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Summary and future perspectives
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1. Challenges in treating burn wound infections
Infection of burn wounds remains the leading cause of death in burn patients [1, 
2]. Treatment of such infections with conventional antibiotics is often unsuccessful, 
which is due to multiple reasons. Firstly, the presence of multidrug-resistant (MDR), 
extensively drug-resistant (XDR) and pandrug-resistant (PDR) bacteria (definitions 
in [3]) in the wound bed render conventional antibiotics ineffective. This problem has 
increased in recent years due to extensive and improper antibiotic usage that selects 
for antibiotic resistant microorganisms [4]. Secondly, formation of bacterial biofilms, 
an extracellular matrix mostly compost of exopolysaccharides, extracellular DNA and 
proteins, may prohibit entry of antibiotics into the biofilm, leading to failure to reach 
an adequate concentration around  the pathogen or the compounds in the biofilm 
may antagonize or alter the activity of the antibiotic. Moreover, bacteria in such 
biofilms can be in a latent, metabolically dormant state, which prohibits antibiotic 
activity, [5-7]. Finally, systemic antibiotic treatment in burn wound patients may fail 
since an optimal antibiotic concentration may not be reached in the wound bed due 
to the presence of debris, clots and necrotic tissue in the wound bed. 

Taken all this together, there is a clear need for new antimicrobial agents with 
modes of action different that of current antibiotics. Different approaches may 
be considered (figure 1), e.g. biofilm degradation by maggot secretions [8, 9], 
inhibition of quorum sensing that is essential for biofilm formation or can make 
bacteria more susceptible for antibiotics [10, 11], use of bacteriophages [12] or 
bacteriolysins derived from them [13-16]. Furthermore, the host immune de-
fence can be boosted by, for example, boosting of the endogenous production 
of antimicrobial peptides (AMPs) by Vitamin D3 or butyrate ([17], EM Haisma 
unpublished data)). Identification of new (peptide) antibiotics, e.g. the new 
antibiotic teixobacin from un-culturable bacteria [18] or the peptide antibiotic 
lugdunin from the commensal bacterium Staphylococcus lugdunensis [19, 20] 
holds another promising approach. In this thesis, assess the potential of synthetic 
AMPs as topical antimicrobials. 

To advance the development of novel antimicrobial agents and identify new drug 
targets, it is essential to use an appropriate model system. In this thesis, we describe 
the development and use of different in vitro skin models and a mucosal membrane 
model. There are a couple of advantages to the use of skin models. Firstly, they 
pose similar properties as normal human skin, including the stratum corneum 
(SC) formation [21] and cell differentiation [22]. The SC of skin models have been 
demonstrated to resemble that of human skin to a great extent [21]. This is in 
contrast to studies in animals, especially murine models, where the skin structure, 
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i.e. epidermal thickness and hair follicle count, is considerably diff erent from that of 
the human skin [23]. In addition, the immune system of mice and human diff er, for 
example in the expression patterns of defensins as reviewed in [24]. Th e advantage 
over ex vivo skin is that skin models can be kept in culture longer than ex vivo skin 
biopsies, which stay viable for only a couple of days and experiments can be repeated 
with cells from the same donor. Finally, with the use of skin models we are able to 
modify gene expression and thereby mimic disease characteristics (chapter 6). Dis-
advantages of HSE in comparison to the use of animal models is the lack of immune 
cells such as macrophages and neutrophils; and the absence of some anatomical 
features such as sweat glands and hair follicles. Currently, investigators are working 
on skin models that incorporate an immune compartment, for example T-cells [25] 
or Langerhans-cells [26]. In this thesis, we used diff erent in vitro models to study 
the eff ect of colonization and infection of healthy skin, (thermally) wounded skin 
(chapter 2), mucosal membranes (chapter 3) and skin with disease characteristics 
of AD (chapter 6). In addition, we studied the diff erence in bacterial coloniza-
tion and biofi lm formation on biotic (in vitro skin models) versus a-biotic surfaces 
(polystyrene) (chapter 7). Finally, we used the models to study the antimicrobial 
activity of (novel) topical synthetic AMPs (chapter 3,4,5). 

