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5
Bayesian variable dimension logistic

regression with paired proteomic
measurements

Abstract
We explore the problem of variable selection in a case-control setting with high-resolution
mass-spectrometry data consisting of paired measurements. Each pair corresponds to a
distinct isotope cluster and each component within each pair represents a cluster summary
of isotopic expression derived based on two different types of information: a) the overall
intensity and b) the shape of the observed isotope cluster. Our objective is to identify a
collection of isotope clusters associated with the disease outcome, on the one hand, and
optimally integrate the two sources of information, on the other. We propose a Bayesian
model formulation which exploits the paired structure of the proteomic data and allows us
to assess the added-value of the shape source beyond the intensity source in predicting the
class outcome of an individual while maintaining predictive performance. We evaluate the
Bayesian selection model on proteomic data, structured into intensity-shape pairs, from a
pancreatic cancer case-control study. We show results from an a-posteriori analysis of the

This chapter has been submitted for publication as : Alexia Kakourou and Bart Mertens (2017). Bayesian
variable dimension logistic regression with paired proteomic measurements.
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78 Chapter 5 – Bayesian variable selection with paired measurements

fitted model to give insight into which are the most interesting isotope clusters for further
investigation as well as into the relative predictive power of shape when combined with
intensity. Additionally, we present a simulation study to demonstrate how the method
behaves under a controlled setting.

5.1 Introduction
Proteomics is the large-scale study of proteins which aim to provide a better understanding
of the function of cellular and disease processes at the protein level. The most widely-
used technology to assess proteomic expression is mass-spectrometry which has under-
gone remarkable evolution over the last twenty years. Particularly ultrahigh-resolution
mass spectrometers (MS) such as Fourier-transform MS have become the most powerful
and efficient tools for the quantitative analysis of complex protein mixtures in biological
systems.

Irrespective of its type, which may characterize a mass-analyzer with respect to res-
olution, mass accuracy and sensitivity, a mass-spectrometer takes as input a molecular
mixture and outputs a so-called mass spectrum. A mass spectrum (as shown in Figure
4.1 of chapter 4) is a sequence of intensity readings distributed over a mass range, gener-
ated from the detection of ionized molecules. In ultrahigh-resolution mass spectrometry,
each species (such as peptide) is detected and expressed as a cluster of peaks, rather than
a single peak, in the mass spectrum. These peaks represent ions of the same elemental
composition but different isotopic composition due to the presence of additional neutrons
in their nucleus. We refer to this set of isotope peaks as the isotopic cluster.

The late improvements in mass-spectrometry technologies, and thus the quality of the
acquired data, turned the focus of recent research towards methods for optimally extract-
ing and interpreting high-resolution mass spectral data at the individual level. Insufficient
attention has been given however to statistical methods for optimally summarizing and an-
alyzing the resulting data, especially in the context of clinical applications such as calibra-
tion of diagnostic rules for disease status allocation of patients. Moreover, while several
approaches have been proposed in the literature for processing mass spectral proteomic
data using knowledge on the properties of isotopes such as peak detection algorithms or
deisotoping methods, the predictive potential of the isotope cluster information, inherent
in high-resolution mass-spectrometry data had not been fully exploited until recently.

In a recent work Kakourou et al. (2016) proposed an approach for summarizing the
proteomic expression in individual mass spectra by exploiting the isotope clustering in-
formation. In their paper they propose an approach which utilizes the known statistical
properties of MALDI-FTICR MS data on isotope distributions in order to reduce the com-
plete expression in the mass spectra to clusters of isotopic expression. They investigate
various ways of translating the isotopic expression in each of the derived clusters into
cluster summaries by using information on either the intensity or the shape of the ob-
served isotope cluster pattern with the objective of assessing the impact of the different
choices on prediction.
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While summary measures based on intensity aim to capture, for each patient, the
overall intensity level of the observed isotope cluster pattern, summary measures based
on shape aim to estimate/describe the shape of the observed isotopic cluster pattern or,
alternatively, the deviation of that observed pattern from the typical pattern (as defined
in shape paper). The estimation of shape is invariant under altering the overall intensity
level of an isotope cluster (for example under adding a constant to the log-transformed
intensities or multiplying the absolute intensities of a cluster with a factor), hence we can
assume that shape summary measures are, on a conceptual level at least, independent of
intensity summary measures. Using the derived intensity and shape estimates as new in-
put variables (separately) into a prediction model, the authors showed that both types of
information are predictive of the health status of an individual though intensity has greater
predictive capacity as compared to shape.

Having established the presence of an overall isotope cluster effect as well as the
presence of a shape effect in addition to intensity effect, the authors further aimed to
investigate the possibility of enhancing the predictive performance of the classification
rule when integrating both types of information, or in other words, evaluate the additional
predictive value of shape beyond intensity. The authors addressed this question by consid-
ering a “naive” combination based on stacking the intensity and shape summary measures.
The conclusion from this analysis was that the additional value of shape information, if
any, was insufficient as to allow for improved predictions when “naively” combined with
intensity information.

Following up on the previously reported results asserting the predictive power of the
pancreatic cancer data, and importantly the predictive ability of isotope clusters in high-
resolution MS data, the aim of this work is twofold: a) to identify a collection of isotope
clusters associated with the disease outcome and b) to optimally integrate the two sources
of information. We wish to address these questions in a way which will allow us to assess
the added-value of shape beyond intensity in predicting the class outcome of an individual
while maintaining predictive performance. We propose an approach which makes use of
the prior knowledge about the relative predictive power of each individual source as well
as the distinctive structure of the proteomic data, resulting from the fact that intensity and
shape measures are tied together in pairs of isotope expression. To explore the problem
of isotope selection and at the same time address the problem of assessing the additional
predictive value of shape, we use a Bayesian model formulation by which we can intro-
duce multiple layers of selection. In doing so, we make the explicit assumption that the
shape source is complementary. In terms of model fitting, this is translated by assuming
that a shape measure can be included in the set of predictors on the condition that it is
accompanied by/coupled with its corresponding intensity while the reverse does not need
to hold. This assumption allows us to make simultaneous inference on which isotope
clusters are the most informative with respect to the class outcome and for which isotopes
- and to what extent - shape has a complementary value in separating the two groups.

