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6
Adapting censored regression methods to

adjust for the limit of detection in the
calibration of diagnostic rules for clinical

mass spectrometry proteomic data

Abstract
We consider the problem of calibrating diagnostic rules based on high-resolution mass-
spectrometry (MS) data subject to the limit of detection (LOD). The LOD is related to
the limitation of instruments in measuring low-concentration proteins. As a consequence,
peak intensities below the LOD are often reported as missings during the quantification
step of proteomic analysis. We propose the use of censored data methodology to han-
dle spectral measurements within the presence of LOD, recognizing that those have been
left-censored for low-abundance proteins. We replace the set of incomplete spectral mea-
surements with estimates of the expected intensity and use those as input to a prediction
model. To correct for lack of information and measurement uncertainty, we combine this

This chapter has been published as: Alexia Kakourou, Werner Vach and Bart Mertens. (2016) Adapting
censored regression methods to adjust for the limit of detection in the calibration of diagnostic rules for clinical
mass spectrometry proteomic data. Statistical Methods in Medical Research, epub ahead of print.
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106 Chapter 6 – Adjusting for the LOD in proteomic diagnosis

approach with borrowing of information through the addition of an individual-specific
random effect formulation. We present different modalities of using the above formula-
tion for prediction purposes and show how it may also allow for variable selection. We
evaluate the proposed methods by comparing their predictive performance with the one
achieved using the complete information as well as alternative methods to deal with the
LOD.

6.1 Introduction
One of the objectives in mass-spectrometry (MS) clinical proteomics is to detect and
quantify the proteomic expression in biological samples. Quantification can be affected
by measurements being subject to lower detection limits due to censoring mechanisms on
low-abundance proteins/peptides (Karpievitch et al., 2009, 2012). This issue is known as
limit of detection (LOD) and occurs due to the limited ability of instruments to measure
low-concentration proteins. As a result, proteomic data sets, in many applications, consist
of reduced lists of peaks with peak intensities below the detection limit threshold reported
as missing values.

Several approaches have been proposed in the literature to deal with data subject to
(lower or upper) detection limits, particularly in ecological and environmental research
(Helsel, 1990, 2012; Hopke et al., 2001; Hornung and D, 2000; Succop et al., 2004).
Handling proteomic data subject to LOD has recently emerged in the field of mass-
spectrometry clinical proteomics. Dong et al. (2014) addressed the problem of assessing
bias in the estimation of distribution parameters of proteomic biomarkers whose measure-
ments were subject to the LOD. They considered a protein pathway data set and proposed
methods to combine proteomic markers, adjusting for the LOD, to distinguish cancer
from non-cancer patients. They showed that ROC curve parameter estimates generated
from the proposed methods are much closer to the truth as compared to simply combining
proteomic markers ignoring the LOD. Tekwe et al. (2012) acknowledged the LOD issue
in (MS) proteomic data as a problem of censored data analysis and proposed the use of
survival methodology, in particular accelerated failure time models (AFT), to investigate
differential expression of proteins. They proved that AFT models have higher ability to
detect differentially expressed proteins than standard testing procedures, with the discrep-
ancy widening with increasing missingness in the proteomic data.

In this paper, we adapt the use of censored data methodology to handle spectral mea-
surements within the presence of LOD. We implement this approach for the particular
problem of estimating the proteomic expression within isotopic clusters with the ultimate
goal of using the derived estimates as predictor variables for the calibration of diagnostic
rules. In particular, we adapt censored normal regression methods to estimate the ex-
pected intensity within an isotope cluster for each individual, based on partially observed
MALDI-FTICR mass-spectrometry data, collected in a pancreatic cancer case-control
study. The estimates of expected intensity, adjusted for LOD, are later used as input to a
prediction model. While censored regression models are widely used in survival analysis
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(Therneau and M, 2000; Therneau, 2015; Henningsen, 2010), the specific case of cen-
sored normal regression, considered in this paper, is often used in econometrics to handle
skewed data and is referred to as Tobit regression (Tobin, 1958). We combine censored
regression with borrowing of information, through the addition of an individual-specific
random effect formulation, to correct for both lack of information and measurement un-
certainty. In addition we present an extension which allows for selection of a subset of
features based on the parameter estimates of the censored model. We evaluate the pro-
posed methods by comparing their predictive performance with the one achieved using
the complete information as well as alternative methods to deal with the LOD.

The remainder of the paper is organised as follows: In section 6.2 we give a brief
overview of the data and the data structure. In section 6.3 we present different frameworks
of using random effects censored regression to estimate the average isotope expression in
the individual spectra for prediction purposes. Section 6.4 contains results and relative
performance of the proposed approaches with ad-hoc methods. Additionally, we show
how the use of individual-specific random effects in the censored regression model may
allow for the selection of sparse models while maintaining predictive performance. We
finish with a discussion in Section 6.5.

6.2 Data

6.2.1 Data description
We consider data from a case-control study, the design of which is described in detail in
(Nicolardi et al., 2014). For the experiment, serum samples were collected from 88 pa-
tients with pancreatic cancer and 185 healthy volunteers. The samples from the included
individuals were stored and processed according to a standardized protocol (Nicolardi
et al., 2014). The study design defined a calibration set and a separate validation set. The
validation samples were collected in a later time period. For the calibration set, serum
samples were obtained from 49 pancreatic cancer patients and 110 healthy controls (age-
and gender- matched). For the validation set, samples were obtained from 39 pancreatic
cancer patients and 75 healthy (age- and gender- matched) controls. The available cali-
bration and validation samples were distributed over three distinct MALDI-target plates
and were mass-analysed by a MALDI-FTICR MS system resulting in a single spectrum
per sample covering the mass/charge range from 1013 to 3700 Da.