Stratum corneum

Dermis

Epidermis

Bio�lm

Maggot secretions

Quorum sensing inhibitors

Lysins

Bacteriophages

VitaminD/butyrate

Synthetic AMPs
P60.4Ac, P10, P145, P148, P276

Induction  of natural AMPs
LL-37, hBD-2,-3 and RNAse7

(this thesis)

Figure 1: Strategies for the eradication of S. aureus and degradation of biofi lms. Biofi lm degrada-
tion by maggot secretions [8, 9], quorum sensing inhibitors [10, 11], bacterial products such as novel 
antibiotics teixobactin [18], AMP antibiotic lugdunin [19, 20], bacteriolysins [13, 14, 16], bacterio-
phages [12] or antimicrobial peptides P60.4Ac, P10, P145, P148, P276 (this thesis) or boosting of the 
endogenous AMP production of for example LL-37, hBD-2, HBD-3 or RNase7 by butyrate and/or 
Vitamin D3 (unpublished data).  
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2. Development of in vitro models to study colonization and infection
To study colonization and infection on human skin or mucosae by bacteria we 
used three different models: (1) the human full thickness skin equivalent (HSE), 
composed of both a dermal and epidermal component; (2) the (Leiden) epidermal 
skin model (EM or LEM), composed of differentiated keratinocytes. In addition, 
we used a (3) mucosal membrane model using human bronchial epithelial models 
(BEM), composed of differentiated bronchial epithelial cells (explaining figure in 
introduction). 

2.1 Skin models as models for wound healing

Skin models can be used to characterize aspects of the wound-healing process 
differently than the in vitro ‘scratch’ wound models using monolayer cultures. 
Monolayers are very limited for such studies, for example due to lack of cell differ-
entiation and cross talk between the keratinocytes and fibroblasts [27]. Different 
studies have demonstrated similarities between in  vitro wound-healing models 
and in vivo models, including proliferation, migration, expression of growth fac-
tors (e.g. Transforming growth factor beta 1 (TGF-β1), platelet-derived growth 
factor-β and keratinocyte growth factor [28, 29]) and cytokine secretion (e.g. 
Interleukin (IL)-1α, IL-6, tumor necrosis factor-α [27, 30, 31]), reviewed in [32, 
33]. 

Since skin models consist only from a pre-defined cell population, they can be 
used as tools for the understanding of individual cellular processes that are in-
volved in tissue repair. This brings also the downside of HSEs as research tools, 
since HSEs lack the complexity associated with wound-healing mechanisms in 
the in vivo situation. To study molecular mechanisms of tissue regeneration in a 
complex system, many researchers are now using rat and mouse wound models 
[34] regardless of the limitations as described above. 

To overcome the clear differences between human and animal skin, researchers 
have used human ex vivo skin, HSEs or EMs grafted onto immunocompromised 
(athymic nude) mice as models. Using this approach, different models can be gen-
erated; e.g. to study hypertrophic scarring [35] or wound-healing in epidermolysis 
bullosa patients [36]. Also EMs composed of human embryonic stem cells have 
a structure consistent with that of mature human skin 12 weeks after grafting. 
This type of models could be used for long term research into wound healing, 
inflammation and skin irritation for example [37]. 
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2.2 HSEs for thermal wounding and colonization

In this thesis we used HSEs to study colonization of (thermally) wounded skin 
by the Gram-positive bacterium Staphylococcus aureus (chapter 2). We observed 
that the course of S. aureus adherence and multiplication on thermally wounded 
and intact HSEs did not differ. Inoculation by MRSA induced the expression 
of various pro-inflammatory cytokines and chemokines (IL-6 and IL-8) and 
antimicrobial peptides (human beta-defensin (hBD)-2, hBD-3 and RNAse7) in 
HSEs. However, wounding of the HSEs did not further enhance the induction of 
these cytokines/AMPs as compared to colonization alone (chapter 2). This is in 
agreement with the findings of others who investigated responses of keratinocyte 
monolayers exposed to inflammatory stimuli, heat-killed S. aureus and skin com-
mensals [38-40] and in HSE after exposure to viable S. aureus [41, 42]. Moreover, 
it is reported that hBD-2 and -3 expression can be induced by superficial barrier 
disruption [43] and that these are upregulated in the wounds of burn patients 
[44]. It has been demonstrated that hBDs can be induced by (heat-inactivated) 
bacteria, including P. aeruginosa and S. aureus, and toxins like LPS and cytokines 
like TNF-α [45, 46]. Finally, it has been shown that RNase7 can be induced by 
heat-killed S. aureus in primary keratinocytes [47] and human skin explants [48], 
and that RNAse7 has a role in killing skin colonizing S. aureus [48]. 

