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1
Introduction

1.1 Introduction
Clinical proteomics is currently a growing and promising field of research which deals
with the study and understanding of fundamental biological processes at the protein
level. A key objective in clinical proteomic studies is the identification of biomarkers for
early detection, diagnosis of disease, assessment of disease prognosis and monitoring
of disease progression which could improve the long-term survival of patients. The
technological progress in mass spectrometry (MS) and other related technologies over the
last decade has elevated the use and potential of proteomic studies in clinical research.
Mass spectrometry has become one of the key technologies for jointly measuring the
expression of thousands of proteins in biological samples.

Following the acquisition of protein expression, several research ques-
tions/investigations could be of interest, among which the assessment of differential
expression levels or the comparison of protein profiles across distinct groups such as
those collected in a case-control manner. The latter may allow for the construction of
discriminant rules to distinguish between individuals as to the presence or absence of
a disease or the degree of the disease progression. Moreover, the statistical analysis
of protein profiles collected from both cases and controls could contribute to the
identification of a set of features potentially associated with the physiological and
pathological condition of an individual and therefore could provide evidence to further
exploit diagnostic and therapeutic potential.

The development of MS instrumentation gave rise to new statistical challenges in
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2 Chapter 1 – Introduction

the processing and analysis of the acquired data. This is due to the complex nature
of the spectral proteomic signal which is measured, as it consists of high-dimensional
functions representing the within-patient proteome expression. This thesis considers
novel methods to respond to these challenges. We present a series of data analyses
for distinct case-control cancer studies. In particular, the main objective throughout
this thesis is the construction of diagnostic rules for disease status allocation of future
patients through the use of innovative statistical methodology specific for the type of data
considered in each of the studies.

The remainder of the introduction is organized as follows. We first explain the
process by which the MS proteomic data are generated and pre-processed to obtain an
analysable/condensed data set. Next, we describe the specific characteristics of this
particular type of data and the statistical challenges which may arise when analysing such
data. Additionally, we introduce the basic steps involved in proteomic diagnosis which
include the choice of model, the construction of the diagnostic rule and the evaluation
of the resulting rule and we give a detailed description of each of these steps. We finish
with an outline of the chapters presented in this thesis along with a brief description of
the main methodological contributions in each study.

1.2 Data acquisition
In general, all types of mass spectrometers comprise of three basic components: an ion-
ization source, a mass analyser and a detector. Here, the description of mass spectrometry
(MS) is limited to biomolecular applications since the studies described in this thesis are
focussed on the analysis of peptides and proteins. In the first part of a mass spectrome-
ter, each biomolecule is ionised at either atmospheric pressure (ambient) or at decreased
pressures. These ions are then transferred into the mass analyser in which the mass of
the corresponding molecule is determined, or, more precisely, the mass-to-charge (m/z)
ratio. Often the mass analyser is additionally used as a separation device, enabling the
simultaneous mass analysis of a mixture of biomolecules. In the third part of a mass
spectrometer, ions are detected and the resulting output is an array of intensity readings
distributed over an m/z range generated from the detected ions. This intensity array is
referred to as a mass spectrum. An example of a mass spectrum is shown in Figure 1.1.

Peptide and protein analysis by MS is generally performed by using electrospray ion-
ization (ESI) or matrix-assisted laser desorption/ionisation (MALDI). The first one yields
multiply charged species, whereas MALDI (predominantly) results in singly charged
species. In this thesis we consider MALDI mass spectra that are obtained from either
a time-of-flight mass analyser (MALDI-TOF) or a Fourier transform ion cyclotron res-
onance system (MALDI-FTICR). In a TOF mass analyser, ions are accelerated through
an electric field followed by mass separation in a field-free drift tube. The flight time,
that is, the time it takes for an ion to travel through the detector is determined and the
corresponding mass is calculated after proper calibration (kinetic energy equals 1/2 mass
times velocity(sq)). The heavier ions travel longer than ions with lower mass and thus will
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Figure 1.1: A mass spectrum for a single individual.

be detected sequentially. The separation power of modern TOF analysers is high and con-
sequently TOF-based mass spectra are referred to as “high resolution” spectra (resolving
powers up to 50,000). In an FTICR mass spectrometer, ions are trapped and mass anal-
ysed by measuring their cyclotron frequency in a high magnetic field. Since a frequency
can be recorded more precisely than a flight time in TOF, this type of mass analysis is
referred to as “ultrahigh resolution” (resolving powers higher than 100,000).