Figure 6.1 plots the mass spectrum of a single individual (see Kakourou et al. (2016)
for another example). A mass spectrum consists of peaks with a certain intensity dis-
tributed over a m/z-axis generated from the detected ionized molecules. A single molecule
species will appear as a collection of − as opposed to a single − peaks within the proteomic
mass spectrum due to the presence of distinct isotopes within the constituent atoms. Iso-
topes are variants of the same element/atom which occur in nature with different atomic
masses due to the presence of additional neutrons in their nucleus. Because of this vari-
ation in the numbers of neutrons in the constituent atoms of any given molecule, these
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Figure 6.1: The mass spectrum of a single individual. Superimposed is shown (enhanced) an isotopic cluster at
position m/z 2021,2.

molecules will also occur with varying molecular weight. This in turn causes the spec-
tral proteomic expression for any molecule to appear − not as a single intensity peak at
a given mass-to-charge ratio − but rather as a set of neighbouring peaks separated by ap-
proximately 1 Dalton, due to the presence or absence of these additional neutrons. We
refer to these sets of isotopic peaks as the isotopic cluster . Superimposed in Figure 6.1 is
shown an isotopic cluster at position m/z 2021,2.

6.2.2 Data structure and limit of detection (LOD)
We apply to the complete raw spectra a peak detection algorithm Kakourou et al. (2016)
using a fixed LOD threshold which reflects the background noise level in the individual
spectra. This generates a list of 8080 identified isotopic peaks divided into 2717 identified
isotopic clusters. In case a peak is observable/detectable in a patient, the approach calcu-
lates the area under the intensity curve to obtain an intensity value for that peak and that
patient. In case a peak is unobservable/undetectable in a patient, we regard the intensity
value for that peak and that patient as left-censored due to the LOD. In Figure 6.2 we plot
an identified isotopic cluster at position m/z 2021,2 for three different samples to show
the possible censoring patterns. The isotopic cluster is completely distinguishable from
the background noise in the first sample, only partly distinguishable in the second sample
and entirely indistinguishable in the third sample (see Kakourou et al. (2016) for another

Other used terms include isotopic distribution and isotopic envelope.
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Figure 6.2: An isotopic cluster at position m/z 2021,1 for three different samples. The isotopic cluster is com-
pletely distinguishable from the background noise in the first sample, only partly distinguishable in the second
sample and entirely indistinguishable in the third sample.

example). Note that the overall intensity of the isotopic pattern is decreasing from one
sample to the next. Hence, the lower the abundance of a protein/peptide, the less dis-
tinguishable the isotopic cluster originating from that molecule is from the background
noise. Such differences in abundance could rise, apart from the underlying biological
processes, due to variations in the amount of starting material.

The structure of the observed data, given the incomplete response due to the LOD, is
given by (gi,Yi,∆i), i = 1, ..., n, where gi is the group outcome for individual i, Yi is
a hierarchically structured data matrix consisting of the quantified peak intensity values
yicj of peak j in cluster c and ∆i is, analogously, a structured binary matrix representing
the censoring indicators which take the value δicj = 1, if peak j of cluster c is observable,
and δicj = 0, if peak j of cluster c is unobservable in the ith individual. In the latter case,
we set the value of yicj to the LOD value.

The output data set contains a large proportion of censored intensity values (85%).
Our objective is to investigate whether, starting from the incomplete data, we can develop
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methods which will allow us to calibrate diagnostic rules of comparable performance as
if we had the complete information.

6.3 Methods
In this section we consider methods to construct, for a given isotopic cluster (the index
c is suppressed in the following), estimates ˆ̄yi of the average intensity based on the log-
transformed peak intensities yij , with i = 1, ..., n denoting the patients and j = 1, ..., k
denoting the peaks of the isotopic cluster. We will use these estimates as input variables
for the construction of a diagnostic rule. Our approach is based on a simple model for the
intensities in a single patient, which uses the common pattern of the observed intensities
across patients as predictor. More specifically, we postulate a regression model for the in-
tensities of a patient in an isotopic cluster, using the empirical pattern of mean intensities
ȳj := 1

n

∑
i
yij across patients as covariate. To obtain the estimates of the average inten-

sity for each patient and each isotopic cluster, we use censored regression methodology.
In addition to the censored regression models, we consider some well-known strate-

gies which can deal with unobservable intensity values at the peak level. The first and
simplest alternative strategy we consider is complete case analysis, ignoring all censored
peak intensities. A simple alternative approach which allows us to use additional informa-
tion on the unobservable peaks is to reduce all intensity values to the binary information
above/below the LOD (Helsel, 2012). Finally, we consider substituting the unobservable
peak intensities with the LOD value in order to avoid the loss of information in the ob-
servable peaks. For all these alternative methods, we obtain an estimate of the average
intensity within an isotopic cluster by averaging the (available) values. For the complete
case analysis, if an entire isotopic cluster is unobservable in a sample, we impute the
average over the estimates from all patients with at least one observable peak.

6.3.1 Censored regression
We consider for each patient and each isotopic cluster a simple regression model of the
type

ỹij = αi + βiȳj + εij with εij ∼ N(0, σ2
i )

for the true log-transformed intensities ỹij . The parameters αi and βi in the above ex-
pression capture the intensity variation of a particular individual. Here, αi reflects the
systematic differences in average expression across patients while βi represents the (mul-
tiplicative) effect of the average isotope pattern ȳj , which is here used as the only predictor
of the observed pattern in each individual. The likelihood function based on the partially
censored observations is given by

L(θi) =

k∏
j=1

f(yij , θi)
δijF (yij , θi)

1−δij
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where θi is the vector of model parameters, f(yij , θi) is the probability density function
of the normal distribution and F (yij , θi) is the cumulative distribution function. The
contribution of the observed peak intensities to the likelihood is given by f(yij , θi) while
the contribution of the left-censored peak intensities is given by F (yij , θi) = Pr(yij ≤
t) where t denotes the minimum detectable threshold. The estimates of the regression
parameters are obtained by maximizing the log-likelihood function

l(θi) =

k∑
j=1

δij log f(yij , θi) + (1− δij) logF (yij , θi)

We summarize the entire isotopic expression within each isotopic cluster and for each
individual as a function of the estimates α̂i and β̂i, given by

ˆ̄yi =
1

k

k∑
j=1

(
α̂i + β̂iȳj

)
= α̂i + β̂i ¯̄y

Finally, we use the set of the derived estimates {ˆ̄yi, i = 1, ..., n} as predictors for the
construction of the discriminating rule.

