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Introduction

At its most basic level, this thesis is concerned with statistical learning from data.
Speciically, how do we efectively learn a relationship between a set of input vari-
ables and some outcome variable based on previous examples that exhibit this re-
lationship? Consider, for instance, the relationship between political polls and the
outcome of an election, the relationship between the pixels in an image to a vari-
able describing the contents of the image or the relationship between physiological
measurements and diagnostic tests and a variable describing the disease status of
a patient.

These relationships are usually learned using examples for which we know both
the input and the outcome, so-called labeled data, by what is known as supervised
learning methods. The main goal of this work is to elucidate the role that unlabeled
data – data for which we know the input variables but not the outcome – can play
in learning this relationship. Using these unlabeled examples in conjunction with
labeled examples to learn the input-outcome relationship is what is referred to as
semi-supervised learning. In some applications, unlabeled data are plentiful, while
labeling examples is relatively expensive in terms of time or money. In these cases,
can we expect unlabeled data to improve our estimate of the relationship between
input and outcome? And is it possible to guarantee this estimate is better than the
supervised estimate we get if we do not consider the unlabeled examples?

The Problem of Statistical Learning

Before we consider the role of unlabeled data, we will briely discuss statistical
learning in general.

At an abstract level, the question of learning forms the bedrock on which the
sciences are built: to be able to build up knowledge from current observations we
need to be sure they tell us something about relationships we will observe in fu-
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8 introduction

ture measurements. It is no surprise then, that the question of induction – what
relationship past observations have to future observations – has been addressed in
philosophy throughout the ages. Most famous, in this context, is perhaps the argu-
ment of Hume that one can not justify the principle of induction without running
into circular reasoning (Vickers, 2016). The assumption of uniformity of nature,
that the future will turn out to be similar to past observations, remains, in efect a
useful heuristic, the validity of which can not be proven in general. One solution to
the problem of induction is ofered by Popper who argues it has no place in science,
and all we can do is falsify possible theories.

Extending the problem of induction, by putting forth the thesis that the failure
of induction underpins most, highly impactful, real-world events leads Taleb (2007)
to call cases where assumptions of uniformity fail black swan events. The name black
swan is a reference to the surprise European travelers must have experienced after
observing a black swan when travelling to Australia, after observing only white
ones before then.

So how are we to ever make any claims about how to learn from past observa-
tions and how do we guarantee the efectiveness of such a method in the light of
the problem of induction? In statistical learning these problems are sidestepped in
most mathematical analyses by assuming examples we observed in the past and in
the future come from the same underlying process or probability distribution and
this distribution is relatively well behaved, that is, the chances of extreme outliers
are relatively small. ‘Well-behaved’, of course, is then deined with respect to some
assumptions, which I hope to have been able to make abundantly clear when they
come up so as to be able to be opposed by the astute reader.

Machines & Learning

This thesis presents results that are most closely related to other results in the ields
of pattern recognition and machine learning. Especially the latter term seems to
suggest the importance of some automated ‘machine’ being able to learn. The per-
spective taken in this thesis, however, is that the conceptual questions if, why and
how (semi-supervised) learning is possible deserve as much attention as the par-
ticular artifact (man or machine) on which the learning is implemented. Better un-
derstanding of learning will (hopefully) help to construct these artifacts as well.
While the reverse may also be true – better understanding through the construc-
tions of these artifacts – we hope our exposition ofers a new perspective on the
(im)possibilities of semi-supervised learning.

To those unfamiliar with statistical learning or prediction, it may seem like in-
tellectual hubris to claim to be able to predict future events. Caveats – such as black
swans – aside, it may help to think of prediction not as gaining knowledge about
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the future. Rather, it is about quantifying the present knowledge we have about
future events. For instance, predicting the outcome of an election based on polit-
ical polling data does not magically give us knowledge about the future. At its best
it aggregates information in the present about current polls and the relationship
between polls and outcomes to quantify our present knowledge about the future
event.

Learning from Labeled Data

To learn the relationship between some set of input variables X and an outcome Y,
a useful irst step is to gather examples that exhibit this relationship and, through a
statistical model, quantify what we learned from these examples. For now, assume
that the data we gather are sampled independently from a probability distribution
pX,Y. Suppose we know pX,Y exactly. Then the quantity one would like to minimize
is:

R( f ) =
∫

L( f (x), y)pX,Y(x, y)dxdy , (1)

where f is a function that predicts the value y given a given speciic value of the
input variables x. The loss function L measures the quality of this prediction. The
quantity in Equation (1) is the expected loss which is also referred to as the risk.
Finding an f that minimizes this quantity would give us an optimal estimate of the
relationship between X and Y, relative to the chosen loss function L and function
class of f . Unfortunately, we do not know the exact distribution pX,Y, rather we
have a sample from this distribution: a inite number of examples (xi, yi). A com-
mon framework used in machine learning to go about inding an estimate of f is to
simply use this sample directly instead of the true distribution to approximate the
risk:

R̂( f ) =
N

∑
i

L( f (xi), yi) . (2)

This is known as the empirical risk and inding the quantity that minimizes this
risk is known as empirical risk minimization. If the number of examples grows to
ininity, under some mild conditions, the empirical risk will converge to the true
risk. For small sample sizes, however, the empirical risk can be a very variable es-
timator for the risk: gathering a new set of objects of the same size would give a very
diferent estimate of the risk. This is especially problematic if we start minimizing
a function based on this estimate as this will lead to an overoptimistic estimate of
performance, which will not generalize to the true distribution. A common way to
deal with this problem is to add a so-called regularization term to the empirical risk
which will bias the risk and the subsequent function estimator, but in general will
reduce the variance to lead to a much improved estimator in many cases. This idea
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can be motivated from many diferent viewpoints, for instance, from a Bayesian
perspective (Gelman et al., 2013) to generalization bounds (Mohri et al., 2012) or
tolerance to noise (Bishop, 1995).

Enter Unlabeled Data

Consider the following scenarios in which we want to learn:
• Predicting the contents of an image uploaded to a social networking site
• Classifying the topics of documents in a newspaper archive
• Detecting tumors in CT-scans

What these learning scenarios have in common is that it is relatively expensive to
gather outcome labels, while gathering inputs is relatively inexpensive. For some
of these problems, we could simply turn to the web and download millions of un-
labeled images or documents, while labeling each item would require at least one
person to attach the correct label to it. These are just a few examples from a world
where sensors are becoming increasingly cheap, leading to a deluge in unlabeled
objects, while the cost of labeling data is not necessarily dropping at a proportional
rate.

What the empirical risk formulation outlined above assumes is that the training
examples have inputs and outcomes. What if we also have a set of unlabeled data,
for which we know the inputs x but for which the outcomes y are missing? Can
these be used to improve the estimator we get using empirical risk minimization?

The main question tackled in this thesis is whether this type of data is valuable
in learning the relationship from X to Y. We speciically consider this in a robust
way: is it possible to come up with a way to use these data that guarantees that we
get a better solution than when these data is not used?

An important, yet often overlooked (Laferty and Wasserman, 2007), considera-
tion is why the labels are missing. It is often implicitly assumed that the labels are
missing at random (Little and Rubin, 2002), meaning that the missingness is inde-
pendent of the true label given the value of the input features. This is not the case
if, for instance, labels are missing because it is harder to observe them for some of
the classes than for others. Furthermore, it is often assumed labels are missing com-
pletely at random, that is, the missingness also does not depend on the values for the
input features.

Why would unlabeled data be valuable at all?

One might wonder how unlabeled data can help at all: at irst sight it may be hope-
less to learn about an input-outcome relationship if we do not know the outcome.
We ofer three arguments that suggest unlabeled examples could have some value
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Figure 1 | Classification example with one training object for each class and a larger num-
ber of unlabeled objects. The solid line corresponds to a supervised logistic
regression classifier. The configuration of the unlabeled data could suggest the
decision boundary should be updated.

in identifying the relationship between X and Y: two suggestive examples, an allu-
sion to human learning and an empirical consideration.

First, consider the stylized example in Figure 1. There one could imagine the
decision boundary that separates the two diferent types of objects could be im-
proved by taking into account the unlabeled objects. It seems to make sense that
the boundary will more likely go through the region where no objects reside. In
other words, as Belkin et al. (2006) note, while the linear decision boundary may
seem to be the simplest decision boundary that separates the two labeled objects
at irst, the unlabeled data may make us re-evaluate what the concept of a simple
decision boundary means.

The example in Figure 2 is similar but deals with a regression problem: the
output is a continuous value instead a discrete class. Again, the structure of the un-
labeled data may suggest (to some) that the prediction function should be updated
to take into account that the predictions change smoothly over the area where many
unlabeled objects reside, but changes more rapidly where few unlabeled objects
have been observed. In this case, it could mean we want to update the predictions
in the ‘tails’ to values more closely aligned with the labeled example that is closest
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Figure 2 | Regression example where the unlabeled data could convince one to update the
estimated function by assuming the two ends of arcs are more likely to have a
value similar to objects that are close in the intrinsic geometry indicated by the
unlabeled data.

when measured when only considering paths through high density areas.
Note that in both cases the labeled data do not tell us whether these assumptions

that lead to changes to the decision boundary are true. We intuit them on top of
the labeled information that is already there.

A second argument for the merit of unlabeled data is that humans also do not
seem to learn in a strictly supervised way. Both children and adults do not require
constant feedback when learning to recognize objects or improve their judgement.
Zhu and Goldberg (2009, Ch.7) ofer an overview and discussion of some of the
research in cognitive science that studies the question whether humans actually
use unlabeled data to adapt their judgement. Results are mixed, but suggest that in
simple experimental settings humans use semi-supervised learning to solve tasks.

However, even if semi-supervised learning is used by humans as a heuristic in
many of the practical problems nature throws at us, this does not necessarily mean
that it is possible in general, nor does it clearly demarcate when semi-supervised
learning has merit.

Lastly, a very practical argument for the use of unlabeled data is that in some
applications, semi-supervised methods have shown to be able to improve over su-
pervised solutions. A well-known example is (Nigam et al., 2000) who showed this
early on in a text classiication example. It has also led to improved performance
of estimators in bioinformatics (Weston et al., 2005; Käll et al., 2007; Kasabov and
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Figure 3 | Example where semi-supervised learning improves performance (left) and re-
duces performance (right) as compared to the supervised alternative.

Pang, 2003; Patel and Wang, 2015), nuclear power plant monitoring (Ma and Jiang,
2015; Moshkbar-bakhshayesh and Ghofrani, 2016), food quality (Dean et al., 2006)
and remote sensing (Gómez-Chova et al., 2008), among other applications. For
instance, promising results in computer vision are shifting interest to leveraging
abundant unlabeled data (Rasmus et al., 2015).

The Need for Safe Semi-supervised Learning

Unfortunately, using unlabeled data is not necessarily harmless. Consider Figure 3.
It shows learning curves for two datasets, one for which adding unlabeled data to
the training process improves classiication performance for a speciic classiier, yet,
on the other dataset, performance only gets worse as we add more unlabeled data.

This behaviour has been observed empirically on numerous occasions, see, for
instance, (Elworthy, 1994) or the references in (Cozman and Cohen, 2002). One
could wonder whether these degradations in performance are caused by numer-
ical problems in computing the semi-supervised classiiers or whether this is a
more fundamental aspect of semi-supervised learning. Cozman, Cohen and Cirelo
(2003) study this by constructing problems for which generative models, when mis-
speciied, increase the classiication error as unlabeled data are added to the train-
ing sample, regardless of numerical issues. Note that this is unlike the behaviour
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we observe in supervised classiiers, where we generally ind that adding labeled
data increases classiication performance, regardless of misspeciication. For some
exceptions to this general behaviour, see, for instance (Loog and Duin, 2012).

Arguments for the Limitations of SSL

Given these negative results, one could argue that it is a priori unlikely that ex-
amples of the input alone will tell us anything at all about the outcome given the
input. How, for instance, does knowing a certain percentage of web pages have
the word ‘model’ in it tell us anything about the probability that a page is about
‘fashion’ or ‘statistics’ given that it contains the word ‘model’?

Seeger (2001) argues that for discriminative models where we directly model
pY|X (which he calls the diagnostic paradigm), semi-supervised learning is impossible
unless one can make useful assumptions about the relationship between the para-
meters governing the distribution that generates the input vales X and the distri-
bution that generates the labels Y given some X = x. His argument can be illus-
trated by the graphical model in Figure 4(a). The parameters θX , corresponding
to the data generating distribution of X, and θY|X , corresponding to the data gen-
erating distribution of Y given X, are a priori independent. Because of the way
the likelihood factorizes, unlabeled data play no role in updating beliefs about θY|X
and additionally, learning something about θX should not inluence our estimate
of θY|X . Compare this to the generative model in Figure 4(b), where θX and θY|X
are dependent if we observe X.

Hansen (2009) makes a related argument by constructing the optimal Bayesian
predictor for the squared loss, given that we know the prior that nature uses over
parameters to generate datasets. He inds that in general this optimal predictor is
given by the following solution:

∫ ∫

yp(y|x, θ)dy
p(x, Dl , Du|θ)p(θ)

∫

p(x, Dl , Du|θ′)p(θ′)dθ′
dθ ,

where Dl is the labeled data set and Du is the unlabeled dataset and p(θ) is the true
prior on the parameters that is used by nature to generate datasets. Now suppose
we split the parameter vector θ into three sets, one belonging to the conditional
distribution pY|X , one belonging to pX and one that is shared between these two.
When this shared set is empty, the optimal solution becomes:

∫ ∫

yp(y|x, θ)dy
p(Dl |θ)p(θ)

∫

p(Dl |θ′)p(θ′)dθ′
dθ .

In this case, the solution is the regular Bayesian solution based on the labeled data
and the unlabeled data play no role. Only if the two distributions essentially share
parameters will unlabeled data play a role in the solution.
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If these models correspond exactly to the data generating process, then these ar-
guments hold. Yet these arguments do not tell us anything about the model itself:
what are the possibilities of these models if, for instance, the dependence relation-
ships between the variables are diferent from what the model assumes? Schölkopf,
Janzing et al. (2012) consider this situation more explicitly, by also assuming causal
semantics for the models using structural causal models to describe them. They
show that indeed, in the model described in Figure 4(a), semi-supervised learning
can not outperform supervised learning. The main concept in their analysis is that
of the causal direction of prediction. If X is the input, Y the output we are inter-
ested in predicting and Figure 4(a) is a representation of the causal structure of
the problem, then we are predicting in the causal direction and semi-supervised
learning is impossible, due to so-called independence of mechanism. This is assum-
ing there are no other confounding variables. On the other hand, if the true causal
model is represented by Figure 4(b), we are in the anti-causal prediction scenario
and information about pX is informative about the pY|X .

Summarizing, these arguments depend on the assumption that the models cor-
respond to the true data generating process but tell us little about the possibilities
of unlabeled data for a method for which this correspondence is not correct. In
practice, however, we often deal with, non-Bayesian, potentially misspeciied mod-
els and inite amounts of data. Even if unlabeled data are not informative for the
true model, this does not guarantee it might not be useful to improve estimates for
models used or for inite amounts of data: they may, for instance, suggest what part
of the feature space is best served by more accurate predictions from a model with
limited complexity.

For example, Sokolovska et al. (2008) show that for logistic regression with dis-
crete input features, if the model is misspeciied, information about pX is informat-
ive and leads to an estimator with lower asymptotic variance than the supervised
estimator. All in all, model misspeciication and inite sample sizes seem to play an
under appreciated role in these graphical model analyses of the semi-supervised
problem.

Ben-David, Lu et al. (2008) take a learning theory approach to identify the use-
fulness of unlabeled data in the “no prior knowledge” setting, meaning the setting
where we do not make assumptions about the link between pY|X and pX . They
show that for some simple concept classes over the real line, algorithms that use
unlabeled data can not give sample size guarantees that are more than a constant
factor better than supervised algorithms. Sample size guarantees are guarantees
that the algorithm will make an error of at most ϵ with probability δ for a given
sample size. They conjecture that this inding holds more generally for other semi-
supervised scenarios as well, but it remains an open question. They also suggest
that the problem with the prior knowledge assumed for many semi-supervised ap-
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(a) Diagnostic Model
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(b) Generative Model

Figure 4 | Graphical model representations of two modelling paradigms. When assum-
ing causal semantics and Y as being the outcome of interest, (a) is an example
of prediction in the causal direction, while (b) is prediction in the anti-causal
direction.

proaches is that it is untestable and give examples when these assumptions can lead
to deteriorated performance compared to supervised empirical risk minimization.

The general consensus from these analyses is that unlabeled data will not lead
to improved performance unless there is a link between pX and pY|X . Most of these
analyses, however, depend on the assumption that the model is correctly speciied
or depend on asymptotic arguments. In practice, our model will not perfectly it the
data and we have a limited number of observations. Moreover, even though some
results suggest that semi-supervised learning without assumptions is only possible
when the model is misspeciied, this is exactly the situation where semi-supervised
learning might fail. Can we instead consider whether semi-supervised learning is
possible based on the properties of the method, rather than the data generating
process and can we guarantee that improvement happens in a safe way in a setting
where we have limited data?

Assumptions We Might Need

While the research covered so far does still not fully characterize the possibilities of
semi-supervised learning in the general case, many authors suggest that assump-
tions are needed that link knowledge about pX to knowledge about pY|X . Let us
quickly cover the assumptions that dominate semi-supervised learning research:
identiiable mixture distributions, the manifold assumption, the clustering assump-
tion and the low-density assumption and consider what we might learn when we
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make such assumptions.
A classic analysis by Castelli and Cover (1995) shows that if we assume identi-

iable mixture models where each component of the mixture belongs to one class,
and we have an ininite amount of unlabeled samples, a single labeled sample gives
a classiication risk of 2R∗(1− R∗), with R∗ being the minimum attainable classiic-
ation error. Adding more labeled examples allows convergence to this Bayes error
with rate:

R(Nl , Nu = ∞)− R∗ = exp(−lK + o(l)) ,

with K being a measure of similarity between the class conditional distributions.
The idea behind this analysis is that the unlabeled data will identify the diferent
decision regions, while the labeled data only have to be used to identity which de-
cision region belongs to which class.

This may suggest labeled data are exponentially more valuable than unlabeled
data, but note the exponential value comes after we used the ininite amount of un-
labeled data. Castelli and Cover (1996) extend this analysis to the inite sample case,
for a simpler situation where we either know the class conditional distribution for
each class and only need to estimate the class prior or we know the class condition-
als but not the assignment of class conditionals to classes. In the former case, the
value of examples in reducing the risk is proportional to the Fisher information of
the labeled and unlabeled data, where the value of the labeled data are strictly lar-
ger than the unlabeled data. In the second scenario, a diference in the value of both
types of information can also be shown to hold, although in this case, no learning
is possible without labeled examples.

An important aspect highlighted in these analyses is that the role the unlabeled
data play is in reducing the number of possible decision functions, between which
we can then eiciently ind the correct one with limited labeled data. This idea is
used in many of the following analyses as well.

Laferty and Wasserman (2007) consider the utility of the assumption of smooth-
ness, where one assumes a regression function is smooth in regions where pX(x)

is high. They ind that the manifold assumption (see below) alone is suicient, but
that a class of algorithms that attempts to use the manifold and smoothness as-
sumptions together do not ofer better convergence rates in terms of the squared
error than supervised procedures. They do construct, however, new approaches
that use either of these assumptions individually that do have improved conver-
gence rates by using the unlabeled data.

