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2
Combination approaches improve

predictive performance of diagnostic rules
for mass-spectrometry proteomic data

Abstract
We consider a proteomic mass spectrometry case-control study for the construction of a
diagnostic rule for patients disease status allocation. We propose an approach for com-
bining a collection of classifiers for the construction of a “combined” classification rule
in order to enhance calibration and prediction ability. In a first stage this is achieved by
building individual classifiers separately, each one using the entire proteomic data set.
A double leave-one-out cross-validatory approach is used to estimate the class-predicted
probabilities on which the combination method will be calibrated. The performance of the
combination approach is examined both through a breast cancer proteomic data set and
through simulation studies. Our experimental results indicate that in many circumstances
gains in classification performance and predictive accuracy can be achieved.

This chapter has been published as: Alexia Kakourou, Werner Vach and Bart Mertens (2014). Combination
approaches improve predictive performance of diagnostic rules for mass-spectrometry proteomic data. Journal
of Computational Biology 21(12), 898-914.
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16 Chapter 2 – Combination of prediction rules for proteomic diagnosis

2.1 Introduction
Based on the most recent statistics, there is an estimate of 12.7 million cancer cases around
the world which is expected to rise to 21 million by 2030. There is therefore an urgent
need to develop effective and reliable diagnostic tools for early detection of this disease.
Mass spectrometry based clinical proteomics has emerged as a powerful analytical tech-
nology towards this objective. Proteomic methods are used for protein profiling and iden-
tification of cancer-associated markers in biological fluids which offer the opportunity to
understand better the specific disease and also to improve detection ability and diagnostic
accuracy. The statistical analysis of protein profiles collected in mass-spectrometry based
case-control study, compares the protein expression patterns between the two different
groups. This process allows the construction of discriminating rules which will poten-
tially facilitate early diagnosis and prognosis.

In this paper we consider a case-control study, the design of which is described in de-
tail in van der Werff et. al (2008). The data set we analyze is the same data set which was
used in the context of the International Competition on Proteomic Diagnosis, the struc-
ture of which is fully described in Mertens (2008). The experiment involves a total of 231
individuals, consisting of 116 anonymous healthy controls and 115 breast cancer patients
from each of which a serum sample was obtained and stored according to a standard-
ized protocol. The available samples from both groups were randomly distributed across
3 plates in roughly equal proportions and spotted in four replicates on the correspond-
ing plate. A single mass spectrum was generated from each spot using MALDI-TOF
spectrometry. The experiment was conducted in 3 consecutive days, by assigning and
processing each single plate separately on a distinct day. The data corresponding to the
first two plates was used as the calibration set and thus consisted of 153 samples of which
76 were cases and 77 were controls. The data from the last plate was used as the valida-
tion set and consisted of 78 samples, 39 of which were cases and 39 were controls. The
four replicate spectra from each individual were processed and combined into a single
output spectrum, prior to subsequent analysis, as described by Mertens (2008). The out-
put spectra were stored at a fixed grid of 11205 mass/charge (m/z) values ranging from
960 to 11.168 Dalton. Figure 2.1 shows the mean mass-spectrum of the cases (top) and
the controls (bottom) groups for the calibration set. In addition to the preprocessed cali-
bration and validation sets, we have the corresponding case-control labels (1 for cases and
0 for controls) for each of the included individuals.

The objective of the competition was to provide a comparative evaluation on differ-
ent technics of classifying mass spectrometry data. The competition participants, coming
from different areas of expertise such as statistics, (bio)informatics, proteomics, chemo-
metrics etc., were asked to construct a diagnostic classification rule, based on the pro-
teomic data which would predict the disease status of future patients. In the first stage
of the competition the participants were given only the calibration set together with the
corresponding case labels as well as the protocol containing a summary description of the
data, the study design and a description of the prepossessing steps applied to the spectral
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Figure 2.1: A graphical representation of the mean mass-spectrum for cases (top) and controls (bottom) sepa-
rately (negative intensity values are plotted for the control group).

data. After sending in a first report containing the description of their chosen approach
and the calibration results, the validation set was forwarded to the participants, without
the corresponding case labels so that the diagnostic assignments for this data set would be
based solely on the previously calibrated discriminating rule. Evaluation of the predictive
performance of the calibrated allocation rules was based on the true class information on
the validation set while the comparative discussion and evaluation of those rules is pre-
sented in Hand (2008).

A key result of the competition was that the majority of the participants chose lin-
ear methods to analyze the proteomic data, i.e. methods of which the classification de-
cision is based on the calibration of a prognostic score using a linear combination of
the input variables. Their preference for linear classifiers seemed reasonable since such
methods are relatively simple and provide more easily interpretable classifiers, which is a
key advantage in applied biomedical research. Furthermore, several authors have argued
in favor of linear methods because of their ability to calibrate more stable and accurate
estimates compared to more complex and sophisticated methods, particularly in high di-
mensions (Rendell and Seshu, 1990; Shavlik et al., 1991; Hand, 2006). Indeed, the linear
approaches used in the context of the competition produced similar classification results
while they were all close to the “optimum" (using error-rate as classification criterion).
This “optimum" solution was achieved with a random-forest classification method ap-
plied to a set of detected peaks. In this paper we investigate an alternative approach to
the calibration of a discriminating rule. That is to use a collection of distinct classifica-
tion procedures to construct a combination-based classifier. This combination approach
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was initially recommended in Hand (2008) as “an effective way to improve classification
predictions" while the key idea of combining several predictors instead of selecting one,
goes back to Stone’s (1992) “model-mix" proposal, which was later adapted and applied
by Wolpert (1992) to the neural network context and by Breiman (2001) to the regression
context. The aim of the paper is to explore the potential of improving linear predictors,
both in terms of prediction performance and predictive accuracy, by combining the class
estimates obtained using different linear classification methods. Moreover, we investigate
the extend of improvement over using only an individual classifier.