6.3.2 Random effect censored regression
Depending on the extent of left-censoring, information in an isotopic cluster for a specific
patient may either be insufficient for estimating the model parameters or include great un-
certainty resulting in unreliable parameter estimates. We account for lack of information
and measurement uncertainty by combining censored regression with shrinkage estima-
tion of the intensity levels. The key idea is to adjust the estimates of the less reliable
individual expressions in an isotopic cluster by pooling information across all available
patients. In analogy to repeated measures data analysis, we treat the peak intensities
within each isotopic cluster for each patient as repeated observations and we fit for each
isotopic cluster a joint model across patients including individual-specific random effects.

We restrict our investigation to a simple univariate random effects model, given by

ỹij = ai + α+ βȳj + εij

with
εij ∼ N(0, σ2), ai ∼ N(0, τ2)

In the above model specification we choose a fixed effect representation for β, pri-
marily due to computational constraints when fitting a bivariate random effects model, as
the fitting process requires numerical integration based on summing up over a number of
fixed points which grows exponentially with the number of dimensions. In this way, α
represents the mean intercept across all patients while ai represents the individual devia-
tion from the mean. The variation of the individual intercepts around the mean is assumed
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to be normally distributed.
The likelihood function for the parameter vector θ =

(
α, β, τ2, σ2

)
is given by

L(θ; yi) =

n∏
i=1

(∫ +∞

−∞

k∏
j=1

(
fθ(yij |ai)δijFθ(yij |ai)1−δij

)
fθ(ai) dai

)

where yi denotes the intensity vector which may include one or more undetectable values.
When undetectable peak intensities are to be accounted for, the Bayes estimate of the
random effect ai can be computed by substituting the ML estimates of θ =

(
α, β, τ2σ2

)
into the analytic expression for the posterior mean given the observed data, given by

E(ai|yi, θ) =
1

f∗(yi; θ)

∫ +∞

−∞
ai f

∗(yi|ai)f(ai) dai

where,

f∗(yi, θ) =

∫ +∞

−∞
f∗(yi, ai)dai =

∫ +∞

−∞
f∗(yi|ai)f(ai) dai

and

f∗(yi|ai) =

k∏
j=1

(
fθ(yij |ai)δijFθ(yij |ai)1−δij

)
The above expression for the random intercept estimate is equivalent to

âi = E(ai|yi, θ) =
τ2

τ2 + σ2/k

(
E
(
¯̃yi|yi, δi, θ̂

)
−
(
α̂+ β̂ ¯̄y

))
as pointed out by Hughes (1999), who proposed prediction of random effects in conjunc-
tion with an EM approach to the LOD problem (see Appendix A for detailed derivation).
The Bayes estimate âi can be considered as a weighted average of the prior mean of ai
which is assumed 0 and the average residual

(
E
(
¯̃yi|yi, δi, θ̂

)
−
(
α̂ + β̂ ¯̄y

))
. Finally, the

estimated intensities for the ith individual can be written as

ŷij = α̂+ β̂ȳj + âi

= α̂+ β̂ȳj +
τ̂2

τ̂2 + σ̂2/k

(
E
(
¯̃yi|yi, δi, θ̂

)
−
(
α̂+ β̂ ¯̄y

))
Viewed this way, the estimate of τ2 plays the role of a shrinkage parameter. The smaller
the value of τ2 relative to σ2, the more the shrinkage of the random effect estimate of
a particular individual towards zero and hence the more the shrinkage of the intensity
estimates of that individual towards the population mean. Note that ŷij is defined also
in the case of completely unobservable isotopic clusters, hence patients for which all
intensity values are censored in an isotopic cluster can also be included in the analysis.
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6.3.3 Random effect censored regression applications
There are several possibilities of using the random effect censored regression model to
estimate the individual isotopic expression with the ultimate goal of using the derived es-
timates as predictors in the calibration of the diagnostic rule. In the following we demon-
strate three different variants of using the random effect censored regression model, for
prediction purposes.

Random effect censored regression as a preprocessing tool

A simple and straightforward way to summarize the incomplete predictive information in
the pancreatic data, while accounting for the LOD, is to apply the random effect censored
regression approach across all available data i.e. data from both calibration and validation
sets. This can be considered as a means of preprocessing the data, without using informa-
tion on the class outcome, prior to building the diagnostic rule.

The Bayes estimate of the random intercept in this case is given by âi(θ̂all) =

E(ai|yi, θall) where θ̂all = (α̂all, β̂all, τ̂
2
all, σ̂

2
all) and all denotes the fact that, condition-

ing on the random effect, the the estimates of the parameter vector were derived based on
all the available observations. Correspondingly, the expected intensity for patient i and
peak j is given as

ŷij(θ̂all) = âi(θ̂all) + α̂all + β̂all ȳj

while the average expected intensity within isotopic cluster for patient i is derived by

ˆ̄yi(θ̂all) = âi(θ̂all) + α̂all + β̂all ¯̄y

Random effect censored regression as a prediction tool

A more formal approach, more in tune with predictive calibration and subsequent vali-
dation, is to embed the above estimation procedure within the ordinary prediction frame-
work. This suggests using the calibration data for both parameter estimation of the ran-
dom censored model and construction of the prediction model and subsequently applying
the resulting rules to the set-aside validation set.

In that case, the Bayes estimate of the random intercept is given by âi(θ̂cal) =

E(ai|yi, θcal) with θ̂cal = (α̂cal, β̂cal, τ̂
2
cal, σ̂

2
cal) where cal denotes the fact that the pa-

rameter estimates were based solely on the calibration samples. In other words, both
calibration and validation data are shrunken according to the estimates derived based on
the calibration set alone. The expected intensity of each patient i, for the calibration and
the validation sets, is given by

ŷijcal
(θ̂cal) = âical(θ̂cal) + α̂cal + β̂cal ȳj and ŷijval

(θ̂cal) = âival(θ̂cal) + α̂cal + β̂cal ȳj

respectively while the corresponding isotopic cluster summary for each set is given by

ˆ̄yical(θ̂cal) = âical(θ̂cal) + α̂cal + β̂cal ¯̄y and ˆ̄yival(θ̂cal) = âival(θ̂cal) + α̂cal + β̂cal ¯̄y
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Random effect censored regression re-estimation

Estimating the average intensity in the validation data, either in conjunction with the cal-
ibration data, as in the case of the random censored regression model as a preprocessing
tool, or according to the censored regression estimates based on the calibration data, as in
the case of the random censored regression model as a prediction tool, implies that one
assumes that both calibration and validation data stem from the same population.