Niyogi (2013) consider the assumptions that the labeling function varies smoothly
over the intrinsic manifold of the data. He shows that for a particular class of prob-
lems, exempliied by diferent embeddings of circles in Euclidean space, knowledge
of the manifold allows one to learn the correct function eiciently, meaning the ap-
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proximation error converges to zero at a fast rate. At the same time, for this class of
problems, there is no supervised algorithm for which convergence can be guaran-
teed for all distributions in the class. The intuition behind why knowledge of the
manifold will help identify the correct conditional distribution is that it reduces the
space of potential solutions, after which regular convergence results guarantee fast
convergence.

Similarly, Singh et al. (2008) apply minimax lower bounding techniques to a
version of the cluster assumption, where outcomes or conditional distributions are
assumed to be smooth within a cluster, or decision set. They show that if these
decision sets can be found using the unlabeled data and if a supervised learner
with knowledge of these sets outperforms one without this knowledge, gathering
unlabeled samples at a fast enough rate guarantees improved performance. Us-
ing a speciic regression scenario, they show how the merit of unlabeled examples
depends strongly on the margin between the decision sets and the amount of un-
labeled data.

Based on the potential of semi-supervised methods to decrease performance
compared to supervised procedures, Li and Zhou (2015) construct a safe version
of the semi-supervised support vector machine by employing a low-density separ-
ation assumption. The assumption is that the true decision boundary is situated
in regions of low-density in the feature space. The idea behind this approach is
to generate a set of low-density separators and pick one conservatively. If indeed
this set contains the true solution, they are able to show procedure will improve in
terms of performance compared to the supervised procedure.

In summary, given that we can make assumptions that link pX and pY|X , it is pos-
sible to prove unlabeled data have some value. But as Ben-David, Lu et al. (2008)
and others have pointed out, checking these assumptions is often diicult or im-
possible. If we can not be sure these assumptions are true and the unlabeled data
may lead to a procedure with reduced performance, perhaps we should avoid them
completely. The view taken in this thesis is then to forego these assumptions, and
ind out whether semi-supervised learning is still possible for this case and what
performance guarantees this allows us to derive.

In this way, the work presented is inspired by, and builds on, earlier work in
Loog (2010), Loog and Jensen (2014) and Loog (2014), who attempt to work out the
intrinsic constraints posed by some supervised models without introducing con-
straints. These constraints then also have to hold for any semi-supervised solution.
While in their work, these constraints need to be explicitly derived, in the frame-
work presented in this thesis constraints are implicitly deined, and the limit of
their usefulness investigated.
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Research Questions

Based on these considerations, the main questions that we will address in this thesis
are the following:

• Can we construct a (non-trivial) semi-supervised version of some supervised
classiier without making additional assumptions that were not inherent in
the supervised method?

• For these classiiers, in what sense can we guarantee that they (safely) improve
over the supervised alternative?

• Can we prove this notion of safe semi-supervised learning is (im)possible for
other classiiers?

During these investigations, some additional questions will come up that we try
to address. For instance, why do semi-supervised approaches applied to the unreg-
ularized least squares classiier fail when the dimensionality of the input sample is
larger than the size of the sample? And what is a proper deinition for self-learning
approaches to the least squares classiier that may not work in all cases, but give
decent performance in many cases?

To answer these and other questions, we will rely on both mathematical analalysis
as well as results from computational simulations and experiments. What is the role
of reproducibility of these experiments in pattern recognition research and how do
we ensure it?

Important Conceptual Constructs

Before continuing with the outline of the thesis, we will cover some of the most
important concepts in the thesis that we will use to address the research question,
which may help put things in perspective.

Surrogate losses

The loss L that is optimized in the ERM framework outlined above, does not dir-
ectly correspond to the goal that many people have in mind when training a classi-
ier. To evaluate a classiier, one often considers the error rate, the area under the
ROC curve, F-score or various other measures of performance. Optimizing these
losses directly poses numerical diiculties. Therefore so-called surrogate losses are
usually employed which upper bound the error rate while being computationally
tractable, or easier to analyse mathematically.
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Margin-based Losses

One particular class of these losses are so-called margin-based losses. These are
losses of the form ϕ(y f (x)) where y ∈ {−1,+1} is the encoding of the binary class
label. Margin-based losses have been studied extensively in the context of their
convergence properties. Bartlett et al. (2006), for instance, show that for any convex
ϕ with ϕ diferentiable at 0 and ϕ′(0) < 0 then ϕ is classiication calibrated, which
implies that if a sequence of measurable functions converges to the optimal risk in
terms of this margin-based loss, this sequence also converges to the Bayes risk in
terms of classiication error (Bartlett et al., 2006, Theorem 1.3c). Various well-known
and often used classiication methods can be formulated as the risk minimization
of some margin-based loss, such as support vector machines, forms of boosting,
logistic regression and the least squares classiier.

On Squared Loss

The least squares classiier can be deined as the decision function that minimizes
the squared loss on the training data. For linear classiiers, one could also interpret
this as encoding the vector of class labels as a numeric vector and using this as the
dependent variable in linear regression.

In this thesis we consider the squared loss extensively. One could argue, how-
ever, that this loss is antiquated, unsuitable or somehow non-optimal for classiic-
ation (Ben-David, Loker et al., 2012). Yet the squared loss shares many properties
with other commonly used loss functions. For instance, it is a margin-based loss
and it is classiication calibrated (see above). Moreover, as many have observed,
empirically it gives similar performance in terms of the error rate as other losses
on many example datasets (Rifkin et al., 2003; Poggio and Smale, 2003; Zhang
and Peng, 2004; Rasmussen and Williams, 2005). Rifkin (2002) even notes that
“the choice between SVM and RLSC [regularized least squares classiier] should
be based on computational tractability considerations”. One particular advantage
of the squared loss is that it leads to a closed-form solution of the classiier which
makes it easier to analyse theoretically, a property we will make use of repeatedly
throughout the thesis.

Projected Estimators

The main concept behind the proposed robust semi-supervised learning approaches
in this thesis is that of projecting a supervised classiier onto a set of potential solu-
tions deined by the unlabeled data. We will refer to this set as the constraint set
since it encodes the constraints that the unlabeled data put on the potential solu-
tions.
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Projecting estimators onto sets of constraints has been considered for other prob-
lems in statistics. For instance, the case where one knows the true solution adheres
to certain linear inequality constraints (Schmidt and Stahlecker, 1995; Schmidt, 1996)
or constraints that form some convex set (Stahlecker et al., 1996). Schmidt and Stah-
lecker (1995) prove, for example, that the projection of any estimator to the set of
linear inequality constraints leads to an equal or improved estimator: one that is
‘closer’ to the true solution and dominates the non-projected estimator, given that
the true solution is within the set of constraints.

In the setting considered in our work, however, we do know such constraints, all
we have is labeled and unlabeled objects. How, then, can we apply these projections
to the semi-supervised setting? More speciically:

1. What is the estimator that is to be projected?
2. How do we form the constraint set?
3. How do we measure what it means for solutions to be ‘close’?
4. How do we choose a solution from the constraint set?

As we will elaborate in the rest of this thesis, in our semi-supervised solutions, we
propose the following answers to these questions: (1) The solution to be projected
is the supervised solution. (2) The constraint set is formed implicitly by all possible
supervised classiiers we could get by assigning a potential labeling to the unlabeled
objects. (3) The measure depends on the loss we are interested in minimizing and
(4) we ind the semi-supervised solution either through minimizing the supervised
loss within the constraint set (Chapters 1 and 2) or minimizing a particular distance
measure that ensures we always get a better estimator (Chapter 3).

To give a preview of what such a procedure looks like geometrically and to ex-
plain the illustration on the cover of this thesis, consider Figure 5. In this one di-
mensional classiication problem, we show the labels for two objects, the locations
of the two unlabeled objects and the supervised linear decision function. We can
represent this supervised solution by two numbers: its intercept and its slope. This
is represented by the white dot on the cover. Additionally, we can try every pos-
sible labeling of the unlabeled objects (including all partial assignments to the two
classes), calculate the intercept and slope of the resulting classiier and plot this
set of solutions. This constraint set of all classiiers possible by some labeling of the
unlabeled data is depicted by the white area on the cover. The ellipses show the iso-
distance lines for the distance measure used to carry out the projection, while the
light-blue dot is the projected solution, corresponding to our semi-supervised solu-
tion. As you can see by the iso-distance lines from the true solution (the dark-blue
dot), this solution is closer in terms of this distance measure, than the supervised
solution was. If this distance measure is appropriately chosen, this distance will
correspond to the loss we are interested in minimizing. This last statement shows
the power of this projection approach as it leads to a simple proof that guarantees
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Figure 5 | Dataset used to illustrate the projection example that corresponds to the pro-
jection illustrated on the cover of the thesis. The circles indicate the locations
and labels of the two labeled objects. The solid line indicates the supervised de-
cision function, while the dashed lines correspond to the locations of the two
unlabeled objects

the semi-supervised solution is always better than the supervised solution, as we
will show in Chapter 3.

A Map but not the Territory

Before we dive into the speciics, we will look at the outline of the chapters and
indicate how they are related. In part one of the thesis, we introduce the use of con-
straints and projections in semi-supervised learning. In Chapter 1, we construct
a semi-supervised classiier based on the idea of implicit constraints. Despite the
fact that this approach does not require additional assumptions about the unlabeled
data that were not already present in the supervised classiier, we show it is able
to improve the supervised classiier using the unlabeled data in experiments on
benchmark datasets and, particularly, performs robustly, meaning it almost never
degrades in performance compared to the supervised alternative. Additionally,
we prove, for 1D problems without intercept and ininite unlabeled data, that this
semi-supervised approach will always outperform the supervised counterpart. In
Chapter 2, we apply this same methodology of implicit constraints to a diferent
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classiier, linear discriminant analysis, to show how the approach extends to other
classiiers.

While the approach in Chapter 1 is guaranteed to improve over the supervised
learner in a very restricted setting, in Chapter 3 we extend these results to the more
general multivariate setting for a diferent, but related, procedure. We interpret this
procedure as a projection of the supervised solution onto the implicit constraints
set. For a particular distance measure we can then prove this procedure is always
better than the supervised solution when evaluated in terms of the surrogate loss
on the labeled and unlabeled data.

Since these performance guarantees are in terms of the surrogate loss, instead
of the classiication error or some other common performance measure, in part two
of the thesis, we consider the importance of these surrogate losses. In Chapter 4,
we discuss situations in which it is insightful to consider the surrogate loss to study
the behaviour of classiiers. In Chapter 5, we consider these surrogate losses to
prove for a particular class of classiiers based on margin-based losses that under
certain conditions, safe semi-supervised learning is impossible. We also show for
which cases improvement guarantees are possible, covering, among other cases, the
results we obtained in Chapter 3.

In Chapter 6, we turn away from the pessimism considered in Chapter 3 to con-
sider how to properly deine an optimistic version of the least squares classiier. We
show how to deine a soft-label self-learning variant of the least squares classiier
and study its properties.

In Chapter 7, then, we cover the peaking phenomenon in semi-supervised learn-
ing, that we ran into during some of the experiments in this thesis and which was
briely covered in Chapter 1. We show, for a simple semi-supervised least squares
approach, where this behaviour originates and why it is more extreme than in the
supervised setting.

The inal part of this thesis, part three, is devoted to questions concerning the re-
producibility of the results of the rest of the thesis. Chapter 8 discusses the concepts
of reproducibility and replicability in the pattern recognition context and ofers a
case study of reproducing Chapter 6, as well as additional results. Chapter 9 de-
scribes the toolbox we implemented to produce all the results in this thesis, that
can be used to reproduce these and other results in semi-supervised learning re-
search.

We end with a discussion of the indings of this thesis.
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CHAPTER ONE

Implicitly Constrained Semi-supervised
Least Squares Classiication

We introduce the implicitly constrained least squares (ICLS) classifier, a novel semi-
supervised version of the least squares classifier. This classifier minimizes the squared
loss on the labeled data among the set of parameters implied by all possible labelings
of the unlabeled data. Unlike other discriminative semi-supervised methods, this ap-
proach does not introduce explicit additional assumptions into the objective function,
but leverages implicit assumptions already present in the choice of the supervised least
squares classifier. This method can be formulated as a quadratic programming problem
and its solution can be found using a simple gradient descent procedure. We prove
that, in a limited one dimensional setting, this approach never leads to performance
worse than the supervised classifier. Experimental results show that also in the general
multidimensional case performance improvements can be expected, both in terms of
the squared loss that is intrinsic to the classifier, as well as in terms of the expected
classification error.

1.1 Introduction

We consider the problem of semi-supervised learning of binary classiication func-
tions. As in the supervised paradigm, the goal in semi-supervised learning is to
construct a classiication rule that maps objects in some input space to a target out-
come, such that future objects map to correct target outcomes as well as possible. In

This chapter appeared as: Krijthe, J.H. & Loog, M., 2017. Robust Semi-supervised Least Squares Classi-
ication by Implicit Constraints. Pattern Recognition, 63, pp.115–126. An earlier, shorter, version of this work
appeared as: Krijthe, J. H., & Loog, M. (2015). Implicitly Constrained Semi-Supervised Least Squares Classiica-
tion. In E. Fromont, T. De Bie, & M. van Leeuwen (Eds.), Advances in Intelligent Data Analysis XIV. Lecture
Notes in Computer Science, vol 9385. (pp. 158–169).
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the supervised paradigm this mapping is learned using a set of L training objects
and their corresponding outputs. In the semi-supervised scenario we are given
an additional and often large set of U unlabeled objects. The challenge of semi-
supervised learning is to incorporate this additional information to improve the
classiication rule.

The goal of this work is to build a semi-supervised version of the least squares
classiier that is robust against deterioration in performance meaning that, at least
in expectation, its performance is not worse than supervised least squares classi-
ication. While it may seem like an obvious requirement for any semi-supervised
method, current approaches to semi-supervised learning do not have this property.
In fact, performance can signiicantly degrade as more unlabeled data is added, as
has been shown in (Cozman and Cohen, 2006; Cozman, Cohen and Cirelo, 2003),
among others. This makes it diicult to apply these methods in practice, especially
when there is a small amount of labeled data to identify possible reduction in per-
formance. A useful property of any semi-supervised learning procedure would
therefore be that its performance does not degrade as we add more unlabeled data.
Additionally, many semi-supervised learning procedures are formulated as hard-
to-optimize, non-convex objective functions. A more satisfactory state of afairs for
semi-supervised classiication would therefore be methods that are easier to train
and that, on average, do not lead to worse classiication performance than their
supervised alternatives.

We present a novel approach to semi-supervised learning for the least squares
classiier that we will refer to as implicitly constrained least squares classiication
(ICLS). ICLS leverages implicit assumptions present in the supervised least squares
classiier to construct a semi-supervised version. This is done by minimizing the su-
pervised loss function subject to the constraint that the solution has to correspond
to the solution of the least squares classiier for some labeling of the unlabeled ob-
jects.

As this work is speciically concerned with least squares classiication, we note
several reasons why this is a particularly interesting classiier to study: First of all,
the least squares classiier is a discriminative classiier. Some have claimed semi-
supervised learning without additional assumptions is impossible for discrimin-
ative classiiers (Seeger, 2001; Singh et al., 2008). Our results show this does not
strictly hold.

Secondly, the closed-form solution for the supervised least squares classiier al-
lows us to study its theoretical properties. In particular, in the univariate setting
without intercept and assuming perfect knowledge of PX , the distribution of the fea-
ture, we show this procedure never gives worse performance in terms of the squared
loss criterion compared to the supervised least squares classiier. Moreover, using
the closed-form solution we can rewrite our semi-supervised approach as a quad-
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ratic programming problem, which can be solved through a simple gradient des-
cent with boundary constraints.

Lastly, least squares classiication is a useful and adaptable classiication tech-
nique allowing for straightforward use of, for instance, regularization, sparsity pen-
alties or kernelization (Hastie et al., 2009; Poggio and Smale, 2003; Rifkin et al.,
2003; Suykens and Vandewalle, 1999; Tibshirani, 1996). Using these formulations,
it has been shown to be competitive with state-of-the-art methods based on loss
functions other than the squared loss (Rifkin et al., 2003) as well as computation-
ally eicient on large datasets (Bottou, 2010).

This work builds on (Krijthe and Loog, 2015) and ofers a more complete expos-
ition: we show ICLS can be formulated as a quadratic programming problem, we
extend the experimental results section by including an alternative semi-supervised
procedure, adding additional datasets and discussing the ‘peaking’ phenomenon.
Moreover, we extend the theoretical result with conditions when one is likely to see
improvement of the proposed approach over the supervised classiier.

The main contributions of this paper are
• A novel convex formulation for robust semi-supervised learning using squared

loss (Equation 1.5)
• A proof that this procedure never reduces performance in terms of the squared

loss for the 1-dimensional case without intercept (Theorem 1)
• An empirical evaluation of the properties of this classiier (Section 1.6)
The rest of this paper is organized as follows. Section 1.2 gives an overview of

related work on semi-supervised learning. Section 1.3 gives a high level overview
of the method while Section 1.4 introduces our semi-supervised version of the least
squares classiier in more detail. We then derive a quadratic programming formu-
lation and present a simple way to solve this problem through bounded gradient
descent. Section 1.5 contains a proof of the improvement of the ICLS classiier over
the supervised alternative. This proof is speciic to classiication with a single fea-
ture, without including an intercept in the model. For the multivariate case, we
present an empirical evaluation of the proposed approach on benchmark datasets
in Section 1.6 to study its properties. The inal sections discuss the results and con-
clude.

1.2 Related Work

Many diverse approaches to semi-supervised learning have been proposed (Chapelle
et al., 2006; Zhu and Goldberg, 2009). While semi-supervised techniques have
shown promise in some applications, such as document classiication (Nigam et
al., 2000), peptide identiication (Käll et al., 2007) and cancer recurrence prediction
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(Shi and Zhang, 2011), it has also been observed that these techniques may give per-
formance worse than their supervised counterparts. See for instance (Cozman and
Cohen, 2006; Cozman, Cohen and Cirelo, 2003), for an analysis of this problem,
and (Elworthy, 1994) for a practical example in part-of-speech tagging. In these
cases, disregarding the unlabeled data would lead to better performance.

Some (Goldberg and Zhu, 2009; Wang, Shen and Pan, 2007) have argued that
agnostic semi-supervised learning, which Goldberg and Zhu (2009) deines as semi-
supervised learning that is at least no worse than supervised learning, can be achieved
by cross-validation on the limited labeled data. Agnostic semi-supervised learn-
ing follows if we only use semi-supervised methods when their estimated cross-
validation error is signiicantly lower than those of the supervised alternatives. As
the results of Goldberg and Zhu (2009) indicate, this criterion may be too conser-
vative: given the small amount of labeled data, a semi-supervised method will only
be preferred if the diference in performance is very large. If the diference is less
distinct, the supervised learner will always be preferred and we potentially ignore
useful information from the unlabeled objects. Moreover, this cross-validation ap-
proach can be computationally demanding.

Self-Learning

A simple approach to semi-supervised learning is ofered by the self-learning pro-
cedure (McLachlan, 1975) also known as Yarowsky’s algorithm (see (Abney, 2004)
and (Yarowsky, 1995)) or retagging (Elworthy, 1994). Taking any classiier, we irst
estimate its parameters on only the labeled data. Using this trained classiier we
label the unlabeled objects and add them, or potentially only those we are most
conident about, with their predicted labels to the labeled training set. The classi-
ier parameters are re-estimated using these labeled objects to get a new classiier.
One iteratively applies this procedure until the predicted labels of the unlabeled
data no longer change.