Both TOF and FT-based MS-technologies are widely used approaches for the anal-
ysis of complex mixtures and identification of biomarker signatures. Recently, FTICR
MS-platforms have received a lot of attention due to their superiority, compared to TOF-
MS, attributed to the ultrahigh mass resolving power that allows the analysis of large
proteins and complex mixtures. Moreover, an improved mass accuracy and precision pro-
vide a more reliable identification of the detected species and allow a wide dynamic range
for the detection of low abundant components. Particularly high mass accuracy and res-
olution are essential for protein and peptide identification. High resolving powers result
in so-called isotopic profiles (or clusters) in mass spectra. These originate from different
compositions of naturally occurring stable isotopes of carbon (C), nitrogen (N), oxygen
(O) and hydrogen (H) atoms. The larger the mass of biomolecule, the greater the num-
ber of isotopes which are included, detected in a mass spectrum at higher m/z-values. In
a MALDI-spectrum with mostly singly-charged ions, these isotopic peaks are approxi-
mately 1 Da apart, resulting in a series of locally correlated single peaks that reflect the
isotopic distribution of the molecule of interest. Figure 1.2 plots an isotopic cluster at
position m/z 2021,2.

The data analyses presented in Chapters 2 and 3 of this thesis are based on MALDI-
TOF data while the last three chapters of the thesis are devoted to methods for pre-
processing, summarizing and analysing MALDI-FTICR data while dealing with the ad-
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Figure 1.2: An isotopic cluster at position m/z 2021,2.

ditional statistical challenges which accompany this particular type of data.

1.3 Data pre-processing
Typically, in an MS experiment, the proteomic expression profiles of individuals are ob-
tained in the form of m/z and intensity pairs. Upon acquisition of the proteomic pro-
files, data analysis can proceed in two ways. The first is to consider the complete high-
dimensional proteomic signal which is measured without applying any data reduction
prior to data analysis. The second is to reduce the high-dimensional individual profiles
to a discrete set of peaks corresponding to potential proteins/peptides which, depending
on the data resolution, might have an isotope clustering structure. In this thesis, both
approaches are considered. In chapters 2 and 3, the MALDI-TOF proteomic profiles are
kept intact, whereas in the last three chapters a preprocessing algorithm is applied to the
MALDI-FTICR raw spectra in order to reduce the complete proteomic signal to cluster
summaries of isotopic expression.

A common solution towards reducing the complete proteomic expression to a dis-
crete set of peaks is to apply a peak detection approach to the raw spectra in order to
locate the peptide-related isotopic peaks in the mass spectrum and determine their abun-
dance. Various peak detection algorithms have been proposed over the last few years to
preprocess mass spectral data. For high-resolution MS data, most of the reported peak
detection algorithms make use of the fact that isotopic clusters are completely resolved
- as opposed to low-resolution MS data where isotope clusters appear as single peaks in
the mass spectrum - in order to obtain more accurate determination of the mass and the
abundance of the protein/peptide corresponding to that mass. To this end, many different
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approaches have been proposed to interpret and process the acquired data, routinely by
trying to match the observed isotope cluster pattern with a theoretical isotope distribution
(Rockwood and Haimi, 2006; Horn et al., 2000). The advantage of completely resolved
isotope clusters in high-resolution MS data is utilized in several methods through the ex-
ploitation of the property of 1 mass unit of distance between the successive peaks within
the isotope distributions. This known property of isotope distributions is used in Horn et
al. in order to identify isotope variants in isotopic clusters. However the proposed method
is applicable to single spectra, hence it has not been evaluated in the context of clinical
applications, and it is based on best fitting local models which can be computationally
quite challenging. In Chapter 3 we propose a new approach which relies solely on the
statistical property of successive isotopic peaks of a peptide molecule being separated by
1 Da in order to reduce the complete expression in the individual spectra to clusters of
isotopic expression on which summary measures can be later defined. In contrast to the
idea presented in Horn et al. (2000), the algorithm we propose uses information across all
potential isotopic peaks across all patients in order to find m/z positions of peaks which
belong to isotopic clusters. This is done in a completely non-parametric fashion and thus
avoids any computationally intensive tasks such as model fitting to the observed spectra.