If the above assumption does not hold it may be necessary and/or beneficial to es-
timate the censored model parameters separately for the calibration and validation data
since difference in population could result in potentially different values of α, β, τ2 or
σ2 between the two sets. This could be particularly true in the case of external validation
where validation samples may represent a different population than calibration samples,
for instance due to population drift (Kelly et al., 1999; Adams et al., 2010).

On the assumption that the two populations are different, we fit the random effect
censored regression model separately to the calibration and the validation data. In this
case, the random effect estimate for the calibration samples is given by âical(θ̂cal) =
E(aical |yical , , θcal), where θcal =

(
αcal, βcal, τ

2
cal, σ

2
cal), while the random effect esti-

mate for the validation samples is given by âival(θ̂val) = E(aival |yival , , θval), where
θval =

(
αval, βval, τ

2
val, σ

2
val). The resulting intensity estimates for the calibration and vali-

dation sets are derived by

ŷijcal
(θ̂cal) = âical(θ̂cal) + α̂cal + β̂cal ȳj and ŷijval

(θ̂val) = âival(θ̂val) + α̂val + β̂val ȳj

respectively while their corresponding isotopic cluster summaries are defined as

ˆ̄yical(θ̂cal) = âical(θ̂cal) + α̂cal + β̂cal ¯̄y and ˆ̄yival(θ̂val) = âival(θ̂val) + α̂val + β̂val ¯̄y

6.4 Application and analysis

6.4.1 Model choice
We assess the performance of the proposed methods by fitting a prediction model to the
set of the derived isotopic cluster summaries and by evaluating the predictive performance
of each fit. Summarizing the isotopic expression per cluster results in a total of 2717 iso-
topic cluster summaries, reducing the dimensionality of the original predictor data. As the
number of predictors still exceeds the number of observations, we choose ridge logistic
regression (Le Cessie and van Houwelingen, 1992) to calibrate the diagnostic rule. This
method is effective in high-dimensional settings, where the number of covariates exceeds
the number of observations and/or there are high correlations between them. Ridge re-
gression deals with overfitting and collinearity by maximizing the log-likelihood function
with a penalty on the regression coefficients.
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6.4.2 Model fitting and performance measures
To fit the random intercept censored regression model we use the NLMIXED procedure
available in SAS which is written to fit non-linear mixed models (SAS code is given in
Appendix B1). The computation of the integral over the random effect is performed by
an adaptive Gaussian quadrature method with 100 integration points. Since in our data
analysis we consider integrated intensities, the original LOD value used in our peak de-
tection algorithm is no longer adequate, as it only indicates that the maximal intensity in
an interval around the peak is below that value. Taking into account that the width and
shape of a particular peak is approximately constant across patients, we decided to use
as peak-specific LOD value, the minimal observed integrated intensity among all patients
with an uncensored measurement.

To evaluate the proposed methods with respect to their predictive performance, we
first apply an internal validation in which we use random splitting to redefine the calibra-
tion and validation sets. This allows us to assess consistency of performance estimates
and obtain more robust results. The new calibration-validation structure is defined in such
a way that it respects the case/control ratio of the original study design (see Kakourou
et al. (2016) for detailed description). The procedure is repeated 10 times and classifica-
tion results across the repetitions are averaged to obtain more stable estimates.

To choose the optimal value of the ridge penalty we perform leave-one-out cross vali-
dation on the re-defined calibration set. The resulting classification rule is then evaluated
on the re-defined validation set. For each model we calculate the error-rate and the area
under the ROC curve (AUC). To evaluate the accuracy of each fit, we calculate the Brier
score, given by

Brier score =
1

nval

nval∑
i=1

(p̂i − gi)2

and the deviance, defined as

Deviance = −2

nval∑
i=1

gi log p̂i + (1− gi)(log (1− p̂i)

= −2

nval∑
i=1

log(1− |p̂i − gi|)

where p̂i is the estimated probability of being a case for the ith validated individual, gi
is the known class outcome of that individual and nval is the total validation sample size.
To compute the error-rates we use a threshold of 0.5 and we assign an observation as
a diseased case if the predicted class probability p̂i is greater than 0.5 and as a control
otherwise.
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6.4.3 Results
Table 6.1 shows validated performance measures, together with standard errors, of the
ridge logistic model fitted to the set of average estimates based on complete case analysis
(CCA), binary coding (BC), substituting unobservable peak intensities with the detection
limit value (LOD), random censored regression as a preprocessing tool (CR Prep), as a
prediction tool (CR Pred) and re-estimated (CR Reest). The last column of Table 6.1 con-
tains performance measures based on substituting the unobservable peak intensities with
the area under the intensity curve in a symmetric interval around the peak position, with
length corresponding to the typical peak width in a specific m/z range, estimated from the
raw data. This approach can be considered equivalent to having the complete information
on the peak intensities (the “truth”) and it is feasible in our specific situation since we
have access to the complete spectra and not just a peak list as is often the case. Therefore,
assessment of relative performance may be carried out with respect to this approach (TR).

Performance measures, based on BC suggest that the present/absent patterns of the
proteomic expression are highly informative with regards to the class outcome. Incor-
porating additional information on the relative intensity, while accounting for the LOD,
seems to be recovering information on top of the present/absent information. Specifically,
results based on CR Prep or CR Pred indicate that using censored regression strategies
combined with pooling of information can solve the LOD problem, both from a statistical
and practical point of view. Performance of CR Reest shows, as expected, no improve-
ment over CR Prep or CR Pred, as, in the case of internal validation, calibration and

Validated classification results (based on internal validation)

CCA BC LOD CR Prep CR Pred CR Reest TR

Error-rate 0.135

(0.008)

0.125

(0.007)

0.114

(0.005)

0.110

(0.005)

0.109

(0.006)

0.114

(0.008)

0.114

(0.005)

Brier score 0.103

(0.004)

0.100

(0.003)

0.085

(0.003)

0.086

(0.003)

0.084

(0.003)

0.086

(0.005)

