The following handle holds various files of this Leiden University dissertation:
http://hdl.handle.net/1887/61145

Author: Mornev, M.
Title: Shtuka cohomology and special values of Goss L-functions
Issue Date: 2018-02-13
Summary

Let C be a connected smooth projective curve over a finite field \mathbb{F}_q. Fix a closed point $\infty \in C$ and set $A = \Gamma(C - \{\infty\}, \mathcal{O}_C)$. We call A the coefficient ring. Let F be the fraction field of A. Fix a finite field extension K of F.

Drinfeld A-modules over K behave in a way similar to abelian varieties over number fields. To such a Drinfeld module E and a prime $\mathfrak{p} \subset A$ one can associate the \mathfrak{p}-adic Tate module $T_\mathfrak{p}E$. It is a finitely generated free module over the completion of A at \mathfrak{p}. It carries a natural continuous action of the Galois group of K which is unramified at almost all primes. Given such a prime \mathfrak{m} it makes sense to consider the inverse characteristic polynomial $P_\mathfrak{m}(T)$ of the geometric Frobenius element at \mathfrak{m} acting on $T_\mathfrak{p}E$. This polynomial has coefficients in F and is independent of the choice of \mathfrak{p}.

Assume that the Drinfeld module E has good reduction everywhere. In this case we have a characteristic polynomial $P_\mathfrak{m}(T)$ for every prime \mathfrak{m} of K not diving ∞. One can show that the formal product

$$L(E^*, 0) = \prod_{\mathfrak{m}} \frac{1}{P_\mathfrak{m}(1)}$$

converges in the local field F_∞ of the curve C at ∞. The construction of $L(E^*, 0)$ resembles the classical construction of an L-function of an abelian variety. Indeed $L(E^*, 0)$ is the value of a certain L-function at $s = 0$, the Goss L-function of the strictly compatible family of Galois representations given by the Tate modules $T_\mathfrak{p}E$.

In the case of abelian varieties one expects that the values of L-functions at integral points reflect subtle arithmetic invariants of the varieties in question. The precise relation is given by the celebrated conjecture of Birch and Swinnerton-Dyer and more generally by the equivariant Tamagawa number conjecture. These conjectures are still very far from being solved.

It was a wonderful discovery of Taelman [25] that an analog of the BSD conjecture holds for Goss L-functions of Drinfeld modules with the coefficient ring $A = \mathbb{F}_q[t]$. Building on the work of Taelman, Böckle and Pink [3], Fang [9] and V. Lafforgue [17] we extended the result of Taelman to Drinfeld modules over arbitrary coefficient rings A. Our approach differs substantially from that of Taelman. It is based on a theory of shtukas and their cohomology which we developed for this purpose.