Peak detection can be trickier for low-resolution MS data where the isotope cluster
patterns are not resolved but are instead displayed as single peaks in the mass spectrum.
For lower resolution data, Morris et al. (2005) proposed a peak detection approach which
is performed on the average spectrum rather than the individual spectra. The rational
behind this idea is that a peak corresponding to a protein/peptide/molecule should stand
out above the noise level as well as the baseline level, ideally in a sufficient amount of
spectra, and these properties should be preserved in the mean spectrum which is simply
the average across all spectra. In their paper they showed that using the mean spectrum
to detect relevant peaks leads to greater sensitivity and specificity while it eliminates the
difficult task of matching peaks detected on individual spectra (commonly referred to as
alignment problem).

1.4 Limit of detection (LOD)
While detection and quantification of the proteomic expression in biological samples are
essential steps in MS-based proteomics analysis, these steps can be complicated by mea-
surements being subject to lower detection limits due to censoring mechanisms on low-
abundance proteins/peptides. This issue is known as limit of detection (LOD) and oc-
curs due to the limitation of MS equipment in measuring low-abundant proteins/peptides
which may in fact be of greatest interest as potential biomarkers. Commonly, the lower the
abundance of a protein/peptide, the more difficult it becomes for MS technologies to dis-
tinguish the peaks or isotopic clusters originating from that molecule from the background
noise. This issue often gives rise to incomplete mass spectral data as low-abundance pep-
tides below the LOD threshold which were undetectable and could not be quantified by
the instrument are often reported as missing values.
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Common strategies to deal with data subject to (lower or upper) detection limits are
to delete the missing values and consider only the complete data for any further analysis
or substitute the missing values with a fixed constant. However, both of these approaches
can lead to severe loss of information and possibly bias in the results of any subsequent
analysis as they do not take into account that the data have been left-censored. While
the problem of handling data subject to LOD has seen many applications over the last
years, these were reported mainly in the field of ecological and environmental research.
Statistical methods to deal with proteomic data affected by the LOD have only recently
been proposed in the field of MS clinical proteomics. Examples of such methods can be
found in the papers by Dong et al. (2014) and Tekwe et al. (2012). Dong et al. addressed
the problem of assessing bias in the estimation of distribution parameters of proteomic
biomarkers whose measurements are affected by the LOD in distinguishing cancer pa-
tients from non-cancer patients. In their paper they showed that the estimates of receiver
operating characteristic (ROC) curve parameters computed while adjusting for the LOD
are much closer to the truth as compared to the estimates resulting when ignoring the
LOD. On the other hand, Tekwe et al. treated the LOD issue in MS proteomic data as
a problem of censored data analysis and proposed the use of survival methodology, in
particular accelerated failure time (AFT) models, to investigate differential expression of
proteins. They proved that AFT models have higher ability to detect differentially ex-
pressed proteins than standard testing procedures which ignore the left-censored nature
of the proteomic data.

In Chapter 5 we present an approach to handle proteomic measurements subject to
lower detection limits in the prediction framework. The approach is an adaptation of cen-
sored data methodology in which we use censored normal regression methods to estimate
the expected expression within isotope clusters in order to obtain improved estimates of
the overall isotope cluster abundance. The objective is to use these newly derived esti-
mates as new input variables for the construction of more accurate prediction rules. We
demonstrate that the proposed method can be used successfully to handle the LOD prob-
lem in determining the average expression in isotope clusters and calibrating diagnostic
rules of comparable performance as if we had the complete information.

1.5 Proteomic prediction
Once the protein abundances have been obtained (and quantified) it is often of interest
to evaluate the discriminatory information in mass spectral data collected in case-control
studies for the detection of various types of cancer. An approach to address these ques-
tions is through the construction of prediction rules.