The remainder of this chapter is organised as follows: We first introduce the pancreatic
cancer data and their paired structure which is a key component of these particular data.
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The problem of isotope selection, on the one hand, and assessment of the added-value
of shape, on the other, through a Bayesian model formulation is explored next. We then
present results from applying the Bayesian model to the pancreatic cancer data consisting
of the paired intensity-shape measurements. Additionally, we show a simulation example
to demonstrate how the proposed method behaves under a controlled setting. We finish
with a discussion.

5.2 Data
In this chapter we re-analyse data from a case-control study which was carried out at the
Leiden University Medical Centre. The study involved 273 individuals, consisting of 88
pancreatic cancer patients and 185 healthy volunteers. The samples collected from those
individuals were distributed over three MALDI-target plates and thereafter mass-analyzed
by a MALDI-FTICR MS system, giving rise to a single mass spectrum for each sample
within the mass range of 1013 to 3700 Da (full details on the design and measurement
protocol can be found in Nicolardi et al. (2014)).

In previous work (Kakourou et al., 2016), the authors applied to the pancreatic cancer
data a peak detection algorithm in order to identify the isotopic clusters and their corre-
sponding peaks. As a result, the complete proteomic expression in the individual spectra
was reduced to clusters of isotopic expression on which summary measures could be de-
fined. To derive the cluster summaries the authors proposed to use information on either
the intensity or the shape of the observed isotope cluster pattern.

In this work, rather than considering single measurements of intensity or shape as our
predictor variables, we recognize intensity and shape are tied together and regard them
as paired measurements such that the components of each predictor pair represent cluster
summaries of isotopic expression based on intensity information, in the case of the first
component, and shape information, in the case of the second. The intensity component of
a pair is denoted in the following by u and is defined as the sum of log-transformed peak
intensities lj , j = 1, ..., J within an isotope cluster (where J denotes the number of peaks
in a cluster and is cluster-specific), given by

u :=
∑
j

lj

The shape component, denoted by v, is defined as

v :=
∑
j

jpj

the center of gravity of a distribution on the values 1, ..., J , where pj :=
xj∑
j xj

and

x1, ..., xJ denote the residuals which measure the deviation of the observed isotopic pat-
tern from the typical pattern. For a more detailed description on how these summary
measures were created/derived we refer the interested readers to (shape paper). We choose
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these particular summary measures to represent the intensity-based and shape-based com-
ponents due to their superiority, as compared to other proposed summary measures, with
regard to their individual predictive ability.

Our final data set consists of 1289 pairs of intensity and shape summary measures.
Our objective is to investigate whether we can develop methods to integrate both types
of information in a way which will allow us to calibrate more interpretable rules and/or
learn more about the interplay between intensity and shape in predicting the class out-
come, while maintaining predictive performance.

5.3 Bayesian variable-selection model on intensity-shape
pairs

5.3.1 The logistic regression model
Let the data be given by (y, z), where y = (y1, ..., yn)ᵀ is the binary case-control out-
come with yi ∈ {0, 1} for i = 1, ..., n independent individuals while z = (z1, ...,zn)ᵀ

represents the predictor source with each zi = ((ui1, vi1), ..., (uip, vip)) consisting of a
sequence of paired intensity and shape measurements for p isotope clusters. We consider
the binary regression model

yi ∼ Benoulli(pi)

with
logit(pi) = β0 + ziβ

where pi is the case-probability for the ith observation and β = ((a1, b1), ..., (ap, bp))
represents the vector of paired regression parameters with the first and second elements
of each pair corresponding to the effects of the intensity and shape measurements respec-
tively.

5.3.2 Variable-dimension logistic regression model
We assume that only a subset of isotope clusters is relevant for predicting the class out-
come and that u is expected to carry more information on the class outcome than v. Our
main objective is to assess the added-value of the shape source v on top of the intensity
source u in predicting the health status of future patients. Under the assumption that only
a set of isotope clusters is predictive of the health status of an individual, the true model
is given by

logit(pi) = β0 + z̃iβ̃

= β0 + (ã1ũi1 + b̃1ṽi1) + (ã2ũi2 + b̃2ṽi2) + ...+ (ãkũik + b̃kṽik)

= β0 +

k∑
j=1

(ãj ũij + b̃j ṽij)

(5.1)
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where z̃ = ((ũ1, ṽ1), ..., (ũk, ṽk)) represents the unknown set of paired measurements
which are associated with the class outcome with regression coefficient vector β̃ =
((ã1, b̃1), ..., (ãk, b̃k)) which is of unknown dimension k ≤ p. The isotope dimension-
ality k is thus considered/treated as a parameter in the model and will be estimated from
the data along with the unknown set of intensity-shape pairs and their corresponding re-
gression coefficients.

In order to assess the added-value of the shape information over and above the inten-
sity information we place a logical constraint on the inclusion of shape information which
specifies that if a = 0 then b = 0 (if b 6= 0 then a 6= 0). The above formulation suggests
that shape can be included in the model only on the condition that its corresponding in-
tensity is included as well. Note that the reverse is not true. Hence, rather than forcing
mutual selection of both components of the isotope pairs we let the data decide whether
the first component (intensity) alone provides all the required information for separating
the two groups. With this constraint, (5.1) reduces to

logit(pi) = β0 +

kC∑
j=1

(ãj ũij + b̃j ṽij) +

kI∑
l=1

ãlũil

where kC denotes the dimensionality of the “complete” isotope couples and indicates how
many times a shape measure is included in the model in conjunction with its correspond-
ing intensity and kI denotes the dimensionality of intensity singletons so that k = kI+kC .