The structure of the paper is as follows. In a first stage we present two different frame-
works for combining the estimates obtained using different linear classification methods
which allows for combined prediction and performance evaluation. The first approach
is based on the convex combination of the posterior class probabilities from each sepa-
rately calibrated classifier. The second method is based on fitting a model using cross-
validated predictions of the distinct classifiers as predictor variables. Subsequently, we
present a comparative analysis between the single-classifier analyses and the combination
approaches and we demonstrate how classification performance and predictive accuracy
improves for the latter. We then present a post-hoc analysis in which on one hand we
explore how the two combination methods work and allow for improved predictions and
on the other hand we explore different ways to fit the model-based combination approach.
We next present a simulation study based on reusing the proteomic mass spectra data ana-
lyzed before. In order to simulate the class difference, we impute differentially expressed
signal between cases and controls, generated under some specific conditions and with a
known structure. We finish with a discussion.

2.2 Combination Method
Suppose there are K different classification procedures available, giving rise to distinct
classifiers p1(x), ..., pK(x) to predict the true class y of an observation in terms of an in-
put vector x. Assume furthermore that these classifiers were constructed using the same
learning set L = {(yi, xi), i = 1, ..., n} where xi = (xi1, ..., xip). We restrict our
discussion to the case where each fit pk(x) yields estimates of the posterior class prob-
abilities p̂k(x). Our objective is to combine p1(x), ..., pK(x) in a way which allows for
joint calibration and assessment of the discriminating rule. We present a combination ap-
proach based on replacing the original set of predictors {xi, i = 1, ..., n} with the set of
estimated class probabilities {p̂ik(xi), k = 1, ...,K}. We consider two different combi-
nation approaches. The first approach is based on convex combinations of the estimated
class probabilities while the second approach is based on fitting a model to the set of
the estimated class probabilities. Both approaches have been considered in the literature
(Wolpert, 1992; Breiman, 2001; Leblanc and Tibshirani, 1996).
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2.2.1 Convex Combination via Linear Mixtures
One of the simplest and most straightforward methods to combine the class predicted
probabilities functions pk(x) is to consider linear mixtures (Leblanc and Tibshirani, 1996)
of the posterior class probabilities functions

pC(x) =

K∑
k=1

wkp
k(x)

where pC(x) are the new combined class probabilities and w is a vector of weights which

take values in the interval [0, 1] such that
K∑
k=1

wk = 1. Each choice of wk > 0 gives

rise to a different classifier. We may seek to optimize the parameter vector w in order to
construct the final prediction rule. In that way, w represents the relative contribution of
each classifier, in determining the overall value of pC(x). However, it has been observed
in applications that the predictive power of linear rules is often insensitive to the precise
values of their coefficients due the flat maximum effect (Hand 1997, Hand 2006). This
may be particularly true when all classifiers in the sum are of linear form and highly cor-
related. In this case we expect a priori that classification performance of linear classifiers
is likely to be similar (Hand, 2006) while their estimated class probabilities may be vari-
able. This expectation was confirmed by the proteomics competition outcome, since all
linear classifiers provided similar classification results, all getting close to the optimal.

Taking the above into consideration, for the remaining of this paper we will restrict to
the choice wk = 1/K for k = 1, ...,K and thus enforcing equal weights on all classifiers
in the sum. In a Baysian sense, the choice of taking equal weights reflects our prior ex-
pectation that all classifiers would have similar contribution to the derivation of the linear
combination rule. Averaging across their class predicted probabilities accounts for any
variability between the calibrated class probabilities and derives improved estimates.

2.2.2 Model-based Combination
An alternative approach to convex combination is based on fitting a (semi)parametric
model such as logistic regression to the set of posterior class probabilities functions. Re-
placing the original set of predictors with the set of class probabilities may be viewed as
a dimension reduction approach which reduces the predictor data to a low-dimensional
space. In this low dimensional space the newly calibrated class probabilities pC(x) can
be combined by fitting the logistic model

log(
pC(x)

1− pC(x)
) = α+

K∑
k=1

βk logit(pk(x))

However, fitting this model based on the re-substitution estimates p̂ki (xi) can lead to
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serious bias and overfitting (Leblanc and Tibshirani, 1996). For this reason it is crucial
that each distinct classifier is “pre-validated" (Tibshirani and Efron, 2002) so that biased
estimates will not occur. Pre-validation implies the use of cross-validation in order to
avoid overfitting resulting from estimation using the same training set for the construction
of the individual predictors. Therefore, we choose to use leave-one-out cross-validation
to calibrate the predicted class probabilities of the classifiers to be combined. In this
way we let pk−i(xi) denote the leave-one-out cross-validated fit for pk(xi) without the ith

observation. The estimates from each such fit are cross-validated class probabilities, eval-
uated at x = xi and denoted by p̂k−i(xi). We can then use the set of cross-validated class
probabilities as our new input variables for the construction of the combined classifier, as
suggested by Wolpert (1992) and Breiman (2001). The estimates α̂ and β̂ can be obtained
by maximizing the cross-validated log-likelihood function of the logistic model

l(α,β) =
n∑
i=1

yi

(
α+

K∑
k=1

βk logit(pk−i(xi))

)
− log

(
1 + exp(α+

K∑
k=1

βk logit(pk−i(xi))

)

The above likelihood may still be ill-conditioned as a consequence of the high correla-
tion between the new covariates p̂k−i(xi) introduced by the fact that these were calibrated
using the same training set. This may lead to excessively variable model parameter esti-
mates and poor predictions. One approach to address the problem is to augment the above
likelihood with a penalty term or some other form of regularization. For our first imple-
mentation we chose the quadratic penalty, which leads to logistic ridge regression, which
is known to perform well in the calibration of prediction and classification rules. This
method shrinks the regression coefficients towards zero and provides parameter estimates
with reduced variance. We will return to the issue of model choice for the combination of
classifiers in the post-hoc analysis.

