An element ϕ ∈ ZV is a Cartier vertex labelling if for every
edge e ∈ E with endpoints v, w ∈ V , l(e) divides ϕ(v)− ϕ(w).

We denote by C ⊂ ZV the subgroup of Cartier vertex labellings.

Definition 11.7. We call multidegree operator the group homomorphism
δ : C → ZV which sends ϕ ∈ C to

v 7→
∑

edges e
incident to v

ϕ(w)− ϕ(v)

l(e)

where w denotes the other endpoint of e (which is v itself if e is a loop).

Lemma 11.8. The kernel of δ consists of the constant vertex labellings, hence
there is an exact sequence

0→ Z→ C δ−→ ZV .

Proof. Any constant vertex labelling is in the kernel of δ. Conversely, let
ϕ ∈ ker δ and let v ∈ V be a vertex where ϕ attains its maximum. Then for
all the vertices w adjacent to v one has ϕ(w) = ϕ(v). Since the graph is finite
and connected, one can repeat the argument and find that ϕ is a constant
labelling.
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Remark 11.9. When the edge-labelling l : E → Z≥1 is constant with value 1,
the multidegree operator δ coincides with the Laplacian operator of the graph
G.

Definition 11.10. Given an N-labelled graph (G, l) = (V,E, l) we define the

total blow-up graph (G̃, l̃) = (Ṽ , Ẽ, l̃) to be the N-labelled graph constructed as
follows starting from (G, l): every edge e ∈ E is replaced by a path consisting

of l(e) edges, and l̃ : Ẽ → Z is set to be the constant labelling with value 1.

Example 11.11. Figure 2 shows an N-labelled graph (a) and its total blow-up
graph (b).

2
2

1

3

2

(a)

1

1 1

1

1

1

1

1
1

1

(b)

Figure 2: An N-labelled graph G (a) and its total blow-up graph G̃ (b).

We call old vertices the vertices in the image of the inclusion map V ↪→ Ṽ .
We call new vertices the remaining vertices.

Notice that every new vertex is incident to exactly two edges, and belongs to
a unique path (corresponding to some edge e ∈ E) connecting two old vertices

of Ṽ . Just as before we consider the group of Cartier vertex labellings C̃ of

(G̃, l̃), and the multidegree operator δ̃ : C̃ → ZṼ .

We obtain a morphism of exact sequences

0 // Z //

id

��

C δ //

ι
��

ZV

ε
��

0 // Z // C̃ δ̃ // ZṼ

(30)

The map ε : ZV → ZṼ is given by extending vertex-labellings by zero on the
set of new vertices. The map ι : C → C̃ sends a Cartier vertex labelling ϕ
on G to the Cartier vertex labelling ι(ϕ) on G̃ whose value at old vertices
in inherited by ϕ, and extended by linear interpolation to the new vertices.
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More precisely: if e is an edge of G with endpoints v, w which is replaced in
G̃ by a path consisting of vertices v = v0, v1, . . . , vl(e) = w, we set for each
k = 0, . . . , l(e)

ι(ϕ)(vk) =
(l(e)− k)ϕ(v) + kϕ(w)

l(e)
.

The Cartier condition on ϕ implies that this labelling takes integer values.

Let H = coker δ, H̃ = coker δ̃. The commutative diagram above yields a group
homomorphism ε : H → H̃.

Lemma 11.12. The group homomorphism ε : H → H̃ is injective.

Proof. Let α ∈ ZV be a vertex labelling and let ε(α) ∈ ZṼ be its extension

by zero. Assume that there exists a Cartier vertex labelling ϕ̃ ∈ C̃ such that
ε(α) = δ̃(ϕ̃). Then δ̃(ϕ̃) takes value zero on all new vertices of G̃. Hence, if v

is a new vertex of G̃ adjacent to two verteces v′ and v′′, we have ϕ̃(v′)−ϕ̃(v) =
ϕ̃(v)−ϕ̃(v′′). We immediately see that ϕ̃ is an interpolation of a Cartier vertex

labelling ϕ ∈ C, i.e. ϕ̃ is in the image of ι. Since ε : ZV → ZṼ is injective,
α = δ(ϕ).

Our aim now is to give necessary and sufficient conditions on the N-labelled
graph (G, l) for the map ε : H → H̃ to be surjective (hence an isomorphism).

11.4 Circuit-coprime graphs

Definition 11.13. Let (G, l) = (V,E, l) be an N-labelled graph. We say that
(G, l) is circuit-coprime if for every circuit C ⊂ G, gcd{l(e)|e is an edge of C} =
1.

Example 11.14. In fig. 3 the N-labelled graph (a) is circuit-coprime, whereas
the N -labelled graph (b) is not, as it contains a loop labelled by 3 in addition
to a circuit labelled by 6, 10 and 10.

Lemma 11.15. Let (G, l) = (V,E, l) be an N-labelled graph. Denote by r
its nullity. The Smith normal form of the matrix M(G,l) has diagonal entries
d1 = d2 = . . . = dr = 1 if and only if (G, l) is circuit-coprime.

Proof. Assume first that (G, l) is not circuit-coprime. Let C be a circuit whose
labels have greatest common divisor D 6= 1. Pick an edge e of C. The subgraph
C \ e is a tree; let T be a spanning tree of G containing it. Then e is a link
for T , and C is its associated fundamental circuit. The lfc-matrix N(G,l) has a
row corresponding to the circuit C, hence all entries of this row are divisible
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Figure 3: A circuit-coprime N-labelled graph (a) and an N -labelled graph that
is not circuit-coprime (b).

by D. Then the linear map f : Zn → Zr defined by N(G,l) is not surjective;
hence the linear map associated to the Smith normal form of N(G,l) is not
surjective either. Therefore, some (necessarily non-zero) diagonal entry of the
Smith normal form of N(G,l) is different from ±1. As previously remarked,
the Smith normal forms of M(G,l) and N(G,l) have the same non-zero diagonal
entries, hence dr 6= ±1.

Conversely, assume that G is circuit-coprime. After fixing some spanning tree
T , consider the lfc-matrix N(G,l). We only need to prove that the diagonal
entries of the Smith normal form of N(G,l) are all 1, which amounts to proving
that the greatest common divisor d of the minors of order r of the lfc-matrix
N(G,l) is 1.