5.3.3 Prior specification
To complete the model formulation, we have to specify the prior structure for all the
model parameters. For the intercept we assume a weakly informative normal prior β0 ∼
N(0, 102). We specify independent normal priors on the regression parameters ãj ∼
N(0, σ2

a) and b̃j ∼ N(0, σ2
b ), for j = 1, .., k and bj 6= 0, where the variances σ2

a =
τ2
aca and σ2

b = τ2
b cb control the magnitude of included effects for intensity and shape

respectively, τa and τb are known re-scaling factors while ca = 1/sa and cb = 1/sb
are randomly distributed scale factors with gamma priors placed on sa and sb. Under the
above prior assumption on the regression parameters, the covariance matrix Σ has a block-

diagonal structure with block matrices along the diagonal of the form Σj =

[
σ2
a 0

0 σ2
b

]
,

if bj 6= 0, and Σj = σ2
a otherwise. The prior specification is completed by assigning

a prior to the isotope dimension parameter k. We use a discrete uniform prior on the
set of integers {0, 1, 2..., kmax} with kmax a large positive integer corresponding to the
maximum allowed isotope dimension.
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5.3.4 MCMC model fitting
We present an adaptation of the reversible jump MCMC implementation described in
Mertens (2016) for fitting the logistic model, in order to perform isotope selection, on the
one hand, and assess the added-value of shape beyond intensity, on the other. Evaluation
of the added-value of shape is achieved by introducing a second layer of shape selection
on top of the isotope selection.

Our MCMC sampler is based on a random choice between 3 basic move steps: 1)
BIRTH, 2) DEATH and 3) CHANGE. The first two of these steps propose moves be-
tween different isotope dimensions while the last one proposes moves within an isotope
dimension and between different variable dimensions.

More specifically, in the BIRTH step, we propose with probability bk = 1/3 to add a
new randomly chosen isotope into the model set. In the DEATH step, we propose with
probability dk = 1/3 to remove a randomly chosen isotope from the current model set.
Shape selection is facilitated by splitting each of these steps into two additional substeps
such that, in the case of a BIRTH move proposal, we may choose between proposing to
add either the entire pair (couple) into the model, with probability bCk = bk/2, or solely
the first component of the pair (intensity), with probability bIk = bk/2. Note that the can-
didate set from which we may select a new isotope is the set containing all “complete”
isotopes which do not currently have any component in the model set. Analogously, in
the case of a DEATH move proposal, we may choose between proposing to remove ei-
ther a complete isotope (couple) from the current set, with probability dCk = dk/2, or an
intensity singleton, with probability dIk = dk/2.

Apart from the BIRTH and DEATH steps which propose moves between isotope di-
mensions by either adding or removing isotopes (singletons or pairs) to and from the
current set, we may propose to change the composition of an isotope already included in
the model, with probability ck = 1/3. We do so by introducing a CHANGE step. Again
here, within this step, we may choose between two substeps which either change an iso-
tope couple into an intensity singleton i.e. remove shape from the included isotope pair,
with probability cC→Ik = ck/2, or change an intensity singleton into an isotope couple
i.e. add shape to the included intensity singleton, with probability cI→Ck = ck/2. In
this way, we give a second chance to shape selection/deselection by allowing the data to
judge whether a shape measure contributes to classification in addition to intensity and
thus should join its corresponding intensity or does not provide any additional informa-
tion over and above intensity and therefore could be omitted from the isotope pair in the
model set.
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We choose

bI(k=0) = bC(k=0) = dI(k=kmax=kI) = dC(k=kmax=kC) = cI→C(k=kmax=kI) = cC→I(k=kmax=kC) = 1/2,

dI(0<kI ,kC<kmax=k) = dC(0<kI ,kC<kmax=k) = cC→I(0<kI ,kC<kmax=k) = cI→C(0<kI ,kC<kmax=k) = 1/4,

bI(kI=0<kC<kmax) = bC(kI=0<kC<kmax) = dC(kI=0<kC<kmax) = cC→I(kI=0<kC<kmax) = 1/4,

bI(kC=0<kI<kmax) = bC(kC=0<kI<kmax) = dI(kC=0<kI<kmax) = cI→C(kC=0<kI<kmax) = 1/4,

bI(k=kmax) = bC(k=kmax) = dI(kI=0) = dC(kC=0) = cC→I(kC=0) = cI→C(kI=0) = 0

and
bIk = bCk = dIk = dCk = cC→Ik = cI→Ck = 1/6

in all other cases. Under this specification, the acceptance probability of a Metropolis-
Hastings step for a proposal move from a model with parameters θ to a new model with
parameters θ′ is

A = min

{
1,
P (D|θ′)
P (D|θ)

p(θ′)

p(θ)

q(θ|θ′)
q(θ′|θ)

}
,

the ratio of marginal likelihoods of the newly proposed model to that of the old, prior and
proposal distributions, with D the data and θ the vector containing the current values of
the model parameters k, σ2

a and σ2
b , (see Appendix for detailed derivation of acceptance

probabilities for all move types).
Note that with the above prior specification, normal inverse scaled chi-squared up-

dating can be applied, conditional on the variance hyper-parameters. This implies that
the “conditional” acceptance rates do not require actual calculation of the regression pa-
rameters on either the old or newly proposed models, as closed forms are available for
the integrated likelihood functions conditional on the above variance terms. This leads
to significant gains in computational speed. We use the auxiliary variable construction
with Kolmogorov-Smirnow prior on the normal variance to obtain the logistic regression
model form.
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We present the basic structure of the algorithm in form of pseudo code below:

Algorithm 1 : RJ sampler

Set θ(0) = ();
Set t = 0;
REPEAT

Draw u1 from a U(0, 1) distribution
If u1 ≤ bk propose a birth step

if u1 ≤ bk/2
θ′ = birth of intensity singleton− proposal;

else
θ′ = birth of intensity-shape pair− proposal;

end;
elseif bk ≤ u1 ≤ bk + dk propose a death step

if u1 ≤ bk + dk/2
θ′ = death of intensity singleton− proposal;

else
θ′ = death of intensity-shape pair− proposal;

end;
else propose a change step

if u1 ≤ bk + dk + ck/2
θ′ = change of singleton to pair− proposal;

else
θ′ = change of pair to singleton− proposal;

end;
End;
Draw u2 from a U(0, 1) distribution
If u2 < min {1, A}
θ(t+1) = θ′;

else
θ(t+1) = θ(t);

End;
t = t+ 1;
Store every mth value of θ(t) after initial burn-in;
END REPEAT;
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5.4 Results

5.4.1 Application
We applied the isotope variable-dimension model to the pancreatic cancer data which
contained 2578 intensity and shape measurements in total, coupled in 1289 isotope pairs.
For the maximum allowed isotope dimensionality we used kmax = 100. We set the hy-
perparamaters of the Gamma distribution to α = β = 1 for the analysis presented in the
paper, which results in a prior mean and variance of 1 for both sa and sb.