One of the advantages of this procedure is that it can be applied to any super-
vised classiier. It has also shown practical success in some application domains,
particularly document classiication (Nigam et al., 2000; Yarowsky, 1995). Unfortu-
nately, the process of self-training can also lead to severely decreased performance,
compared to the supervised solution (Cozman and Cohen, 2006; Cozman, Cohen
and Cirelo, 2003). One can imagine that once an object is incorrectly labeled and
added to the training set, its incorrect label may be reinforced, leading the solution
away from the optimum. Self-learning is closely related to expectation maximiza-
tion (EM) based approaches (Abney, 2004). Indeed, expectation maximization suf-
fers from the same issues as self-learning (Zhu and Goldberg, 2009). In Section 1.6
we compare the proposed approach to self-learning for the least squares classiier.
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Additional Assumptions

Some semi-supervised methods leverage the unlabeled data by introducing assump-
tions that link properties of the features alone to properties of the label of an object
given its features. Commonly used assumptions are the smoothness assumption:
objects that are close in the feature space likely share the same label; the cluster as-
sumption: objects in the same cluster share a label; and the low density assumption
enforcing that the decision boundary should be in a region of low data density.

The low-density assumption is used in entropy regularization (Grandvalet and
Bengio, 2005) as well as for support vector classiication in the transductive sup-
port vector machine (TSVM) (Joachims, 1999) and closely related semi-supervised
SVM (S3VM) (Bennett and Demiriz, 1998; Sindhwani and Keerthi, 2006). In these
approaches an additional term is added to the objective function to push the de-
cision boundary away from regions of high density. Several approaches have been
put forth to minimize the resulting non-convex objective function, such as the con-
vex concave procedure (Collobert et al., 2006) and diference convex programming
(Sindhwani and Keerthi, 2006; Wang and Shen, 2007).

In all these approaches to semi-supervised learning, a parameter controls the
importance of the unlabeled points. When the parameter is correctly set, it is clear,
as Wang, Shen and Pan (2007) claims, that TSVM is always no worse than super-
vised SVM. It is, however, non-trivial to choose this parameter, given that semi-
supervised learning is most interesting in cases where we have limited labeled ob-
jects, making a choice using cross-validation very unstable. In practice, therefore,
TSVM can also lead to performance worse than the supervised support vector ma-
chine, as well will also see in Section 1.6.

Safe Semi-supervised Learning

Loog (2010) and Loog and Jensen (2014) attempt to guard against the possibility
of deterioration in performance by not introducing additional assumptions, but
instead leveraging implicit assumptions already present in the choice of the su-
pervised classiier. These assumptions link parameters estimates that depend on
labeled data to parameter estimates that rely on all data. By exploiting these links,
semi-supervised versions of the nearest mean classiier and the linear discriminant
are derived. Because these links are unique to each classiier, the approach does
not generalize directly to other classiiers. The method presented here is similar in
spirit, but unlike (Loog, 2010; Loog and Jensen, 2014), no explicit equations have
to be formulated to link parameter estimates using only labeled data to parameter
estimates based on all data. Moreover, our approach allows for theoretical analysis
of the non-deterioration of the performance of the procedure.
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Aside from the work by Loog (2010) and Loog and Jensen (2014), another at-
tempt to construct a robust semi-supervised version of a supervised classiier has
been made in (Li and Zhou, 2011), which introduces the safe semi-supervised sup-
port vector machine (S4VM). This method is an extension of S3VM (Bennett and
Demiriz, 1998) which constructs a set of low-density decision boundaries with the
help of the additional unlabeled data, and chooses the decision boundary, which,
even in the worst-case, gives the highest gain in performance over the supervised
solution. If the low-density assumption holds, this procedure provably increases
classiication accuracy over the supervised solution. The main diference with the
method considered in this paper, however, is that we make no such additional as-
sumptions. We show that even without these assumptions, safe improvements are
possible for the least squares classiier.

Semi-supervised Least Squares

While least squares classiication has been widely used and studied (Hastie et al.,
2009; Poggio and Smale, 2003; Suykens and Vandewalle, 1999), little work has been
done on applying semi-supervised learning to the least squares classiier speciic-
ally. For least squares regression, Little and Rubin (2002) describe an iterative
method for handling missing outcomes that was formally proposed by Healy and
Westmacott (1956). In the case of least squares regression, this method has some
computational advantages over discarding the unlabeled data but its solution al-
ways coincides with the supervised solution. Shafer (1991) studied the value of
knowing E[XTX], where X is the L × d design matrix containing the feature values
for each observation. If we assume the number of unlabeled data points is large,
this is similar to the semi-supervised situation. It is shown that if the size of the
parameters is small compared to the noise, the variance of a procedure that plugs
in E[XTX] as the estimate of XTX has a lower variance than supervised least squares
regression. As the size of the parameters increases, this efect reverses. In fact, the
paper demonstrates that in this semi-supervised setting no best linear unbiased
estimator for the regression coeicients exists. In Section 1.6, we compare our ap-
proach to using this plug-in estimate by substituting the matrix XTX by a version
based on both labeled and unlabeled data. A similar plug-in procedure has been
used by Fan et al. (2008) for linear discriminant analysis for dimensionality reduc-
tion which is closely related to least squares classiication. Here the (normalized)
total scatter matrix, which plays a similar role to the XTX matrix in least squares
regression is exchanged with the more accurate estimate of the total scatter based
on both labeled and unlabeled data.
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1.3 Implicitly Constrained Least Squares Classiication

Given a limited set of L labeled objects and a potentially large set of U unlabeled
objects, the goal of implicitly constrained least squares classiication is to use the
latter to improve the solution of the least squares classiier trained on just the labeled
data. We start with a sketch of this approach, before discussing the details.

β̂sup

Cβ

Fβ

β̂oracle

β̂semi

Figure 1.1 | A visual representation of implicitly constrained semi-supervised learning. Fβ

is the space of all linear models. β̂sup denotes the solution given only a small
amount of labeled data. Cβ is the subset of the space which contains all the
solutions we get when applying all possible (soft) labelings to the unlabeled
data. β̂semi is the solution in Cβ that minimizes the loss on the labeled objects.
β̂oracle is the supervised solution if we would have the labels for all the objects.

Given the supervised least squares classiier, consider the hypothesis space of all
possible parameter vectors, which we will denote as Fβ, see Figure 1.1. Given a set
of labeled objects, we can determine the supervised parameter vector β̂sup. Suppose
we also have a potentially large number U of unlabeled objects. Assume that every
object has a label, it is merely unknown to us. If these labels were to be revealed, it
is clear how the additional objects can improve classiication performance: we es-
timate the least squares classiier using all the data to obtain the parameter vector
β̂oracle. Since this estimate is based on more objects, we expect the parameter estim-
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ate to be better. These real labels are unknown, but we can still consider all pos-
sible labelings of unlabeled objects, and estimate corresponding parameters based
on these imputed labelings. In this way, we get a set of possible parameters for our
classiier, which form the set denoted by Cβ ⊂ Fβ. Clearly one of these labelings
corresponds to the real, but unknown, labeling, so one of the parameter estimates
in this set corresponds to the solution we would obtain using all the correct labels
of both the labeled and unlabeled objects. Because these are the only possible clas-
siiers when the true labels would be revealed, we propose to look within this set
Cβ for an improved semi-supervised solution.

Two issues then remain: how do we choose the best parameters from this set
and how do we ind these without having to enumerate all possible labelings?

Looking at the irst problem, we reiterate that the goal of semi-supervised learn-
ing is to ind a good classiication rule and, therefore, still the obvious way to evalu-
ate this rule is by the loss on the labeled training points. In other words, we choose
the classiier from the parameter set that minimizes the squared loss on the labeled
points. We will denote this solution by β̂semi. Note this approach is rather diferent
from other approaches to semi-supervised learning where the loss is adapted by
including a term that depends on the unlabeled data points. In our formulation,
the loss function is still the regular, supervised loss of our classiication procedure.

As for the second issue, after relaxing the constraint that we need hard labels
for the data points, we will see that the resulting optimization problem is, in fact,
an instantiation of well-studied quadratic programming, which we solve using a
simple gradient descent procedure.

1.4 Method

Supervised Multivariate Least Squares Classiication

Least squares classiication (Hastie et al., 2009; Rifkin et al., 2003) is the direct ap-
plication of well-known ordinary least squares regression to a classiication prob-
lem. A linear model is assumed and the parameters are minimized under squared
loss. Let X be an L× (d+ 1) design matrix with L rows containing vectors of length
equal to the number of features d plus a constant feature to encode the intercept.
Vector y denotes an L × 1 vector of class labels. We encode one class as 0 and the
other as 1. The multivariate version of the empirical risk function for least squares
estimation is given by

R̂(β) =
1

L
∥Xβ − y∥2

2 . (1.1)
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The well-known closed-form solution for this problem is found by setting the de-
rivative with respect to β equal to 0 and solving for β, giving

β̂ =
(

XTX
)−1

XTy . (1.2)

In case XTX is not invertible (for instance when L < (d + 1)), a pseudo-inverse is
applied. As we will see, the closed form solution to this problem will enable us to
formulate our semi-supervised learning approach in terms of a standard quadratic
programming problem, which is easy to optimize.

Implicitly Constrained Least Squares Classiication

In the semi-supervised setting, apart from a design matrix X and target vector y,
an additional set of measurements Xu of size U × (d + 1) without a corresponding

target vector yu is given. In what follows, Xe =
[

XT XT
u

]T
denotes the exten-

ded design matrix which is simply the concatenation of the design matrices of the
labeled and unlabeled objects.

In the implicitly constrained approach, we incorporate the additional informa-
tion from the unlabeled objects by searching within the set of classiiers that can be
obtained by all possible labelings yu, for the one classiier that minimizes the super-
vised empirical risk function in Equation (1.1). This set, Cβ, is formed by the βs that
would follow from training supervised classiiers on all (labeled and unlabeled) ob-
jects going through all possible soft labelings for the unlabeled samples, i.e., using
all yu ∈ [0, 1]U . Since these supervised solutions have a closed form, this can be
written as

Cβ :=

{

β =
(

XT
e Xe

)−1
XT

e

[

y

yu

]

: yu ∈ [0, 1]U
}

. (1.3)

The soft labeling provides both a relaxation for computational reasons as well as a
strategy to deal with label uncertainty. We can interpret these fractions as a type
of class posterior for the unlabeled objects. This constraint set Cβ, combined with
the supervised loss that we want to optimize in Equation (1.1), gives the following
deinition for implicitly constrained semi-supervised least squares classiication:

argmin
β∈Cβ

R̂(β) . (1.4)

Since β is ixed for a particular choice of yu and has a closed form solution, we can
rewrite the minimization problem in terms of yu instead of β:

argmin
yu∈[0,1]U

1

L

∥

∥

∥

∥

∥

X
(

XT
e Xe

)−1
XT

e

[

y

yu

]

− y

∥

∥

∥

∥

∥

2

2

. (1.5)
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The problem deined in Equation (1.5) can be written in a standard quadratic pro-
gramming form:

min
yu

1

2
yT

uQyu + cTyu

subject to:
[

IU

−IU

]

yu ≤
[

1U

0U

] (1.6)

where1

Q =
2

L
Xu
(

XT
e Xe

)−1
XTX

(

XT
e Xe

)−1
XT

u ,

and
c =

2

L
Xu
(

XT
e Xe

)−1
XTX

(

XT
e Xe

)−1
XTy

− 2

L
Xu
(

XT
e Xe

)−1
XTy .

Here, IU denotes the U × U identity matrix and 1U and 0U denote column vectors
of respectively ones and zeros.

Since the matrix Q is a product of a matrix and its transpose, it is guaranteed
to be positive semi-deinite. The problem is typically not positive deinite because
there are diferent labelings that will lead to one and the same minimum objective.

The quadratic problem deined above can be solved using, for instance, an in-
terior point method. We have found a gradient descent approach to be easier to
apply. Taking the derivative with respect to yu and rearranging the terms we ind

∂R̂

∂yu
=

2

L
Xu
(

XT
e Xe

)−1
XTX

(

XT
e Xe

)−1
XTy

+
2

L
Xu
(

XT
e Xe

)−1
XTX

(

XT
e Xe

)−1
XT

uyu

− 2

L
Xu
(

XT
e Xe

)−1
XTy .

Because of its convexity, this problem can be solved eiciently using a quasi-
Newton approach that allows for the [0, 1] box bounds, such as L-BFGS-B (Byrd
et al., 1995). Solving for yu gives a labeling that we can use to construct the semi-
supervised classiier using Equation (1.2) by considering the imputed labels as the
labels for the unlabeled data.

1.5 Theoretical Results

We will examine this procedure by considering it in a limited, yet illustrative setting.
In this case we will, in fact, prove that our procedure will never give a worse least

1The published version of this paper contains a typo in this equation and the two equations that
follow. We corrected this error here.
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squares estimate than the supervised solution. Consider the case where we have
just one feature x, a limited set of labeled instances and assume we know the prob-
ability density function of this feature fX exactly. This last assumption is similar
to having unlimited unlabeled data and is also considered, for instance, by Soko-
lovska et al. (2008). We consider a linear model with no intercept: y = xβ where
y, without loss of generality, is set as 0 for one class and 1 for the other. For new
data points, estimates ŷ can be used to determine the predicted label of an object
by using a threshold set at, for instance, 0.5.

The expected squared loss, or risk, for this model is given by

R∗(β) = ∑
y∈{0,1}

∫ ∞

−∞
(xβ − y)2 fX,Y(x, y)dx , (1.7)

where fX,Y = P(y|x) fX(x). We will refer to this as the joint density of X and Y.
Note, however, that this is not strictly a density, since it deals with the joint distri-
bution over a continuous X and a discrete Y. The optimal solution β∗ is given by
the β that minimizes this risk:

β∗ = argmin
β∈R

R∗(β) . (1.8)

We will show the following result:

Theorem 1. Given a linear model in 1D without intercept, y = xβ, and fX known, the
estimate obtained through implicitly constrained least squares always has an equal or lower
risk than the supervised solution:

R∗(β̂semi) ≤ R∗(β̂sup) .

In particular, given 1 labeled sample, if fX,Y is continuous in the feature X with bounded
second moment and fX,Y(0, 1) > 0, then

E[R∗(β̂semi)] < E[R∗(β̂sup)] .

Proof. Setting the derivative of (1.7) with respect to β to 0 and rearranging we get

β =

(

∫ ∞

−∞
x2 fX(x)dx

)−1

∑
y∈{0,1}

∫ ∞

−∞
xy fX,Y(x, y)dx (1.9)

=

(

∫ ∞

−∞
x2 fX(x)dx

)−1 ∫ ∞

−∞
x fX(x) ∑

y∈{0,1}
yP(y|x)dx (1.10)

=

(

∫ ∞

−∞
x2 fX(x)dx

)−1 ∫ ∞

−∞
x fX(x)E[y|x]dx . (1.11)
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Figure 1.2 | An example where implicitly constrained optimization improves performance.
The supervised solution β̂sup which minimizes the supervised loss (the solid
curve), is not part of the interval of allowed solutions. The solution that min-
imizes this supervised loss within the allowed interval is β̂semi. This solution
is closer to the optimal solution β∗ than the supervised solution β̂sup.

In this last equation, since we assume fX(x) as given, the only unknown is the
function E[y|x], the expectation of the label y, given x. Now suppose we consider
every possible labeling of the unlimited number of unlabeled objects including frac-
tional labels, that is, every possible function where E[y|x] ∈ [0, 1]. Given this re-
striction on E[y|x], the second integral in (1.11) becomes a re-weighted version of
the expectation operation over x. By changing the choice of E[y|x] one can vary the
value of this integral, but it will always be bounded on an interval on R. It follows
that all possible β’s also form an interval on R, which is the constraint set Cβ. The
optimal solution has to be in this interval, since it corresponds to a particular but
unknown E[y|x].

Using the set of labeled data, we can construct a supervised solution β̂sup that
minimizes the loss on the training set of L labeled objects (see Figure 1.2):

β̂sup = argmin
β∈R

L

∑
i=1

(xiβ − yi)
2 . (1.12)

Now, either this solution falls within the constrained region, β̂sup ∈ Cβ or not,
β̂sup /∈ Cβ, with diferent consequences:

1. If β̂sup ∈ Cβ there is a labeling of the unlabeled points that gives us the same
value for β. Therefore, the solution falls within the allowed region and there
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is no reason to update our estimate. Therefore β̂semi = β̂sup.
2. Alternatively, if β̂sup /∈ Cβ, the solution is outside of the constrained region (as

shown in Figure 1.2): there is no possible labeling of the unlabeled data that
will give the same solution as β̂sup. We then update the β to be the β within
the constrained region that minimizes the loss on the supervised training set.
As can be seen from Figure 1.2, this will be a point on the boundary of the
interval. Note that β̂semi is now closer to β∗ than β̂sup. Since the true loss
function R∗(β) is convex and achieves its minimum in the optimal solution,
corresponding to the true labeling, the risk of our semi-supervised solution
will always be equal to or lower than the loss of the supervised solution.

Thus, the proposed update either improves the estimate of the parameter β or
it does not change the supervised estimate. In no case will the semi-supervised
solution be worse than the supervised solution, in terms of the expected squared
loss. This concludes the proof of the irst part of the theorem.

The last part of the theorem gives a general condition when, in expectation, our
semi-supervised approach will outperform the supervised learner. Because β̂semi

will never be worse than β̂sup, to prove this we only need to show that for some
observation of a labeled point with positive fX,Y(x, y) > 0, the estimated β̂sup is
outside of the interval Cβ, in which case R∗(β̂semi) < R∗(β̂sup).

If we observe an object labeled 1 with feature value x, the corresponding estim-
ate β̂sup = 1

x . Since the improvement in loss will only result if this estimate is not
in the constrained region, we need to show that

P( 1
x /∈ Cβ, y = 1) > 0 . (1.13)

To do this, consider the bounds of the interval Cβ. These most extreme values
are obtained whenever all negative values of x are assigned label 0 while the pos-
itive x get labels 1, or the other way around. From (1.11) and writing E(X2) =
∫ ∞

−∞
x2 fX(x)dx we ind the interval is given by

Cβ =

[
∫ 0
−∞

x fX(x)dx

E(X2)
,

∫ ∞

0 x fX(x)dx

E(X2)

]

. (1.14)

Combining this with (1.13), we get the condition

P

(

E(X2)
∫ 0
−∞

x fX(x)dx
< x < 0 ∨ 0 < x <

E(X2)
∫ ∞

0 x fX(x)dx
, y = 1

)

> 0 . (1.15)

Since fX,Y is assumed to be continuous, E[X2] > 0, and the lower bound in this
equation is always smaller than 0, while the upper bound is always larger than
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0. The assumption of the continuity of fX,Y ensures that (1.15) holds whenever
fX,Y(0, 1) > 0. The property fX,Y(0, 1) > 0 is satisied by many distributions of
the data. The result, therefore, indicates, that in the case of 1 labeled sample im-
provement is not only possible, but will occur in many cases. When we have mul-
tiple labeled examples, this efect will likely become smaller. This makes sense: the
more labeled data we have to estimate the parameter, the smaller the impact of the
unlabeled objects will be.