Estimates for α and β can thus be obtained by maximizing the penalized cross-
validated log-likelihood function

lλ(α,β) = l(α,β)− λΩ(β)

where λ is the ridge penalty which controls the amount of shrinkage on the parameter

vector β and Ω(β) =
K∑
k=1

β2
k is the quadratic penalty. To select the regularized parameter

λ we choose to use a (leave-one-out) cross-validatory approach. The optimal value of λ
is then defined as the one minimizing the cross-validated deviance

CV D(λ) = −2

n∑
i=1

yi log p̂C−i(xi) + (1− yi)(log (1− p̂C−i(xi))

where p̂C−i is the estimated combination class probability of the ith sample with regression
parameters estimated by maximizing lλ(α,β) without the ith observation.

An essential difference between the convex combination and the model-based combi-
nation approach is that there is an implicit “re-calibration” phenomenon involved in the
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latter, since the class probabilities pk(x) are not only combined, as in the case of convex
combination, but also re-calibrated as suggested by Cox (1958). Fitting a model based
on the set of the calibrated estimates from a single classification rule, instead of the set
of predictors on which this classification rule was based, could alter the final predictions.
Thus, one must be careful when interpreting the results from this combination approach
and when comparing them directly to the performance measures of the separately cal-
ibrated − yet not re-calibrated − models themselves. We can assess this problem by
re-calibrating the individual classifiers i.e. by fitting a logistic model using each time
only the cross-validated predictions of a single classifier as input variables such that

log(
pkR(x)

1− pkR(x)
) = α+ βk logit(pk−i(x))

for k = 1, ...,K, with pkR(x) the re-calibrated probabilities for the kth classifier. A com-
parison between the cross-validated predictions of the ridge logistic model combination
and the cross-validated predictions of the re-calibrated logistic models would give us in-
sight in whether the improvement in classification performance is due to combining the
cross-validated estimates of the individual classifiers or due to a “re-calibration" effect
one must account for.

2.3 Application and Analysis

2.3.1 Model Choice
Because of both the proteomics competition method submissions and results (Fearn, 2008;
Strimenopoulou and Brown, 2008; Hoefsloot et al., 2008; Hand, 2008), we decided to
consider classifier combinations for linear base classifiers ensembles. We therefore use
five related linear classifiers, well established in applied sciences and classification litera-
ture and effective in high dimensions, which were also proven effective in the proteomics
competition. The first three methods correspond to three different forms of regularized
logistic regression. This method is commonly used in situations where the number of
covariates exceeds the number of observations and/or when there are high correlations
between them. Regularized logistic regression shrinks the coefficients towards zero by
imposing a penalty on their size. We consider three different penalty functions, giving
rise to three distinct regularization approaches. The first penalty function we use is the
quadratic penalty leading to Ridge logistic regression (RLR) and shrinkage of the pa-
rameter vector (Le Cessie and van Houwelingen, 1992). The second penalty function
is the absolute penalty leading to Lasso logistic regression (LLR) which allows for both
shrinkage and variable selection (Tibshirani, 1996). We finally use the convex combina-
tion of the quadratic and absolute penalties leading to the Elastic Net logistic regression
(ENLR) (Zou and Hastie, 2005). The next two methods we use are based on Linear dis-
criminant analysis. This method finds a direction in space which maximizes the between-
group variations while minimizing the within-group variations. Since we work in the
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high-dimensional setting, Linear discriminant analysis can not be applied directly, as the
pooled within-group sample dispersion matrix is singular and therefore can not be inverted
to give the required estimates. There are various publications in the literature which pro-
pose ways to deal with the problem of singularity. One of the most common approaches
to tackle this problem is to use a shrinkage-based estimation for the pooled within-group
covariance matrix. Here we use two different forms of regularization. The first one is
based on principal component decomposition (LDAP) (Krzanowski et al., 1995; Mertens,
2003) while the second one is based on ridge regularization (LDAR). In the first case, the
tuning parameter which controls the amount of shrinkage of the covariance matrix is the
number of principal components to keep from the first component onwards where in the
second case the tuning parameter is a ridge penalty.

The above methods to be used in the combination approach, require the tuning of
a regularized parameter while at the same time their predicted class probabilities need
to be “pre-validated" as previously explained. This implies the use of a double cross-
validatory strategy for the calibration of each individual classification rule. The outcome
of this cross-validatory procedure are double-cross-validated class probabilities p̂k−i(xi)
which can then be used as new input variables for the construction of the combined clas-
sification rule. Details of the above double-cross-validatory procedure and its specific
application in the mass-spectrometry context is presented in Mertens et.al (2006), on the
basis of Stone’s original paper on cross-validation (Stone, 1974). Ideas about the use
of cross-validation for the combination of predictions can be found in Breiman (1996)
for the regression context, and also in Wolpert (1992). We should note that the above
described implementation is essentially a sequential cross-validatory approach, in which
first the double-cross-validation predictions are generated, followed by a repeat single
cross-validatory step for the calibration of the combination tuning parameter λ on the in-
dividual double-cross validation predictions, “as if given".