For the prior choice on the scaling factors τa and τb we make use of the knowledge
that the variance-covariance matrix of the regression parameter vector in the logistic re-
gression model is approximately n ∗ (XTX)−1, where n is the sample size andX is the
data matrix. We find that the inverse cross-products of uTu, where u = (u1, ...,uk) and
vTv, where v = (v1, ...,vk), are of order 10−3 and 10−2 which, for a sample size of
n = 254, points to a prior guess of 0.25 and 2.5 for τa and τb respectively.

5.4.2 Convergence
To perform the isotope selection, we sampled 2 sets of 500,000 simulations, after an initial
burn-in of 200,000 samples which were discarded. Convergence was assessed by com-
paring the last set of simulations with the first through autocorrelation and kernel density
plots on the model parameters such us the isotope dimensionality k, the intensity-shape
pair and intensity singleton dimensionalities kC and kI , the regression parameters as well
as the model variances for intensity and shape over the MCMC chains. For posterior in-
ference on the model we combine the 2 sets of updates into a single set of simulations (1
million samples).

5.4.3 Post-hoc analysis
Previous results on the pancreatic cancer data showed evidence for the presence of pre-
dictive information in the isotope clusters which can be used for diagnostic purposes.
More specifically, results from using isotope cluster summaries based on either intensity
or shape information as input into a ridge logistic model independently, showed that both
types of information are predictive of the class outcome, though intensity was found to
be more informative than shape. Having established the presence of predictive capacity
in the proteomic data, our focus turns towards identifying a collection of isotope clusters
associated with the disease as well as investigating the predictive value of shape beyond
intensity within the isotope clusters. We begin our exploration by investigating how often
an isotope was selected in the model as well as the selection frequency of isotopes con-
sisting of intensity alone and of isotopes consisting of both intensity and shape measures.
Figure 5.1 shows the marginal probabilities of inclusion into the model for each of the
1289 isotopes plotted against the isotope cluster number. Crosses correspond to marginal
posterior probabilities of inclusion of any specific isotope configuration, irrespective of
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Figure 5.1: Posterior probabilities of inclusion into the model for any specific isotope configuration (crosses),
intensity component alone (circles) and both intensity and shape components (asterisks) versus the isotope
cluster number.

its composition, circles correspond to marginal posterior probabilities of inclusion of the
intensity component alone while asterisks correspond to marginal posterior probabilities
of inclusion of both the intensity and shape components such that the value of any crosses
equals the sum of the values of the circles and asterisks. As can be seen, there is rather
strong evidence in favor of specific isotopes. In particular, isotope 77 is selected into the
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Figure 5.2: Estimates of ratio of inclusion probabilities for both intensity & shape and intensity only (on the
log-scale) versus probability of isotope inclusion.
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Figure 5.3: Marginal mean regression coefficients of the Bayesian model for intensity (left plot) and shape (right
plot) versus the isotope cluster number.

model with a probability of almost one while half of the times the model selects both
intensity and shape measures to be included in the set of predictors. We observe a general
tendency of the model to select both intensity and shape measures almost as often as in-
tensity alone. This is particularly true for the isotopes with high probability of inclusion.

This tendency of the model is more apparent in Figure 5.2 where we plot the ratio
estimates of inclusion probabilities on the log scale, i.e. the ratio between the probability
of the entire intensity-shape pair to be selected and the probability of intensity alone to
be selected in the model, versus the probabilities of isotope inclusion. We notice that the
isotopes for which mutual intensity and shape selection is more frequent than individual
intensity selection (log-ratio estimates of inclusion probability above 0) are the ones with
the lowest overall (isotope) probability of inclusion. On the other hand, the log-ratio es-
timates of the isotopes with the highest probabilities of inclusion are close to zero (ratio
close to one) which means that for those isotopes the model selects both components with
the same frequency that it selects the first component alone. This outcome suggests that
in those cases, the model cannot distinguish between including or excluding shape to or
from the model. In general, we observe that the log-ratio estimates get closer to zero for
increasing values of the overall isotope inclusion probability.

The selection effect is reflected, apart from the selection itself, in the calibration
of the regression coefficients. We further investigate the effect of selecting intensity or
shape and their relative contribution to classification by calculating the marginal mean of
regression coefficients as ∑

m∈M
βm/M,
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Figure 5.4: Combined posterior summary estimates for intensity (circles) and shape (asterisks) versus the isotope
cluster number.

withm denoting the current model within the set of all simulated models andM denoting
the total number of simulated models. Figure 5.3 plots these marginal mean regression
coefficients separately for intensity (left plot) and shape (right plot) across all simulated
models. We can see from these plots that shape is associated with effects of much lower
magnitude, as compared to intensity, despite the relatively high frequency with which cer-
tain shape measures were selected in the model. This outcome may confirm our intuition
that the intensity source carries more information on the class outcome than the shape
source, however we must be careful when comparing the shape effects with the intensity
effects since the observed differences in effect magnitude could be due to the systematic
scale differences between the intensity and shape summary measures.