Building a prediction model can be a challenging task in proteomics research, due to
the complex nature of the spectral proteomic signal measured for each individual. Es-
pecially when the number of spectral features that are measured is much larger than the
number of samples collected in the proteomic case-control study, we may run into the
risk of overfitting (over-interpreting) the data, a common phenomenon in proteomics and
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other omic-studies. This phenomenon gives rise to models which predict very well on the
data on which the diagnostic rule was based but perform very poorly on new data. There-
fore, there is a crucial need for obtaining a fully validated and unbiased assessment of the
predictive performance of the resulting diagnostic rule as this may determine whether the
overall research effort is worthwhile.

Various models have been developed for the construction of diagnostic rules and dif-
ferent estimation algorithms have been proposed to fit these models while avoiding over-
fitting. A few examples of such prediction methods as well as a description of the strategy
we chose to use throughout this thesis in order to overcome the potential optimistic bias
due to overfitting are given in the following sections. Additionally, we give an overview
of evaluation methods and performance measures to assess the predictive potential of a
diagnostic rule.

1.5.1 Types of models
In diagnostic (classification) problems, the objective is to construct a rule which best
describes the relationship between the disease (class) outcome and the set of predictor
variables. There is a great variety of established methods in the classification literature
which attempt to model the relationship between a number of covariates and a binary
outcome. While this relationship may often be non-linear in real life, it has been shown
in applications that most classification potential can be achieved using relatively simple
structures such as linear forms of linear or logistic discriminant analysis (Hand, 2006).
Especially in high-dimensional data problems with relatively small sample sizes as in
omics research, simple linear structures are considered to be more reliable and stable as
compared to more complex and sophisticated structures such as neural networks or sup-
port vector machines. Several favourable results in the field of deep learning have led to a
growing trend of applying the associated techniques to high-dimensional data structures
in the hope of generating better and more reliable predictions. Deep learning refers to
artificial neural networks with more complex architectures (neural networks which are
composed of many layers). However, the impact of deep learning methods, especially in
the field of clinical research, remains to be proven. Taking all the above into considera-
tion, the approaches selected for the construction of diagnostic rules in the context of this
thesis are restricted to linear prediction methods.

When the number of predictors is smaller than the number of observations, standard
forms of linear classification methods such as standard linear discriminant analysis or
standard logistic regression can be applied to the data in order to derive the classifica-
tion rule. When the number of predictor variables exceeds the number of observations
and/or when there are high correlations between them, as is the case with MS proteomic
data, regularization schemes need to be employed in order to avoid overfitting which may
result in unstable estimates and poor generalizations. Various regularization approaches
have been proposed in the field of statistics which try to deal with the problem of overfit-
ting and collinearity both in the case of linear discrimination and logistic regression.
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Linear discriminant analysis (LDA) finds a direction in space that maximizes the
between-group variations while minimizing the within-group variations. In high-
dimensional data problems, linear discriminant analysis cannot be applied directly, as
the pooled within-group sample dispersion matrix is singular and therefore can not be
inverted to give the required estimates. Various methods have been proposed in the lit-
erature to deal with the problem of singularity while most popular approaches to tackle
this problem are using shrinkage-based estimation for the pooled within-group covari-
ance matrix. Shrinkage in this case is carried out through the use of principal component
decomposition (PCA) (Krzanowski et al., 1995; Mertens, 2003; Mertens et al., 2006) or
ridge regularization.

Regularized logistic regression (LR) shrinks the coefficients towards zero by impos-
ing a penalty on their size. This is achieved by adding a penalty function to the likelihood.
Commonly used penalty functions for regularized logistic regression are the quadratic and
the absolute penalty functions. The quadratic penalty function leads to ridge logistic re-
gression (RLR) and shrinkage of the parameter vector (Le Cessie and van Houwelingen,
1992). The absolute penalty function leads to lasso logistic regression (LLR), resulting in
both shrinkage of the parameter vector and variable selection (Tibshirani, 1996). While
ridge logistic regression models are known to outperform other classification models (in-
cluding lasso logistic regression) with regards to predictive performance, the estimates of
the regression effects are usually not interpretable. When the research objective is to ob-
tain more interpretable prediction rules, lasso logistic regression is the preferred method.
An alternative to ridge and lasso logistic regression is to use a convex combination of the
quadratic and absolute penalties leading to the elastic net logistic regression (ENLR) (Zou
and Hastie, 2005).