HBDs and RNase7 are proven to have antimicrobial activity against (MDR) S. 
aureus, but also Gram-negative bacteria and Candida. HBD-3 has a 90% lethal 
dose (LD90), the concentration that kills 90% of colony forming units, of 2.5-4 
μg/ml [46], RNAse7 a LD90 of 3-6 μg/ ml [48] and hBD-2 keeps the number of 
CFU  static at 100 μg/ml [49]. We analyzed if supernatants produced by HSE 
were able to kill S. aureus/P. aeruginosa. However, we did not observe any killing 
activity (unpublished data). This may be due to low concentrations of the AMPs 
present in the supernatant. 

2.2 Use of EMs to study colonization and biofilm formation 

To investigate differences in biofilm formation on biotic and abiotic surfaces we 
used EMs. We studied the formation of biofilms of five different S. aureus strains 
on the SC compared to that on an abiotic surface, polystyrene. We screened for 
the presence of 52 proteins by S. aureus in biofilms, and found that six proteins in 
S. aureus, including alpha-toxin were differentially expressed between biofilm on 
abiotic and biotic surfaces. The detection of several toxins, gamma-hemolysin-B 
(HlgB), leukotoxins (LUK) -D and -E and alpha toxin in biofilms of multiple 
strains specifically on EMs suggests that the surface to which the bacteria adhere 
influences the expression of these bacterial proteins (chapter 7). This is confirmed 
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by others, who have also demonstrated a role for alpha-toxin in the promotion of 
biofilm development on mucosal membranes [50]. 

This implicates that currently used biofilm models, such as those using polystyrene 
plates, might not adequately reflect biofilm formation on a more complex surface 
such as EMs and, ultimately, the human skin. Others have started research on 
growth of bacteria on SC, by using human callus as a substrate for the growth 
of bacteria [51]. By creating an assay using bioluminescent bacteria in a 96-well 
plate, they created a high throughput screening assay that can be used for the 
screening of antimicrobial compounds. The results of this study could be used 
to specifically target biofilm components that are expressed on biotic surfaces 
like skin and mucosae, or to prevent biofilm development, e.g., the inhibition of 
quorum sensing to disturb formation of biofilms [10]. 

2.3 Use of EM to study effect of the atopic dermatitis characteristics on colonization

One of the advantages of using cell models is the ability to knock-down genes to 
investigate the effect of specific genes on barrier function, colonization or immune 
responses. Seventy to ninety percent of the AD patients are colonized with S. 
aureus and harbour biofilms [52], which is far more than the general popula-
tion (where around 20% of people carry S. aureus). Although the exact causes 
of AD are still uncertain, filaggrin (FLG) mutations and overexpression of IL-31 
[53] are associated with the occurrence of AD. To study the effect of S. aureus 
colonization on AD skin, we introduced FLG knockdown into our EMs, and/or 
supplemented the models with IL-31. We demonstrated that knockdown of FLG 
and/or supplementation with IL-31 leads to higher S. aureus colonization, which 
is in line with the association between AD and S. aureus colonization in patients. 
Moreover, both knockdown of FLG and IL-31 supplementation lead to a S. 
aureus-induced up-regulation of IL-8 mRNA. IL-31 prevented the up-regulation 
of S. aureus-induced AMP expression (hBD-2,-3 and RNAse7), whereas FLG 
knockdown did not, indicating a role for AMPs in the suppression of S. Aureus 
outgrowth. Furthermore, S. aureus colonization induced changes in mRNA ex-
pression of enzymes involved in cornification of the epidermis. For example in 
the expression of fatty acid elongase 4 (ELOVL4). ELOVL4 is involved in free 
fatty acid synthesis, and has been shown to be important for the skin barrier 
function. Absence of ELOVL4 resulted in impaired barrier function in mice [54]. 
We found that ELOVL4 expression was up-regulated in response to S.  aureus 
colonization, irrespective of FLG-KD, but this was prevented by IL-31 (chapter 
6). This together may demonstrate why for example extensive washing with soap, 
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which removes the upper layer of the SC (free fatty acids, AMPs, etc), is also 
associated with AD and eczema. 