1.6 Empirical Results

To study the properties of the proposed semi-supervised approach to least squares
classiication, we compare how this approach fares against supervised least squares
classiication without the constraints.

For comparison we include two alternative semi-supervised approaches and an
oracle solution:

Self-Learning Using a simple procedure proposed by McLachlan (1975), among
others, the supervised least squares classiier is updated iteratively by using its class
predictions on the unlabeled objects as the labels for the unlabeled objects in the
next iteration. This is done until convergence.

Updated Second Moment Least Squares (USM) In this approach we replace the
second moment matrix XTX with an appropriately scaled matrix XT

e Xe similar to
the estimator studied in (Shafer, 1991):

β̂USM =
(

L
L+U XT

e Xe

)−1
XTy

where Xe and y are centered. This centering ensures that results do not depend on
the particular encoding of the labels used. We will refer to this as updated second
moment least squares (USM) classiication.

Oracle The performance of the least squares classiier if all unlabeled objects were
labeled as well. This serves as the unattainable upper bound on the performance
of any semi-supervised learner.

A description of the datasets used for our experiments is given in Table 1.1. We
use datasets from both the UCI repository (Lichman, 2013) and from the bench-
mark datasets proposed by Chapelle et al. (2006). While the benchmark datasets
proposed in Chapelle et al. (2006) are useful, in our experience, the results on these
datasets are very homogeneous because of the similarity in their dimensionality
and their low Bayes errors. The UCI datasets are more diverse both in terms of
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the number of objects and features as well as the nature of the underlying prob-
lems. Taken together, this collection allows us to investigate the properties of our
approach for a wide range of problems. All the code used to run the experiments
is available from the irst author’s website.

Table 1.1 | Description of the datasets used in the experiments. PCA99 refers to the
number of principal components required to retain at least 99% of the variance.
Majority refers to the proportion of the number of objects from the largest
class

Dataset Objects Features PCA99 Majority Source
Haberman 306 3 3 0.74 (Lichman, 2013)
Ionosphere 351 33 30 0.64 (Lichman, 2013)
Parkinsons 195 22 12 0.75 (Lichman, 2013)
Diabetes 768 8 8 0.65 (Lichman, 2013)
Sonar 208 60 43 0.53 (Lichman, 2013)
SPECT 267 22 21 0.79 (Lichman, 2013)
SPECTF 267 44 37 0.79 (Lichman, 2013)
Transfusion 748 4 3 0.76 (Lichman, 2013)
WDBC 569 30 17 0.63 (Lichman, 2013)
Mammography 961 9 9 0.54 (Lichman, 2013)
Digit1 1500 241 221 0.51 (Chapelle et al., 2006)
USPS 1500 241 183 0.80 (Chapelle et al., 2006)
COIL2 1500 241 114 0.50 (Chapelle et al., 2006)
BCI 400 117 45 0.50 (Chapelle et al., 2006)
g241c 1500 241 235 0.50 (Chapelle et al., 2006)
g241d 1500 241 235 0.50 (Chapelle et al., 2006)

Peaking Behaviour in Semi-supervised Least Squares

With fewer than d samples, the supervised least squares classiier that utilizes a
pseudo-inverse is known to exhibit a peaking phenomenon, as described by Opper
and Kinzel (1995) and Raudys and Duin (1998): Starting from a single observation,
expected classiication errors generally decrease as we add more data before errors
increase again to reach a maximum approximately when the number of features is
equal to the number of observations. This phenomenon can also be observed in the
semi-supervised setting. Figures 1.3 and 1.4 show learning curves of the methods
considered here, using 10 labeled training objects and an increasing number of un-
labeled objects. Performance is evaluated on objects that were not in the labeled
or unlabeled set. The Oracle classiier indicates the mean error when we do have
the labels for the unlabeled objects and therefore corresponds to the peaking phe-
nomenon in the supervised case. In the supervised case, several proposals have
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Figure 1.3 | Peaking phenomenon in Semi-supervised Least Squares Classification. The
lines indicate the mean classification error for L = max(d + 5, 20) and 1000
repeats. The shaded areas indicate the standard error of the mean, which are
so small in this case, they are barely perceptible.

been done to ameliorate this peaking behaviour, such as feature selection, regu-
larization, removing objects, injecting noise in the features, or adding redundant
features (Skurichina and Duin, 1999). The semi-supervised learners sufer from
the same peaking phenomenon, except that unlike the Oracle, USM and ICLS do
not fully recover from the initial increase in classiication error.

We have no full explanation for the observed peaking behaviour in the semi-
supervised setting. Even in the supervised setting the behaviour remains elusive.
The two observation we do make are: 1. that the peak occurs at the same location
for both the supervised and semi-supervised scenarios, which is likely due to the
dependence of all methods on the inverse of XT

e Xe and 2. that the subspace deined
by the input data is the deining characteristic for the location of the peak.

This peaking behaviour is not the primary topic of this work and in the re-
mainder we will restrict our attention to the case where there are enough labeled
objects such that the matrix XTX is invertible.

Comparison of Learning Curves

We study the behavior of the expected classiication error of the ICLS procedure for
diferent sizes of the unlabeled set. This statistic has two desired properties. First of
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Figure 1.4 | Zoomed in version of Figure 1.3

all it should never be higher than the expected classiication error of the supervised
solution, which is based on only the labeled data. Secondly, the expected classiic-
ation error should not increase as we add more unlabeled data. A semi-supervised
classiier that has both these properties can be used safely, since adding unlabeled
data and continuing to add more unlabeled data will never decrease performance,
on average.

Experiments were conducted as follows. For each dataset, L labeled points were
randomly chosen, where we make sure to sample at least 1 object from each of the
two classes. Since the peaking phenomenon described in the previous section is not
main topic of this work, we avoid this situation by considering the setting in which
the labeled design matrix is of full rank, which we ensure by setting L = d + 5, the
dimensionality of the dataset plus ive observations. For all datasets we ensure a
minimum of L = 20 labeled objects.

Next, we create unlabeled subsets of increasing size U = [2, 4, 8, ..., 1024] by ran-
domly selecting points from the original dataset without replacement. The classii-
ers are trained using these subsets and the classiication performance is evaluated
on the remaining objects. Since the test set decreases in size as the number of un-
labeled objects increases, the standard error slightly increases with the number of
unlabeled objects.

The results of these experiments are shown in Figure 1.5. We report the mean
classiication error as well as the standard error of this mean. As can be seen from
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the tight conidence bands, this ofers an accurate estimate of the expected classiic-
ation error.

This procedure of sampling labeled and unlabeled points is repeated 1000 times
and the average classiication error (Figure 1.5) and squared loss (Figure 1.6) on the
test set is determined. The latter is done to evaluate whether the approach is efect-
ive in increasing generalization performance in terms of the loss used in estimating
the classiier. This is the same loss that we consider in Theorem 1. Even though
in applications the ultimate goal may typically be classiication performance, this
allows us to study whether problems occur because of the optimization itself, or
because of the link between the surrogate loss used and the classiication error.

We ind that, generally, the ICLS procedure has monotonically decreasing er-
ror curves as the number of unlabeled samples increases, unlike self-learning. On
the Diabetes and Transfusion datasets, the performance of self-learning becomes
worse than the supervised solution when more unlabeled data is added, while the
ICLS classiier again exhibits a monotonic decrease of the average error rate. The
USM classiier performs well on most datasets except for the Mammography data-
set, where both in terms of average error rates and squared loss, performance is
worse than the supervised classiier.

When we compare the error curves and the loss curves, the non monotonically
decreasing losses for the self-learner correspond to increased errors. In general,
however, similar losses for diferent classiiers can give rise to diferent behaviours
in terms of error rates.

Benchmark Performance

We now consider the performance of these classiiers in a cross-validation setting.
The experiment is set up as follows. For each dataset, the objects are randomly
divided into 10 folds. We iteratively go through the folds using 1 fold as validation
set, and the other 9 as the training set. From this training set, we then randomly
select L = max(d + 5, 20) labeled objects, as in the previous experiment, and use
the rest as unlabeled data. After predicting labels for the validation set for each
fold, the classiication error is then determined by comparing the predicted labels
to the real labels. This is repeated 100 times, while randomly assigning objects to
folds in each iteration.

The cross-validation procedure used here is slightly diferent from that described
in (Chapelle et al., 2006), to make it more closely relate to the cross-validation pro-
cedure that is usually employed in supervised learning. More speciically, our pro-
cedure ensures the validation sets are independent (non-overlapping), such that,
after going over all the folds, each object is in the validation set only once. This is
diferent from the procedure in (Chapelle et al., 2006), were the authors ensure the
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Figure 1.5 | Mean classification error for L = max(d + 5, 20) and 1000 repeats. The
shaded areas indicate the standard error of the mean, which are so small in
some cases, they are barely perceptible.
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Figure 1.6 | Mean squared loss on the test set for L = max(d + 5, 20) and 1000 repeats.
The shaded areas indicate the standard error of the mean, which are so small
in some cases, they are barely perceptible.
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Table 1.2 | Results for the Least Squares Classifier. Average 10-fold cross-validation error
and (between parentheses) number of times the error of the semi-supervised
classifier is higher than the supervised error for 100 repeats. Indicated in
bold is which semi-supervised classifier has lowest average error. A Wilcoxon
signed rank test at 0.01 significance level is done to determine whether a semi-
supervised classifier is significantly worse than the supervised classifier, indic-
ated by underlined values.

Dataset Supervised Self-Learning USM ICLS Oracle
Haberman 0.29 0.28 (33) 0.28 (42) 0.29 (24) 0.26 (11)
Ionosphere 0.29 0.24 (1) 0.22 (1) 0.19 (0) 0.13 (0)
Parkinsons 0.34 0.29 (5) 0.25 (3) 0.26 (1) 0.12 (0)
Diabetes 0.32 0.34 (83) 0.31 (31) 0.31 (7) 0.23 (0)
Sonar 0.42 0.37 (5) 0.34 (3) 0.33 (1) 0.25 (0)
SPECT 0.41 0.39 (28) 0.28 (0) 0.33 (1) 0.18 (0)
SPECTF 0.43 0.40 (14) 0.31 (0) 0.36 (2) 0.23 (0)
Transfusion 0.27 0.28 (63) 0.26 (30) 0.27 (25) 0.23 (2)
WDBC 0.27 0.18 (0) 0.20 (2) 0.13 (0) 0.04 (0)
Mammography 0.28 0.28 (28) 0.28 (54) 0.27 (14) 0.20 (0)
Digit1 0.42 0.34 (0) 0.25 (0) 0.20 (0) 0.06 (0)
USPS 0.42 0.34 (0) 0.22 (0) 0.20 (0) 0.09 (0)
COIL2 0.39 0.27 (0) 0.24 (0) 0.19 (0) 0.10 (0)
BCI 0.41 0.35 (1) 0.30 (0) 0.28 (0) 0.16 (0)
g241c 0.45 0.39 (0) 0.30 (0) 0.29 (0) 0.14 (0)
g241d 0.45 0.39 (0) 0.30 (0) 0.29 (0) 0.13 (0)

labeled sets are non-overlapping. We have not found a qualitative diference in the
error rates, however, when using the procedure proposed in (Chapelle et al., 2006).
The advantage of the procedure employed here is that every object gets a single
predicted label, allowing for the direct comparison of predictions of diferent clas-
siiers.

The results shown in Table 1.2 tell a similar story to those in the previous ex-
periment. Most importantly for the purposes of this paper, ICLS, in general, ofers
solutions that give at least no higher expected classiication error than the super-
vised procedure. On many of these datasets, the self-learning approach seems to
share this property. However, if we look at for how many of the cross-validation
repeats the ICLS and self-learning give lower error than the supervised solution,
there is a clear diference. The self-learning solution gives a higher error on more
of the repeats than ICLS, for all of the datasets.

The results also show that unlabeled information is of use. Particularly on the
last six datasets, ICLS and USM ofers large improvement in classiication accuracy
over the supervised solution. The diferences in performance between ICLS and
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Table 1.3 | Results for the Support Vector Classifier. Average 10-fold cross-validation
error and (between parentheses) number of times the error of the semi-
supervised classifier is higher than the supervised error for 100 repeats. In-
dicated in bold is which semi-supervised classifier has lowest average error.
A Wilcoxon signed rank test at 0.01 significance level is done to determine
whether a semi-supervised classifier is significantly worse than the supervised
classifier, indicated by underlined values.

Dataset Supervised Self-Learning TSVM Oracle
Haberman 0.29 0.29 (34) 0.32 (92) 0.26 (8)
Ionosphere 0.17 0.18 (81) 0.17 (51) 0.11 (0)
Parkinsons 0.22 0.22 (32) 0.22 (60) 0.14 (0)
Diabetes 0.31 0.31 (40) 0.28 (7) 0.23 (0)
Sonar 0.26 0.26 (53) 0.25 (33) 0.25 (25)
SPECT 0.30 0.28 (13) 0.25 (3) 0.18 (0)
SPECTF 0.30 0.29 (28) 0.28 (29) 0.21 (0)
Transfusion 0.27 0.27 (59) 0.29 (96) 0.23 (0)
WDBC 0.06 0.06 (53) 0.05 (30) 0.03 (0)
Mammography 0.27 0.28 (60) 0.25 (3) 0.20 (0)
Digit1 0.08 0.08 (85) 0.06 (1) 0.05 (0)
USPS 0.14 0.13 (17) 0.12 (5) 0.11 (1)
COIL2 0.16 0.16 (75) 0.19 (100) 0.09 (0)
BCI 0.28 0.29 (70) 0.36 (99) 0.17 (0)
g241c 0.22 0.23 (87) 0.17 (0) 0.16 (0)
g241d 0.23 0.24 (90) 0.17 (0) 0.16 (0)

self-learning can also be quite substantial, where ICLS outperforms self-learning
on most of the datasets. USM performs well on many of the datasets, especially
when we consider how simple and computationally eicient this procedure is.

While we are interested in a semi-supervised procedure that outperforms the
supervised least squares classiier, for comparison we repeated the experiment for
the (linear) supervised SVM, self-learning applied to the SVM and the Transductive
SVM. We used the SVM and TSVM implementations of Sindhwani and Keerthi
(2006), setting the L2 regularization parameter to λ = 1 and the inluence parameter
of the unlabeled data to 1, as was also done in (Sindhwani and Keerthi, 2006). The
experiment is set up in the same way as the one in Table 1.2. The results are shown
in Table 1.3.

On many of the datasets, the supervised support vector classiier has a lower
error than the supervised least squares classiier, due to the use of a regulariza-
tion term in the SVM implementation, which we do not include in our analysis
and which makes the results diicult to compare directly to the results in Table 1.2.
Self-learning performs worse compared to the least squares setting, which may be
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a consequence of the supervised solution already being a decent solution on some
of these datasets. The Transductive SVM ofers some improvements over the super-
vised solution. Compared to ICLS, however, the TSVM gives worse performance
than the supervised solution on many more datasets and many more repeats, the
exact behaviour we attempted to avoid when constructing ICLS.

1.7 Discussion

From Theory to Empirical Results

The results presented in this paper are rather promising, especially in the light of
the negative theoretical performance results presented in the literature (Cozman
and Cohen, 2006). The result in Theorem 1, to start with, indicates the proposed
procedure is in some way robust against reduction in performance. The strong
result of this theorem, stating that performance never gets worse, holds in the 1D
case with unlimited unlabeled data and no intercept in the model. A slightly weaker
result, that performance does not degrade on average may still hold without these
assumptions. This last statement is corroborated by the empirical results showing
improvements in averaged squared errors for ICLS throughout.

The results in the previous section also indicate that such improved results hold
in terms of the misclassiication error, at least on this collection of datasets. These
empirical observations are encouraging because we are often interested in misclas-
siication error and not the squared loss that was considered in Theorem 1. Further-
more the experiments were carried out in the multivariate setting with an intercept
term using limited unlabeled data, rather than the unlimited unlabeled data set-
ting considered in the theorem. This indicates that minimizing the supervised loss
over the subset Cβ, leads to a semi-supervised learner with desirable behavior, both
theoretically in terms of risk and empirically in terms of classiication error.

Robustness

The method considered in this work is diferent from most previous work in semi-
supervised learning in that it is inherently robust against a decrease in performance.
The robustness of the method comes from the fact that we do not accept solutions
that do not work on the labeled data. The goal of semi-supervised learning is to
improve supervised techniques using the additional information inherent in the
additional unlabeled objects. Previous approaches have done this by changing the
loss function that is being optimized, in particular by introducing an extra term
corresponding to assumptions about the unlabeled data. The loss function then
becomes a mixture between the supervised objective and an unsupervised objective,
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which may lead to decreased performance as we observed in Table 1.3. If the goal
is classiication, we propose that the loss function should remain the supervised
loss function. The unlabeled objects are merely used to introduce constraints on
the possible solutions to this loss function, but do not change its functional form.

Assumptions

Most other semi-supervised techniques rely on introducing useful assumptions
that link information about the distribution of the features PX to the posterior of the
classes PY|X . It has been argued that, for discriminative classiiers, semi-supervised
learning is impossible without these additional assumptions about the link between
labeled and unlabeled objects (Seeger, 2001; Singh et al., 2008). ICLS, however, is
both a discriminative classiier and no explicit additional assumptions about this
link are made. Any assumptions that are present follow, implicitly, from the choice
of squared loss as the loss function and from the chosen hypothesis space.

In fact, additional assumptions may actually be at the root of the problem: clearly
if such an additional assumption is correct, a semi-supervised classiier can gain
from it, but if the assumption is incorrect, degraded performance may ensue. What
we leverage in our approach are the implicit assumptions that are, in a sense, in-
trinsic to the supervised least squares classiier.

One could argue that constraining the solutions to Cβ is an assumption as well.
It corresponds to a very weak assumption about the supervised classiier: that it
will improve when we add additional labeled data. This is generally assumed in
the supervised setting as well. The lack of additional assumptions has another ad-
vantage: no additional hyperparameter value needs to be selected that controls the
importance of the unlabeled data for the results in Sections 1.5 and 1.6 to hold as
ICLS acts as a type of data dependent regularization.

Note that the solution provided by self-learning is, by construction, also in the
constrained subset Cβ. The diference with ICLS is that in ICLS the choice of estim-
ate from Cβ is based on information of the labeled objects only, while self-learning
also uses the imputed labels on the unlabeled objects. This may lead to self-deception:
if the imputed labels are wrong, a good it for these wrongly imputed labels does
not necessarily lead to an improved β. In fact, it might lead to worse choices as
shown in the results.

Time Complexity

In terms of the number of features, ICLS scales in the same way as the supervised
least squares solution, where the main bottleneck is the calculation of (XT

e Xe)−1.
Furthermore, the quadratic programming formulation of ICLS presented in Sec-
tion 1.4 allows one to use the standard and constantly improving tools from convex
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optimization to ind the ICLS estimate. Unfortunately one has to go from a con-
vex problem with d + 1 variables in the supervised case to a constrained convex
problem with U variables for ICLS. For very large U, this may not currently be com-
putationally feasible. Further insight in the general nature of the semi-supervised
solutions that one obtains can lead to more dedicated and potentially better scal-
able methods to solve the quadratic programming problem we have to deal with in
our approach.

Compared to ICLS, self-learning seems more favorable in terms of computa-
tional cost. Self-learning usually converges in a few iterations, where each iteration
has at most the cost of one supervised least squares estimation. In our implementa-
tions, however, self-learning and ICLS had similar training times (Figure 1.7). USM
with its simple closed form solution has much lower training times and performs
surprisingly well.