1.5.2 Construction of diagnostic rules
Application of the above mentioned classification methods requires tuning of the associ-
ated regularized parameters. When there is subsequent need for assessing the predictive
performance of the rule, it is crucial that the choice of the optimal value of any tuning
parameter is itself validated in order to avoid overfitting. To accomplish this, the opti-
mization procedure for selecting the optimal tuning parameter can/should not be based
neither on the left aside validation data which will be used to evaluate the resulting rule
nor on the complete calibration data which will be used to calibrate the diagnostic rule.
A common approach to make a validatory decision on the optimal penalty value, without
the need of introducing a separate test (tuning) set in addition to the calibration and val-
idation sets, is via cross-validation. Throughout this thesis, we use a leave-one-out cross
validatory approach for predictive optimization of any tuning parameter. Leave-one-out
cross-validation removes each individual i (for i = 1, ..., n) in turn from the calibration
data, and uses the leftover data to construct the classification rule f−iθ for a grid of tuning
parameters θ ∈ {θ1, ..., θm}. The resulting rule for each value of θ is then evaluated on
the left-out-observation i by calculating the loss li(θ). This procedure is repeated across
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all individuals and for each observation separately and gives a cross-validated estimate
of the optimal value of tuning parameter θ̂ which is chosen as the one that minimizes the
cross-validated average loss across all individuals. The selected value of tuning parameter
can be used thereafter to calibrate the final allocation rule which has yet to be validated
as well, in order to obtain an unbiased estimate of the overall predictive performance. We
discuss how to perform predictive validation of the allocation rule in an unbiased manner
in the following subsection.

1.5.3 Assessment of diagnostic rules
When diagnosis is the main research objective, obtaining an unbiased evaluation of the
predictive performance of the calibrated diagnostic rule is crucial. Evaluation of the cal-
ibrated classification rule can be achieved through the use of a set aside data set, not
involved in the model fitting. When the sample size is not too small, this can be done by
splitting the available data into calibration and validation sets. In this case, the calibration
set is used for model fitting while the set aside validation set is used for model assess-
ment by applying the fitted model to the validation data. The predictive performance of
the resulting rule can then be summarized by calculating misclassification rates and other
performance measures on the basis of the validated predictions.

Often, in case-control experiments, the study design is such as to define a calibra-
tion set and a separate validation set, which probably went through the same sampling
handling and measurement process as the calibration set. The validation samples in such
studies might even be collected in a later time period than the calibration samples. This
offers the possibility to evaluate the diagnostic rule, derived based on one data set, on an
independent data set, under the assumption that samples from both data sets stem from the
same underlying population. This type of model evaluation is usually referred to as “exter-
nal validation”. In cases of limited resources which may lead to small sample sizes, a way
to mimic a situation where the complete available data set is composed of a calibration set
and a separate validation set is through the use of cross-validation. We restrict attention to
leave-one-out cross-validation for consistency with the previous subsection. Again here,
as in the case of predictive optimization, each observation is left aside such that the model
is fitted to the leftover data and evaluated on the single left-out datum which is the only
validation sample. This is done repeatedly so that each observation serves exactly once as
validation sample and gives for each observation a cross-validated prediction estimate of
the class outcome. This type of evaluation is referred to as “internal” validation and it is a
common approach in MS clinical applications which are often characterized by relatively
small sample sizes. Irrespective of the type of model evaluation, it is recommended that
the results of a study are replicated in another laboratory/hospital to ensure their validity
and reliability.