In a study where S. aureus colonization between AD patients and healthy vol-
unteers were compared, genes like lukD, lukE, splB, ssl8, and sasG were more 
frequently found in S. aureus isolated from AD patients than from healthy volun-
teers [55]. All these genes are associated with S. aureus virulence. The correlation 
between AD and bacterial colonization can be further investigated using this 
model, for example by examining the presence of staphylococcal superantigens, 
or other virulence genes on AD skin. 

3. AMPs as treatment for topical infections 

3.1 AMP as alternatives for antibiotics 

In 2016, 2235 antibacterial AMPs have been identified according to the anti-
microbial peptide database (APD) (http://aps.unmc.edu/AP/main.php). There 
are more than 100 peptide-based drugs for various diseases on the market and 
almost 500-600 candidates in the preclinical trials, many of which are synthetic 
AMPs [56]. The first AMP used as a therapeutic agent was Gramicidin, a peptide 
isolated from a soil bacterium Bacillus brevis in 1939 [57]. Gramicidin is almost 
exclusively active against Gram-positive bacteria. Gramicidin D and Gramicidin 
S, the cyclic form, are approved by the FDA as a topical agents. Due to haemolytic 
activity at low concentrations they cannot be used as systemic agents. Secondly, 
polymyxins B and E (Colistin), both polypeptide antibiotics that were discovered 
in the 1940s, are used as topical and intravenous formulations against mainly 
Gram-negative bacteria. Although they were mostly abandoned in the 1980s due 
to reported nephrotoxicity and neurotoxicity [58, 59], in the past few years there 
has been more attention as a last resort antibiotic because of the emergence of MDR 
and XDR strains [60]. Colistin has been effective in treating infections, such as 
pneumonia or bacteraemia, caused by for example Pseudomonas or Acinetobacter 
species [61]. Moreover, in combination therapy it can be used to treat biofilms 
in cystic fibrosis (CF) patients [62]. Finally, Polymyxin B has been used to treat 
urinary tract infections and meningitis caused by P. aeruginosa and Haemophilus 
influenza [59, 60]. There are AMPs, such as omiganan, pexiganan and iseganan 
that successfully have completed phase III trials, but were denied approval by 
FDA for clinical use because of lack of advantage over the existing medications 
[63]. 
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3.2 The use of skin models for the testing of anti-infective drugs

Currently, the in vivo active concentrations of a novel antimicrobial compounds 
is often first associated with the minimal concentration that inhibits growth of a 
micro-organism in vitro, the MIC. The growth of the bacteria in such an assay 
depends among others on the type of culture medium (often a special bacterial 
growth agar, Muller-Hinton), which often differs considerably from the condi-
tions in the patient [85]. Moreover, the presence of biofilm-associated infections 
is not taken into account in this assay. In addition, in vitro models involving 
biotic surfaces are required for studying bacterial biofilm formation. Therefore 
use of in vitro skin models (either HSEs or EMs) for the assessment of novel 
local topical therapies will have benefits over other in vitro systems, like medium 
or agar. It takes into account the local environment of the pathogen (instead of 
a standard culture medium or agar) and biofilm formation (table 2). Apart from 
the local environment of the pathogen, the pharmacokinetics of the drug should 
also be taken into account. The read-out for pharmacokinetic data generally use 
the blood (serum/plasma). However, for topical infections it is the local drug 
concentration in the skin that is relevant for the eradication of the pathogen. The 
use of skin models to screen for locally applied drugs may result in a more accurate 
determination of a dosing regimen to treat these type of infections clinically [86]. 

3.3 Use of skin models to test AMPs 

In this thesis, we demonstrated the antimicrobial and anti-biofilm activity of 2nd 
and 3rd generation synthetic derivatives of the human AMP LL-37. LL-37 has 
been shown to have antimicrobial, immunomodulatory, anti-biofilm activities, 
acts as a growth factor during wound healing and has chemotactic ability (44,67-
70) (figure 1). In former studies, P60.4Ac, a synthetic derivative of LL-37 has 
been described to poses higher antimicrobial activity towards Gram-negative bac-
teria than LL-37, while keeping immunomodulatory functions like toxin (LPS, 
LTA) neutralization [88]. Also, P60.4Ac has been shown to have additive value 
in the treatment of patients with chronic otitis media, showing increased efficacy 
compared to conventional antibiotics [74]. In this thesis, we demonstrated the 
antimicrobial activity of several new generations of AMPs derived from LL-37 
against (MRD/PDR) S. aureus, Klebsiella pneumonia and Pseudomonas aerugi-
nosa. We showed that P10 was the most potent in eradicating MRSA, not only 
in an in vitro killing assay, but also from HSEs. Moreover, we demonstrated that 
P10 could eradicate established biofilms from EMs (chapter 3). Newer genera-
tion derivatives from LL-37, P145, P148 and P276 proved to be effective against 
colonization of EMs with XDR and PDR strains, including a P. aeruginosa strain 
(chapter 4). Moreover, we demonstrated that these peptides were also active 
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against Mycobacterium tuberculosis (data not included in this thesis). These 
results demonstrate the potential of these LL-37-derived peptides as novel treat-
ments against topical infections.