Essentially, the selection effect is shared between two types of parameters: 1) the in-
clusion probability and 2) the regression effect. To get additional insights into the relative
contribution of intensity and shape we define a “combined” Posterior Summary (PS),
which integrates the information from the effect of inclusion and the calibrated regression
effect, as

PS =
∑
m∈M

(
|βm|/

k
′∑

j=1

|βmj |

)(
1/k

′

)
/M

where
k
′∑

j=1

|βmj | is only across either all intensity or all shapes measures, with k
′

the to-

tal number of intensity measurements (equal to kI + kC) or the total number of shape
measurements (equal to kC) selected in model m ∈ M , depending on whether PS is
calculated for an intensity or a shape measure respectively. We choose to compute PS
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separately for intensity and shape measures as a way to account for the different scales of
the two predictor sources. The combined posterior summary measures for intensity (cir-
cles) and shape (asterisks) are shown in Figure 5.4 from which it can be seen that there are
in total 6 pairs which stand out as the most important predictor couples while the intensity
components of these pairs have higher importance/contribution than their corresponding
shape components. In the top plot of Figure 5.5 we plot the log-transformed combined
posterior summaries for intensity (circles) and shape (asterisks) against the probability
of isotope inclusion to get a more clear picture of the relative contribution of the two
measures. Again here, we see 6 circles and 6 asterisks standing out which correspond
to the most important intensity and shape measures according to the combined posterior
summary while we see that effectively most asterisks representing the shape components
lie continually below the circles representing the intensity components, especially for the
pairs with large values of probability of isotope inclusion. Similar conclusions can be
drawn when looking at the bottom plot of Figure 5.5, which shows the log-transformed
combined posterior summaries of intensity versus the log-transformed combined poste-
rior summaries of shape. For the pairs with the most important intensity components
(according to their PS estimates), the PS values of the shape components are consistently
smaller than those of the intensity components.

5.4.4 Assessment of predictive performance
To assess the predictive performance of the isotope dimension model we use 10-fold
internal cross-validation. We do so by first partitioning the data into 10 mutually exclusive
and exhaustive, equal sized, sub-samples. We then run 10 parallel chains in each of which
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Figure 5.5: Combined posterior summary (on the log scale) of intensity (circles) and shape (asterisk) versus
probability of isotope inclusion.
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Figure 5.6: Combined posterior summary (on the log scale) of intensity versus combined posterior summary
(on the log scale) of shape.

one sub-sample is used as validation data for evaluating the predictive performance of
the model, while the remaining 9 sub-samples are used to calibrate the Bayesian model.
Since the case-control ratio can greatly affect the selection, to get as consistent variable
selection and estimates as possible across the different sets, we partition the original data
such that the case-control ratio in the newly defined calibration and validation data is the
same across all sub-samples. Evaluation of the model on each sub-sampled validation set
is achieved by applying, within each MCMC step in each chain, the generated rule based
on the calibration data to the profiles in the validation set and storing the sequence of
validated predictions. To assign observations, we calculate for each observation the mean
a-posteriori class probabilities of group-membership. That is, we compute the cross-
validated probabilities

P (yi = 1|ũ, ṽ) =
∑
m∈M

Pm(yi = 1|ũ, ṽ)/M

for all i = 1, .., n, where Pm denotes the a-posteriori class probability calculated from the
mth model simulated within the MCMC chain and the sum is across all models simulated.
To estimate the error rate we use a cut-off value of 0.5. We assign an observation as a
disease case if the mean a-posteriori class probability is greater than 0.5 and as a control
otherwise. This assignment resulted in a misclassification error rate of 0.086. We also
calculate the Brier score, defined as

B =
1

n

n∑
i=1

(P (yi = 1|ũ, ṽ)− ci)2

which equals 0.082, where ci denotes the true class outcome of the ith individual. Finally,
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Figure 5.7: Cross-validated posterior class probability densities for controls (solid) and cases (dashed).

the Area Under the Curve (AUC) was found equal to 0.945. In Figure 5.6 we plot the
posterior probability densities for the control (solid) and the case (dashed) groups. It
is worth mentioning at this point that these results are in tune with previously reported
results on the pancreatic cancer data. In particular, internally validated results reported in
Chapter 3, obtained using intensity information across all observed isotope clusters into a
ridge logistic model, gave an error-rate of 0.095 and an AUC of 0.948.

Finally, we investigate the consistency of the model selection across the partitioned
data sets and the extent of agreement with the model selection based on the entire data.
Table 5.1 shows the top 7 isotope clusters selected into the Bayesian model applied to the
full data (second column) in decreasing order of posterior probability of isotope inclusion.
The table also gives the rank of the top selected isotope clusters according to the average
posterior probability of isotope inclusion calculated across the 10 sub-sampled data sets
(third column) together with these average probability estimates (forth column) and their
corresponding standard errors (last column). The top isotope cluster selected by the full
model corresponds also to the top isotope cluster selected across sub-models with an
average probability of 0.87. Nearly all top isotope clusters selected by the full model are
identical to the ones selected across sub-models, also with identical ranking, except for
clusters 1047 and 455 which interchange their ranks as well as cluster 639 which drops
from the 7th rank to the 12th, with an average (isotope) inclusion probability of just 0.16.

5.4.5 A simulation example
We use a simplified simulation example to demonstrate how the method behaves in a con-
trolled setting. We generate data to have the same number of patients as in the pancreatic
cancer data set but smaller dimensionality under the independence assumption. We gen-
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Rank (full) Isotope nr Rank (average) P(isotope) SE

1 77 1 0.87 0.10

2 1196 2 0.50 0.20

3 151 3 0.43 0.13

4 1047 5 0.36 0.15

5 455 4 0.39 0.18

6 1258 6 0.35 0.20

7 639 12 0.16 0.25

Table 5.1: Ranks (left column)
of top 7 selected isotope clus-
ters (second column) based on
Bayesian model applied to the
full data, rank of top selected iso-
tope clusters according to aver-
age probability of isotope inclu-
sion across partitions (third col-
umn), average probability esti-
mates of isotope inclusion (forth
column) and standard errors
of average probability estimates
(last column).

erate 200 variables in total such that half of them represent the first and the other half
the second components of 100 paired measurements. For both components of each pair
we simulate data from a normal distribution where we specify the independent normal
random variables u and v as N(0, 2.52). We simulate the binary outcome data according
to the logistic model

logit (p) = β0 + βz

= β0 + au+ bv

where a and b are 100-dimensional vectors containing the first and second component
effects on the class outcome. To induce associations between the predictor components
and the outcome, we draw binary response variables from a Bernoulli distribution with

p =
1

1 + e−(β0+au+bv)

We consider three different scenarios in which we vary the number of true, non-zero
effects, as well as their magnitude. In all 3 scenarios we use kmax = 50, α = β = 1 for
the hyperparameters of the Gama distribution and τa = τb = 1 while we vary the values
of the non-zero elements of β from 1 to 3.5.