There are various performance measures that can be used to assess the predictive per-
formance of a diagnostic rule. These measures are indicative of either the calibration
capacity, i.e. how close predictions are to the actual outcome, or the discriminative ability
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(Steyerberg et al., 2010), i.e. to what extent patients who have the outcome have higher
risk predictions than those who do not, of the prediction model. Examples of calibra-
tion measures, commonly used in classification literature for reporting performance of a
prediction model are the Brier score

B =
1

n

n∑
i=1

(p̂i − yi)2,

and the Deviance of the model

D = −2

n∑
i=1

yi log p̂i + (1− yi)(log (1− p̂i)

= −2

n∑
i=1

log(1− |p̂i − yi|)

where p̂i denotes the predicted class probability for individual i, yi is the actual class
outcome of that individual and n is the total sample size. Several measures have been
proposed to evaluate the accuracy of a prediction model, that is, how well a model dis-
criminates between individuals with and without the outcome. Among the most popular
discrimination measures is the so called c-statistic which in the binary outcome case is
identical to the area under the Receiver Operating Characteristic (ROC) curve, which
plots the sensitivity (true positive rate) against 1 - (false positive rate) for consecutive
thresholds of the class outcome probability. The c-statistic is a rank-order-based statistic
of predictions against true outcomes and it is given by

c =
1

n1n2

∑
i∈G1

∑
j∈G2

[I (p̂i > p̂j) + 0.5× I (p̂i = p̂j)]

where G1 and G2 are the index sets for y = 1 and y = 0 respectively and n1 and n2

are their respective sizes. The value of the c-statistic indicates the extent to which the
calibrated class probabilities are higher for individuals in the groups defined by the true
outcome y and it varies from 0 and 1. A value of 0.5 indicates that the calibrated class
probabilities are distributed randomly among the two classes while a value equal to 1
indicates that all predicted probabilities for individuals with the outcome (y = 1) are
higher than the those for individuals without the outcome (y = 0). As a rank-order-
based statistic, the c-statistic is invariant under monotone transformations such as due to
calibration errors.

1.6 Outline of the thesis
This thesis consists of a collection of four articles and one book chapter. In principle, the
following chapters can be presented in any random order as the related methodologies
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have been either published in or submitted for publication to independent journals. Yet,
we believe that the current structuring of the thesis in the following sequence of chapters
respects a series of criteria linking one chapter with the other.

Chapters 2 and 3 are connected as they are both concerned with combination methods
for enhancing calibration and prediction. Chapter 2 presents an approach for combining
a collection of distinct classification methods whereas chapter 3 reviews various meth-
ods, among which an adaptation of the combination approach introduced in chapter 2,
for combining a collection of distinct (omic) data sets. In both chapters, the methods are
illustrated through the analysis of lower resolution MALDI-TOF proteomic data from a
breast cancer case-control study.

The last three chapters deal with higher resolution MALDI-FTICR proteomic data
from a pancreatic cancer case-control study. Chapter 4 introduces a method for prepro-
cessing the raw spectra and investigates various methods of summarizing the acquired
data using information on either the intensity or the shape of the isotope distributions for
prediction purposes. Chapters 5 and 6 are progressions of the work presented in chapter 4.
Chapter 5 investigates the problem of simultaneous isotope variable-selection and assess-
ment of the added-value of shape on top of intensity which was left as an open question in
chapter 4. Finally, chapter 6 presents methods to deal with the LOD which can be a prob-
lem when researchers are provided with a reduced list of peaks where any undetectable
peak intensities are reported as missings. Although the limit of detection was not an issue
for the methods presented in chapters 4 and 5, since we had access to the complete raw
data, we consider the situation where this is not the case and return with a formal solution
to the LOD in chapter 6.

In chapter 2, we analyse data collected in a proteomic mass spectrometry case-control
study from breast cancer patients and healthy individuals. We present an approach for
combining a collection of linear classifiers for the construction of a “combined” classi-
fication rule in order to improve calibration and predictive performance. In a first stage
this is achieved by building individual classification models separately, each one using
the entire proteomic data set to estimate the class-predicted probabilities which will be
later used to calibrate the “combined” allocation rule. To estimate the class probabilities
from each individual classifier we use a double leave-one-out cross-validatory approach.
We evaluate the performance of the combination approach through the breast cancer pro-
teomic data set as well as simulation studies. Results from both the real data analysis and
the simulation studies showed that in many cases gains in classification performance and
predictive accuracy can be achieved.