As we have seen in section 11.2, we have the relation

N(G,l) = NG · L.

Let N ′ be a maximal square submatrix of N(G,l). Then N ′ corresponds to
r edges of G, which we denote ei1 , ei2 , . . . , eir . Let N ′′ be the corresponding
square submatrix of NG. We have the relation

detN ′ =

r∏
j=1

l(eij ) detN ′′

By [TS92], Theorem 6.15, all minors of NG are either 1, 0 or −1, hence detN ′′

is either 1, 0 or −1. Moreover, by [TS92], Theorem 6.10, a square submatrix
of order r of NG has determinant ±1 if and only if the corresponding r edges
are the complement of a spanning tree. Hence detN ′ = ±

∏r
i=1 l(eij ) if the

edges ei1 , ei2 , . . . , eir form the complement of a spanning tree of G, otherwise
detN ′ = 0. We claim that

d := gcd{detN ′|N ′ is an r × r square submatrix of N(G,l)} = 1.

77



Let p be a prime number and denote by Ep the set of edges e of G whose label
l(e) is divisible by p. Because (G, l) is circuit-coprime, Ep contains no circuit;
hence Ep is contained in some spanning tree T of G. There are exactly r edges,
e1, e2, . . . , er, that do not belong to T . These give a square r × r submatrix
of N(G,l) whose determinant is

∏r
i=1 l(ei) 6≡ 0 (mod p), since e1, . . . , er 6∈ Ep.

Hence p - d. It follows that d = 1; since di|di+1 for all i = 1, . . . , r − 1 and
dr|d, we obtain the result.

Proposition 11.16. Let (G, l) = (V,E, l) be an N-labelled graph. The group

homomorphism ε : H → H̃ is an isomorphism if and only if (G, l) is circuit-
coprime.

Proof. We already know that ε : H → H̃ is injective by lemma 11.12. It is

surjective if and only if for every vertex-labelling α ∈ ZṼ , there exists ϕ̃ ∈ C̃
such that δ̃(ϕ̃) + α is in the image of the extension-by-zero map ε : ZV → ZṼ ,

i.e. δ̃(ϕ̃) +α is supported on the set of old vertices. We may of course assume

that α belongs to the canonical basis of ZṼ . That is, α = χv for some vertex
v of G̃, where

χv(w) =

{
1 if w = v

0 if w 6= v.

If v is an old vertex of G̃, χv is an extension by zero of a vertex-labelling on G,
so we may assume that v is a new vertex. Then v belongs to some path P ⊂ G̃
associated to some edge e ∈ E. Denote by w0, w1, . . . , wl(e) the vertices of the
path P , so that w0 and wl(e) are old vertices, and the numbering of the indices
follows the order of the vertices on the path. For every i = 1, . . . , l(e), let

αi = χwi − χw0 ∈ ZṼ be the vertex-labelling that has value 1 at wi, value −1
at w0, and value 0 everywhere else. Then it is easy to check that the images
αi of the αi in H̃ satisfy kα1 = αk for all k = 1, . . . , l(e). Hence, if α1 is in

the image of ε : H → H̃, so are all the αi for 1 ≤ i ≤ l(e). This shows that we
can take v to be equal to w1; hence χv = χw1 takes value 1 on a new vertex v
adjacent to an old vertex, and value zero at all other vertices.

We ask whether an element ϕ̃ ∈ C̃ exists such that δ̃(ϕ̃) + χw1
is supported

only on the old vertices. In other words, δ̃(ϕ̃) must be zero on all new vertices
except for the vertex w1, where it has to take the value −1. This is equivalent
to asking that, for every new vertex z, adjacent to vertices z1, z2,{

ϕ̃(z)− ϕ̃(z1) = ϕ̃(z2)− ϕ̃(z) if z 6= w1

(ϕ̃(z1)− ϕ̃(z)) + (ϕ̃(z2)− ϕ̃(z)) = −1 if z = w1

(31)

holds.
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We claim that such a ϕ̃ exists if and only if there exists a vertex-labelling ϕ of
the graph G, such that, for every edge e ∈ E with endpoints v0, v1,

{
ϕ(v1)− ϕ(v0) ≡ 0 mod l(e) if e 6= e

ϕ(v1)− ϕ(v0) ≡ 1 mod l(e) if e = e, v0 = w0, v1 = wl(e)
(32)

where we have identified the old vertices w0, wl(e) with the corresponding ver-
tices in G. Indeed, given ϕ̃ one obtains ϕ simply by restriction to old vertices.
Conversely, given a ϕ as in (37), ϕ̃ is obtained as follows: for an edge e 6= e,
we define ϕ̃ on the corresponding path {z0 = v0, z1, z2, . . . , zl(e) = v1} by:

∀k = 0, 1, . . . , l(e), ϕ̃(zk) =
kϕ(v1) + (l(e)− k)ϕ(v0)

l(e)
.

On the path {w0 = v0, w1, . . . , wl(e) = v1} corresponding to the edge e, we set
instead

ϕ̃(wk) =

{
kϕ(v1)+(l(e)−k)(ϕ(v0)+1)

l(e) if k ∈ {1, 2, . . . , l(e)}
ϕ̃(v0) if k = 0;

which establishes the claim.

If the graph G is a tree it is clear that such a ϕ can be found. If there are
circuits in G, the existence of a solution ϕ depends of course on the labels
of the circuits. Fix an orientation on G, so that we have source and target
functions s, t : E → V , and so that s(e) = w0, t(e) = wl(e). Assume that a
vertex-labelling ϕ of G satisfying the conditions (37) exists. In particular we
have that ϕ(t(e))− ϕ(s(e)) ≡ 1 mod l(e). For every edge e ∈ E let

x(e) :=

{
ϕ(t(e))−ϕ(s(e))

l(e) if e 6= e
ϕ(t(e))−ϕ(s(e))−1

l(e) if e = e

Let C ⊂ G be a circuit consisting of vertices v0, v1, . . . , vs = v0 connected by
edges e0, e1, e2, . . . , es = e0, so that ei connects vi and vi+1 for every i ∈ Z/sZ.
Notice that the increasing numbering gives an orientation to C. We have

(ϕ(vs)− ϕ(vs−1)) + (ϕ(vs−1)− ϕ(vs−2)) + . . .+ (ϕ(v1)− ϕ(vs)) = 0.