0.087

(0.003)

Deviance 55.70

(1.85)

54.59

(2.18)

46.56

(2.00)

47.41

(1.89)

47.23

(2.01)

48.12

(2.16)

48.08

(1.67)

AUC 0.917

(0.006)

0.917

(0.009)

0.943

(0.006)

0.940

(0.006)

0.942

(0.006)

0.942

(0.006)

0.940

(0.006)

Table 6.1: Validated classification results (and standard errors) based on complete case analysis (CCA), binary
coding (BC), LOD imputation (LOD), random censored regression as preprocessing tool (CR Prep), random
censored regression as prediction tool (CR Pred), random censored regression re-estimated (CR Reest) and the
“truth” (TR).
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validation populations cannot differ systematically.
Results based on CCA illustrate that ignoring the unobservable peak intensities re-

sults in poor classification results as compared to results based on methods designed for
censored data. Interestingly, we observe that substituting the unobservable peak intensi-
ties with the LOD value results in comparable performance to the one achieved using CR
Prep, CR Pred,CR Reest or TR. However, this is not utterly surprising as the LOD value
for the pancreatic cancer data is a rather accurate estimate of the true (unobservable) in-
tensity value.

Next, we apply each method to the original data.We regard this as our external valida-
tion where we use the estimates from the calibration set, as defined in the original study,
to build the classification rule and the estimates from the validation set to assess the pre-
dictive performance of the derived rule. Validated classification results for all methods are
shown in Table 6.2. With one exception, we observe comparable ranking of the methods
with the one based on internal validation. Improvement in predictive performance of the
proposed censored regression methods as compared to CCA (as well as all other methods
including TR) is more apparent in this case, as indicated by both the error-rate and the
AUC. In particular, CR Reest now outperforms all methods (including CR Prep, CR Pred
and TR) in all performance measures. This outcome provides some confirmation on the
value of the re-estimation approach when the two populations are known to be different,
as in the case of our external validation. Investigations which would allow us to gain more
insight into the possible situations under which the re-estimation approach is expected to
outperform the alternative strategies is left as an interesting line of future research.

Finally, we explore to which degree the achieved classification performance when
using random censored regression as a solution to the LOD problem is due to borrowing
of information or due to shrinkage of the level estimates. We address this question by
fitting a prediction model with E

(
¯̃yi|yi, δi, θ̂

)
as input variable. In case of no censoring,

the above expression reduces to the observed average intensity within the isotopic cluster.
In this way we allow for “borrowing” in estimating the average intensity of an isotopic

Validated classification results (based on external validation)

CCA BC LOD CR Prep CR Pred CR Reest TR

Error-rate 0.135 0.125 0.115 0.087 0.096 0.076 0.106

Brier score 0.113 0.107 0.082 0.082 0.082 0.064 0.079

Deviance 78.01 70.50 58.03 56.99 57.64 47.24 54.62

AUC 0.905 0.939 0.956 0.970 0.967 0.971 0.970

Table 6.2: Validated classification results based on complete case analysis (CCA), binary coding (BC), LOD
imputation (LOD), random censored regression as preprocessing tool (CR Prep), random censored regression
as prediction tool (CR Pred), random censored regression re-estimated (CR Reest) and the “truth” (TR).
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Validated classification results

Internal validation External validation

CR Prep CR Pred CR Reest CR Prep CR Pred CR Reest

Error-rate 0.115 (0.007) 0.115 (0.005) 0.119 (0.010) 0.115 0.086 0.086

Brier score 0.089 (0.004) 0.085 (0.003) 0.094 (0.007) 0.085 0.084 0.081

Deviance 49.89 (2.16) 48.23 (2.24) 50.19 (4.09) 60.12 59.34 56.95

AUC 0.934 (0.005) 0.939 (0.006) 0.939 (0.006) 0.964 0.959 0.967

Table 6.3: Validated classification results based on random censored regression with no shrinkage as prepro-
cessing tool (CR Prep), random censored regression with no shrinkage as prediction tool (CR Pred), random
censored regression with no shrinkage re-estimated (CR Reest) for internal validation (left part) and external
validation (right part).

cluster without using shrinkage. Performance measures using the “unshrunken” estimates
derived based on CR Prep, CR Pred and CR Reest for the internal and external validations
are shown in Table 6.3. Looking at Tables 6.1 and 6.2, we observe that, in the case of in-
ternal validation, using censored regression methods with and without shrinkage are of
comparable performance. This suggests that the use of censored regression can solve the
LOD problem also when it is not combined with shrinkage. In the case of external val-
idation, we observe larger discrepancies favouring the use of shrinkage. This outcome
suggests that there may be situations where using shrinkage has a value in its own right.

6.4.4 Variable selection
Combining censored regression with borrowing of information may allow for some type
of variable selection, based on the estimate of the random effect variance. As already
discussed in Section 6.3.2, the variance of the cluster-specific random intercept τ2

c acts as
a shrinkage parameter. Depending on the amount and reliability of the available informa-
tion in an isotopic cluster, the estimates of a specific individual are pulled to a smaller or
a greater extent, towards the common population mean. Accordingly, the larger the value
of τ2

c , the higher the spread from patient to patient and hence the more informative that
cluster may be. The above consideration can be used as a criterion to eliminate isotopic
clusters with minimal τ2

c . Already, the random effect variances for 15 isotopic clusters
were estimated as 0 by the CR Prep approach and thus these clusters were automatically
ignored by ridge regression.

Selecting a subset of isotopic clusters, while maintaining predictive performance, can
be of particular interest for potentially measuring solely proteins at predefined m/z loca-
tions. This could reduce the cost of measurement and storage for future data and facilitate
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Figure 6.3: Boxplots of error-rates for the 10 re-sampled validation sets when keeping all clusters, 50%, 30%,
20%, 10% and F (=optimal fraction of selected clusters defined based on cross-validation) of total clusters with
minimal τ2c based on CR Prep (upper plot), CR Pred (middle plot) and CR Reest (lower plot).

all subsequent analyses. Moreover, variable selection may allow for the identification of a
set of features associated with the disease mechanisms and therefore could provide leads
to further exploit diagnostic and therapeutic potential.