To optimize the tuning parameter of each individual classification method we use a
grid search with a nested leave-one-out cross-validation. For RLR we use a grid of 100
λ-values, with equal space on the log scale, varying from 0.0005 to 1000. To speed up
computations we use an approximated version of leave-one-out cross-validation in which
the real leave-one-out regression coefficients are approximated rather than fully calcu-
lated (Meijer and Goeman, 2013). For LLR and ENLR we choose the optimal λ-value
among 100 equidistant points, varying from 0.0001 to 0.1. We should mention here that
in the case of ENLR, parameter estimation involves combined optimization of λ and a
parameters, where a is the elasticnet mixing parameter with 0 < a < 1. To optimize
a we use a linear grid of 11 equidistant points between 0 and 1. In the case of LDAP,
the maximum model size is restricted to the first few 35 principal components. Finally,
for LDAR the optimal penalty is chosen among 1000 equidistant points on the log scale
between 0 and 1. All the computations for RLR, LDAP and LDAR were carried out in
Matlab, using programs written by the authors. In the case of LLR and ENLR, the GLM
net algorithm implemented in package “glmnet” in R was used (Friedman et al., 2013).
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Classification Methods Combination Methods

RLR LLR ENLR LDAP LDAR LINC RLGC LGCeq_restr

Error-rate 0.231 0.359 0.359 0.244 0.269 0.166 0.205 0.154

Brier score 0.143 0.212 0.208 0.141 0.206 0.133 0.120 0.108

Sensitivity 0.744 0.462 0.487 0.769 0.872 0.821 0.795 0.846

Specificity 0.795 0.821 0.795 0.744 0.589 0.846 0.795 0.846

AUC 0.894 0.769 0.765 0.878 0.871 0.905 0.915 0.933

Deviance 67.40 94.50 92.97 67.25 143.24 65.73 57.78 53.12

Table 2.1: Predictive performance measures of single classifiers, convex combination (LINC), ridge logistic
combination (RLGC) and equality-restricted logistic combination (LGCeq_restr) for the validation set.

2.3.2 Results
The above linear methods as well as the combination methods were fitted to the calibra-
tion set and the resulting discriminating rules were evaluated on the validation set. Ta-
ble 2.1 shows the predictive performance measures for Ridge logistic regression (RLR),
Lasso logistic regression (LLR), Elastic Net logistic regression (ENLR), LDA with PCA
(LDAP) and LDA with ridge penalty (LDAR). For each of these procedures we calculate
the error-rate, the sensitivity and specificity and the area under the ROC curve (AUC). To
evaluate the accuracy of each calibrated classifier we also calculate the Brier score and
the deviance, the definitions of which are given below.

Brier score =
1

n

n∑
i=1

(p̂(xival)− yival)2

Deviance = −2

n∑
i=1

yival log p̂(xival) + (1− yival)(log (1− p̂(xival))

= −2

n∑
i=1

log(1− |p̂(xival)− yival |)

where p̂(xival) is the estimated posterior class probability of the ith validated sample,
yival is the true class of that sample and n is the total validation sample size. For class
assignments, we use a threshold of 0.5 and thus we assign an observation as a disease
case if the estimated class probability p̂(xival) is greater than 0.5, otherwise we assign it
as control.

The performance measures of the linear mixture combination approach (LINC) and
the ridge logistic combination approach (RLGC) are presented in the right part of Table
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Re-calibrated Models Combination Methods

RLR LLR ENLR LDAP LDAR LINC RLGC LGCeq_restr

Error-rate 0.218 0.372 0.369 0.210 0.269 0.166 0.205 0.154

Brier score 0.136 0.220 0.219 0.140 0.173 0.133 0.120 0.108

Sensitivity 0.769 0.410 0.436 0.769 0.872 0.821 0.795 0.846

Specificity 0.795 0.846 0.821 0.821 0.589 0.846 0.795 0.846

AUC 0.894 0.769 0.765 0.878 0.871 0.905 0.915 0.933

Deviance 63.53 98.57 98.61 67.13 91.52 65.73 57.78 53.12

Table 2.2: Predictive performance measures of re-calibrated logistic models based on cross-validated class prob-
abilities of single classifiers and original performance measures of convex combination (LINC), ridge logistic
combination (RLGC) and equality-restricted logistic combination (LGCeq_restr) for the validation set.

2.1. It can be seen that there is an improvement both in error-rate and predictive accuracy,
as indicated by the Brier and the Deviance scores.

In Table 2.2 we report performance measures after re-calibrating each individual
classifier. We observe that predictive performance measures improve for RLR, LDAP and
LDAR after re-calibration while performance measures for LLR and ENLR remain the
same. Such changes in predictive performance indicate the presence of a “re-calibration"
effect which could have high impact on the comparison between the individual classifi-
cation methods and the combination methods. Despite these changes in the performance
measures of most of the individual classifiers after re-calibration, we can still see that both
combination methods outperform any single re-calibrated model.

2.3.3 Post-hoc Analysis
Figure 2.2 shows a scatter-plot representation for cases and controls separately to give an
insight into the way improved predictions may occur from the linear mixture combina-
tion. Horizontal axes represent the proportion of correct assignments of an observation to
a class across all classifiers while vertical axes represent the variance among the predicted
class probabilities across the classifiers. Plotting symbols are shown as dots if correctly
classified by the linear combination and as crosses otherwise. All observations above the
0.5 proportion of correct classification are assigned to the correct class except for one ob-
servation in the cases group. The gain of using the linear combination approach becomes
more clear by looking at the data points below the 0.5 proportion of correct classification,
which is where the majority of classifiers calibrates incorrect assignments. There are 5 ob-
servations in the controls group and 2 observations in the cases group for which, although
three out of five classifiers do not assign them to the correct class, linear combination is
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Figure 2.2: Variance between predicted probabilities versus proportion of correct classification for cases and
controls separately (symbols are plotted as dots when correctly classified by the linear mixture combination and
as crosses otherwise).

able to recover a correct assignment. Moreover, there is one observation in the controls
group for which, while four out of five classifiers are not assigning it to the correct class,
linear combination manages to recover. The estimated class probabilities for this partic-
ular observation are 0.55, 0.61, 0.59, 0.72 and 1.5e − 0.6 for RLR, LLR, ENLR, LDAP
and LDAR respectively. Thus, recovering of this observation by the linear combination
is due to the class probability of LDAR which pulls the average of the class predicted
probabilities towards zero. Finally, the most difficult scenario for the combination occurs
when all classifiers calibrate incorrect assignments. In this case, observations will always
be misclassified by the linear combination method.