Setting

ai =

{
1 if t(ei) = vi+1, s(ei) = vi

−1 if t(ei) = vi, s(ei) = vi+1

(33)

for every i ∈ Z/sZ, we obtain ∑
aixei l(ei) = 0
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if the edge e does not belong to the circuit C, whereas if e ∈ C we have∑
aixei l(ei) =

{
−1 if the orientations of C and e agree;

1 if the orientations of C and e do not agree;

Let C1, . . . , Cm be the circuits of G. Choose an orientation for each circuit, so
that we can form the labelled circuit matrix M(G,l) associated to G. We see
that the vector x = (x1, . . . , xn) is a solution of

M(G,l)x = b(e)

where b(e) = (b1, . . . , bm) with

bi =



0 if e 6∈ Ci;
−1 if e ∈ Ci and the orientation of e agrees with the

orientation of Ci;

1 if e ∈ Ci and the orientation of e does not agree with the

orientation of Ci.

Conversely, a solution x ∈ Zn to the system M(G,l)x = b(e) yields a vertex

labelling ϕ as in (37). We conclude that the map ε : H → H̃ is surjective if
and only if for every edge e ∈ E, there is a solution x ∈ Zn to

M(G,l)x = b(e).

After having chosen a spanning tree T and formed the lfc-matrix N(G,l), this
is in turn equivalent to the map Zn → Zr defined by N(G,l) being surjective.
Indeed, the set {b(e)|e is a link of T} is a basis for Zr. Now, N(G,l) is surjective
if and only if its Smith normal form (or equivalently the one of M(G,l)) has
only 1’s on the diagonal. By lemma 11.15, we conclude.

11.5 N∞-labelled graphs

We want to generalize the results of the previous subsection to labelled graphs
whose labels can attain the value ∞. Denote by N∞ the set Z≥1 ∪ {∞}. Let
(G, l) = (V,E, l) be the datum of a graph, with set of vertices V and set of
edges E, and of a function l : E → N∞. We say that (G, l) is an N∞-labelled
graph.

The notions of Cartier vertex labelling 11.6 and multidegree operator 11.7
carry over to this setting without change, imposing that the only integer di-
visible by ∞ is 0, and setting 0

∞ = 0 in the definition of multidegree operator.
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In particular, if a vertex-labelling on (G, l) is Cartier, it attains the same value
at the two extremal vertices of an edge with label ∞.

Definition 11.17. Given an N∞-labelled graph (G, l) = (V,E, l) we define the
first-blow-up graph G1 = (V1, E1, l1) to be the N∞-labelled graph constructed
as follows starting from (G, l): every edge e ∈ E with l(e) = 1 is preserved
unaltered; every edge e ∈ E with l(e) ≥ 2 is replaced by a path consisting of
an edge labelled by 1, followed by an edge labelled by l(e) − 2 (which could
equal 0 or ∞), followed by an edge labelled by 1.

We define inductively for every integer n ≥ 1 the n-th blow-up graph Gn =
(Vn, En, ln) as the first-blow-up graph of Gn−1.

Example 11.18. Figure 4 shows an N∞-labelled graph (a) with its first (b)
and second (c) blow-up graphs.

2∞
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(a)

1∞

1
1

1

1

1

2

1

(b)

1

1

∞
1

1
1

1

1

1

1 1

1

(c)

Figure 4: An N∞-labelled graph (a) with its first (b) and second (c) blow-up
graphs

Denote by Cn the group of Cartier vertex-labellings on (Gn, ln). Just as in

81



(30), we obtain a commutative diagram

C δ //

ι1

��

ZV

ε1
��

C1
δ1 //

ι2��

ZV1

ε2��
...

��

...

��
Cn

δn //

ιn��

ZVn

εn��
...

...

The vertical maps εj are once again extension by zero; the maps ιj are defined
as follows: if e is an edge of Gj−1 which is replaced in Gj by a path consisting
of vertices v0 = v, v1, v2, v3 = w (with possibly v1 = v2, if lj−1(e) = 2), and ϕ
is Cartier vertex labelling on Gj−1, we set ιj(ϕ) to take the value ϕ(v) at v0,
(l(e)−1)ϕ(v)+ϕ(w)

l(e) at v1, ϕ(v)+(l(e)−1)ϕ(w)
l(e) at v2, ϕ(w) at v3. The diagram above

gives rise to a chain of group homomorphisms

H → H1 → H2 → . . .→ Hn → . . . (34)

between the cokernels of the rows. Each map of the chain (34) is injective; we
ask whether they are all isomorphisms, i.e. under which conditions

H → colimHi (35)

is an isomorphism.

Definition 11.19. Let (G, l) = (V,E, l) be an N∞-labelled graph. We let
(G, l◦) = (V,E, l◦) be the N0 := Z≥0-labelled graph obtained from (G, l) by
setting l◦(e) = 0 for all edges e with label l(e) =∞.

We say that (G, l) is circuit-coprime if for every circuit C ⊂ G,

gcd(l◦(e)|e is an edge of C) = 1.

Here we define the gcd of a subset S ⊂ Z to be the non-negative generator of
the ideal 〈S〉 ⊂ Z.

Remark 11.20. An N∞-labelled graph containing a circuit whose labels are
all ∞ is not circuit-coprime. Indeed, gcd(0) = 0.
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Proposition 11.21. Let (G, l) be an N∞-labelled graph. The map (35) is an
isomorphism if and only if (G, l) is circuit-coprime.