While chapter 2 presents methods for combining distinct classifiers, chapter 3 focuses
on methods for combining distinct (omic) data sets. More specifically, in this chapter,
we review various approaches for combining distinct omic sources in the context of case-
control studies with binary outcomes. All the combination-based diagnostic rules dis-
cussed in this chapter are based on regularized regression models which are calibrated
using a double cross-validatory scheme. The performance of each of the resulting “com-
bined” rules is evaluated with respect to calibration and discrimination and it is compared
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with the performance achieved when using single-omic data sources. To illustrate the
methods we present analyses based on real data from two different studies: 1) the breast
cancer case-control study (also considered in chapter 2) in which we examine the combi-
nation of two fractions of proteomic mass spectrometry for the calibration of a diagnostic
rule for the detection of early-stage breast cancer and 2) the Dietary, Lifestyle, and Ge-
netic determinants of Obesity and Metabolic syndrome (DILGOM) study, a population-
based cohort from Finland, in which we consider transcriptomics and metabolomics as
predictors of obesity. Results from both studies indicate that improved predictions can
be obtained by combining the different omic predictor sources using one of the proposed
approaches, as compared to methods based on single-omic data.

Chapters 4 until 6 deal with the additional statistical challenges introduced when
analysing high-throughput MALDI-FTICR mass spectrometry data. All analyses pre-
sented in these chapters are based on data collected in the context of a pancreatic cancer
case-control study. Chapter 4 presents methods to preprocess, summarize and analyse
the MALDI-FTICR proteomic data while dealing with the challenges that accompany
such data. To preprocess the raw spectra and translate the proteomic expression into a
condensed data set we make use of the isotope clustering information, inherent in this
specific type of data, and in particular the known statistical properties of the isotopic dis-
tribution of the peptide molecules. We present alternative ways to exploit the information
on either the intensity level or the shape of the identified isotopic clusters in the individual
mass spectra in order to derive summary measures on which diagnostic allocation rules
can be based. Our experimental results indicate that both the shape of the isotope clusters
and the overall intensity level carry information on the class outcome and can be used to
predict the presence or absence of the disease.

The proposed methods and associated analyses presented in chapters 5 and 6 are based
and dependent on the data generated by the pre-processing algorithm introduced in chap-
ter 4. Chapter 5 explores the problem of isotope variable selection with paired intensity
and shape measurements, derived based on the methods presented in chapter 4. Each pair
in our data set corresponds to a distinct isotope cluster and each component within each
pair represents a cluster summary of isotopic expression derived based on two different
types of information: a) the overall intensity and b) the shape of the observed isotope clus-
ter. Our objective in this work is a) to identify a collection of isotope clusters associated
with the disease outcome and b) to optimally integrate the intensity and shape information
while maintaining predictive performance. A Bayesian model formulation is used for this
purpose which exploits the paired structure of the proteomic data and allows at the same
time the evaluation of the added-value of the shape on top of the intensity information.
We present a post-hoc analysis which allows researchers to focus on a restricted set of
potentially interesting isotope clusters for further investigation and gives insight into the
relative predictive capacity of shape when integrated with intensity. We finally present re-
sults from a simulation study to demonstrate how the method behaves under a controlled
situation.

Chapter 6 considers the case where analysis is hindered due to spectral measurements
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being subject to the limit of detection. Often in clinical applications statisticians are
provided with a reduced list of peaks where any low-concentration proteins below the
detection limit, non-detectable by the mass spectrometer, are reported as missing values.
Our objective is to investigate whether starting from a reduced set of incomplete peak
intensities, we can develop methods which will allow us to construct diagnostic rules of
comparable performance as if we had the complete information. We propose the use of
censored data methodology to handle spectral measurements within the presence of limit
of detection, under the assumption that these have been left-censored for low abundance
proteins. The set of incomplete spectral measurements is replaced with estimates of the
expected intensity which are then used as new predictor variables for the construction
of a prediction model. We combine censored regression with borrowing of information
through the addition of an individual-specific random effect formulation in order to ac-
count for lack of information and measurement uncertainty. Different variants of using
the random censored regression model for the construction and assessment of prediction
rules are considered and it is demonstrated how the random effect formulation may addi-
tionally allow for variable selection. To evaluate the proposed methods we compare their
predictive performance with the one achieved using the complete information as well as
competitive methods to deal with the LOD.
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