In contrast to the convex combination approach, fitting the ridge logistic model com-
bination implies that one allows the relative contribution of the individual classifiers to
the combined classification rule to vary, as represented by their corresponding regression
weights. The estimates for these weights can be found in the upper part of Table 2.3 in
which we can see that the largest contribution is provided by RLR with estimated regres-
sion coefficient much larger in absolute terms, than any other’s classifier. Moreover we
can see that LDAP is associated with a negative regression coefficient which complicates
the interpretation of the estimated weights. To facilitate interpretation, we refit the ridge
logistic model, constraining the coefficients of all penalized covariates to be non-negative.
The estimated coefficients for this fit are given in Table 2.3. Comparing the new estimates
of the regression weights with the previous ones, we observe that LDAP attributes zero
effect to the combined classification rule, when we make the non-negativity constraint.
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Ridge logistic model combination

Intercept(α) βRLR βLLR βENLR βLDAP βLDAR Error-rate Deviance

Coef. -0.0230 0.5200 0.0902 0.1730 -0.1504 0.1215 0.205 57.78

Positivity-restricted ridge logistic model combination

Intercept(α) βRLR βLLR βENLR βLDAP βLDAR Error-rate Deviance

Coef. 0.0016 0.3800 0.0866 0.1161 0 0.1543 0.166 54.73

Equality-restricted logistic model combination

Intercept(α) β Error-rate Deviance

Coef. 0.0593 0.1911 0.154 53.12

St. Err. 0.2656 0.0290

t 0.2232 6.5962

Equality-restricted logistic model combination (pRLR and pLLR as only inputs)

Intercept(α) β Error-rate Deviance

Coef. 0.0119 0.5024 0.205 64.03

St. Err. 0.2709 0.0789

t 0.0437 6.3707

Table 2.3: Maximum likelihood estimates for ridge logistic, positivity-restricted ridge logistic, equality-
restricted logistic and sub-equality-restricted logistic model combination.

The largest contribution to this positivity-constrained model, is provided by RLG as be-
fore, with estimated regression coefficient βRLR = 0.38 while the smallest is provided by
LLR with estimated regression coefficient βLLR = 0.086. The cross-validated error-rate
and cross-validated deviance of the positivity-restricted ridge logistic model combination
is 0.166 and 54.73 respectively.

Recalling that all classifiers in our collection are linear and thus likely to have equal
predictive contribution power in determining the combined predictions pC(x), we refit
the logistic model with the additional restriction that the regression coefficients are equal
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β1 = ... = βK = β such that

log(
pC(x)

1− pC(x)
) = α+ β

K∑
k=1

logit(pk−i(x))

Although the above model combination might look somewhat similar to the convex
combination approach, an essential difference between them lies in the fact that in the
first case, the final class probabilities pC(x) are being calibrated using model-based es-
timation while in the second case, pC(x) are simply the expectation of the individual
calibrated class probabilities pk(x). The maximum likelihood estimates of this model for
the intercept and the regression term are shown in Table 2.3. The cross-validated error-
rate of the model-based combination drops from 0.205 to 0.1538 when we constrain the
regression coefficients to be equal, getting close to that of the convex combination (0.166).
Similarly, the cross-validated deviance of the model decreases from 57.78 to 53.12.

We calculate Kendall’s τ on the pairs of cross-validated probabilities of the ridge
logistic model combination and the convex combination as well as on the pairs of cross-
validated probabilities of the equality-restricted logistic model combination and the con-
vex combination. In this way we can explore how association between the estimated
probabilities of the convex combination and the model-based combination is affected
when we make the restriction of equal regression coefficients in the model combination
approach.Kendall’s rank correlation increases from 0.7403 to 0.8342 indicating a change
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Figure 2.3: Separate scatter-plots for cases and controls versus the class probabilities of convex combination
and ridge logistic model combination (plotted as crosses) and the class probabilities of convex combination and
equality-restricted logistic model combination (plotted as dots).
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Individual classifiers being removed

RLR LLR ENLR LDAP LDAR

Error-rate 0.166 0.205 0.192 0.205 0.179

Deviance 57.30 52.38 52.10 56.43 63.75

p-value 1 0.134 0.248 0.134 0.724

Table 2.4: Validated classification results of equality-restricted logistic model combination removing a single
classifier at a time and McNemar’s test outcome for comparison between error-rates of full equality-restricted
model and deletion models.

in the association between the class estimates of the two different combination meth-
ods. This change is represented in Figure 2.3 where we plot the class probabilities of
the convex combination versus the probabilities of the ridge logistic model combination
and the equality-restricted logistic model combination. The above results suggest that the
assumption of similar predictive contribution across classifiers was valid, providing justi-
fication for enforcing equal weights on all classifiers in the convex combination approach.
Estimates for the intercept and the regression term of the equality-restricted logistic model
(LGCeq_restr) are shown in Table 2.3. Predictive performance measures for this model
can be found in the last column of Table 2.1.