Proof. Instead of (G, l) and its blow-up graphs (G1, l1), (G2, l2), . . . we con-
sider (G, l◦), (G1, l

◦
1), (G2, l

◦
2), . . .. We keep the same notion of Cartier vertex

labelling and multidegree operator, by imposing that the only integer divisible
by 0 is 0, and that 0/0 = 0. The chain of homomorphisms 34 is also preserved.
To keep the notation light, we drop the ◦’s. From now on, the proof is a
readaptation of the content of section 11.4. First, for labelled graphs whose
labels attain the value 0, we define the labelled circuit matrix M(G,l) and la-
belled fundamental circuit matrix N(G,l) in the same way as in section 11.2.
Lemma 11.15 stays true in this setting, so we find that (G, l) is circuit-coprime
if and only if N(G,l) is surjective.

To finish the proof we only need to readapt proposition 11.16 to our new
setting. So, we want to show that N(G,l) is surjective if and only if εn : H → Hn

is surjective for all n ≥ 1. We fix an integer n big enough, so that all labels
of Gn are 1’s or 0’s. As in proposition 11.16, we let α ∈ ZVn ; we may pick
α = χv for some vertex v belonging to some path P ⊂ Gn associated to some
edge e ∈ E. Denote by w0, w1, . . . , wr the vertices of the path P . We may
still assume that v = w1. Indeed, if there is no edge in P labelled by zero,
one reasons as in proposition 11.16; otherwise, if there is an edge in P labelled
by 0, then it has to be the edge connecting ws and ws+1, with s = r−1

2 . We
may assume without loss of generality that v = wk for k ≤ s. We get that
χwk = kχw1

in Hn (as always, compare with proposition 11.16).

An element ϕ̃ in Cn is such that δn(ϕn) +χw1
is supported on the old vertices

is a vertex-labelling ϕ̃ ∈ ZVn satisfying the following: for every new vertex z,
adjacent to vertices z1 and z2,{

ϕ̃(z)− ϕ̃(z1) = ϕ̃(z2)− ϕ̃(z) if z 6= w1

(ϕ̃(z1)− ϕ̃(z)) + (ϕ̃(z2)− ϕ̃(z)) = −1 if z = w1

(36)

That such a Cartier vertex-labelling exists means that there is a vertex-labelling
ϕ̃ satisfying the condition 36 above, plus the extra condition that ϕ̃(z1) = ϕ̃(z2)
for any two adjacent vertices z1, z2 connected by an edge labelled by zero.

In turn, such a ϕ̃ exists if and only if there exists a vertex-labelling ϕ of G
such that, for every edge e ∈ E with endpoints v0, v1,{

ϕ(v1)− ϕ(v0) ≡ 0 mod l(e) if e 6= e

ϕ(v1)− ϕ(v0) ≡ 1 mod l(e) if e = e, v0 = w0, v1 = wr
(37)

where we have identified the old vertices w0, wr with the corresponding vertices
in G. This is the same condition as condition 37 in proposition 11.16. From
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this point on, the rest of the proof coincides with the proof of proposition 11.16;
we only mention that, at the point when x(e) is defined, one can assign to it
any value if l(e) = 0.

12 Semi-factoriality of nodal curves

Let S be the spectrum of a discrete valuation ring R having perfect fraction
field K, residue field k and uniformizer t. Let f : X → S be a nodal curve
whose special fibre has split singularities, and Γ = (V,E) be the dual graph
of the special fibre Xk. For any v ∈ V , we denote by Xv the corresponding
irreducible component of the special fibre Xk.

Definition 12.1. The labelled graph of X → S is the N∞-labelled graph (Γ, l)
whose labelling l assigns to each edge of Γ the thickness (see section 7.1) of
the corresponding singular point of Xk.

Our aim is to relate the property of being circuit-coprime for the graph (Γ, l)
to the semi-factoriality of f : X → S. To this end, we are going to provide a
dictionary between the geometry of X/S and the combinatorial objects intro-
duced in section 11.

Denote by Divk(X ) the group of Weil divisors on X supported on the special
fibre Xk. It is the free abelian group generated by the irreducible components
of Xk. Hence we obtain a natural isomorphism Divk(X )→ ZV .

Let C(X ) be the group of Cartier divisors on X whose restriction to the generic
fibre XK is trivial. We claim that the natural map C(X )→ Divk(X ) is injec-
tive. This follows from ([GD67], 21.6.9 (i)) under the assumption that X is
normal, which is not satisfied if X/S has singular generic fibre. However, the
proof only requires that for all x ∈ Xk, depth(OX ,x) = 1 implies dimOX ,x = 1.
This is immediately checked: let x ∈ Xk with dimOX ,x 6= 1; then x is a closed
point of Xk. By S-flatness of X , the uniformizer t is not a zero divisor in
OX ,x; as Xk is reduced, OX ,x/tOX ,x is reduced. Every reduced noetherian
ring of dimension 1 is Cohen-Macaulay, hence depth(OX ,x/tOX ,x) = 1, and
we deduce by [Sta16]TAG 0AUI that depth(OX ,x) = 2, establishing the claim.
Hence C(X ) is in a natural way a subgroup of Divk(X ).

Finally, denote by E(X ) the kernel of the restriction map Pic(X )→ Pic(XK),
so that E(X ) is the group of isomorphism classes of line bundles on X that
are generically trivial. We have an exact sequence of groups

0→ Z→ C(X )→ E(X )→ 0
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where the first map sends 1 to div(t) and the second map sends D to OX (D).
Indeed, every principal Cartier divisor supported on the special fibre belongs
to Zdiv(t). For this we can reduce to showing that every regular function
on X that is generically invertible is of the form tnu for some n ∈ Z≥0 and
u ∈ OX (X )×. By [Sta16]TAG 0AY8 we have f∗OX = OS , from which the
claim easily follows.

Lemma 12.2. Hypotheses as in the beginning of this section.

i) The natural isomorphism Divk(X ) → ZV identifies C(X ) ⊂ Divk(X )
with the subgroup C ⊂ ZV of Cartier vertex labellings (definition 11.6).

Let
0→ Z→ C δ−→ ZV

be the exact sequence of lemma 11.8, where δ is the multi-degree operator
(definition 11.7).

ii) The isomorphism C(X )→ C induces an exact sequence

0→ Z→ C(X )
δX−−→ ZV .

The first arrow is the map 1 7→ div(t); the map δX factors via the map
E(X )→ ZV , which sends a line bundle L to the vertex labelling

v 7→ degL|Xv .