Table 2: Advantages and disadvantages of the use of HSEs as screening tool for novel antimi-
crobial agents [86, 87].

Skin models In vitro MIC assay in 96-well 
format

Route of administration Screen for local topical 
application

Used as model for systemic and local 

Representation of 
bacterial state

Closely mimics the pathogens 
habitat, e.g. by letting the 
bacteria for a biofilm 

Does not represent the habitat of the 
pathogen, screens while the bacteria 
is in suspension/ on agar plate. 
Medium for MIC tests is broth, 
which does not exist in any animal or 
human body. 

Through-put EMs most high throughput High through-put

Dose-response Mimics local topical 
concentrations of the anti-
infective drug

Concentrations simulated are either 
the blood-drug concentrations or
the drug-tissue concentrations. 
However, since these models do not 
simulate the
host immune defense system 
(they only simulate the antibiotic 
concentration as a function of time) 
the end point is the eradication of 
bacteria.

Disease model Can use disease models, e.g. for 
Atopic dermatitis or a wound 
model 

-

Test combination 
therapies

Yes Yes

Toxicity Toxicity, irritation, sensitization 
and local immunity can also be 
tested

Give no information about toxicity 
for human cells

Costs Expensive Cheap

3.4.1 Formulation development for peptide antimicrobials

As described above, chapter 4 demonstrates the activity of the synthetic anti-
bacterial peptides P60.4Ac, P10, P145, P148 and P276 on HSEs. Moreover, 
these peptides may have additional effects like the parent peptide LL-37, such as 
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anti-inflammatory activities, pro-angiogenesis, chemotactic and enhancement of 
wound healing [89]. This makes these synthetic antimicrobial peptides promising 
candidates, either alone or in the combination with other antimicrobials [90], 
for the treatment of wound infections by (MDR) bacteria. To further assess 
the usage of these peptides as topical antimicrobials, we incorporated synthetic 
peptide P60.4Ac into different formulations and creams. In total two cream-
based formulations and one gel was used. The antimicrobial activity of P60.4Ac 
in hypromellose-4000 gel proved to be the most potent. However, high peptide 
concentrations of this formulation (>0.5% wt/wt) also showed some toxic effects 
on the EMs, as mitochondrial activity was reduced and lactate dehydrogenase 
leakage was observed (chapter 5). Thus, it is important to improve safety of these 
peptides or search for novel peptides with reduced toxicity towards human cells.

3.4 Overcoming the limitations of AMPs

Compared to the number of papers and research efforts put into the therapeutic 
application of AMPs over the last decades, the number of successful clinical tri-
als remains limited (table 1). There are a couple of reasons for this. First, the 
antimicrobial activity of natural AMPs under physiological conditions are limited. 
Many AMPs are sensitive to high salt concentrations [91], have short half lives 
in vivo (e.g., due to protease sensitivity) and limited bioavailability (binding to 
plasma proteins [71, 92]. While we find good antimicrobial effect of P60.4, P10 
and P148 on the HSEs against a variety of (drug resistant) pathogens, we also 
find a reduced activity in plasma of P60.4 [93] and P10 (chapter 4). The 3rd 
generation peptides P145, P148 and P159, however, remained active in plasma 
(data not shown). Secondly, although AMPs have been described or claimed as 
molecules against which bacteria rarely develop resistance, some studies have 
described the development of resistance towards AMPs via several mechanisms, 
including modification of the bacterial surface, external trapping of AMPs, efflux 
pumps, proteolytic degradation, bacterial gene regulation and bacterial regulation 
of host AMP production [94-96] (table 3). 
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Table 3: Advantages and disadvantages of AMPs as (topical) drugs [56, 71, 97]. 