In the first scenario we select solely the first component of the last pair to have a
non-zero effect and we set its value to be equal to 3.5. We wish to test whether the model
can identify the single predictive pair - and more specifically the single predictive com-
ponent within the pair, on the one hand, and estimate its true effect, on the other. The top
3 plots of Figure 5.7 show estimates of the inclusion probabilities, marginal effects and
combined summaries for the first (circles) and second (asterisks) components of the 100
pairs across 200,000 simulations. The key point from these plots is that the model can
identify the single discriminating feature corresponding to the first component of the last
pair and it can accurately estimate its true effect.
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Figure 5.8: Inclusion probabilities (left plots), marginal regression effects (middle plots) and combined posterior
summaries (right plots) of the first (circles) and second (asterisks) components of the pairs for the first (top plots),
second (middle plots) and third (bottom plots) scenarios.

In the second scenario, apart from the first component of the last pair, we assign non-
zero effects to both components of the first pair. We set the effect for the two components
of the first pair equal to 2.5 and the effect of the first component of the last pair equal to
1.5. Looking at the fist plot in the middle row of Figure 5.7 which shows the inclusion
probability estimates, we observe that the second component of the last pair is selected,
alongside with the first, with a probability of about 0.2, although this component does not
carry any information on the class outcome. The relative importance of this non-predictive
component is better captured/reflected by the marginal effect estimates and the estimates
of combined summary. We see from the two last plots in the middle row of Figure 5.7
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which show these estimates that, although the model selects the non-informative compo-
nent with a probability 0.2, it assigns it a zero effect, such that the only prominent points
in the two plots are the ones which correspond to the 3 components which are predictive
of the outcome.

In the third scenario we increase the number of pairs with both components discrim-
inative to two and the number of pairs with only the first component discriminative to
three such that ak 6= 0 for k = 1, 30, 50, 70, 100 and bk 6= 0 for k = 1, 30. We also
assume smaller effects for the second components than the first, i.e. we assume that the
first components are more informative than the second. In particular, we set a1 = 3.5,
a30 = 2, a50 = a70 = 2.5, a100 = 1.5 and b1 = 1.5, b30 = 1. From the first plot at the
bottom of Figure 5.7, we see that when both components are predictive, the entire pair is
included into the model with a probability almost 1, even though the second components
are attributed smaller effects than the first. For the pairs (u50, v50) and (u100, v100), the
probability that the entire pair is selected is overestimated, yet smaller than the probability
than only the first component is selected. The same is not true for pair (u70, v70) of which
the probability of selecting the entire pair exceeds, even though marginally, the probabil-
ity of selecting the single component. This overestimation of the inclusion probabilities
for the non-informative components is counterbalanced by assigning them a zero effect,
as can be seen from the marginal effects plot at the bottom of Figure 5.7. We see from
this plot that, in general, the model manages to estimate the true magnitude of the various
effects. A more clear picture of the relative importance/contribution of each predictor
component is given in the last plot of Figure 5.7 which shows the estimates of combined
summaries. The most prominent points in this plot correspond to the informative compo-
nents of the 5 predictive pairs, which suggests that PS provides an adequate summary for
assessment of the true impact of the component variables in the model.

5.5 Discussion
In this work, we addressed the problem of isotope cluster selection through a Bayesian
model formulation. Results from applying the Bayesian selection model to the pancreatic
cancer data showed rather strong evidence in favor of specific isotope clusters being as-
sociated with the class outcome while most often a limited number of about 15 isotope
clusters was selected by the model as a sufficient subset for separating the two groups.
In addition to the isotope selection, the model formulation allows for assessment of the
added-value of the shape source over and above the intensity source through the em-
ployment/application of an additional layer of shape selection within the isotope cluster
selection. To perform the shape selection we make the explicit assumption that this type
of information is complementary to the intensity information which, in the model fitting
process, can be formulated as shape being included in the model on the condition that
its corresponding intensity is already selected or will be selected to the model alongside
with shape. This assumption, and hence this “asymmetrical” manner in which we se-
lect/deselect shape, is based on our prior knowledge from previous work that the overall
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intensity level is a superior source of predictive information as compared to shape. The
main outcome with regards to assessing the added-value of shape was that most shape
measures were associated with effects of much smaller magnitude as compared to ineten-
ity (conditional on the assumed model), regardless of their inclusion or not in the model,
suggesting that intensity alone provides all the required information for separating the two
groups.

Variable selection methods have seen many applications within the Bayesian statistics
field. Among these, a popular method for performing variable selection is via spike-and-
slab priors (George and McCulloch, 1993). Sparsity is achieved in this case by placing a
mixture prior on the regression effect of each predictor consisting of a “spike” either ex-
actly at or around zero, corresponding to exclusion of a specific variable from the model,
and a flat “slab”, corresponding to inclusion of the variable to the model. Variable se-
lection using spike-and-slab priors is performed by introducing latent binary indicator
variables for each predictor to denote whether the predictor belongs to the slab or spike
part of the prior. Priors are placed on the binary indicator variables to encourage sparsity.
MCMC sampling is often used to fit this type of models in which fixed prior parameters
are frequency specified in order to reduce the computational burden. A variant of the
slab-and-spike priors was considered by Dellaportas et al. (2000, 2002) who proposed
including the binary indicator variables γj in the likelihood so that the variables which do

not contribute to the linear predictor, which is now of the form β0 +
k∑
j=1

γjβjXj , drop off.

In our Bayesian selection approach we used a reversible-jump implementation in which
the level of sparsity is controlled through a prior on the model (isotope) dimension. This
allows us, on the one hand, to estimate the optimal dimensionality of the isotope clusters
predictor set, and on the other, to assess the additional value of shape at the isotope cluster
level, through the Metropolis-Hastings acceptance ratios, which account for inclusion or
exclusion of shape to or from the model.

In a recent paper, Rodríguez-Girondo et al. (2016) proposed a frequentist two-step
approach for assessing the augmented predictive value of a secondary source on top of a
primary source based on a sequential double cross-validation procedure. Apart from the
selective nature of our Bayesian model, a key difference between this sequential approach
and our Bayesian selection method is that the latter takes explicitly into account the pair-
ing structure of our data and could be extended to deal also with more complex grouping
data structures such as triplets, quadruples etc. Moreover, in contrast to the sequential
approach, our Bayesian approach can be used not solely to evaluate whether there is ad-
ditional predictive information in the secondary source (shape) after correcting for the
primary (intensity) source but also to address the question of where this extra informa-
tion, if any, comes from. This is essentially achieved through the “asymmetrical” layer of
shape selection within the isotope cluster selection which evaluates - and estimates - for
each unique isotope cluster the relative contribution of each shape measure to classifica-
tion.