Variable selection prior to calibration

A simple way to perform variable selection is to discard a certain fraction of isotopic
clusters with minimal τ2

c . For instance, we may decide to eliminate 50%, 80% or 90% of
the total number of isotopic clusters with minimal τ2

c prior to calibrating the diagnostic
rule. In this way, the decision on which isotopic clusters to retain or omit depends solely
on the magnitude of the random effect variance and not on cross-validated risk. The
first 5 boxplots of Figure 6.3 represent validated error-rate distributions for the 10 re-
sampled internal validation sets when keeping all, 50%, 30%, 20% and 10% of total
isotopic clusters with minimal τ2

c , as estimated by CR Prep (upper plot), CR Pred (middle
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Figure 6.4: Cross-validated error-rates on a re-sampled calibration set for CR Prep (upper plot), CR Pred (middle
plot) and CR Reest (lower plot) as the fraction of selected clusters F becomes smaller. Optimal solution is
chosen for F = 20% resulting in a subset of just 543 clusters/proteins.

plot) and CR Reest (lower plot). These results suggest that we can omit at least half of
the isotopic clusters from the analysis without deteriorating the predictive performance.
Note that for CR Reest, though we get different regression estimates for the calibration
and validation sets, the decision on which isotopic clusters to omit is based solely on the
random effect variance estimate of the calibration set.

Variable selection within calibration

Alternatively, we may choose the optimal fraction of selected isotopic clusters directly
from the predictive perspective via cross-validation. We do so by considering the frac-
tion of selected isotopic clusters F as a tuning parameter to be optimized. In this case,
estimation involves combined optimization of the fraction F and the ridge penalty λ. To
optimize F (in conjunction with λ) we perform leave-one-out cross-validation on the cal-
ibration set for a grid of 20 F values corresponding to the ventiles of τ 2 = (τ2

1 , ..., τ
2
C)
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(R code is given in Appendix B2).The final classification rule for optimal F and λ is eval-
uated on the validation set.

Figure 6.4 shows cross-validated error rates for a single re-sampled internal calibra-
tion set as the fraction of selected isotopic clusters F becomes smaller for CR Prep (upper
plot), CR Pred (middle plot) and CR Reest (lower plot). The cross-validated error, in all
cases, is minimized at F = 20%, resulting in a subset of just 543 isotopic clusters (pro-
teins). If the curve is flat near the minimum, we choose the smallest fraction that achieves
the minimal error, favoring hence sparser models. The validated error-rate distributions
based on optimal F for the 10 re-sampled internal validation sets and three variants are
shown in the last boxplots of Figure 6.3. The cross-validated estimates of F which were
typically selected across the internal validation sets and investigated methods were either
30% or 20%.

6.5 Discussion
In this paper we proposed to adapt censored regression methods to estimate the aver-
age individual expression within isotopic clusters, prior to building prediction rules, as
a way to deal with the limit of detection. We evaluated the proposed methods, with re-
spect to predictive performance, by replacing the incomplete spectral measurements with
the derived estimates of individual expression, accounted for the LOD, and using those
as predictors for the construction of diagnostic rules. We combined censored regression
with borrowing of information across data to account for potential lack of information
and measurement uncertainty. Results from both internal and external validations indi-
cated that using the estimates from the proposed methods as input variables results in
comparable predictive accuracy to the one achieved using the complete intensity informa-
tion. Ignoring the unobservable peak intensities, as an alternative to deal with the LOD,
resulted in poor predictions as compared to the proposed methods, while substituting the
unobservable peak intensities with the LOD value exhibited similar classification perfor-
mance as the proposed methods.

We demonstrated different variants of using censored regression, in combination with
borrowing of information, for prediction purposes. Random censored regression as a
preprocessing tool is straightforward in application since it only requires fitting the ran-
dom censored model across all available data. However, since the derived estimates of
a particular individual depend now on the expression from all other individuals due to
the explicit borrowing of information, information from the validation samples enters the
rule derived based on the calibration samples. Since our objective is prediction, we may
choose to avoid this by using only the calibration samples to fit the censored regression
model and use the derived estimates to adjust for the LOD in the validation set. This
approach respects the formal prediction framework.

Another aspect related to the above comparative discussion between censored regres-
sion as a preprocessing or prediction tool is the potential need of re-estimating the random
censored model parameters in the validation set when the samples represent a different
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population than the calibration samples, as in the case of external validation. In classifica-
tion problems the issue of population difference may not be as crucial, since we model the
conditional distribution of the class outcome. However, in data preprocessing, where we
model each single univariate covariate, population difference could result in distinct pa-
rameter estimates when applying the random effect censored regression model separately
on the calibration and validation data. Results based on our external validation provided
evidence that the re-estimation approach is superior in this case. Nevertheless, further
investigations are required to find out in which situations and to which degree one can
benefit from choosing this approach to account for the LOD.

We restricted our discussion to the simple case of the univariate random effects model
with random intercept only. We chose to use the univariate random effects model due to
its relative ease in computation as opposed to the bivariate case with both random inter-
cept and slope, as fitting these models requires numerical integration based on summing
up over a number of fixed grid points which grows exponentially with the number of di-
mensions. In fact, it might be of interest to consider the bivariate random effects model
since the degree to which the average pattern is predictive of the observed pattern may
vary from patient to patient. However, results based on using the estimates from a bivari-
ate random censored model (as a preprocessing tool) as predictors were identical to those
based on using the estimates from the univariate random censored model (as a prepro-
cessing tool), suggesting that incorporating this additional information does not improve
predictions. Moreover, for a large number of isotopic clusters, the estimate of the random
slope variance was close to zero, justifying thus the choice of keeping the slope fixed.

A property of using random effect censored regression methods to estimate the ex-
pected isotopic expression is that it offers the possibility to use the estimate of the random
effect variance as a criterion to screen out the most interesting proteins associated with
the disease mechanisms. We presented two different approaches for performing variable
selection based on the estimate of the random effect variance. In the first approach, the
decision on which variables to retain is based solely on the magnitude of the random
intercept variance τ2 and is independent of the class outcome. On the other hand, one
can choose to determine the optimal fraction of variables to be retained by optimizing
the loss function through the use of cross-validation, as demonstrated in section 6.4.4.2.
Variable selection methods based on optimizing a chosen risk function by looking at the
class outcome have seen many applications and publications, with Lasso regularization
being among the most popular ones. A formal comparison between the various variable
selection methods and the here proposed approach falls beyond the scope of this work.