Squared Loss

Generally, models used in practice do not directly minimize misclassiication error.
For computational reasons, often convex surrogate losses, such as the one employed
here are minimized. It is therefore interesting to look at the performance of a classi-
ier in terms of these surrogate losses (Loog, Krijthe et al., 2016). We have chosen to
restrict ourselves to a particular convex loss and attempted to ensure improvement
in terms of this chosen loss function.

When we compare the average squared loss on the test set, ICLS, USM and self-
learning often seem to ofer similar performance. This is quite unlike the results
in, for instance (Loog, 2010; Loog and Jensen, 2014), where the self-learner often
performed much worse in terms of the loss than an approach based on constraining
the solution using unlabeled data. While Loog (2010) and Loog and Jensen (2014)
consider a generative classiier, we consider a discriminative classiier, in which case
self-learning may be less susceptible to increases in the loss. Self-learning does,
however, still increase the loss on some datasets, unlike ICLS.

The peaking phenomenon described in (Opper and Kinzel, 1995; Raudys and
Duin, 1998) is known to occur for squared loss minimization when we increase
the number of labeled samples. Here we ind it also occurs when we change the
number of unlabeled samples. It seems that ICLS and USM are more sensitive to
this problem than self-learning. As yet, we do not have any explanation for this
behavior. Further improvements to the current approach may start by trying to
understand this occurrence of peaking.
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Other Losses

While the results presented in this work are promising for squared loss, an open
question is what other classiiers could beneit from the implicitly constrained ap-
proach considered here. Using negative log likelihood as a loss function, for in-
stance, also leads to an interesting implicitly constrained semi-supervised classiier,
for instance, in linear discriminant analysis (Krijthe and Loog, 2014).

In the derivation of ICLS, we made use of the closed-form solution given an
imputed labeling to derive a quadratic programming problem in terms of the la-
bels. For many loss functions, closed-form solutions do not exist, which prohib-
its a straightforward formulation of their implicitly constrained semi-supervised
counterparts. Without a supervised closed-form solution one cannot straightaway
apply techniques like gradient descent to the parameters as this typically leads to
solutions that are outside of the set Cβ, even if the loss considered is diferentiable.

More Constraints

In Figure 1.1, we illustrate that projecting onto the subset Cβ causes improvement
as long as a better solution β̂oracle than the supervised solution is within Cβ. A
smaller Cβ will give a larger improvement, since the semi-supervised solution is
going to be closer to β̂oracle. In the extreme case where only β̂oracle forms the subset,
this clearly gives a large improvement over supervised learning. It therefore makes
sense to think about reducing the size of Cβ. In the approach presented in this work,
however, to ensure a better solution β̂oracle than the supervised solution is always
within the constraint set with probability P(β̂oracle ∈ Cβ) = 1, our choice of Cβ

is conservatively large. It contains elements corresponding to all labelings of the
unlabeled points, even extremely unlikely ones.

By excluding unlikely labelings from the subset, the size of Cβ may shrink, while
the probability that it includes β̂oracle remains high. For instance, one might exclude
labelings with class priors that are very unlikely to occur, given the class priors that
are observed in the labeled data, a strategy which is also employed in Transductive
SVMs where it is necessary for it to converge to meaningful local optima. Changes
to Cβ may, therefore, allow for larger improvements in terms of the risk or classiic-
ation error, while introducing a small chance of deterioration in performance.

1.8 Conclusion

This work introduced a new semi-supervised approach to least squares classiica-
tion. By implicitly considering all possible labelings of the unlabeled objects and
choosing the one that minimizes the loss on the labeled observations, we derived
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a robust classiier with a simple quadratic programming formulation. For this pro-
cedure, in the univariate setting with a linear model without intercept, we can prove
it never degrades performance in terms of squared loss (Theorem 1). Experimental
results indicate that in expectation this robustness also holds in terms of classiica-
tion error on real datasets. Hence, semi-supervised learning for least squares classi-
ication without additional assumptions can lead to improvements over supervised
least squares classiication both in theory and in practice.



CHAPTER TWO

Implicitly Constrained Semi-supervised
Linear Discriminant Analysis

Semi-supervised learning is an important and active topic of research in pattern
recognition. For classification using linear discriminant analysis specifically, several
semi-supervised variants have been proposed. Using any one of these methods is
not guaranteed to outperform the supervised classifier which does not take the ad-
ditional unlabeled data into account. In this work we compare traditional Expectation
Maximization type approaches for semi-supervised linear discriminant analysis with ap-
proaches based on intrinsic constraints and propose a new principled approach for
semi-supervised linear discriminant analysis, using so-called implicit constraints. We
explore the relationships between these methods and consider the question if and in
what sense we can expect improvement in performance over the supervised procedure.
The constraint based approaches are more robust to misspecification of the model, and
may outperform alternatives that make more assumptions on the data in terms of the
log-likelihood of unseen objects.

2.1 Introduction

In many real-world pattern recognition tasks, obtaining labeled examples to train
classiication algorithms is much more expensive than obtaining unlabeled examples.
These tasks include document and image classiication (Nigam et al., 2000) where
unlabeled objects can easily be downloaded from the web, part of speech tagging
(Elworthy, 1994), protein function prediction (Weston et al., 2005) and many others.

This chapter appeared as: Krijthe, J.H. & Loog, M., 2014. Implicitly Constrained Semi-Supervised Linear
Discriminant Analysis. In Proceedings of the 22nd International Conference on Pattern Recognition (pp. 3762–
3767).
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Using unlabeled data to improve the training of a classiication procedure, however,
requires semi-supervised variants of supervised classiiers to make use of this ad-
ditional unlabeled data. Research into semi-supervised learning has therefore seen
an increasing amount of interest in the last decade (Chapelle et al., 2006).

In supervised learning adding additional labeled training data improves per-
formance for most classiication routines. This does not generally hold for semi-
supervised learning (Cozman and Cohen, 2006). Adding additional unlabeled data
may actually deteriorate classiication performance. This can happen when the
underlying assumptions of the model do not hold. In efect, disregarding the un-
labeled data can lead to a better solution.

In this work we consider linear discriminant analysis (LDA) applied to classi-
ication. Several semi-supervised adaptations of this supervised procedure have
been proposed. These approaches may sufer from the problem that additional
unlabeled data degrade performance. To counter this problem, (Loog, 2014) intro-
duced moment constrained LDA, which ofers a more robust type of semi-supervised
LDA. The recently introduced idea of implicitly constrained estimation (Krijthe and
Loog, 2015), is another method that relies on constraints given by the unlabeled
data. We compare these two approaches to other semi-supervised methods, in
particular, expectation maximization and self-learning, and empirically study in
what sense we can expect improvement by employing any of these semi-supervised
methods.

The contributions of this work are the following:

• Introduce a new, principled approach to semi-supervised LDA: implicitly
constrained LDA

• Ofer a comparison of semi-supervised versions of linear discriminant ana-
lysis

• Explore ways in which we can expect these semi-supervised methods to ofer
improvements over the supervised variant, in particular in terms of the log
likelihood

The rest of this paper is organized as follows. After discussing related work,
we introduce several approaches to semi-supervised linear discriminant analysis.
These methods are then compared on an illustrative toy problem and in an em-
pirical study using several benchmark datasets. We end with a discussion of the
results and conclude.

2.2 Related Work

Some of the earliest work on semi-supervised learning was done by (McLachlan,
1975; McLachlan, 1977) who studied the self-learning approach applied to linear
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discriminant analysis. This has later also been referred to as Yarowsky’s algorithm
(Yarowsky, 1995). This approach is closely related to Expectation Maximization
(Abney, 2004), where, in a generative model, the unknown labels are integrated out
of the likelihood function and the resulting marginal likelihood is maximized (De-
mpster et al., 1977). More recent work on discriminative semi-supervised learning
has focussed on introducing assumptions that relate unlabeled data to the labeled
objects (Chapelle et al., 2006). These assumptions usually take the form of either a
manifold assumption (Zhu, Ghahramani et al., 2003), encoding that labels change
smoothly in a low dimensional manifold, or a low-density class separation assump-
tion used in, for instance, transductive support vector machines (Bennett and De-
miriz, 1998; Joachims, 1999) and entropy regularization (Grandvalet and Bengio,
2005).

Work on semi-supervised LDA has tried to incorporate unlabeled data by lever-
aging the increase in accuracy of estimators of quantities that do not rely on la-
bels. An approach relying on the more accurate estimate of the total covariance
matrix of both labeled and unlabeled objects is taken for dimensionality reduc-
tion in Normalized LDA, proposed by (Fan et al., 2008) and similar work by (Cai
et al., 2007). In addition to this covariance matrix, (Loog, 2014) also include the
more accurate estimate of the overal mean of the data and propose two solutions
to solve a subsequent optimization problem. Building on these results, in (Krijthe
and Loog, 2015) we introduced implicitly constrained least squares classiication,
a semi-supervised adaptation of least squares classiication. Since this procedure
proved both theoretically and practically successful for a discriminative classiier,
here we consider whether the idea of implicitly constrained semi-supervised learn-
ing can be extended to generative classiiers such as LDA.

2.3 Methods

We will irst introduce linear discriminant analysis as a supervised classiication
algorithm and discuss diferent semi-supervised procedures. We will consider 2-
class classiication problems, where we are given an Nl × d design matrix X, where
Nl is the number of labeled objects and d is the number of features. For these
observations we are given a label vector y = {0, 1}Nl . Additionally, in the semi-
supervised setting we have an Nu × d design matrix Xu without a corresponding
yu for the unlabeled observations.

Supervised LDA

In supervised linear discriminant analysis, we model the 2 classes as having mul-
tivariate normal distributions with the same covariance matrix Σ and difering
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means µ1 and µ2. To estimate the parameters of this model, we maximize the like-
lihood, or, equivalently, the log likelihood function:

L(θ|X, y) =
Nl

∑
i=1

yi log(π1N (xi|µ1, Σ))

+ (1 − yi) log(π2N (xi|µ2, Σ)) , (2.1)

where θ = (π1, π2, µ1, µ2, Σ), N (xi|µ, Σ) denotes the density of a multivariate nor-
mal distribution with mean µ and covariance Σ evaluated at xi and πc denotes the
prior probability for class c. The closed form solution to this maximization is given
by the estimators:

π̂1 =
∑

Nl
i=1 yi

Nl
, π̂2 =

∑
Nl
i=1(1 − yi)

Nl

µ̂1 =
∑

Nl
i=1 yixi

∑
Nl
i=1 yi

, µ̂2 =
∑

Nl
i=1(1 − yi)xi

∑
Nl
i=1(1 − yi)

Σ̂ =
1

Nl

Nl

∑
i=1

yi(xi − µ1)(xi − µ1)
⊤

+ (1 − yi)(xi − µ2)(xi − µ2)
⊤ (2.2)

Here the maximum likelihood estimator Σ̂ is a biased estimator for the covariance
matrix. Given a set of labeled objects (X, y), we can estimate these parameters and
ind the posterior for a new object x using:

p(c = 1|x) = π1N (x|µ̂1, Σ̂)

∑
2
c=1 πcN (x|µ̂c, Σ̂)

. (2.3)

This posterior distribution can be employed for classiication by assigning objects
to the class for which its posterior is highest. We now consider several adaptations
of this classiication procedure to the semi-supervised setting.

Self-Learning LDA (SLLDA)

A common and straightforward adaptation of any supervised learning algorithm
to the semi-supervised setting is self-learning, which is also known as Yarowsky’s
algorithm or bootstrapping (McLachlan, 1975; Yarowsky, 1995). Starting out with
a classiier trained on the labeled data only, labels are predicted for the unlabeled
objects. These objects, with their imputed labels are then used in the next iteration
to retrain the classiier. This new classiier is now used to relabel the unlabeled
objects. This is done until the predicted labels on the unlabeled objects converge.
Abney (2004) studies the underlying loss that this procedure minimizes and proves
its convergence.
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Expectation Maximization LDA (EMLDA)

Assuming the mixture model of Equation (2.1) and treating the unobserved labels
yu as latent variables, a possible adaptation of this model is to add a term for the
unlabeled data to the objective function and to integrate out the unknown labels,
yu, to ind the marginal likelihood:

l(θ|X, y, Xu) =
Nl

∏
i=1

(π1N (xi|µ1, Σ))yi (π2N (xi|µ2, Σ))1−yi

×
Nu

∏
i=1

2

∑
c=1

πcN (xi|µc, Σ) . (2.4)

Maximizing this marginal likelihood, or equivalently, the log of this function, is
harder than the supervised objective in Equation (2.1), since the expression con-
tains a log over a sum. However, we can solve this optimization problem using
the well-known expectation maximization (EM) algorithm (Dempster et al., 1977;
Nigam et al., 2000). In EM, the log over the sum is bounded from below through
Jensen’s inequality. In the M step of the algorithm, we maximize this bound by up-
dating the parameters using the imputed labels obtained in the E step. In practice,
the M step consists of the same update as in Equation (2.2), where the sum is no
longer over the labeled objects but also the unlabeled objects using the imputed pos-
teriors, or responsibilities, from the E step. In the E step the lower bound is made
tight by updating the imputed labels using the posterior under the new parameter
estimates. This is done until convergence. In efect this procedure is very similar
to self-learning, where instead of hard labels, a probability over labelings is used.
Both self-learning and EM sufer from the problem of wrongly imputed labels that
can reinforce their wrongly imputed values because the parameters are updated as
if they were the true labels.

Moment Constrained LDA (MCLDA)

An alternative to the EM-like approaches like EMLDA and SLLDA was proposed
by Loog (2010) in the form of moment constrained parameter estimation. The main
idea is that there are certain constraints that link parameters that are calculated
using feature values alone, with parameters which require the labels. In the case of
LDA (Loog, 2014), for instance, the overal mean of the data is linked to the means
of the two classes through:

µt = π1µ1 + π2µ2 (2.5)

Were µt is the overal mean on all the data and therefore does not depend on the
labels. The total covariance matrix Σt is linked to the within-class covariance matrix
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Σ and between-class covariance matrix Σb, the covariance matrix of the means. Only
the latter two rely on the labels:

Σt = Σ + Σb (2.6)

Recognizing that the unlabeled data allow us to more accurately estimate the para-
meters in these constraints that do not rely on the labels, Loog (2014) points out
that this more accurate estimate will generally violate the constraints, meaning the
other label-dependent estimates should be updated accordingly.

An ad hoc way to update the parameters based on these more accurate estimates
(Loog, 2014) leads to the following updated moment constrained estimators:

µ̂MC
c = Θ̂

1
2 Σ̂

− 1
2

t (µ̂c −
2

∑
j=1

π̂jµ̂j) + µ̂ (2.7)

Σ̂
MC = Θ̂

1
2 Σ̂

− 1
2

t Σ̂Σ̂
− 1

2
t Θ̂

1
2 (2.8)

where µ̂ and Θ̂ are the overal mean and overal covariance estimated on all labeled
and unlabeled data, while Σ̂t is the overal covariance estimated on the labeled data
alone.

Alternatively and slightly more formally, Loog and Jensen (2012) force the con-
straints to be satisied by maximizing the likelihood on the labeled objects under
the constraints in Equations (2.5) and (2.6). This leads to a non-convex objective
function that can be solved numerically. In this work we use the simpler ad hoc
constraints.

Implicitly Constrained LDA (ICLDA)

The former approach requires the identiication of speciic constraints. Ideally, we
would like these constraints to emerge implicitly from a choice of supervised learner
and a given set of unlabeled objects. Implicitly constrained semi-supervised learn-
ing attempts to do just that. The underlying intuition is that if we could enumer-
ate all possible 2Nu labelings, and train the corresponding classiiers, the classiier
based on the true but unknown labels is in this set. This classiier would generally
outperform the supervised classiier. Two problems arise:

1. How do we ind a classiier in this set that is close to the one based on the true
but unknown labels?

2. How do we eiciently traverse this enormous set of possible labelings without
having to enumerate them all?
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As for the irst problem: a safe way to know how well a solution performs in terms
of our supervised objective is to estimate its performance using the labeled objects.
We therefore propose the following objective:

arg max
(π1,π2,µ1,µ2,Σ)∈Cθ

L(π1, π2, µ1, µ2, Σ|X, y) , (2.9)

where

Cθ =
{

arg max L(π1, π2, µ1, µ2, Σ|Xe, ye) : yu ∈ [0, 1]Nu

}

,

and Xe = [X⊤X⊤
u ]

⊤, ye = [y⊤y⊤
u ]

⊤ are the design matrix and class vector extended
with the unlabeled data. This can be interpreted as optimizing the same objective
function as supervised LDA, with the additional constraint that the solution has to
be attainable by a particular assignment of responsibilities (partial assignments to
classes) for the unlabeled objects.

As for the second problem: since, for a given imputed labeling, we have a closed
form solution for the parameters, the gradient of the supervised loss (2.9) with re-
spect to the responsibilities yu can be found using

∂L(θ|X, y)

∂yu
=

∂L(θ|X, y)

∂θ

∂ϕ(yu)

∂yu
(2.10)

where ϕ(yu) = θ is the function that has as input a particular labeling of the points,
and outputs the parameters θ = (π1, π2, µ1, µ2, Σ), similar to Equation (2.2).

This can be used to eiciently move through the set of solutions using a simple
gradient ascent procedure that takes into account the [0, 1] bounds on the respons-
ibilities.

2.4 Experimental setup and results

We present simulations on an illustrative toy dataset and a set of benchmark data-
sets. Other than the classiiers covered in the previous section, we also include the
LDA classiier trained using all labels of the unlabeled data (LDAoracle) as an up-
per bound on the performance of any semi-supervised procedure. The experiments
can be reproduced using code from the authors’ website.

Toy Problems

To illustrate the behaviour of ICLDA when compared to EMLDA we consider two
toy datasets. In both cases we have two multivariate normal distributions centered
at respectively µ1 = [1, 1]⊤ and µ2 = [−1,−1]⊤ and equal covariance Σ = 0.6I,
with I the 2 × 2 identity matrix. An example is given in Figure 2.2. In the right
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Figure 2.1 | Semi-supervised learning curve on the Gaussian data set using 500 repeats.
The shaded regions indicate one standard error around the mean. Since their
assumptions hold exactly, SLLDA and EMLDA work very well. ICLDA also
outperforms the supervised LDA.

column, these two gaussians correspond to the diferent classes. In the left column,
we consider the case where the decision boundary is actually perpendicular to the
boundary in the other setting. This means that the right column corresponds ex-
actly to the assumptions of EM, while this is not the case in the left column. Figure
2.2 illustrates what happens in a particular sample from this problem were we draw
10 labeled and 990 unlabeled objects. When the assumption does not hold, EMLDA
forces the decision boundary to fall between the two gaussian clusters leading to
a much worse solution than the supervised LDA based on only a few labeled ex-
amples. The ICLDA solution does not deviate from the correct boundary by much.
When the assumptions do hold, EMLDA inds the correct boundary, as expected,
while ICLDA only does minor adjustments in this case.