We can further investigate the individual predictive contribution of each classifier to
the equality-restricted logistic model combination by removing each one on it’s own and
refitting the model. This would provide some insight of the actual importance of each of
those classifiers in deriving improved estimates when combined with the rest classifiers in
the model-based combination. In addition, we gain insight into the robustness of the final
combined classifications when deleting component methods from the ensemble of classi-
fiers which is used. The cross-validated error-rate and the cross-validated deviance of this
model is 0.166 and 57.30 respectively. Hence, removing the strongest classifier yields
class assignments identical to the full equality-restricted logistic model, for all observa-
tions except one, while we observe a small deterioration in terms of predictive accuracy.
We repeat the “deletion" procedure, this time removing the weakest classifier (LLR). The
error-rate and deviance for this model is 0.20 and 52.38 respectively. In this case, the oc-
curring discrepancies in classification between the full equality-restricted logistic model
and the one removing the weakest classifier, are due to 4 observations in total, while pre-
dictive accuracy measures slightly improve for the latter model. We continue by removing
ENLR, LDAP and LDAR at a time and we report the cross-validated error-rates and de-
viances of the fitted models in Table 2.4.

The reported results suggest that the equality-restricted logistic model combination
is relatively robust to the deletion of an individual classifier − even if we remove the
best (RLR) from the combination − while best performance for this model is achieved



2.4 Simulation Study 29

when all classifiers are included in the set of predictors. We test the occurring differ-
ences between the class assignments of the full equality-restricted logistic model and the
deletion-models with a McNemar’s test which gives non-significant outcome for all com-
parisons (Table 2.4).

It is of interest to fit a “sub-model" of the equality-restricted logistic model combi-
nation which only uses RLR and LLR as predictors. This sub-model can be viewed as
an alternative to the Elastic Net regularization, as instead of combining the quadratic and
absolute penalties, we combine the estimated class probabilities derived from separately
calibrating Ridge and Lasso. The regression estimates and the performance measures of
this model are shown in the lower part of Table 2.3. Comparing the performance mea-
sures of this model to the ones obtained from fitting the Elastic Net, we see that fitting
this alternative model yields a reduced error-rate of 0.20 and a reduced deviance of 64.03,
as compared to the error-rate and deviance obtained with Elastic Net (0.35 and 92.97).
We compare the measures between the two different approaches of combining the two
regularization methods with a McNemar’s test which gives highly significant outcome
(P = 0.00596), despite the insufficient power due to the relative small sample size. This
outcome indicates a significant difference between the Elastic Net and the model com-
bination which only uses RLR and LLR as predictors, in favor of the latter combination
approach.

2.4 Simulation Study
In this section we perform a simulation study to assess performance of our proposed com-
bination methods. Our aim is to obtain a simulation as realistic as the complex structure
of this particular type of data may allow. We generate the data set based on reusing the
breast cancer data set analyzed in the previous sections. In a first stage, this is achieved
by keeping the class labels fixed and permuting the individuals’ mass spectrums. We then
add differentially expressed signals between the two different classes. The signals consist
of gaussian shaped peaks, «added to the individual spectra. A peak at location a is defined
as a function of the mass to charge (m/z) values x on the intensity scale»

Peak(x, c) =

{
rΦ(x−ab ) if c = 0
(r + κ)Φ(x−ab ) if c = 1

where r ∼ N(µ, σ2) with additional left-truncation such that r ∈ (0,∞), κ is a constant
which controls the difference between the generated peaks for cases and controls, x is the
mass/charge (m/z) value and b determines the width of the peak. In this way, we simulate
exactly the same experimental setup as in our original experiment, except we add a known
difference between the existing mass spectrums of the two different groups. This leaves
us again with 153 samples for calibration and 78 samples for validation purposes.

We use the simulated data sets to evaluate the combination methods and compare
them to each distinct classification method. For this purpose, we consider three different
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Figure 2.4: A simulated mass spectrum of a case for the three simulation scenarios (dashed lines indicate the
location of the added peaks).

scenarios which correspond to different choices of the parameters µ, σ, κ and a while for
all three scenarios b is fixed. We choose µ and σ so that the intensities of generated peaks
match those of neighboring peaks. The choice for b is based on the typical peak-width in
the breast cancer data. In the first scenario we base the discrimination between cases and
controls upon a single peak differentially expressed between the two different groups.
This is a situation which we expect a priori to favor Lasso logistic regression as this
method tends to select low-dimensional models to explain the data. In the second scenario
we impute 6 peaks differentially expressed between cases and controls in the same signal.
Finally, in the third scenario we increase the number of differentially expressed peaks to
16 peaks in total, distributed along the individuals’ mass spectrums. The simulated mass
spectrums for a case for the three different scenarios are plotted in Figure 2.4. The chosen
values for a, µ, κ and σ for each scenario are shown in Table 2.5.
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The value for b is set to 5.3 for all three scenarios. For each of the two first scenarios
we repeat the simulation procedure 20 times while for the third scenario we repeat the
simulation procedure 25 times. This gives rise to 20 different simulated calibration and
validation data sets for the first and second scenarios and 25 simulated calibration and
validation data sets for the third scenario.

In Table 2.6 we report the average error-rate, Brier score and deviance of each indi-
vidual classification method and each combination method for the fist, second and third
scenarios. In the first scenario we can see that the error-rate for both combination meth-
ods is lower than every individual method except LLR. The Brier score and the deviance
for both combination methods are lower than those of RLR, ENLR, LDAP and LDAR
while they are very close to the Brier score and the deviance of LLR. In the second and
third scenarios all performance measures for both combination methods are lower than
any individual classification method’s.