Apart from a priori variable selection based either on a fixed fraction of isotopic clus-
ters with minimal τ2 or on selecting the optimal fraction of clusters to be retained through
the use of cross validation, one could think of alternative ways to determine a reasonable,
fixed across isotopic clusters, value for τ2 in order to get closer to the idea of prediction.
One option towards that direction would be to treat τ2 as a tuning parameter to be opti-
mized via cross-validation. More specifically, rather than estimate τ2 through maximum
likelihood estimation we could consider τ2 as a fixed parameter in the censored regression
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model and perform a grid search to optimize this parameter with respect to predictive per-
formance. In this way, the amount of shrinkage of the intensity levels is estimated directly
from a predictive point of view. We leave the idea of determining the optimal value of
the random effect variance via optimization techniques, as an interesting topic of future
research.

6.6 Conclusion
We have demonstrated that censored regression can be used successfully to handle
the LOD problem in determining the average intensity of isotopic clusters in mass-
spectrometry proteomic data. In particular in combination with random effects method-
ology it can contribute to a more efficient preprocessing.
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Appendix

A. Derivation of expression for the estimate of the random intercept in
the censored regression model
We consider the standard mixed effects model (Laird and Ware, 1982)

Yi = Xiβ + Zibi + εi (1)

where Yi is the response vector (in our case this corresponds to the vector of intensity es-
timates in an isotopic cluster) for individual i, i = 1, .., n, Xi and Zi are design matrices,
β is the vector of fixed effects, bi is the vector of random effects for individual i and εi is
the vector containing the residual components. We assume that bi and εi are independent
with

bi ∼ N(0, T )

εi ∼ N(0, σ2I)

The Bayes estimate for bi is then given by

b̂i = E[bi|Yi = yi] =

∫
bif(bi|yi)dbi = TZ′iWi(yi −Xiβ) (2)

where Wi = V−1
i , Vi = var(Yi) = ZiTZ′i + σ2I and W has a block diagonal

structure.

Hughes (1982) showed that the approach by Laird and Ware for estimating bi can be
extended to the case where Yi is incompletely observed due to left or right censoring
imposed by lower or upper detection limits. In that case, he showed that estimates of bi
may be computed as

b̂i = TZ′iWi(E(Ỹi, |Yi, δi, θ)−Xiβ) (3)

where δi is the censoring indicator.

Now consider the special case of a random-intercept model. The random-effects covari-
ance matrix T reduces to a scalar corresponding to the variance of the random intercept
which we denote by τ2. The design matrix Zi is now a k-dimensional vector of ones
where k is the number of responses/peak intensities for the ith individual. We denote
that by 1k and we denote 1k1

′
k by Jk (Verbeke and Molenberghs, 2000). It follows from

(3) that the estimate for the random intercept of individual i, when Yi is incompletely
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observed, is given by

b̂i = τ21′k(τ2Jk − σ2Ik)−1(E(Ỹi, |Yi, δi, θ)−Xiβ)

=
τ2

σ2
1′k(Ik −

τ2

σ2 + τ2
Jk)(E(Ỹi, |Yi, δi, θ)−Xiβ)

=
τ2

τ2 + σ2/k

1

k

k∑
j=1

(E(ỹij |yij , δij , θ)− x′ijβ)

=
τ2

τ2 + σ2/k
(E(¯̃yi|yi, δi, θ)− x̄iβ)

(4)

Since we consider as our only predictor the empirical pattern of mean intensities ȳj :=

1
n

n∑
i=1

yi across patients, the above expression takes the form

b̂i =
τ2

τ2 + σ2/k
(E(¯̃yi|yi, δi, θ)− (α+ β ¯̄y)) (5)

where α denotes the fixed-effects intercept and β denotes the fixed-effects slope.

B. Software implementation
B1. SAS code to fit the random-intercept censored regression model

For fitting the random-intercept censored regression models presented in this article, SAS
code using PROC NLMIXED is provided for the three different variants (CR Prep, CR
Pred and CR Re-est). Note that in order to use PROC NLMIXED, the data for the analysis
must be in long format.

We remind that, conditioning on the random intercept, the contribution of an observed
peak intensity to the likelihood is given by the normal probability density function

f(yij |ai) =

(
1√

2πσ2

)
e
−(yij−µij)

2

2σ2

while the contribution of a left censored peak intensity is the cumulative density function

F (yij |ai) = P (yij ≤ t|ai) = φ

(
yij − µij

σ

)
where

µij = E(yij |ai) = ai + α+ βȳj

and t denotes the minimum detectable threshold.
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The likelihood function for partially observed data is then given by

L(θ) =


(

1√
2πσ2

)
e
−(yij−µij)

2

2σ2 if yij > t

φ
(
yij−µij

σ

)
if yij ≤ t

We use the above formulation to specify the likelihood function with PROC NLMIXED
and to model the censored intensities using both fixed and random effects. The following
lines of code present how to estimate yij based on the CR Prep approach using PROC
NLMIXED.

/* Read FTMS_long data into SAS, and create a new
dataset (ftms_long) in long format */

data ftms_long;
infile ’FTMS_long.txt’;
input cluster id y lod ybar;

run;

/* Fit the random-intercept censored regression model
across all samples and for each cluster separately */

proc nlmixed data=ftms_long XTOL=1E-12 method=GAUSS qpoints=100;
parms alpha=0.7 beta=5 sigma2=0.7 tau2=0.5;
bounds sigma2 tau2 >= 0;
pi = constant(’pi’);
mu = alpha + a_i + beta*ybar;
if y > lod then
ll = (1/(sqrt(2*pi*sigma2)))*exp(-(y-mu)**2/(2*sigma2));
if y <= lod then
ll = probnorm((y-mu)/sqrt(sigma2));
L=log(ll);
model y ~ general(L);
random a_i ~ normal(0, tau2) subject = id;
predict mu out=yexp_all(KEEP = pred);
by cluster;

run;

Next we present how to fit the random-intercept censored regression model based on the
CR Pred approach. To estimate ˆ̃yij(cal) the code is the same as before except we only
use the data from the calibration set and we save the estimates of α (alpha), β (beta),
σ2 (sigma2) and τ2 (tau2) so that they can be used later as fixed variables in order to
estimate ŷij(val).