While one could claim that ICLDA is more robust, one could also expect ICLDA
to never lead to any improvements. Figure 2.1 shows the results when resampling
from the data distribution in the second example and shows that ICLDA does lead
to improvement on average in the second dataset, while not making the mistake in
the irst dataset where the LDA assumptions do not hold.
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Figure 2.2 | Behaviour on the two-class two dimensional gaussian datasets, with 10 labeled
objects and 990 unlabeled objects. The first column shows the scatterplot
and the trained responsibilities for respectively ICLDA and EMLDA on a data-
set where the decision boundary does not adhere to the assumptions of EM-
LDA. The second column shows the results when the decision boundary is
in between the two Gaussian classes. The black line indicates the decision
boundary of a supervised learner trained using only the labeled data. Note
that in the first column, the responsibilities of EM are very different from the
true labels, while IC is not as sensitive to this problem.
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Table 2.1 | Description of the datasets used in the experiments

Name Objects Features Source
Haberman 305 4 (Lichman, 2013)
Ionosphere 351 33 (Lichman, 2013)
Parkinsons 195 20 (Lichman, 2013)
Pima 768 9 (Lichman, 2013)
Sonar 208 61 (Lichman, 2013)
SPECT 265 23 (Lichman, 2013)
SPECTF 265 45 (Lichman, 2013)
Transfusion 748 4 (Lichman, 2013)
WDBC 568 30 (Lichman, 2013)
BCI 400 118 (Chapelle et al., 2006)

Simulations on Benchmark Datasets

We test the behaviour of the considered procedures using datasets from the UCI
machine learning repository (Lichman, 2013), as well as from (Chapelle et al., 2006).
Their characteristics can be found in Table 2.1.

A cross-validation experiment was carried out as follows. Each of the datasets
were split into 10 folds. Every fold was used as a validation set once, while the
other nine folds were used for training. The data in these nine folds was randomly
split into a labeled and an unlabeled part, where the labeled part had max(2d, 10)

objects, while the rest was used as unlabeled objects. This procedure was repeated
20 times and the average error and average negative log likelihood (the loss function
of LDA) on the test set was determined. The results can be found in Tables 2.2 and
2.3.

To study the behaviour of these classiiers for difering amount of unlabeled
data, we estimated semi-supervised learning curves by randomly drawing max(2d, 10)

labeled objects from the datasets, and using an increasing randomly chosen set as
unlabeled data. The remaining objects formed the test set. This procedure was re-
peated 500 times and the average and standard error of the classiication error and
negative log likelihood were determined. The learning curves for 3 datasets can be
found in Figure 2.3.

We ind that overal in terms of error rates (Table 2.2), MCLDA seems to perform
best, being both more robust than the EM approaches as well as efective in using
the unlabeled information in improving error rates. While ICLDA is robust and has
the best performance on 2 of the datasets, it is conservative in that it does not show
improvements in terms of the classiication error for many datasets where the other
classiiers do ofer improvements.

The picture is markedly diferent when we consider the log likelihood criterion



2.4. experimental setup and results 65

Sonar

Error

Sonar

Avg. Loss Test

Pima

Error

Pima

Avg. Loss Test

Parkinsons

Error

Parkinsons

Avg. Loss Test

1 2 4 8 16 32 64 128 256 512 1 2 4 8 16 32 64 128 256 512

1 2 4 8 16 32 64 128 256 512 1 2 4 8 16 32 64 128 256 512

1 2 4 8 16 32 64 128 256 512 1 2 4 8 16 32 64 128 256 512

-70

-60

-50

30

32

34

36

38

-80

-75

-70

-65

-60

0.15

0.18

0.20

0.23

0.25

0.23

0.25

0.28

0.30

0.33

0.24

0.26

0.28

NUMBER OF UNLABELED OBJECTS

ICLDA LDAoracle LDA MCLDA SLLDA

Figure 2.3 | Learning curves for increasing amounts of unlabeled data for the error rate as
well as the loss (negative log likelihood) for three datasets using 500 repeats.
The shaded regions indicate one standard error around the mean.
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Table 2.2 | Average 10-fold cross-validation error and its standard deviation over 20 re-
peats. Indicated in bold is whether a semi-supervised classifier significantly out-
perform the supervised LDA classifier, as measured using a t-test with a 0.05
significance level. Underlined indicates whether a semi-supervised classifier is
(significantly) best among the four semi-supervised classifiers considered.

Dataset LDA LDAoracle MCLDA EMLDA SLLDA ICLDA

Haberman 0.37 ± 0.04 0.25 ± 0.00 0.36 ± 0.03 0.47 ± 0.08 0.36 ± 0.04 0.37 ± 0.04
Ionosphere 0.21 ± 0.02 0.15 ± 0.01 0.18 ± 0.02 0.57 ± 0.04 0.20 ± 0.02 0.18 ± 0.01
Parkinsons 0.27 ± 0.03 0.15 ± 0.01 0.22 ± 0.03 0.41 ± 0.05 0.26 ± 0.03 0.23 ± 0.03
Pima 0.34 ± 0.03 0.23 ± 0.00 0.32 ± 0.02 0.37 ± 0.03 0.35 ± 0.02 0.31 ± 0.02
Sonar 0.29 ± 0.02 0.26 ± 0.02 0.28 ± 0.02 0.35 ± 0.02 0.29 ± 0.02 0.28 ± 0.02
SPECT 0.31 ± 0.03 0.18 ± 0.01 0.25 ± 0.02 0.62 ± 0.03 0.33 ± 0.03 0.30 ± 0.03
SPECTF 0.32 ± 0.03 0.24 ± 0.01 0.28 ± 0.03 0.28 ± 0.05 0.34 ± 0.03 0.33 ± 0.03
Transfusion 0.34 ± 0.03 0.23 ± 0.00 0.32 ± 0.03 0.52 ± 0.09 0.37 ± 0.05 0.33 ± 0.03
WDBC 0.11 ± 0.01 0.04 ± 0.00 0.09 ± 0.01 0.38 ± 0.05 0.09 ± 0.01 0.08 ± 0.01
BCI 0.21 ± 0.01 0.16 ± 0.01 0.20 ± 0.01 0.21 ± 0.02 0.21 ± 0.02 0.20 ± 0.01

Table 2.3 | Average 10-fold cross-validation negative log-likelihood (loss) and its standard
deviation over 20 repeats. Indicated in bold is whether a semi-supervised
classifier significantly outperform the supervised LDA classifier, as measured
using a t-test with a 0.05 significance level. Underlined indicates whether a
semi-supervised classifier is (significantly) best among the four semi-supervised
classifiers considered.

Dataset LDA LDAoracle MCLDA EMLDA SLLDA ICLDA

Haberman 15.88 ± 4.37 10.37 ± 0.02 11.66 ± 2.45 12.02 ± 0.35 12.08 ± 0.20 10.89 ± 0.16
Ionosphere 199.58 ± 29.66 21.38 ± 0.34 25.93 ± 1.44 22.55 ± 0.40 22.80 ± 0.40 22.22 ± 0.33
Parkinsons −40.76 ± 11.11 −71.87 ± 0.32 −71.05 ± 0.40 −71.12 ± 0.40 −71.03 ± 0.38 −71.44 ± 0.31
Pima 41.98 ± 2.99 29.88 ± 0.02 31.74 ± 0.99 31.95 ± 0.35 32.07 ± 0.36 30.50 ± 0.13
Sonar −59.86 ± 1.08 −83.05 ± 0.59 −82.23 ± 0.57 −82.85 ± 0.55 −82.20 ± 0.60 −82.58 ± 0.57
SPECT 27.65 ± 1.89 10.74 ± 0.09 11.30 ± 0.17 12.63 ± 0.18 11.84 ± 0.20 11.19 ± 0.13
SPECTF 178.42 ± 2.48 148.13 ± 0.68 148.78 ± 0.69 148.44 ± 0.69 149.18 ± 0.72 148.67 ± 0.71
Transfusion 17.00 ± 2.61 11.48 ± 0.02 12.23 ± 0.54 16.27 ± 0.53 14.21 ± 0.47 11.88 ± 0.17
WDBC 33.15 ± 15.14 −28.06 ± 1.29 −26.73 ± 1.23 −26.67 ± 1.32 −27.78 ± 1.28 −27.86 ± 1.28
BCI 6.99 ± 1.04 −21.04 ± 0.41 −20.38 ± 0.40 −20.39 ± 0.46 −20.44 ± 0.45 −20.74 ± 0.41

that supervised LDA optimizes, evaluated on the test set (Table 2.3). Here ICLDA
outperforms all other methods on the majority of the datasets.

2.5 Discussion

The results show that ICLDA provides the safest semi-supervised option among
the approaches to LDA that we considered. At least in terms of the log-likelihood,
it provides the best performance by far. A particularly interesting observation is
that the implicit constraints, in many a case, seem to add a lot to the constraints
that MCLDA enforces, as also the latter classiier is consistently outperformed by
ICLDA in terms of the log likelihoods achieved on the test set. As yet, we have no
full understanding in what way the implicit constraints add restrictions beyond the
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moment constraints, apart from the fact that the former are stricter than the latter.
A deeper insight into this issue might cast further light on the workings of ICLDA.

While it is the safest version, ICLDA may be too safe, in that it does not at-
tain performance improvement in terms of classiication error in many cases where
MCLDA or the EM approaches do ofer improvements. In terms of the loss on the
test set, however, ICLDA is the best performing method. Since this is the object-
ive minimized by supervised LDA as well, perhaps this is the best we could hope
for in a true semi-supervised adaptation of LDA. We found similar empirical and
theoretical performance results in terms of improvements in the loss on the test set
when applying the implicitly constrained framework to the least squares classiier
(Krijthe and Loog, 2015). How then, this improvement in “surrogate” loss relates
to the eventual goal of classiication error, is unclear, especially for a non-margin
based loss function such as the negative log likelihood (Bartlett et al., 2006). How-
ever, since ICLDA does ofer the best behaviour of supervised LDA’s loss on the
test set, ICLDA could be considered a step towards a principled semi-supervised
version of LDA.

An open question regarding the objective function associated with ICLDA is to
what extent it is convex. The solution in terms of the responsibility vector yu is non-
unique: diferent labelings of the points can lead to the same parameters. In terms
of the parameters, however, the optimization seems to converge to a unique global
optimum. While we do not have a formal proof of this, as in the case of implicitly
constrained least squares classiication, we conjecture that the objective function is
convex in the parameters, at least in the case in which we choose to parameterize
LDA by means of its canonical parameters (Lehmann and Casella, 1998). In this
case, LDA does lead to a convex optimization problem.

We ind that the behaviour of EMLDA is more erratic than that of SLLDA. The
hard label assignments could have a regularizing efect on the semi-supervised
solutions, making self-learning a good and fast alternative to EM. Note that safer
versions of SLLDA and EMLDA could be obtained by introducing a weight para-
meter to control the inluence of the unlabeled data (McLachlan, 1975). In the lim-
ited labeled data setting, it is hard to correctly set this parameter. While this may
help when dealing with larger sample sizes, the constraint approaches bring us
closer to methods that always perform at least as well as their supervised counter-
part.

2.6 Conclusion

ICLDA is a principled and robust adaptation of LDA to the semi-supervised setting.
In terms of error rates, it may be overly conservative. When measured in terms of
the loss on the test set, however, it outperforms other semi-supervised methods. It
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therefore seems that there are opportunities for robust semi-supervised learners,
although the performance criterion that we should consider may not be the error
rate, but rather the loss that the supervised learner minimizes (Loog and Jensen,
2014).



CHAPTER THREE

Projected Estimators for
Robust Semi-supervised Classiication

For semi-supervised techniques to be applied safely in practice we at least want
methods to outperform their supervised counterparts. We study this question for
classification using the well-known quadratic surrogate loss function. Unlike other ap-
proaches to semi-supervised learning, the procedure proposed in this work does not
rely on assumptions that are not intrinsic to the classifier at hand. Using a projection
of the supervised estimate onto a set of constraints imposed by the unlabeled data,
we find we can safely improve over the supervised solution in terms of this quadratic
loss. More specifically, we prove that, measured on the labeled and unlabeled train-
ing data, this semi-supervised procedure never gives a lower quadratic loss than the
supervised alternative. To our knowledge this is the first approach that offers such
strong, albeit conservative, guarantees for improvement over the supervised solution.
The characteristics of our approach are explicated using benchmark datasets to further
understand the similarities and differences between the quadratic loss criterion used in
the theoretical results and the classification accuracy typically considered in practice.

3.1 Introduction

We consider the problem of semi-supervised classiication using the quadratic loss
function, which is also known as least squares classiication or Fisher’s linear dis-
criminant classiication (Hastie et al., 2009; Poggio and Smale, 2003). Suppose we
are given an Nl × d matrix with feature vectors X, labels y ∈ {0, 1}Nl and an Nu × d

This is chapter appeared as: Krijthe, J. H., & Loog, M., 2017. Projected estimators for robust semi-supervised
classiication. Machine Learning, 106(7), pp. 993–1008. Springer
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matrix with unlabeled objects Xu from the same distribution as the labeled objects.
The goal of semi-supervised learning is to improve the classiication decision func-
tion f : R

d → R using the unlabeled information in Xu as compared to the case
where we do not have these unlabeled objects. In this work, we focus on linear
classiiers where f (x) = w⊤x.

Much work has been done on semi-supervised classiication, in particular on
what additional assumptions about the unlabeled data may help improve classiica-
tion performance. These additional assumptions, while successful in some settings,
are less successful in others where they do not hold. In efect they can greatly deteri-
orate performance when compared to a supervised alternative (Cozman and Cohen,
2006). Since, in semi-supervised applications, the number of labeled objects may be
small, the efect of these assumptions is often untestable. In this work, we introduce
a conservative approach to training a semi-supervised version of the least squares
classiier that is guaranteed to improve over the supervised least squares classiier,
in terms of the quadratic loss on the labeled and unlabeled examples. It is the irst
procedure for which it is possible to give strong guarantees of non-degradation of
this type (Theorem 2).

To guarantee these improvements, we avoid additional assumptions altogether.
We introduce a constraint set of parameter vectors induced by the unlabeled data,
which does not rely on additional assumptions about the data. Using a projection
of the supervised solution vector onto this constraint set, we derive a method that
can be proven to never degrade the surrogate loss evaluated on the labeled and
unlabeled training data when compared to the supervised solution. Experimental
results indicate that it not only never degrades, but often improves performance.
Our experiments also indicate the results hold when performance is evaluated on
objects in a test set that were not used as unlabeled objects during training.

The main contribution of this work is to prove that a semi-supervised learner
that is guaranteed to outperform its supervised counterpart exists for some clas-
siier. We do this by constructing one in the least squares classiier. This non-
degradation property is important in practical applications, since one would like
to be sure that the efort of the collection of, and computation with unlabeled data
does not have an adverse efect. Our work is a conceptual step towards such meth-
ods. The goal of this work is to prove and illustrate this property.

Others have attempted to mitigate the problem of reduction in performance in
semi-supervised learning by introducing safe versions of semi-supervised learners
(Li and Zhou, 2011; Loog, 2010; Loog, 2014). These procedures do not ofer any
guarantees or only do so once particular assumptions about the data hold. Moreover,
unlike some previous approaches, the proposed method can be formulated as a con-
vex quadratic programming problem which can be solved using a simple gradient
descent procedure.
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The rest of this work is organized as follows. The next section discusses related
work. Section 3.3 introduces our projection approach to semi-supervised learning.
Section 3.4 discusses the theoretical performance guarantee and its implications.
Section 3.5 provides some alternative interpretations of the method and relations
to other approaches. In Section 3.6 empirical illustrations on benchmark datasets
are presented to understand how the theoretical results in terms of quadratic loss
in Section 3.4 relate to classiication error on an unseen test set. We end with a
discussion of the results and conclude.

3.2 Prior Work and Assumptions

Early work on semi-supervised learning dealt with the missing labels through the
use of Expectation Maximization in generative models or closely related self-learning
(McLachlan, 1975). Self-learning is a simple wrapper method around any super-
vised procedure. Starting with a supervised learner trained only on the labeled
objects, we predict labels for the unlabeled objects. Using the known labels and the
predicted labels for the unlabeled objects, or potentially the predicted labels with
highest conidence, we retrain the supervised learner. This process is iterated un-
til the predicted labels converge. Although simple, this procedure has seen some
practical success (Nigam et al., 2000).

Singh et al. (2008), among others, have argued that unlabeled data can only help
if P(x) and P(y|x) are somehow linked. They show that when a speciic cluster
assumption holds, semi-supervised learning can be expected to outperform a su-
pervised learner. The goal of our work is to show that in some cases (i.e. the least
squares classiier) we do not need explicit assumptions about those links for semi-
supervised learning to be possible. Instead, we leverage implicit assumptions, in-
cluding possible model misspeciication, that are already present in the supervised
classiier. Similar to Singh et al. (2008), we also study the inite sample case.

Most recent work on semi-supervised methods considers what assumptions
about this link between P(x) and P(y|x) allows for the efective use of unlabeled
data. A lot of work involves either the assumption that the decision boundary is
in a low-density region of the feature space, or that the data is concentrated on a
low-dimensional manifold. A well-known procedure using the irst assumption is
the Transductive SVM (Joachims, 1999). It can be interpreted as minimizing the
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following objective:

min
w∈Rd ,yu∈{−1,+1}Nu

Nl

∑
i=1

max(1 − yiw
⊤xi, 0) + λ||w||2

+ λu

Nu

∑
j=1

max(1 − y
(j)
u w⊤xj, 0) , (3.1)

where class labels are encoded using +1 and −1. This leads to a hard to optimize,
non-convex, problem, due to the dependence on the labels of the unlabeled ob-
jects yu. Others, such as Sindhwani and Keerthi (2006), have proposed procedures
to eiciently ind a good local minimum of a related objective function. Similar
low-density ideas have been proposed for other classiiers, such as entropy regu-
larization for logistic regression (Grandvalet and Bengio, 2005) and a method for
Gaussian processes (Lawrence and Jordan, 2004). One challenge with these proced-
ures is setting the additional parameter λu that is introduced to control the efect
of the unlabeled objects. This is both a computational problem, since minimizing
(3.1) is already hard for a single choice of λu, as well as a estimation problem. If the
parameter is incorrectly set using, for example, cross-validation on a limited set of
labeled examples, the procedure may actually reduce performance as compared to
a supervised SVM which disregards the unlabeled data. It is this behaviour that
the procedure proposed in this work avoids. While it may be outperformed by the
TSVM if the low-density assumption holds, robustness against deterioration would
still constitute an important property in the cases when we are not sure whether it
does hold.

Another oft-used assumption is that data is located on a lower dimensional man-
ifold than the original dimensionality of the dataset. By estimating this manifold us-
ing unlabeled data we can improve the estimate of the classiication boundary (Zhu,
Ghahramani et al., 2003). Theoretical results have shown that particular classes of
problems can be constructed, where manifold regularization can solve classiica-
tion problems (Niyogi, 2013) that cannot be eiciently learned without knowing
the manifold. For these classes of problem the objects actually do reside on a lower
dimensional manifold and the distance between objects on this manifold is essential
for their classiication. When a problem does not belong to such a class, Laferty and
Wasserman (2007) show that manifold regularization does not improve over super-
vised learning. In these cases, manifold regularization may actually lead to worse
performance than the supervised alternative. In general, these methods require
some domain knowledge by having to deine a similarity matrix between objects.
Again, if the manifold assumption does not hold, or the domain knowledge is not
correctly speciied, the semi-supervised classiier may be outperformed by the su-
pervised classiier.
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An attempt at safety in semi-supervised learning was introduced in Li and Zhou
(2011), who propose a safe variant for semi-supervised support vector machines. By
constructing a set of possible decision boundaries using the unlabeled and labeled
data, the decision boundary is chosen that is least likely to degrade performance.
While the goal of this work is similar, we do not rely on the existence of a low-density
separator and obtain a much simpler optimization problem.