An alternative way of implementing the double-layered selection of isotope clusters,
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on the one hand, and shape measures within the isotope cluster configuration, on the other,
would be to restrict the parameter space by modifying the prior specification on the regres-
sion coefficient parameters. More specifically, rather than assuming Normal priors for the
intensity and shape effects we may constrain the regression coefficients to be within the
set of values {−1, 0, 1}. In this way, we replace calibration of the regression coefficients
with selection by restricting the effect to be absent, present-negative or present-positive.
Moreover, by assuming pre-specified values for the magnitude of the regression effects,
no further assumptions, for instance on the distribution of the variances for the intensity
and shape effects, are needed. A limitation of this particular prior specification is that sim-
ple conjugate updating rules are no longer applicable. This suggests that calculation of
the acceptance probabilities would require actual estimation of the integrated likelihood
functions of the old and newly proposed models which could increase the computational
time considerably.

We restricted our discussion to intensity-shape combinations in which we considered
simple linear effects for both intensity and shape summary measures, mainly due to the
fact that such linear rules can be calibrated and interpreted with relative ease in practical
application. In reality however the relationship between the class outcome and the two
predictor sources - as well as the relationship between the intensity source and the shape
source - may be more complex. In fact, it would be interesting to consider more complex
effect structures, for example by including also quadratic terms for intensity and shape as
well as interactions between intensity and shape into the model in addition to the linear
effects. Allowing for this flexibility in the model could potentially improve the predictive
capacity of intensity and shape integration and give us the chance to learn more about the
interplay between these two different types of information. The idea of considering more
complex structures in order to capture the true relationships in the data, in the hope that
this will result in improved predictions and/or more thorough inference, is a promising
topic for future research. Preliminary results from an exploratory analysis showed that in-
cluding quadratic as well as interaction terms in a univariate model (i.e. a model with only
one intensity predictor and one shape predictor fitted separately for each isotope cluster),
could lead to improvement of the model fit, as compared to univariate models with only
linear terms, for a considerable number of clusters.

An undesired feature of the proposed Bayesian selection approach is that it tends to
overselect shape components even in the cases where there is no true effect. This ten-
dency of the model is more pronounced for isotope clusters which are selected with high
overall isotope probability of inclusion. The overestimation of the inclusion probabilities
for the non-informative shape components is partly counterbalanced by the calibration of
the marginal regression coefficients for shape which were effectively zero for almost all
shape measures that were included to the model with high frequency. Overestimation of
inclusion probabilities is actually a known deficiency of reversible-jump estimation pro-
cedures for (linear) models, yet not discussed/identified in the related literature.

For posterior inference, we proposed a posterior summary which combines the infor-
mation that can be extracted from the inclusion probability estimates and the marginal
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regression effect estimates as a way to deal with the “inflated” shape selection. Results
from both the real data analysis and a simulation study showed that the “combined” pos-
terior summary gives a reasonable assessment of the relative contribution of shape in
separating the two groups when combined with intensity. A more formal solution to this
problem would be to modify the assumptions on the distribution of the variance for the
shape effects (or the previously mentioned -1,0,1 based model proposal which decouples
effect estimation from variable selection). For example, instead of an Inverse Gamma
distribution for the shape variance we could assume a Uniform distribution in order to
shift the values of the variance distribution to larger values. This would result in more
conservative shape selection as, for higher values of σb, the acceptance probability for
adding a shape measure becomes smaller while the acceptance probability for removing
a shape measure becomes larger. The drawback however with this solution is that conju-
gate updating is not applicable for this family of distributions. An other alternative could
be to use a more general and flexible prior specification for the variance of the intensity
and shape effects so that the model can adapt to the data at hand. A solution towards
this direction could be to assume independent - across isotopes - Inverse Gamma priors
with different hyperparameters for the intensity and shape variances with additional priors
placed on these hyperparameters. This prior specification could give us more flexibility
and control in borrowing strength across the shape measures as compared to setting the
hyperparameters of the Inverse Gamma priors to fixed values.
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Appendix

A. Calculation of acceptance probabilities
Let T be the total number of isotopes in our data set and k = 0, 1, ..., kmax, the model
(isotope) dimension. Within each model dimension k, isotopes may be included as either
singletons (intensity) or couples (intensity & shape) such that the isotope dimension k
equals the number of intensity singletons kI plus the number of intensity-shape couples
kC . We use the following 6 move types:

1) birth - intensity (BI ),
2) birth - couple (BC),
3) death - intensity (DI ),
4) death - couple (DC),
5) change - add shape (CAS),
6) change - remove shape (CRS).

We assume that within each isotope dimension, all models are equally likely. We choose
the proposal probabilities as

bI(k=0) = bC(k=0) = dI(k=kmax=kI) = dC(k=kmax=kC) = cI→C(k=kmax=kI) = cC→I(k=kmax=kC) = 1/2,

dI(0<kI ,kC<kmax=k) = dC(0<kI ,kC<kmax=k) = cC→I(0<kI ,kC<kmax=k) = cI→C(0<kI ,kC<kmax=k) = 1/4,

bI(kI=0<kC<kmax) = bC(kI=0<kC<kmax) = dC(kI=0<kC<kmax) = cC→I(kI=0<kC<kmax) = 1/4,

bI(kC=0<kI<kmax) = bC(kC=0<kI<kmax) = dI(kC=0<kI<kmax) = cI→C(kC=0<kI<kmax) = 1/4,

bI(k=kmax) = bC(k=kmax) = dI(kI=0) = dC(kC=0) = cC→I(kC=0) = cI→C(kI=0) = 0

and
bIk = bCk = dIk = dCk = cC→Ik = cI→Ck = 1/6

in all other cases.