Let
. . .→ Xn → . . .→ X1 → X0 = X

be the chain of blowing-ups (29). Denote by πn the composition Xn → X .

iii) For every n ≥ 0 the labelled graph of Xn → S is the n-th blow-up graph
(Γn, ln) of (Γ, l) (definition 11.17). The new vertices of (Γn, ln) corre-
spond to the irreducible components of the exceptional fibre of Xn → X .

iv) Let Cn be the group of Cartier vertex labellings on Xn. The map C(X )→
C(Xn) induced by ι : C → Cn (section 11.3) descends to the pullback map
π∗n : E(X )→ E(Xn).

Proof.

i) Let D =
∑
v nvXv ∈ Divk(X ). We want to show the equivalence of the

two conditions:
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a) for every node p ∈ Xk lying on distinct components Xw, Xz of Xk,
the thickness τp divides nw−nz (with the convention that∞ divides
only 0);

b) D is Cartier.

As every Weil divisor D is Cartier on the generic fibre and on the regular
locus of X , we may fix a node p ∈ Xk and reduce to work on the complete
local ring ÔX ,p. We identify ÔX ,p with A = R̂[[x, y]]/xy − tτp . Let Xw

and Xz be the components of Xk through p, and let Yw, Yz be their
preimages in SpecA, which are given by the ideals (x, t) and (y, t) of A
respectively.

Assume a) is true; we are going to deduce that D is Cartier at p. We
may assume that the two components Xw and Xz are distinct, otherwise
D is given by div(tnw) locally at p and is automatically Cartier at p. As

div(x) = τpYw, we have that (nw − nz)Yw = div(x
nw−nz
τp ) is Cartier.

Therefore D− div(tnz ) =
∑
v(nv − nz)Xv is Cartier at p, and also D is.

Assume now b) and that p lies on distinct components Xw, Xz of Xk.
We may assume that the restriction of D to SpecA, nwYw + nzYz, is
the divisor of some regular function f ∈ A = R̂[[x, y]]/xy − tτp . We
first consider the case τp = ∞. As f is a unit in A[t−1], there exists
g ∈ A and n ≥ 0 such that fg = tn. Now, let fx be the image of f in
A/xA. As the latter is a unique factorization domain, fx = tm1u1 for
some unit u1 ∈ (A/xA)× and m1 ≤ n. Moreover, we have m1 = nw.
Similarly, we write fy = tm2u2 ∈ A/yA, with m2 = nz. As the images
of fx and fy in A/(x, y)A = R coincide, we find that m1 = m2, that is,
nw = nz, as desired. Now we remain with the case τp 6= ∞. Replacing
f by ft−nz , we get div(f) = (nw − nz)Yw. We want to show that τp
divides m := nw − nz. Let d = gcd(m, τp). As div(x) = τpYw, we may
replace f by a product of powers of f and x and assume that m = d.
Write τp = mα, for some α ∈ Z. We have div(fα/x) = 0, hence, as
SpecA is normal, fα/x is a unit in A. Now, reducing modulo t, one can
easily see that α has to be 1, so m = τp as desired.

ii) The composition Z → C → C(X ) sends 1 to
∑
vXv = Xk = div(t). The

map δX factors via the cokernel of Z → C(X ), which is indeed E(X ).
For the characterization of the map δX , recall first that δ : C → ZV sends
a Cartier vertex labelling ϕ to the vertex labelling

v 7→
∑

edges e
incident to v

ϕ(w)− ϕ(v)

l(e)

where w denotes the other endpoint of e. The composition δX : C(X )→
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C → ZV sends a Cartier divisor D =
∑
v nvXv to

v 7→
∑

nodes p
lying on Xv

nw − nv
τp

with τp being the thickness of the node p, Xw the second component
passing through p. We want to check that δX (D) is the vertex labelling
v 7→ degO(D)|Xv . Fix a vertex z; multiplication by tnz gives an iso-
morphism O(D) ∼= O(D′) where D′ =

∑
v(nv − nz)Xv. We reduce to

computing the contribution to degO(D′)|Xz coming from (nv − nz)Xv,
where v ∈ V is some vertex different from z. The contribution is zero if
Xv and Xz do not intersect; otherwise, let p ∈ Xv ∩Xz, with thickness
τp. Notice that τp|nv − nz. Locally at p, the divisor (nv − nz)Xv is
given by the fractional ideal I = (x(nv−nz)/τp , tnv−nz ) = (x(nv−nz)/τp)

of ÔX ,p ∼= R̂[[x, y]]/xy − tτp . Restricting to the branch y = 0, t = 0, we

obtain the fractional ideal I ⊗ ÔX ,p/y = (x(nv−nz)/τp) of k[[x]], hence a
contribution of (nv − nz)/τp to the degree of O(D′)|Xz . Summing over
all the nodes in Xv ∩Xz, we recover the map δX .

iii) This can be read directly in the description of the effect of blowing-up
on the special fibre provided in section 8.3.

iv) The commutative diagram

0 // Z //

id

��

C(X ) //

ι

��

E(X ) //

ι

��

0

0 // Z // C(Xn) // E(Xn) // 0

yields a map ι : E(X ) → E(Xn). Such map fits into the commutative
diagram

E(X )
δX //

ι

��

ZV

ε

��
E(Xn)

δXn // ZVn

where ε : ZV → ZVn is the extension by zero map, and the two horizontal
maps are induced by the exact sequences as in ii) for X and Xn. They
associate to a line bundle its multi-degree on the special fibre, and are
injective. The pullback map π∗n : E(X ) → E(Xn) makes the diagram
above commutative as well; it follows that it coincides with ι.
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Theorem 12.3. Let X → S be a nodal curve over a trait with perfect fraction
field K, and assume that the special fibre Xk has split singularities.

i) If the labelled graph (Γ, l) is circuit-coprime then X → S is semi-factorial.

ii) Suppose that Γ(S,OS) is strictly-henselian. If X is semi-factorial over
S, then the labelled graph (Γ, l) is circuit-coprime.