Another attempt at safety was proposed by Loog (2010) and Loog (2014), who in-
troduce a semi-supervised version of linear discriminant analysis, which is closely
related to the least squares classiier considered here. There, explicit constraints are
proposed that take into account the unlabeled data. In our work, these constraints
need not be explicitly derived, but follow directly from the choice of loss function
and the data. While the impetus for these works is similar to ours, they provide no
theory to guarantee no degradation in performance will occur similar to our results
in Section 3.4.

3.3 Projection Method

The proposed projection method works by forming a constraint set of parameter
vectors Θ, informed by the labeled and unlabeled objects, that is guaranteed to in-
clude woracle, the solution we would obtain if we had labels for all the training data.
We will then ind the closest projection of the supervised solution wsup onto this
set, using a chosen distance measure. This new estimate, wsemi, will then be guar-
anteed to be closer to the oracle solution than the supervised solution wsup in terms
of this distance measure. For a particular choice of measure, it follows (Section 3.4)
that wsemi will always have lower quadratic loss when measured on the labeled and
unlabeled training data, as compared to wsup.

Before we move to the details of our particular contribution, we irst introduce
briely the standard supervised least squares classiier.

Supervised Solution

We consider classiication using a quadratic surrogate loss (Hastie et al., 2009). In
the supervised setting, the following objective is minimized for w:

L(w, X, y) = ∥Xw − y∥2 . (3.2)

The supervised solution wsup is given by the minimization of (3.2) for w. The well-
known closed form solution to this problem is given by

wsup = (X⊤X)−1X⊤y . (3.3)
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If the true labels corresponding to the unlabeled objects, y∗
u, would be given, we

could incorporate these by extending the vector of labels y∗
e
⊤ =

[

y⊤y∗
u
⊤
]

as well
as the design matrix X⊤

e =
[

X⊤X⊤
u
]

and minimize L(w, Xe, y∗
e) over the labeled as

well as the unlabeled objects. We will refer to this oracle solution as woracle.

Constraint Set

Our proposed semi-supervised approach is to project the supervised solution wsup
onto the set of all possible classiiers we would be able to get from some labeling
of the unlabeled data. To form this constraint set, consider all possible labels for
the unlabeled objects yu ∈ [0, 1]Nu . This includes fractional labelings, where an
object is partly assigned to class 0 and partly to class 1. For instance, 0.5 indicates
the object is assigned qually to both classes. For a particular labeling y⊤

e =
[

y⊤y⊤
u
]

,
we can ind the corresponding parameter vector by minimizing L(w, Xe, ye) for w.
This objective remains the same as (3.2) except that fractional labels are now also
allowed. Minimizing the objective for all possible labelings generates the following
set of solutions:

Θ =

{

(

XT
e Xe

)−1
XT

e

[

y

yu

]

| yu ∈ [0, 1]Nu

}

. (3.4)

Note that this set, by construction, will also contain the solution woracle, correspond-
ing to the true but unknown labeling y∗

e . Typically, woracle is a better solution than
wsup and so we would like to ind a solution more similar to woracle. This can be
accomplished by projecting wsup onto Θ.

Choice of Metric

It remains to determine how to calculate the distance between wsup and any other
w in the space. We will consider the following metric:

d(w, w′) =
√

(w − w′)⊤ X⊤◦ X◦ (w − w′) . (3.5)

where we assume X⊤◦ X◦ is a positive deinite matrix. The projected estimator can
now be found by minimizing this distance between the supervised solution and
solutions in the constraint set:

wsemi = min
w∈Θ

d(w, wsup) . (3.6)

Setting X◦ = Xe measures the distances using both the labeled and unlabeled data.
This choice has the desirable theoretical properties leading us to the sought-after
improvement guarantees as we will demonstrate in Section 3.4.
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Optimization

By plugging into (3.6) the closed form solution of wsup and w for a given yu, this
problem can be written as a convex minimization problem in terms of yu, the un-
known, fractional labels of the unlabeled data. This results in a quadratic program-
ming problem, which can be solved using a simple gradient descent procedure that
takes into account the constraint that the labels are within [0, 1]. The solution of this
quadratic programming problem ŷu can then be used to ind wsemi by treating these
imputed labels as the true labels of the unlabeled objects and combining them with
the labeled examples in Equation (3.3).

3.4 Theoretical Analysis

We start by stating and proving our main result which is a non-degradation guaran-
tee in performance of the proposed method compared to the supervised classiier.
We then discuss extensions of this result to other settings and give an indication of
when improvement over the supervised solution can be expected.

Robustness Guarantee

Theorem 2. Given X, Xu and y, X⊤
e Xe positive deinite and wsup given by (3.3). For the

projected estimator wsemi proposed in (3.6), the following result holds:

L(wsemi, Xe, y∗
e) ≤ L(wsup, Xe, y∗

e)

In other words: wsemi will always be at least as good or better than wsup, in terms
of the quadratic surrogate loss on all, labeled and unlabeled, training data. While
this claim does not prove, in general, that the semi-supervised solution improves
in terms of the loss evaluated on the true distribution, or an unseen test set, we will
consider why this is still a desirable property after the proof.

Proof. The proof of this result follows from a geometric interpretation of our pro-
cedure. Consider the following inner product that induces the distance metric in
Equation (3.5):

⟨

w, w′⟩ = w⊤X⊤
e Xew′ .

Let HXe = (Rd, ⟨., .⟩) be the inner product space corresponding with this inner
product. As long as XT

e Xe is positive deinite, this is a Hilbert space. Next, note
that the constraint space Θ is convex. More precisely, because, for any k ∈ [0, 1] and
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w1, w2 ∈ Θ we have that

(1 − k)w1 + kw2 =(1 − k)
(

XT
e Xe

)−1
XT

e

[

y⊤y⊤
1

]

+ k
(

XT
e Xe

)−1
XT

e

[

y⊤y⊤
2

]

=
(

XT
e Xe

)−1
XT

e

[

y⊤ky⊤
1 + (1 − k)y⊤

2

]

∈Θ

where the last statement holds because ky⊤
1 + (1 − k)y⊤

2 ∈ [0, 1]Nu .
By construction wsemi is the closest projection of wsup onto this convex con-

straint set Θ in HXe . One of the properties for projections onto a convex subspace
in a Hilbert space is (Aubin, 2000, Proposition 1.4.1.) that

d(wsemi, w) ≤ d(wsup, w) (3.7)

for any w ∈ Θ. In particular consider w = woracle, which by construction is within
Θ. That is, all possible labelings correspond to an element in Θ, so this also holds
for the true labeling y∗

u. Plugging in the closed form solution of woracle into (3.7)
and squaring the distance we ind:

d(wsemi, woracle)
2 =w⊤

semiX
⊤
e Xewsemi

− 2w⊤
semiX

⊤
e y∗

e + y∗
e
⊤

y∗
e

+ C

=L(wsemi, Xe, y∗
e) + C

and

d(wsup, woracle)
2 =w⊤

supX⊤
e Xewsup

− 2w⊤
supX⊤

e y∗
e + y∗

e
⊤

y∗
e

+ C

=L(wsup, Xe, y∗
e) + C

where C is the same constant in both cases. From this the result in Theorem 2
follows directly.

Generalization Performance

So far, we have considered the performance of the procedure evaluated on the
labeled and unlabeled objects, instead of the out of sample performance on unseen
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test data. A diferent quantity of interest is the expected loss, which is based on the
true underlying data distribution and is also referred to as the risk:

∑
y∈{0,1}

∫

(y − x⊤w)2 p(x, y)dx .

The result does not prove that wsemi is, in general, better than wsup in terms of this
risk. In case Nu → ∞, however, and p(x) basically becomes known, wsemi is in fact
guaranteed to be better in terms of the risk, since the risk becomes equal to the loss
on the labeled and unlabeled data in this case.

When we have a inite number of unlabeled samples, the result presented in the
theorem is still relevant because it proves that we at least get a better solution in
terms of the empirical risk on the full data, i.e., the risk that is typically minimized
if all labels are actually available.

Apart from this, one may be speciically interested in the performance on a given
set of objects, the transductive learning setting, which we will address now.

Transduction and Regularization

It is possible to derive a similar result for performance improvement on the un-
labeled data alone by using X◦ = Xu in the distance measure and changing the
constrained hypothesis space to:

Θu =
{

(X⊤
u Xu)

−1X⊤
u yu | yu ∈ [0, 1]Nu

}

.

This would lead to a guarantee of the form:

L(wsemi, Xu, y∗
u) ≤ L(wsup, Xu, y∗

u) .

However, since we would not just like to perform well on the given unlabeled data,
but on unseen data from the same distribution as well, we include the labeled data
in the construction of the constrained hypothesis space.

The result in Theorem 2 also holds if we include regularization in the supervised
classiier. Using L2 regularization, the supervised solution becomes:

wsup = (X⊤X + λI)−1X⊤y .

where λ is a regularization parameter and I a d × d identity matrix, potentially
containing a 0 for the diagonal entry corresponding to the constant feature that
encodes the bias. Theorem 2 also holds for this regularized supervised estimator.
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Improved Performance

Since the inequality in Theorem 2 is not necessarily a strict inequality, it is import-
ant to get an idea when we can expect improvement of the semi-supervised learner,
rather than just equality of the losses. Consider a single unlabeled object. Improve-
ment happens whenever wsup ̸= wsemi, which occurs if wsup /∈ Θ. For this to occur
it needs to be impossible to assign a label yu such that we can retrieve the wsup by
minimizing L(w, Xe, ye). This in turn occurs when there is no yu ∈ [0, 1] for which
the gradient

∇∥Xew − ye∥2

∣

∣

∣

∣

w=wsup

= 0 .

This happens only if x⊤u wsup > 1 or x⊤u wsup < 0. In other words, if observations xu
are possible with values that have a suiciently large absolute value and wsup is not
small enough to mitigate this, an update will occur. This is especially likely to occur
if the supervised solution is not suiciently regularized, x⊤u wsup can then easily be
larger than 1 or smaller than 0. For more than a single unlabeled object, the condi-
tions for a change are more complex, since the introduction of a non-zero gradient
by one object can be compensated by other objects. The experiments in Section 3.6
conirm, however, that generally improvements can be expected by means of the
proposed semi-supervised learning strategy.

3.5 Relation to Other Methods

The projection method in Equation (3.6), using X◦ = Xe in the distance measure,
can be rewritten in a diferent form:

arg min
wsemi

max
yu∈[0,1]Nu

L(wsemi, Xe, ye)− L(wsup, Xe, ye) .

In other words, the procedure can be interpreted as a minimization of the difer-
ence in loss on the labeled and unlabeled data between the new solution and the
supervised solution, over all possible labelings of the unlabeled data. From this
perspective the projected estimator is similar to Maximum Contrastive Pessimistic
Likelihood Estimation proposed by Loog (2016) who consider using log likelihood
as the loss function. In this formulation it is apparent that the projected estimator is
very conservative, since it has to have low loss for all possible labelings, even very
unlikely ones.

In a similar way an alternative choice of distance function, X◦ = X, has a dif-
ferent interpretation. It is the minimizer of the supervised loss function under the
constraint that its solution has to be a minimizer for some labeling of the unlabeled
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data:
arg min

w∈Θ

L(w, X, y) ,

with Θ deined as in Equation (3.4). This formulation corresponds to the Implicitly
Constrained Least Squares Classiier (Krijthe and Loog, 2015) and seems less conser-
vative since the solution does not need to have a low loss for all possible labelings,
it merely has to work well on the labeled examples. For this distance measure, the
proof in Section 3.4 no longer holds, but empirical results indicate it may have better
performance in practice, while it still protects against deterioration in performance
by minimizing the loss over only the labeled objects.

A diferent interpretation of the projection procedure is that it minimizes the
squared diference between the predictions of the supervised solution and the pre-
dictions of a new semi-supervised solution on the set of objects in X◦, while en-
suring the semi-supervised solution corresponds to a possible labeling of the un-
labeled objects:

min
w∈Θ

∥X◦w − X◦wsup∥2 .

Since this comparison requires only the features in X◦ and not the corresponding
labels, this can be done either on the labeled data, when we choose X◦ = X, but also
on the labeled and unlabeled data combined when X◦ = Xe. This interpretation is
similar to the work of (Schuurmans and Southey, 2002), where the unlabeled objects
are also used to measure the diference in predictions of two hypotheses.

3.6 Experimental Analysis

For our experiments, we consider 16 classiication datasets. Six of these are the semi-
supervised learning benchmark datasets proposed by Chapelle et al. (2006), while
the other ten were retrieved from the UCI Machine Learning repository (Lichman,
2013). All of the datasets are binary classiication problems, or were turned into two-
class problems by merging several similar classes. As a preprocessing step, missing
input values were imputed using medians and modes for the Mammography and
Diabetes datasets. The code to reproduce the results presented here is available
from the irst author’s website.

The number of labeled examples is chosen such that Nl > d. This is neces-
sarily to have a high probability that the matrix X⊤

e Xe is positive deinite, which
was a requirement of Theorem 2. More importantly, this avoids peaking beha-
viour (Raudys and Duin, 1998; Opper and Kinzel, 1995), were the unregularized
supervised least squares classiier has low performance when the matrix X⊤X is
not full-rank. For the SVM and TSVM implementations we made use of the SVM-
lin software (Sindhwani and Keerthi, 2006). For these we used parameter settings
λ = 0.01 and λu = 1.
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Figure 3.1 | Ratio of the loss in terms of surrogate loss of supervised and semi-supervised
solutions measured on the labeled and unlabeled instances. Values smaller
than 1 indicate that the semi-supervised method gives a lower average surrog-
ate loss than its supervised counterpart. For both the projected estimator
and self-learning this supervised counterpart is the supervised least squares
classifier and loss is in terms of quadratic loss. For the L2-Transductive SVM,
quadratic hinge loss is used and compared to the quadratic hinge loss of a
supervised L2-SVM. Unlike the other semi-supervised procedures, the projec-
tion method, evaluated on labeled and unlabeled data, never has higher loss
than the supervised procedure, as was proven in Theorem 2.

Robustness

To illustrate Theorem 2 experimentally, as well as study the performance of the
proposed procedure on a test set, we set up the following experiment. For each of
the 16 datasets, we randomly select 2d labeled objects. We then randomly sample,
with replacement, 1000 objects as the unlabeled objects from the dataset. In addi-
tion, a test set of 1000 objects is also sampled with replacement. This procedure is
repeated 100 times and the ratio between the average quadratic losses for the su-
pervised and the semi-supervised procedure L(wsemi,Xe,y∗

e )
L(wsup,Xe,y∗e )

is calculated. As stated
by Theorem 2, this quantity should be smaller than 1 for the Projection procedure.
We do the same for self-learning applied to the least squares classiier and to an
L2-Transductive SVM, which we compare to the supervised L2-SVM. The results
are shown in Figure 3.1.

On the labeled and unlabeled data the loss of the projection method is lower
than that of the supervised classiier in all of the resamplings taken from the ori-
ginal dataset. Compare this to the behaviour of the self-learner. While on average,
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the performance is quite similar on these datasets, on a particular sample from a
dataset, self-learning may lead to a higher quadratic loss than the supervised solu-
tion. It is favourable to have no deterioration in every resampling because in prac-
tice one does not deal with resamplings from an empirical distribution, but rather
with a single dataset. A semi-supervised procedure should ideally work on this
particular dataset, rather than in expectation over all datasets that one might have
observed. We see similar behaviour as self-learning for the diference in squared
hinge loss between the L2-SVM and the L2-TSVM. While better parameter choices
may improve the number of resamplings with improvements, this experiment illus-
trates that while semi-supervised methods may improve performance on average,
for a particular sample from a dataset there is no guarantee like Theorem 2 for the
projected estimator. When looking at the diference in loss on an unseen test set,
we ind a similar results (not shown).

Learning Curves

To illustrate the behaviour of the procedure with increasing amounts of unlabeled
data and to explore the relationship between the quadratic surrogate loss and clas-
siication accuracy on an unseen test set we generate learning curves in the fol-
lowing manner. For each of three illustrative datasets (Ionosphere, SPECT and
USPS), we randomly sample 2d objects as labeled objects. The remaining objects are
used as a test set. For increasing subsets of the unlabeled data (2, 4, 8, . . . , 512), ran-
domly sampled without replacement, we train the supervised and semi-supervised
learners and evaluate their performance on the test objects, in terms of classiication
accuracy as well as in terms of quadratic loss. We consider both the projection pro-
cedure where the distance measure is based on the labeled and the unlabeled data
(denoted as Projection) as well as the projected estimator that only uses the labeled
data in the distance measure (denoted as ICLS). The resampling is repeated 1000

times and averages and standard errors are reported in Figure 3.2.
The irst dataset (Ionosphere) in Figure 3.2 is an example where the error of the

self-learning procedure starts to increase once we add larger amounts of unlabeled
data. In terms of the loss, however, the performance continues to increase. This
illustrates that a decrease in the surrogate loss does not necessarily translates into
a lower classiication error. The projected estimators do not sufer from decrease in
performance for larger numbers of unlabeled data in this example. In terms of the
loss, however, there seems to be little diference between the three methods.

The second dataset (SPECT) is an example where both the self-learning proced-
ure and the conservative projected estimator are not able to get any improvement
out of the data, while the less conservative projection (ICLS) does show some im-
provement in terms of classiication error.
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On the USPS dataset the self-learning assumptions do seem to hold and it is
able to attain a larger performance improvement as the amount of unlabeled data
grows. Both in terms of the error and in terms of the loss, the projected estimators
show smaller, but signiicant improvements.

Cross-validation

In a third experiment, we apply a cross-validation procedure to compare the per-
formance increase in terms of the classiication error of semi-supervised classiiers
when compared to their supervised counterpart. The cross-validation experiments
were set up as follows. For each dataset, the objects were split into 10-folds. Sub-
sequently leaving out each fold, we combine the other 9 folds and randomly select
d + 5 labeled objects while the rest is used as unlabeled objects. We end up with a
single prediction for each object, for which we evaluate the misclassiication error.
This procedure is repeated 20 times and the averages are reported in Table 3.1.

The results indicate that in terms of classiication errors, the projection proced-
ure never signiicantly reduces performance over the supervised solution. This is
in contrast to the self-learner, which does signiicantly increase classiication error
on 2 of the datasets. The price the projected estimator pays for this robustness,
is smaller improvements over the supervised classiier than the less conservative
self-learner. The Transductive SVM shows similar behaviour as the self-learner: it
shows large improvements over the supervised alternative, but is also prone to de-
gradation in performance on other datasets. The ICLS procedure is, as expected,
less conservative than the projection method based on the labeled and unlabeled
observations, which leads to larger improvements on all of the datasets.