Advantages Disadvantages

Broad spectrum activity Costs of development / manufacturing

Rapid killing Systemic and local toxicity

Suitable for topical application Activity inhibition by salt, serum and pH 

Anti-biofilm activity Susceptible to proteolysis

Synergy with pharmaceuticals: antibiotics Pharmacokinetic and pharmacodynamics issues, 
like a short half-life in vivo

Sensitization to peptide

Biological other functions (wound healing, 
chemotaxis)

Natural resistance 

Biological other functions (chemotaxis, 
angiogenesis, wound healing)

Some of the limitations can be overcome by specific alterations to the peptides. 
This includes the addition of chemical groups like poly-ethylene glycol (PEG), 
which increases the stability of peptides in vivo; the use of retro-inverso peptides 
(stereochemical preparation of peptides) to prevent breakdown by enzymes [98]; 
different delivery systems like via liposomal delivery [99]. Wheat germ agglutinin 
(WGA)-modified liposomes encapsulating clarithromycin have been used to 
evaluate in vitro and in vivo efficacy against MRSA. The researchers found better 
bio-distribution of clarithromycin when formulated in WGA, and better in vitro 
and in vivo antibacterial efficacy against MRSA [99]. It has also been demon-
strated that LL-37 can more efficiently protect against viral HPV infection in hu-
man epidermal model composed of immortalized keratinocytes when formulated 
into liposomes than when unformulated [100]. Moreover, multiple AMPs can be 
combined to get a synergistic effect (e.g., Gramicidin-S and Polymixin B against 
P. aeruginosa) [101]. Also, the combination of a conventional antibiotic and a 
peptide can be effective against biofilms, for example in the lungs of CF patients 
[62]. Finally, also the activity or expression of natural AMPs can be enhanced, 
as has been shown for butyrate [102]. Shigellosis can lead to a decreased LL-37 
expression in the rectal epithelium. Butyrate treatment of Shigella-infected rabbits 
resulted in reduced clinical illness, reduced severity of inflammation in the colon, 
and reduced bacterial load in the stool, which was associated with a significant 
up-regulation of CAP-18 (the rabbit equivalent of LL-37) in the mucosal surface 
epithelium [17]. 
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4. Conclusion
”For the first time, researchers have found a person in the United States carrying 
bacteria resistant to antibiotics of last resort, an alarming development that the 
top U.S. public health official says could mean “the end of the road” for antibiotics 
according to a recent article in the Washington post [103]. This paper emphasises 
that in the coming years the search for new treatment options to cope with infec-
tions caused by resistant bacteria is becoming more and more important. 

HSEs can play an important role in the discovery and development of new drugs, 
as different aspects of these agents can be investigated, including antimicrobial 
effects, toxicity, effect on wound healing and initiation of host defense mecha-
nisms. Currently, four reconstructed human EMs (Episkin, EpiDerm, SkinEthic, 
LabCyte EPI-MODEL) have been adopted by the Organization for Economic 
Cooperation and Development to provide alternative in vitro methods for clas-
sifying of irritants [104-107]. In the future, the use of HSEs could potentially be 
extended to that of a first line screening tool for new topical anti-infective agents. 
A start for this has been made by the use of the callus model [51] and the use of 
different models to assess the potency of AMPs as antimicrobials (chapter 3,4,5). 
Moreover, in this thesis we used one single pathogen to colonize the models, but 
also the interaction between different bacterial strains may be investigated, e.g. by 
the inclusion of commensal bacteria, or test for influence of the skin microbiome 
on disease phenotype, for example of AD skin [108]). 

Although, the results of this thesis demonstrate the potential of the synthetic 
antibacterial peptides based on the sequence of LL-37, like P60.4Ac, P10, P145, 
P148 and P276, as novel anti-infective agents, the route from “bench to bedside” 
is a long one. As described in table 1, many AMPs that proved to be promising in 
the lab failed in clinical trials. Either due to effectiveness or added benefit from 
existing therapies. Moreover, these peptides have other roles in the human body 
like anti-inflammatory activities and enhancement of wound healing. Also the 
effectivity is depended on local the local environment, like salt concentrations. 
Therefore the question remains if the systemic use of AMPs will ever be possible. 
The in this thesis described local use of AMPs seems more obvious, this also in 
respect to their local expression pattern, e.g. in the skin. However, also in the 
development of synthetic peptides for local application a lot of knowledge needs 
to be gained. 
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