Proof. We start with part i). Suppose Γ is circuit-coprime. Let L be a line
bundle on XK . By theorem 9.5, there exists an integer n ≥ 0 such that L
extends to a line bundle L̃ on Xn. Let (Γn, ln) be the labelled graph of Xn,
which is the n-th blow-up graph of Γ. Denote by α ∈ ZVn the vertex-labelling
assigning to each vertex v the degree of the restriction of L̃ to the component
of (Xn)k corresponding to v. By proposition 11.21, the map H → Hn is
an isomorphism; hence there exists a Cartier vertex labelling ϕ on (Γn, ln)
such that δ(ϕ) + α is in the image of the map ZV → ZVn . Equivalently (by
lemma 12.2) there exists a Cartier divisor D ∈ C(Xn), such that δXn(D) + α
is in the image of ZV → ZVn , i.e., δX (D) + α has value zero on all new

vertices of Γn. This means precisely that OXn(D) ⊗ L̃ has degree zero on
every component of the exceptional locus of πn : Xn → X . By proposition 10.2,
L := (πn)∗(L̃⊗O(D)) is a line bundle on X , which restricts to L on the generic
fibre.

Let’s turn to part ii). Suppose that Γ is not circuit-coprime. Then there exists
n ≥ 0 such that the map H → Hn is not surjective. Let α be a basis element
of ZVn such that the image of α in Hn = ZVn/δn(Cn) is not in the image of
H → Hn. Then α takes value 1 on some vertex v of Γn and value zero on all
other vertices. The vertex v corresponds to an exceptional component C ∼= P1

k

of πn : Xn → X . Let p be a k-rational point of (Xn)smk lying on C, which exists
as k is separably closed. Since the base is henselian, p can be extended to a
section s : S → Xn. The image D ⊂ Xn of s defines a Cartier divisor. Let
L := O(D)|K be its restriction to the generic fibre. Assume by contradiction
that L can be extended to a line bundle L on X . Then F := O(D)⊗π∗nL−1 is
generically trivial. Let D′ be a Cartier divisor supported on the special fibre of
Xn such that O(D′) ∼= F . Then D′ corresponds to a Cartier-vertex labelling
ϕ of Γn, and α− δn(ϕ) is the vertex-labelling associated to the multidegree of
π∗nL. As π∗nL has degree zero on every component of the exceptional fibre of
πn : Xn → X , α−δn(ϕ) has value zero on every new vertex of Γn. In particular,
αδn(ϕ) is in the image of H → Hn, and so is α, yielding a contradiction.

Remark 12.4. The assumption that Γ(S,OS) is strictly-henselian can be
replaced by the weaker assumption: for each irreducible component Y of Xk,
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there exists a line bundle LY on X whose restriction to Xk has degree 1 on Y
and degree 0 on all other components.

Corollary 12.5. Hypotheses as in theorem 12.3. Let π : X̃ → X be the
blowing-up of X at the finite union of closed points Xnreg∩Xk. The restriction
map

Pic(X̃ )→ Pic(XK)

is surjective.

Proof. Let (Γ, l) be the labelled graph of X → S. The labelled graph (Γ̃, l̃)

of X̃ → S is the first-blow-up graph of Γ (definition 11.17). Every edge of Γ̃
with a label different from 1 is adjacent to exactly two edges, both with label
1. Hence Γ̃ is circuit-coprime, and we conclude by theorem 12.3.

Corollary 12.6. Hypotheses as in theorem 12.3. Suppose that the special fibre
Xk is of compact-type (i.e. its dual graph Γ is a tree). Then the restriction
map

Pic(X )→ Pic(XK)

is surjective.

Proof. The dual graph Γ of the special fibre has no circuits, hence the labelled
graph (Γ, l) is circuit-coprime.

In general, semi-factoriality of nodal curves over traits does not descend along
étale base change, and we cannot drop the assumption in theorem 12.3 that
the special fibre of the curve has split singularities. Here is an example.

Example 12.7. Let R = Q[[t]], K = FracR, S = SpecR, and

X = Proj
R[x, y, z]

x2 + y2 − t2z2
.

The curve X → S has smooth generic fibre XK/K, and a node P = (t =
0, x = 0, y = 0, z = 1) on the special fibre. The section s : S → X given by
x = t, y = 0, z = 1 goes through the node P . The Cartier divisor on XK
given by the image of sK : SpecK → XK does not extend to a Cartier divisor
on X . Indeed, if by contradiction it extended to a Cartier divisor D on X ,
the difference D− s as Weil divisors would be a Weil divisor supported on the
special fibre; hence a Weil divisor linearly equivalent to zero, since the special
fibre is irreducible. Then s would be Cartier, which it is not, and we have the
contradiction.
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On the other hand, the base change of X/R by the étale map R → R′ :=
Q(i)[[t]] is semi-factorial, since its special fibre has split singularities and its
graph is a tree. We see that, denoting by X1 and X2 the two components of
the special fibre, the Weil divisors sR′ − X1 and sR′ − X2 are both Cartier,
and both extend the Cartier divisor on XK′ given by sK′ .

13 Application to Néron lft-models of jacobians
of nodal curves

13.1 Representability of the relative Picard functor

Let S be a scheme and X → S a curve. We denote by PicX/S the relative
Picard functor, that is, the fppf-sheafification of the functor

(Sch /S)opp → Sets

T 7→ {invertible sheaves on XT }/ ∼=

We start with a result on representability of the Picard functor:

Theorem 13.1 ([BLR90] 9.4/1). Let f : X → S be a nodal curve. Then the
relative Picard functor PicX/S is representable by an algebraic space2, smooth
over S.

Lemma 13.2. Let f : X → S be a nodal curve admitting a section s : S → X .
Then for any S-scheme T the natural map

Pic(X ×S T )/Pic(T )→ PicX/S(T )

is an isomorphism.

Proof. See the discussion about rigidified line bundles on [BLR90] 8.1.

13.2 Néron lft-models

Let S be a Dedekind scheme, that is, a noetherian normal scheme of dimension
≤ 1. Then S is a disjoint union of integral Dedekind schemes Si. The ring of
rational functions of S is the direct sum K :=

⊕
i k(ηi), where the points {ηi}

are the generic points of the Si.