Figure 2.5 shows separate boxplots of the distribution of error-rates, Brier scores and
deviances of the five individual classifiers and the two combination methods, for the three
scenarios. The top three boxplots correspond to the first scenario. As expected, LLR out-
performs every single classifier both in terms of classification performance and predictive
accuracy. Despite these differences between LLR and the other classifiers, we can see that
error-rates for both combination methods tend to be lower than every individual method
except LLR, while their distributions are similar to the distribution of LLR. This is also
true for the Brier score and deviance distributions. In the second scenario all five inde-

Classification Methods Combination Methods

RLR LLR ENLR LDAP LDAR LINC LGC

Error-rate 1st Scenario 0.27 0.19 0.27 0.29 0.27 0.21 0.20

2nd Scenario 0.26 0.27 0.27 0.28 0.26 0.23 0.23

3rd Scenario 0.25 0.24 0.24 0.24 0.23 0.19 0.18

Brier score 1st Scenario 0.18 0.14 0.20 0.21 0.23 0.15 0.14

2nd Scenario 0.20 0.18 0.18 0.21 0.22 0.16 0.16

3rd Scenario 0.18 0.17 0.16 0.18 0.18 0.13 0.12

Deviance 1st Scenario 88.92 72.72 93.82 119.17 195.47 72.70 72.32

2nd Scenario 109.70 86.47 84.97 112.29 103.57 76.82 80.74

3rd Scenario 122.87 80.93 77.29 104.72 171.26 67.25 71.78

Table 2.6: Average error-rates and deviances of the individual classification methods and the combination meth-
ods for the three different scenarios.
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Figure 2.5: Boxplots of validated misclassification rates, Brier scores and deviances for the 1st, 2nd and 3rd
simulation scenarios.

pendent classification methods perform almost equally well, as we can see from the three
middle plots of Figure 2.5. We observe, on average, a slight improvement in classification
performance and prediction accuracy when using LIN or LGC. The lower plots of Figure
2.5 report the results from the third scenario. Combining the different classification meth-
ods which yield similar predictive performance, accounts for the variability between the
calibrated class probabilities, allowing for the derivation of improved predictions. This is
particularly true for the Brier score and the deviance, as their entire distributions for both
combination approaches is lower than every other classification method distribution.

Table 2.7 reports relative frequencies of improvement of each combination method
on each individual classifier, as well as frequencies of each combination method hav-
ing the first rank (being best classifier) as compared to all individual classifiers, accord-
ing to the misclassification rate and deviance criteria. These frequencies are defined as
P (Epk > ELIN ) and P (Epk > ELGC) for the error-rate and P (Dpk > DLIN ) and
P (Dpk > DLGC) for the deviance, for convex and model-based combination respec-
tively, with pk denoting the individual classifier. The relative frequency of improvement
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P (Epk > ELINC) P (Epk > ELGC)

Individual pk RLR LLR ENLR LDAP LDAR ALL RLR LLR ENLR LDAP LDAR ALL

1st Scenario 0.93 0.29 0.93 0.86 0.93 0.29 0.93 0.50 1 0.93 0.93 0.50

2nd Scenario 0.88 0.88 0.75 0.81 0.88 0.63 0.81 0.81 0.81 0.81 0.88 0.69

3rd Scenario 0.87 0.83 0.91 0.96 0.78 0.57 0.87 0.87 0.87 0.83 0.91 0.61

P (Dpk > DLINC) P (Dpk > DLGC)

Individual pk RLR LLR ENLR LDAP LDAR ALL RLR LLR ENLR LDAP LDAR ALL

1st Scenario 0.83 0.36 0.86 0.93 1 0.29 0.86 0.50 0.79 0.93 1 0.43

2nd Scenario 0.81 0.75 0.94 1 1 0.56 0.63 0.81 0.69 0.94 1 0.44

3rd Scenario 0.96 0.91 0.86 1 1 0.82 0.95 0.73 0.73 0.95 1 0.65

Table 7: Relative frequency of improvement of the convex combination (left part) and model-based combination
(right part) compare to each individual classifier and compare to all individual classifiers in terms of error-rate
and deviance.

in performance measures of the two combination methods is always greater than 0.5 for
the second and third scenarios. In the first scenario in which differential expression occurs
in low dimension, the relative frequency of improving on LLR is lower than 0.5 for the
convex combination method and exactly 0.5 for the model-based combination method.
As the estimated frequencies are based on 20 repetitions for the first and second scenarios
and on 25 repetition for the third scenario, a relative frequency of more or equal to 0.75
and 0.70 respectively is significantly different from 0.5 at the 5% level. Improvements in
classification performance and predictive accuracy, increase as we increase the number of
added peaks differentially expressed between the cases and controls. Such improvements
are more clear in the third scenario which is the one we expect to be closest to what should
be expected to happen in real-life proteomics pattern recognition, since differential signal
is likely to be scattered across many peaks of different magnitudes, signal intensities and
variabilities, corresponding to different break-down fragments in the mass-spectrometric
procedure of proteins which are present in different amounts between the cases and con-
trols. In contrast, the first scenario is highly unlikely to occur, as it would imply that only
a single differentially expressed protein or peptide was present in differing concentrations
between the cases and controls, and in addition, this molecule should not fractionate either
during the mass spectrometry procedure (and the initial sample-preparation).
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2.5 Discussion
In this paper we considered the problem of construction of classification rules for mass
spectrometry proteomic data, by using combinations of individual classifiers as opposed
to calibrating a single predictor only. This work was motivated by the results, sugges-
tions and discussion generated in the mass spectrometry proteomic competition (Mertens,
2008; Hand, 2008). We re-analyzed the competition proteomic breast cancer case-control
data to evaluate the combination approach. In addition, we simulated proteomic mass
spectrometry data - based on re-using existing spectrometry data - and used this to imple-
ment an extensive evaluation of the proposed combination methods. Results from both the
breast cancer data analysis and from the simulation study show that gains in classification
performance and predictive accuracy can be achieved with a combination approach.