6.6 Conclusion 127

/* Read FTMS_long_cal data into SAS, and create a new
dataset (ftms_long_cal) for the calibration data */

data ftms_long_cal;
infile ’FTMS_long_cal.txt’;
input cluster id y lod ybar;

run;

/* Fit the random-intercept censored regression model
across calibration samples */

proc nlmixed data=ftms_long_cal XTOL=1E-12 method=GAUSS
qpoints=100;
parms alpha=0.7 beta=5 sigma2=0.7 tau2=0.5;
bounds sigma2 tau2 >= 0;
pi = constant(’pi’);
mu = alpha + a_i + beta*ybar;
if y > lod then
ll = (1/(sqrt(2*pi*sigma2)))*exp(-(y-mu)**2/(2*sigma2));
if y <= lod then
ll = probnorm((y-mu)/sqrt(sigma2));
L=log(ll);
model y ~ general(L);
random a_i ~ normal(0, tau2) subject = id;
predict mu out=yexp_cal(KEEP = pred);
predict alpha out=alpha(KEEP = pred);
predict beta out=beta(KEEP = pred);
predict sigma2 out=sigma(KEEP = pred);
predict tau2 out=tau(KEEP = pred);
by cluster;

run;

We can now estimate ŷij(val), considering α (alpha), β (beta), σ2 (sigma2) and τ2

(tau2) as fixed (input) variables.

/* Read FTMS_long_val data into SAS, and create a new
dataset (ftms_long_val) for the validation data */

data ftms_long_cal;
infile ’FTMS_long_cal.txt’;
input cluster id y lod ybar alpha beta sigma2 tau2;

run;
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/* Fit the random-intercept censored regression model
across validation samples */

proc nlmixed data=ftms_long_val XTOL=1E-12 method=GAUSS
qpoints=100;
pi = constant(’pi’);
mu = alpha + a_i + beta*ybar;
if y > lod then
ll = (1/(sqrt(2*pi*sigma2)))*exp(-(y-mu)**2/(2*sigma2));
if y <= lod then
ll = probnorm( (y - mu) / sqrt(sigma2) );
L=log(ll);
model y ~ general(L);
random a_i ~ normal(0, tau2) subject = id;
predict mu out=yexp_val(KEEP = pred);
by cluster;

run;

Finally, to fit this random-intercept censored regression model based on the CR Re-est
approach, we simply have run the same code as for the CR Prep approach, this time
separately for the calibration and validation data.

B2. R code for selecting optimal fraction of selected clusters by cross-validation

For the variable selection within calibration approach, presented in Section 4 of this arti-
cle, we provide R-code based on the penalized R-package (Goeman, 2016). This method
requires combined optimization of the fraction of selected clusters F (based on the esti-
mate of the random-intercept variance) and the ridge penalty λ. Once the optimal subset
of clusters is selected, the final diagnostic rule can be built based on this subset using the
calibration data and can be applied on the validation data to assess the predictive perfor-
mance.

# load the required R-packages
>library(’caret’)
>library(’penalized’)

# Read the final calibration data (final estimates of
# average expression - adjusted for the LOD - and estimates
# of random-intercept variance)
>data<-read.table("data_new_cal.txt",sep=",",dec=".")
>data<-t(data)
>tau<-read.table("tau.txt",dec=".")
>tau<-t(tau)
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>tau<-as.matrix(tau)
>group<-read.table("group_cal.txt")
>group<-as.matrix(group-1)

# define k folds
# nfolds<-10 # for k=10-fold
>nfolds<-dim(group)[1] # for loocv
>n<-dim(group)[1]
>fold<-createFolds(1:n, k = nfolds, list = T)

# optimize fraction of selected clusters (quant)
# with respect to error-rate
>quant<-quantile(tau, probs = seq(0, 1, 0.05))
>error<-matrix(NA,length(fold),length(quant)-1)
>lambdagrid<-exp(seq(log(0.1),log(100),
+ by=((log(100)-log(0.1))/50)))

>k<-1
>while (k<=length(fold)){
+ print(k)
+ f<-fold[[k]]
+ data_out<-as.data.frame(data[f,])
+ group_out<-group[f]
+ data_in<-as.data.frame(data[-f,])
+ group_in<-group[-f]
+ lambdaopt<-rep(0,length(quant)-1)
+ j<-1
+ while (j<=length(quant)-1){
+ print(j)
+ data_keep_in<-data_in[,which(tau>=quant[j])]
+ data_keep_out<-as.matrix(data_out[,which(tau>=quant[j])])
+ Dev<-rep(NA,length(lambdagrid))
+ for (i in 1:length(lambdagrid)){
+ modelfit<-penalized(group_in,data_keep_in,
+ lambda2=lambdagrid[i])

+ betas<-coefficients(modelfit,"penalized")
+ beta0<-coefficients(modelfit)[1]
+ linpredi<-beta0+data_keep_out%*%betas
+ prob<-exp(linpredi)%*%1/(1+exp(linpredi))
+ loglik<-(group_out*log(prob))+((1-group_out)*log(1-prob))
+ Dev[i]<- -2*sum(loglik)
+ }
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+ lambdaopt[j]<-lambdagrid[Dev==min(Dev)]
+ modelfit<-penalized(group_in,data_keep_in,
+ lambda2=lambdaopt[j])
+ betas<-coefficients(modelfit,"penalized")
+ beta0<-coefficients(modelfit)[1]
+ data_keep_out<-as.matrix(data_out[,which(theta>=quant[j])])
+ linpredi<-beta0+data_keep_out%*%betas
+ prob<-exp(linpredi)%*%1/(1+exp(linpredi))
+ error[k,j]<-length(which(group_out!=(prob>0.5)))
+ /length(group_out)
+ j<-j+1
+ }
+ k<-k+1
+}

# select quant based on cross-validated error-rate
cv_error<-colSums(error)
plot(cv_error)
jopt<-max(which(cv_error==min(cv_error)))