2Defined as in [BLR90] 8.3/4
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Definition 13.3 ([BLR90], 10.1/1). Let S be a Dedekind scheme, with ring
of rational functions K. Let A be a K-scheme. A Néron lft-model over S for
A is the datum of a smooth separated scheme A → S and a K-isomorphism
ϕ : A ×S K → A satisfying the following universal property: for any smooth
map of schemes T → S and K-morphism f : TK → A, there exists a unique
S-morphism F : T → A with FK = f .

A Néron lft-model differs from a Néron model in that the former is not required
to be quasi-compact.

Proposition 13.4 ([BLR90], 10.1/2). Let S be a trait and G a smooth sepa-
rated S-group scheme. The following are equivalent:

i) G is a Néron lft-model of its generic fibre;

ii) for every essentially smooth local extension of traits S′ → S, with K ′ =
Frac Γ(S,OS), the map G(S′)→ G(K ′) is surjective.

Lemma 13.5. Let X → S be a nodal curve over a trait. Let cl(eK) ⊂ PicX/S
be the schematic closure of the unit section eK : SpecK → PicXK/K . Then the
fppf-quotient sheaf N = PicX/S / cl(eK) is representable by a smooth separated
S-group scheme. Moreover, the quotient morphism PicX/S → N is étale.

Proof. As cl(eK) is flat over S, the fppf-quotient of sheavesN = PicX/S / cl(eK)
is a group algebraic space, smooth over S because PicX/S is; as cl(eK) is closed
in PicX/S , N is separated over S. In particular, N is a separated group alge-
braic space locally of finite type over S, so it is a group scheme by [Ana73],
Chapter IV, Theorem 4.B. Finally, to show that PicX/S → N is étale we prove
that cl(eK) is étale over S. As the property is étale local on S, we may assume
that X → S has special fibre with split singularities. The multidegree map
E(X )→ ZV (lemma 12.2, ii)) is injective, hence the intersection of cl(eK) with
the identity component Pic0

X/S ⊂ PicX/S is trivial and it follows that cl(eK)
is étale over S.

Given a nodal curve X → S over a trait, we can associate to it the labelled
graph (Γ, l) of the base change X ×S S′ → S′, where S′ is the spectrum of the
strict henselization of Γ(S,OS) with respect to some algebraic closure of the
residue field k. The graph (Γ, l) does not depend on the choice of an algebraic
closure of k.

Theorem 13.6. Let X → S be a nodal curve over a trait with perfect fraction
field K. The S-group scheme N = PicX/S / cl(eK) is a Néron lft-model for
PicXK/K over S if and only if the labelled graph (Γ, l) of X → S is circuit-
coprime.

91



Proof. Let Ssh → S be a strict henselization of S with respect to some alge-
braic closure of the residue field, and denote by Ksh its fraction field. If (Γ, l)
is not circuit-coprime, the map

Pic(XSsh)→ Pic(XKsh)

is not surjective, by theorem 12.3. Now, as the special fibre of XSsh/Ssh
is generically smooth, XSsh → Ssh admits a section; hence, we can apply
lemma 13.2 and find that

PicX/S(Ssh)→ PicXK/K(Ksh)

is not surjective. As the quotient PicX/S → N is an étale surjective mor-

phism of Ssh-algebraic spaces (lemma 13.5), the map PicX/S(Ssh)→ N (Ssh)

is surjective. We deduce that N (Ssh) → PicXK/K(Ksh) is not surjective.
Then for some étale extension of discrete valuation rings S′ → S, N (S′) →
PicXK/K(K ′) is not surjective, hence N is not a Néron model of PicXK/K .

Now assume that (Γ, l) is circuit coprime. Assume first that S is strictly
henselian. By proposition 13.4 it is enough to prove that for all essentially
smooth local extensions R→ R′ of discrete valuation rings, the map

N (R′)→ PicXK/K(K ′)

is surjective. As X → S admits a section, we may apply lemma 13.2 and
just show that Pic(XR′) → Pic(XK′) is surjective. The map R → R′ has
ramification index 1, i.e. it sends a uniformizer to a uniformizer. Therefore
the labelled graph (Γ′, l′) associated to XR′ is again circuit-coprime, and in
fact (Γ′, l′) = (Γ, l). Now we conclude by theorem 12.3.

Now let X → S be any nodal curve with circuit-coprime labelled graph. Let
p : S′ → S be a strict henselization of S. Consider the smooth separated S-
group schemeN = PicX/S / cl(eK). As taking the schematic closure commutes
with flat base change, p∗N is canonically isomorphic to PicX ′/S′ / cl(eK′),
hence is a Néron lft-model for PicXK′/K′ over S′. We show that N is a
Néron lft-model of its generic fibre. Let T → S be a smooth S-scheme,
f : TK → PicXK/K a K-morphism. The base change p∗f : TK′ → PicXK′/K′
extends uniquely to an S′-morphism g : p∗T → N ′. Let S′′ := S′ ×S S′,
p1, p2 : S′′ → S′ the two projections, and q : S′′ → S the composition. The two
maps p∗1g, p

∗
2g : q∗T → q∗N both coincide with q∗f when restricted to q∗TK .

As q∗T → S is flat, q∗TK is schematically dense in q∗T . Since moreover q∗N is
separated, we have that p∗1g = p∗2g. Hence g descends to a morphism T → N
extending f . Again, the extension is unique because N → S is separated and
TK is schematically dense in T .
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Corollary 13.7. Let X → S be a nodal curve over a trait. Let π : X̃ → X
be the blowing-up of X at the finite union of closed points Xnreg ∩ Xk. Then
N = PicX̃/S / cl(eK) is a Néron lft-model for PicXK/K over S.

Proof. It is enough to check that the labelled graph (Γ̃, l̃) of X̃ → S is circuit-
coprime, by the previous Theorem. As labelled graphs are preserved under
étale extensions of the base trait, we may assume that X → S has special
fibre with split singularities. Then the same argument as in the proof of
corollary 12.5 shows that (Γ̃, l̃) is circuit-coprime.