The acceptance probability for a proposal move from a model with parameters θ to a new
model with parameters θ′ is given by

a = min

{
1,
P (D|θ′)
P (D|θ)

p(θ′)

p(θ)

q(θ|θ′)
q(θ′|θ)

}
,

the ratio of 1) marginal likelihoods, 2) priors and 3) proposal distributions.

For the prior distribution of θ we use a discrete uniform specification of the form

p(θ) =

(
T

k

)−1(
k

k′

)−1 1

kmax + 1
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where k′ is either one of kI or kC . The first two terms in the equation ensure that each
model with isotope dimension k and intensity singleton dimension kI or intensity-shape
couple dimension kC is equally likely. In this way we assume that, given k, any set of
potential isotope predictors is found by sampling k isotope clusters from the candidate
set T without replacement. The last term assumes that each possible isotope dimension
k ∈ {0, 1, ..., kmax} is equally likely.

Before we show how to calculate the prior and proposal ratios for all 6 move types based
on the description in Denison et al. (2002), we explain the notion of the proposal ratio.
This involves understanding both the BIRTH and the reverse DEATH moves. Suppose
we add a new intensity singleton component, then we use the proposal density q(θ′|θ) =
bI(k)/(T − k). This consists of the probability of attempting this particular birth move
and the probability of choosing this particular new component which can be done in T−k
ways. The probability of proposing the reverse move is q(θ′|θ) = dI(k+1)/(kI+1) which
is the provability of proposing the death of an intensity singleton and then of choosing the
proposed component as the the one to remove. The ratio of marginal likelihoods BF can
be calculated according to the equations given in Denison et al. (2002).

BIRTH MOVE

Birth of an I singleton

k → k + 1, kI → kI + 1, kC → kC

prior ratio =
p(θ′)

p(θ)
=

1(
T

k + 1

)
1(
T

k

)

1(
k + 1

kI + 1

)
1(
k

kI

)
1

kmax + 1

1

kmax + 1

=
kI + 1

T − k

proposal ratio =
q(θ|θ′)
q(θ′|θ)

=

dI(k+1)

kI + 1

bI(k+1)

T − k

=
T − k
kI + 1

dI(k+1)

bI(k)

R =
p(θ′)

p(θ)

q(θ|θ′)
q(θ′|θ)

=
dI(k+1)

bI(k)

If k = 0 →
dI(k+1)

bI(k)
=

1

6
, else

dI(k+1)

bI(k)
= 1
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Birth of an IS pair

k → k + 1, kI → kI , kC → kC + 1

prior ratio =
p(θ′)

p(θ)
=

1(
T

k + 1

)
1(
T

k

)

1(
k + 1

kC + 1

)
1(
k

kC

)
1

kmax + 1

1

kmax + 1

=
kC + 1

T − k

proposal ratio =
q(θ|θ′)
q(θ′|θ)

=

dC(k+1)

kC + 1

bC(k+1)

T − k

=
T − k
kC + 1

dC(k+1)

bC(k)

R =
p(θ′)

p(θ)

q(θ|θ′)
q(θ′|θ)

=
dC(k+1)

bC(k)

If k = 0 →
dC(k+1)

bC(k)
=

1

6
, else

dC(k+1)

bC(k)
= 1

DEATH MOVE

Death of an I singleton

k → k − 1, kI → kI − 1, kC → kC

prior ratio =
p(θ′)

p(θ)
=

1(
T

k − 1

)
1(
T

k

)

1(
k − 1

kI − 1

)
1(
k

kI

)
1

kmax + 1

1

kmax + 1

=
T − k + 1

kI

proposal ratio =
q(θ|θ′)
q(θ′|θ)

=

bI(k−1)

T − k + 1
dI(k)

kI

=
kI

T − k + 1

bI(k−1)

dI(k)

R =
p(θ′)

p(θ)

q(θ|θ′)
q(θ′|θ)

=
bI(k−1)

dI(k)

If k = kmax →
bI(k−1)

dI(k)
=

1

6
, else

bI(k−1)

dI(k)
= 1
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Death of an IS pair

k → k − 1, kI → kI , kC → kC − 1

prior ratio =
p(θ′)

p(θ)
=

1(
T

k − 1

)
1(
T

k

)

1(
k − 1

kC − 1

)
1(
k

kC

)
1

kmax + 1

1

kmax + 1

=
T − k + 1

kC

proposal ratio =
q(θ|θ′)
q(θ′|θ)

=

bC(k−1)

T − k + 1
dC(k)

kC

=
kC

T − k + 1

bC(k−1)

dC(k)

R =
p(θ′)

p(θ)

q(θ|θ′)
q(θ′|θ)

=
bC(k−1)

dC(k)

If k = kmax →
bC(k−1)

dC(k)
=

1

6
, else

bC(k−1)

dC(k)
= 1

CHANGE MOVE

Change of an I singleton to an IS pair

k → k, kI → kI − 1, kC → kC + 1

prior ratio =
p(θ′)

p(θ)
=

1(
T

k

)
1(
T

k

)
1

kmax + 1

1

kmax + 1

= 1

proposal ratio =
q(θ|θ′)
q(θ′|θ)

=

cRS(k)

kC + 1

cAS(k)

kI

=
kI

kC + 1

cRS(k)

cAS(k)

R =
p(θ′)

p(θ)

q(θ|θ′)
q(θ′|θ)

=
kI

kC + 1

cRS(k)

cAS(k)
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If k = kI →
cRS(k)

cAS(k)
=

1

6
, else

cRS(k)

cAS(k)
= 1

Change of an IS pair to an I singleton

k → k, kI → kI + 1, kC → kC − 1

prior ratio =
p(θ′)

p(θ)
=

1(
T

k

)
1(
T

k

)
1

kmax + 1

1

kmax + 1

= 1

proposal ratio =
q(θ|θ′)
q(θ′|θ)

=

cAS(k)

kI + 1

cRS(k)

kC

=
kC

kI + 1

cAS(k)

cRS(k)

R =
p(θ′)

p(θ)

q(θ|θ′)
q(θ′|θ)

=
kC

kI + 1

cAS(k)

cRS(k)

If k = kC →
cAS(k)

cRS(k)
=

1

6
, else

cAS(k)

cRS(k)
= 1
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