We restricted the constituent classifiers used in the construction of the combined clas-
sifier to linear classification methods, in the first instance because these were found to
work well in the proteomic competition and were the methods of choice for the majority
of participants. Furthermore, these methods are regarded as reliable and stable generally
for high-dimensional data problems with relatively small sample sizes in Omics research.
Our results show that when combining linear base classifiers, as in this paper, consis-
tent classification gains are achieved. This seems to be particularly relevant for mass-
spectrometry proteomic data. To evaluate the simulations we applied a two-way ANOVA
approach on the calculated deviance residuals which adjusts for simulation-to-simulation
systematic differences in classification potential, while evaluating the method effect which
accounts for possible systematic differences in classification accuracy between the clas-
sifiers considered. These calculations/analyses were carried out (not shown) but can be
accessed in the supplementary files available with this paper. Results from both the data
example analyses and the simulations show that the combination methods are clearly sep-
arated from and improving on the constituent individual classifier methods in terms of
classification potential.

Since the constituent classifiers are all relatively simple discriminant methods found in
most packages, one could imagine combination rules as discussed in this paper could rel-
atively easily be calibrated in routine applications. However, this is not quite as straight-
forward for the model-based approach, since it requires calibration of the combination
of classifiers through some form of optimization - as through maximum (penalized or
otherwise constrained) likelihood estimation as in this paper - which tends to destroy the
calibration of the individual constituents’ class probabilities. We may solve this problem
by calibrating cross-validated class probabilities for each base classifier and then replace
the original predictor data with these cross-validated probabilities prior to subsequent
combination. Since the base classifiers require calibration themselves, a double cross-
validatory routine must then be employed, which allows for both choice of the penalty
terms required for optimization of the constituent classifiers and cross-validated predic-
tion of each individual datum in the calibration data.

Combinations through weighted sums may be more straightforward in application,
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since they may not require optimization of the weights in the procedure. Whenever
the weights are known, an unbiased evaluation of the predictive performance of such
weighted sum discriminant combination rule is then relatively easy to derive, as the cross-
validatory nature of the predicted probabilities of each separately calibrated classifier is
preserved in the weighted combination. We would speculate such weighted combinations
to be particularly competitive in many applications, as also found in our application, par-
ticulary with a carefully chosen ensemble of base classifiers as in this paper. Indeed the
subsequent post hoc analysis carried out on the model-based approach shows that the re-
sults come very close to those obtained from the convex mixture using equal weights. If
we are prepared to make such restrictive assumption a priori, then such mixture combi-
nations could be calibrated with relative ease in practical application. Recalling that the
estimates of each constituent classifier can be regarded as a feature, an alternative to the
linear combination is the model-based combination which can be more flexible and can
lead to a more elaborate classification rule.

Another aspect related to the above comparative discussion between the model-base
combination approach versus the convex linear weighting method, is that the first involves
an implicit re-calibration of the class probabilities. This has been much overlooked and
ignored in practical applications and discussion of combination approaches, including
the statistical literature. Comparisons of model-based combinations with single-classifier
approaches must therefore address this effect. We have shown that even allowing for
the re-calibration effect, the model-based method is still competitive above using a sin-
gle constituent classifier only. Model-based approaches are clearly also attractive if one
wishes to combine more general collections of base classifiers. For example, it could be
of interest to explore the possibility of including non-linear classifiers (such as Random
Forest) in our portfolio as well. This would be attractive when we would expect non-
linearity of the decision surface. An argument against use of non-linear methods would
be the typically small sample size - relative to the dimensionality of the problem - and
the greater variability of the resulting calibrated class probabilities when using such more
complex prediction methods. We have not explored the latter suggestion because we do
not believe non-linearity to be an issue with the breast cancer data.

Model combination have seen many applications and publications within related re-
search fields, such as in Neural networks, Machine learning and Pattern recognition. Clas-
sifier fusion in these fields tends to be based on majority voting or bagging technics which
do not directly yield estimates of class probabilities. The idea of estimating a combina-
tion of predictors instead of optimizing a single predictor was first introduced in the neural
network context by Wolpert (1992), referring to this idea as “stacked generalization for
combining estimators”. His proposal was later applied and studied in the regression set-
ting by Breiman (1995) on what he called “stacked regression". Wolpert’s and Breiman’s
ideas about classifier ensembles are closely related to the “model-mix” proposal by Stone
(1974). The problem of combing estimates in regression and classification to obtain im-
proved predictive models is also considered in LeBlanc and Tibshirani (1996). Their pa-
per also examines the relationship between the “stacking" and “model-mix" algorithms.
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A recent paper by van der Laan et al. (2007) proposed a new estimator, introduced
as the “super learner”, which is connected to the stacking idea and classifier fusion. This
“super learner" is a prediction algorithm which applies a collection of candidate learners
to the training data, in order to achieve better performance than any of the given candidate
learners. An essential difference between super learner and our combination approach
lies in the fact that given a collection of learning processes, the super learner selects the
optimal learner based on cross-validated risk, discarding all others. Our combination ap-
proach retains use of all learning processes, whether through an a priori assumption of
equal weighting or through a model-based combination on double cross-validated predic-
tions.

Combination methods as discussed in this paper have many advantages, besides those
of improved predictive ability and their relative ease of implementation, discussed above.
Another property demonstrated in the post hoc analysis in this research is their relative
robustness to deletion of any individual constituent classifier from which it is built. The
predictive improvements themselves, though consistent, are relatively modest. This is
however no criticism which should be taken against combination methods (or any other
method to improve on a simple linear base classifier), as it is nothing else but confirmation
of the wisdom formulated by Hand (2006) that most of classification potential can be cal-
ibrated using a simple linear classifier. Improvements beyond this point are much harder
to obtain, and require either more data (larger sample sizes) or better (expert) knowledge.
The latter suggestion is very interesting for spectrometry data generally, as it would seem
there is much expert knowledge to be exploited in spectrometry applications. However,
since the variation in spectrometry equipment and the data types they produce is huge,
the usefulness of such specializations may be restricted to specific applications, or require
careful and time-consuming re-tuning to each new situation, while combination methods
may in principle be quickly applied across many applications in (spectrometry-based)
Omics data.
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