Corollary 13.8. Let X → S be a nodal curve over a trait with perfect fraction
field K. Let k be a separable closure of the residue field of S and suppose that
the graph of Xk is a tree. Then N = PicX/S / cl(eK) is a Néron lft-model for
PicXK/K over S.

We have shown how to construct Néron lft-models for the group scheme
PicXK/K , without ever imposing bounds on the degree of line bundles; the
following lemma allows us to retrieve lft-Néron models for subgroup schemes
of PicXK/K , and applies in particular to subgroup schemes that are open and

closed, such as the connected component of the identity Pic
[0]
XK/K .

Lemma 13.9. Let X/S be a nodal curve over a trait, and H ⊂ PicXK/K a
K-smooth closed subgroup scheme of PicXK/K . Let N → S be the Néron model
of PicXK/K . Then H admits a Néron lft-model H over S, which is obtained
as a group smoothening of the schematic closure of H inside N .

Proof. This is a special case of [BLR90], 10.1/4.

We remark that, if the generic fibre XK/K is not smooth, Pic
[0]
XK/K is an

extension of an abelian variety by a torus; if the torus contains a copy of

Gm,K , the Néron lft-model of Pic
[0]
XK/K is not quasi-compact.
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[Hol17b] David Holmes. Néron models of jacobians over base schemes of di-
mension greater than 1. To appear in Journal für die reine und ange-
wandte Mathematik, 2017.

[Liu02] Qing Liu. Algebraic geometry and arithmetic curves, volume 6 of Ox-
ford Graduate Texts in Mathematics. Oxford University Press, Oxford,
2002. Translated from the French by Reinie Erné, Oxford Science Pub-
lications.

[MB85] Laurent Moret-Bailly. Pinceaux de variétés abéliennes. Astérisque,
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Abstract

This thesis is subdivided in two parts.

In the first part, we introduce a new condition, called toric-additivity, on
a family of abelian varieties degenerating to a semi-abelian scheme over a
normal crossing divisor. The condition depends only on the Tate module
TlA(Ksep) of the generic fibre, for a prime l invertible on the base. We show
that toric-additivity is a sufficient condition for the existence of a Néron model
if the base is a Q-scheme. In the case of the jacobian of a smooth curve with
semi-stable reduction, we obtain the same result without assumptions on the
base characteristic; and we show that toric-additivity is also necessary for the
existence of a Néron model, when the base is a Q-scheme.

In the second part, we consider the case of a family of nodal curves over a
discrete valuation ring, having split singularities. We say that such a family is
semi-factorial if every line bundle on the generic fibre extends to a line bundle
on the total space. We give a necessary and sufficient condition for semi-
factoriality, in terms of combinatorics of the dual graph of the special fibre. In
particular, we show that performing one blow-up with center the non-regular
closed points yields a semi-factorial model of the generic fibre.

As an application, we extend the result of Raynaud relating Néron models of
smooth curves and Picard functors of their regular models to the case of nodal
curves having a semi-factorial model.
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Samenvatting

Dit proefschrift bestaat uit twee delen.

In het eerste deel introduceren we een nieuwe voorwaarde, torische-additiviteit
genaamd, voor een familie van abelse variëteiten die tot een semi-abelse schema
degenereren boven een divisor met normale kruisingen. De voorwaarde hangt
alleen af van het Tate-moduul TlA(Ksep) van de generieke vezel, voor een
priemgetal l dat inverteerbaar is op de basis. We laten zien dat torische-
additiviteit een voldoende voorwaarde is voor het bestaan van een Néron
model, als de basis een Q-schema is. In het geval van de jacobian van een
gladde kromme met semi-stabiele reductie, verkrijgen we hetzelfde resultaat
zonder veronderstellingen over de karakteristiek van de basis; bovendien, laten
we zien dat torische-additiviteit ook nodig is voor het bestaan van een Néron-
model, wanneer de basis een Q-schema is.

In het tweede deel beschouwen we het geval van een familie van semi-stabiele
krommen over een discrete valuatie ring, met gespleten singulariteiten. We
zeggen dat zo’n familie semi-factorieel is als elke lijnbundel op de generieke
vezel de restrictie is van een lijnbundel op de totale ruimte. We geven een
noodzakelijke en voldoende voorwaarde voor semi-factorialiteit, in termen van
de combinatoriek van de duale graaf van de speciale vezel. In het bijzonder
laten we zien dat het uitvoeren van één blow-up met centrum de niet-reguliere
gesloten punten een semi-factorieel model oplevert van de generieke vezel.

Als toepassing, breiden we het resultaat van Raynaud met betrekking tot
Néron-modellen van gladde krommen en Picard-functoren van hun reguliere
modellen uit naar het geval van (mogelijk singuliere) krommen met een semi-
factorieel model.
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Résumé

Cette thèse est divisée en deux parties. Dans la première partie, nous intro-
duisons une nouvelle condition, appellée additivité torique, sur une famille de
variétés abéliennes qui dégénèrent en un schéma semi-abelien au-dessus d’un
diviseur à croisements normaux. La condition ne dépend que du module de
Tate TlA(Ksep) de la fibre générique. Nous montrons que l’additivité torique
est une condition suffisante pour l’existence d’un modèle de Néron, si la base
est un schéma de caractéristique nulle. Dans le cas de la jacobienne d’une
courbe lisse à réduction semi-stable, on obtient le même résultat sans aucune
hypothèse sur la caractéristique de base; et nous montrons que l’additivité
torique est aussi nécessaire pour l’existence d’un modèle de Néron, si la base
est un schéma de caractéristique nulle.

Dans la deuxième partie, on considère le cas d’une famille de courbes nodales
sur un anneau de valuation discrète. On donne une condition combinatoire
sur le graphe dual de la fibre spéciale, appellée semi-factorialité, qui équivaut
au fait que tous les faisceaux inversibles sur la fibre générique s’étendent en
des faisceaux inversibles sur l’espace total de la courbe. Il est démontré par la
suite que cette condition est automatiquement satisfaite après un éclatement
centré aux points fermés non-réguliers de la famille de courbes.

On applique le résultat ci-dessus pour généraliser un théorème de Raynaud
sur le modèle de Néron des jacobiennes de courbes lisses, au cas des courbes
nodales.
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