Computational Considerations

Since the projection proposed in Equation (3.6) can be formulated as a quadratic
programming problem with a positive deinite matrix, the worst case complexity
is O(N3

u). Comparing this to Transductive SVM solvers, for instance, the CCCP
procedure for Transductive SVMs by (Collobert et al., 2006) has a worst case com-
plexity of O((Nl + 2Nu)3). The SVMlin implementation of Sindhwani and Keerthi
(2006) we compare to here makes few claims about its theoretical complexity. As
Collobert et al. (2006) and Sindhwani and Keerthi (2006) note, however, the prac-
tical complexity is often much lower than the worst case complexity and should
be evaluated empirically. Figure 3.3 shows the computational time relative to the
supervised classiier as we increase the number of unlabeled samples for our imple-
mentation of the Projection estimator and for the L2-TSVM implementation of Sind-
hwani and Keerthi (2006). The igure shows that the SVMlin implementation scales
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Figure 3.2 | Learning curves in terms of classification errors (top) and quadratic loss (bot-
tom) on the test set for increasing numbers of unlabeled data on three illus-
trative datasets. The lines indicate average errors respectively losses on the
test set, averaged over 1000 repeats. The shaded bars indicate ± 2 standard
errors around the mean.
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Table 3.1 | 20 repeat 10-fold cross-validation results for 16 datasets for the super-
vised least squares classifier, the projected least squares classifier (Projected),
the projection based on only the labeled data (ICLS), the self-learned least
squares classifier, the supervised L2-SVM and the L2-TSVM. Bold respectively
Underlined values indicate whether the performance of a semi-supervised solu-
tion is significantly better or worse than the supervised alternative as evaluated
by a one-sided Wilcoxon signed rank test with family wise error rate of 0.05.
The Win/Draw/Loss indicates on how many datasets a semi-supervised learner
performs significantly better, equal or worse than the supervised alternative.

Dataset Supervised Self-Learning ICLS Projection SVM TSVM

BCI 0.40 ± 0.03 0.35 ± 0.02 0.28 ± 0.02 0.36 ± 0.03 0.30 ± 0.02 0.31 ± 0.02
COIL2 0.39 ± 0.01 0.26 ± 0.01 0.19 ± 0.01 0.34 ± 0.01 0.14 ± 0.01 0.15 ± 0.01
Diabetes 0.31 ± 0.02 0.34 ± 0.01 0.30 ± 0.02 0.31 ± 0.02 0.36 ± 0.02 0.38 ± 0.02
Digit1 0.42 ± 0.02 0.35 ± 0.02 0.20 ± 0.01 0.38 ± 0.01 0.06 ± 0.00 0.06 ± 0.01
g241c 0.46 ± 0.01 0.39 ± 0.01 0.28 ± 0.01 0.42 ± 0.02 0.22 ± 0.01 0.21 ± 0.01
g241d 0.44 ± 0.02 0.38 ± 0.01 0.29 ± 0.01 0.41 ± 0.02 0.23 ± 0.01 0.22 ± 0.01
Haberman 0.29 ± 0.02 0.28 ± 0.02 0.29 ± 0.02 0.29 ± 0.02 0.29 ± 0.02 0.31 ± 0.03
Ionosphere 0.28 ± 0.03 0.24 ± 0.01 0.19 ± 0.02 0.22 ± 0.03 0.20 ± 0.02 0.19 ± 0.02
Mammography 0.30 ± 0.03 0.30 ± 0.02 0.29 ± 0.03 0.30 ± 0.03 0.30 ± 0.03 0.28 ± 0.02
Parkinsons 0.25 ± 0.02 0.23 ± 0.03 0.24 ± 0.03 0.25 ± 0.03 0.22 ± 0.02 0.23 ± 0.02
Sonar 0.44 ± 0.04 0.38 ± 0.04 0.33 ± 0.02 0.39 ± 0.02 0.26 ± 0.02 0.33 ± 0.03
SPECT 0.39 ± 0.04 0.38 ± 0.02 0.33 ± 0.03 0.39 ± 0.03 0.25 ± 0.03 0.20 ± 0.02
SPECTF 0.44 ± 0.03 0.40 ± 0.04 0.36 ± 0.03 0.42 ± 0.03 0.25 ± 0.02 0.21 ± 0.01
Transfusion 0.26 ± 0.02 0.28 ± 0.03 0.26 ± 0.02 0.26 ± 0.02 0.27 ± 0.01 0.28 ± 0.02
USPS 0.42 ± 0.02 0.34 ± 0.02 0.20 ± 0.01 0.38 ± 0.02 0.11 ± 0.01 0.10 ± 0.00
WDBC 0.09 ± 0.01 0.13 ± 0.03 0.08 ± 0.01 0.09 ± 0.01 0.10 ± 0.01 0.11 ± 0.02

Total 9 / 5 / 2 13 / 3 / 0 10 / 6 / 0 5 / 8 / 3

much better as the number of unlabeled examples is increased. SVMlin’s solution
does not, however, guarantee that the solution is a global optimum, as the projec-
tion approach does, or guarantee any safe improvements over supervised learning.
Whereas the explicit goal of SVMlin is to scale TSVM to larger datasets, we have not
attempted to more eiciently solve the quadratic programming problem posed by
our approach and leave this as an open problem.

3.7 Discussion

The main result of this work is summarized in Theorem 2 and illustrated in Fig-
ure 3.1: the proposed semi-supervised classiier is guaranteed to improve over the
supervised classiier in terms of the quadratic loss on all training data, labeled and
unlabeled. The results from the experiments indicate that on average, both the
projected estimator and other semi-supervised approaches often show improved
performance, while on individual samples from the datasets, the projected estim-
ator never reduces performance in terms of the surrogate loss. This is an important
property since, in practical settings, one only has a single sample (i.e. dataset) from
a classiication problem, and it is important to know that performance will not be
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Figure 3.3 | Training time of semi-supervised methods relative to the training time of the
supervised classifier for increasing amounts of unlabeled data on a simulated
dataset with 2 Gaussian classes with 100 features and Nl = 200.

degraded when applying a semi-supervised version of a supervised procedure on
that particular dataset. Even if we do not have enough labeled objects to accurately
estimate this performance, Theorem 2 guarantees we will not perform worse than
the supervised alternative on the labeled and unlabeled data in terms of the surrog-
ate loss.

Surrogate Loss

Theorem 2 is limited to showing improvement in terms of quadratic loss. As the
experiments also indicate, good properties in terms of this loss do not necessarily
translate into good properties in terms of the error rate. In the empirical risk min-
imization framework, however, classiiers are constructed by minimizing surrogate
losses. This particular semi-supervised learner is efective in terms of this objective.
In this sense, it can be considered a proper semi-supervised version of the super-
vised quadratic loss minimizer.

One could question whether the quadratic loss is a good choice as surrogate loss
(Ben-David, Loker et al., 2012). In practice, however, it can perform very well and
is often on par and sometimes better than, for instance, an SVM employing hinge
loss (Rasmussen and Williams, 2005; Hastie et al., 2009; Poggio and Smale, 2003).
Moreover, the main result in this work basically demonstrates that strong improve-
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ment guarantees are at all possible for some surrogate loss function. Whether and
when an increase in performance in terms of this surrogate loss translates into im-
proved classiication accuracy is, like in the supervised setting, unclear. Much work
is currently being done to understand the relationship between surrogate losses and
0 − 1 loss (Bartlett et al., 2006; Ben-David, Loker et al., 2012).

Conservatism

Arguably, a robust semi-supervised learning procedure could also be arrived at by
very conservatively setting the parameters controlling the inluence of unlabeled
data in semi-supervised learner procedures such as the TSVM. There are two reas-
ons why this is diicult to achieve in practice. The irst reason is a computational
one. Most semi-supervised procedures are computationally intensive. Doing a grid
search over both a regularization parameter as well as the parameter controlling
the inluence of the unlabeled objects using cross-validation is time-consuming.
Secondly, and perhaps more importantly, it may be very diicult to choose a good
parameter using limited labeled data. Goldberg and Zhu (2009) study this problem
in more detail. While their conclusion suggests otherwise, their results indicate that
performance degradation occurs on a signiicant number of datasets.

The projected estimator presented here tries to alleviate these problems in two
ways. Firstly, unlike many semi-supervised procedures, it can be formulated as
a quadratic programming problem in terms of the unknown labels which has a
global optimum (which is unique in terms of w) and there are no hyper-parameters
involved. Secondly, at least in terms of its surrogate loss, there is a guarantee per-
formance will not be worse than the alternative of discarding the unlabeled data.

As our results indicate, however, the proposed procedure is very conservative.
The projection with X◦ = X (ICLS) is a classiier which is less conservative than
the projection based on all data, and ofers larger improvement in the experiments
while still being robust to degradation of performance. For this procedure The-
orem 2 does not hold. Better understanding in what way we can still prove other
robustness properties for this classiier is an open issue.

An alternative way to derive less conservative approaches could be by chan-
ging the constraint set Θ. The purpose of this work has been to show that if we
choose Θ conservatively, such that we can guarantee it contains the oracle solution
woracle, we can guarantee non-degradation, while still allowing for improved per-
formance over the supervised solution in many cases. To construct a method with
wider applicability, an interesting question is how to restrict Θ based on additional
assumptions, while ensuring that woracle ∈ Θ with high probability.
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Other Losses

Another open question is for what other losses we can apply the projection proced-
ure presented here. Apart from the issue of deining the metric in these cases, for
some other loss functions the current deinition of the constraint set might not con-
strain the parameter space at all. In the case of hinge loss or logistic loss, empirical
results seem to indicate that the constraint set Θ always includes wsup. The lack of
a closed-form solution, however, hampers a detailed theoretical analysis of these
settings. Therefore, an exact characterization of the kinds of losses for which the
procedure is amenable has to be left as an open problem.

3.8 Conclusion

We introduced and analyzed an approach to semi-supervised learning with quad-
ratic surrogate loss that has the interesting theoretical property of never decreas-
ing performance when measured on the full, labeled and unlabeled, training set
in terms of this surrogate loss when compared to the supervised classiier. This
is achieved by projecting the solution vector of the supervised least squares classi-
ier onto a constraint set of solutions deined by the unlabeled data. As we have
illustrated through simulation experiments, the safe improvements in terms of the
surrogate loss on the labeled and unlabeled data also partially translate into safe
improvements in terms of the classiication errors on an unseen test set. Moreover,
the procedure can be formulated as a standard quadratic programming problem,
leading to a simple optimization procedure. An open problem is how to apply this
procedure or a procedure with similar theoretical performance guarantees, to other
loss functions.





SURROGATE LOSSES 

PART TWO





CHAPTER FOUR

On Measuring and Quantifying Performance:
Error Rates, Surrogate Loss,
and an Example in SSL

In various approaches to learning, notably in domain adaptation, active learning,
learning under covariate shift, semi-supervised learning, learning with concept drift, and
the like, one often wants to compare a baseline classifier to one or more advanced (or
at least different) strategies. In this chapter, we basically argue that if such classifiers, in
their respective training phases, optimize a so-called surrogate loss, then it may also be
valuable to compare the behaviour of this loss on the test set, next to the regular clas-
sification error rate. It can provide us with an additional view on the classifiers’ relative
performances that error rates cannot capture. As an example, limited but convincing
empirical results demonstrate that we may be able to find semi-supervised learning
strategies that can guarantee performance improvements with increasing numbers of
unlabeled data in terms of log-likelihood. In contrast, the latter may be impossible to
guarantee for the classification error rate.

4.1 Introduction

The aim of semi-supervised learning is to improve supervised learners by exploit-
ing potentially large amounts of, typically easy to obtain, unlabeled data (Chapelle
et al., 2006). Up to now, however, semi-supervised learners have reported mixed

This chapter appeared as: Loog, M., Krijthe, J.H. & Jensen, A.C., (2016). On Measuring and Quantifying
Performance: Error Rates, Surrogate Loss, and an Example in SSL. In C. H. Chen, ed. Handbook of Pattern
Recognition and Computer Vision. World Scientiic.
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results when it comes to such improvements: it is not always the case that semi-
supervision results in lower expected error rates. On the contrary, severely deterior-
ated performances have been observed in empirical studies and theory shows that
improvement guarantees can often only be provided under rather stringent condi-
tions (Castelli and Cover, 1995; Ben-David, Lu et al., 2008; Laferty and Wasserman,
2007; Singh et al., 2008).

Now, the principal suggestion put forward in this chapter is that, when dealing
with semi-supervised learning, one may not only want to study the (expected) error
rates these classiiers produce, but also to measure the classiiers’ performances
by means of the intrinsic loss they may be optimizing in the irst place. That is,
for classiication routines that optimize a so-called surrogate loss at training time—
which is what many machine learning and Bayesian decision theoretic approaches
do (Schölkopf and Smola, 2002; Robert, 2001), we propose to also investigate how
this loss behaves on the test set as this can provide us with an alternative view on
the classiier’s behaviour that a mere error rate cannot capture.

In fact, though the main example is concerned with semi-supervision, we would
like to argue that in other learning scenarios, similar considerations might be bene-
icial. For instance in active learning (Settles, 2010), where rather than sampling
randomly from ones input data to provide these instances with labels, one aims
to do the sampling in a systematic way, trying to keep labeling cost as low as one
can or, similarly, to learn from as few labeled examples as possible. Also here it
may (or, we believe, it should) be of interest to not only compare the error rates
that diferent approaches (e.g. random sampling and uncertainty sampling (Lewis
and Gale, 1994)) achieve, but also how the surrogate losses compare for these tech-
niques when we are using the same underlying classiiers. Similar remarks can be
made for other learning scenarios like domain adaptation, transfer learning, and
learning under data shift or data drift (Margolis, 2011; Torrey and Shavlik, 2010;
Quinonero-Candela et al., 2009; Žliobaitė, 2009). In these last settings, one may
typically want to compare, say, a classiier trained in a source domain with one
that exploits additional knowledge on a target domain.

Surrogate Loss vs. Error Rates

The simple idea underlying the suggestion we make is that, unless we make par-
ticular assumptions, generally, we cannot expect to minimize the error rate if we
are, in fact, optimizing a surrogate loss. This surrogate loss is, to a large extent,
chosen for computational reasons, but of course the hope is that, with increasing
training set size, minimizing it will not only lead to improvements with respect to
this surrogate loss but also with respect to the expected error rate. This cannot be
guaranteed in any strict way however. To start with, the classiier’s error rate itself
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can already act rather unpredictably. A general result by Devroye demonstrates,
for instance, that for any classiier there exists a classiication problem such that the
error rate converges at an arbitrarily slow rate to the Bayes error (Devroye, 1982). If
the classiier is not a universal approximator (Devroye et al., 1996; Steinwart, 2005),
there is not even a guarantee that the Bayes error will ever be reached. Worse even,
in the case that we are dealing with such model misspeciication, error rates might
even go up with increasing numbers of training samples (Loog and Duin, 2012).
This leads to the rather counterintuitive result that, in some cases, expected error
rates might actually be improved by throwing arbitrary samples out of the train-
ing set. The aforementioned considerations lead us, all in all, to speculate that any
kind of generally valid (i.e., not depending on strong assumptions) expected per-
formance guarantees, if at all possible in semi-supervised learning or any of the
other aforementioned learning scenarios, can merely be obtained in terms of the
surrogate loss of the classiier at hand. Overall, these ideas are in line with those
presented in (Loog and Jensen, 2014).

We could deinitely imagine that, still, one takes the position that the mere loss
that matters is the 0/1 loss and that it is this quantity that has to be minimized. As
far as we can see, however, taking this stance to the extreme, one cannot do anything
else than try and directly minimize this 0/1 loss and face all the computational com-
plications that go with it. On a less philosophical level, one may claim that the 0/1
loss is, in the end, also not the loss that one is interested in. One might actually have
an application-relevant loss and in real applications (clinical, domestic, industrial,
pedagogic, etc.) this is but seldom the 0/1 loss. In fact, the true loss of interest
related to a particular classiication problem may ultimately be unknown.

For us there is, however, a more basic reason for studying the surrogate loss
intrinsic to the classiier at hand. As a matter of a fact, a lower loss really means
the model is better, in the sense that the estimated parameters get closer to those
of the optimal classiier one would obtain if all data is labeled. In the particular
setting of semi-supervised learning, a decrease in expected loss, when adding un-
labeled data, really indicates that the same efect—i.e., an improved model it—is
achieved as with adding more labeled data. In our opinion, this seems the least
we could ask for in a semi-supervised setting. With this we still do not mean to
claim that the surrogate loss is the quantity to study, but it does give us a diferent
perspective on the problem in various learning scenarios. Finally, let us point out
that the connection between the 0/1 loss and surrogate losses has in recent years
attracted quite some attention. Some papers investigating theoretical aspects for
particular classes of loss functions, but also covering the design of such surrogate
losses, are (Ben-David, Loker et al., 2012; Masnadi-Shirazi and Vasconcelos, 2008;
Nguyen et al., 2009; Reid and Williamson, 2009; Reid and Williamson, 2010; Scott,
2011). These contributions follow earlier works such as (Bartlett et al., 2006), and
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(Zhang and Peng, 2004).

Outline

This chapter illustrates our point by means of two classiiers that optimize the log-
likelihood of the model it to the data. Clearly, this objective should be maxim-
ized, but taking minus the likelihood would turn it into a loss (which is some-
times referred to as the log loss). The particular classiiers under consideration
are the nearest means classiier (NMC) (Duda and Hart, 1973) and classical lin-
ear discriminant analysis (LDA) (Rao, 1948). Next section starts of with a general
relection on these two classiiers after which two semi-supervised variations are
introduced. Section 4.3 reports on the results of the experiments, comparing the
semi-supervised learners and their supervised counterparts empirically. The inal
section discusses our indings in the light of the point we would like to make and
concludes this chapter.

4.2 A Biased Introduction to Semi-Supervision

Before we get to semi-supervised NMC and LDA, we feel the need to remark that
their regular supervised versions are still capable of providing state-of-the-art per-
formance. Especially for relatively high-dimensional, small sample problems NMC
may be a particularly good choice. Some rather recent examples demonstrating this
can be found in bioinformatics and its applications (Wilkerson et al., 2012; Villamil
et al., 2012; Budczies et al., 2012), but also in neurology (Jolij et al., 2011) and patho-
logy (Gazinska et al., 2013). Further use of the NMC can be found in high-impact
journals from the ields of oncology, neuroscience, general medicine, pharmaco-
logy, and the like. A handful of the latest examples can be found in (Hyde and
Strowbridge, 2012; Haibe-Kains et al., 2012; Desmet et al., 2013; Sjödahl et al., 2012).
Similar remarks can be made about LDA, though in comparison with the NMC,
there should be relatively more data available to make it work at a competitive level.
Like for the NMC, many recent contributions from a large number of disciplines still
employ this classical decision rule, e.g. (Ackermann et al., 2013; Allen et al., 2013;
Chung and Eaton, 2013; Brunton et al., 2013; Price et al., 2012). All in all, like any
other classiier, NMC and LDA have their validity and cannot be put aside as being
outdated or not-state-of-the-art. The fact that classiiers having been around for 40
years or more, does not mean they are superseded. In this respect, the reader might
also want to consult relevant works such as (Hand, 2006) and (Efron, 2001).
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Figure 4.1 | Mean error rates for the supervised (black), self-learned (yellow), and the
constrained NMC (blue) on the eight real-world datasets for various unlabeled
sample sizes and a total of four labeled training samples.
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Figure 4.2 | Mean error rates for the supervised (black), self-learned (yellow), and the
constrained NMC (blue) on the eight real-world datasets for various unlabeled
sample sizes and a total of ten labeled training samples.
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Supervised NMC and LDA

The two semi-supervised versions of both the NMC and LDA are those based on
classical expectation maximization or self-learning and those based on a so-called
intrinsically constrained formulation. These approaches are introduced in the sub-
sections that follow. The models underlying supervised NMC and LDA are based
on normality assumptions for the class-conditional probability density functions.
More speciically:

• LDA is the classical technique where the class-conditional covariance matrices
are assumed the same across all classes, but where both the class means and
the class priors can vary from class to class. Estimating these variables un-
der maximum likelihood results in the well-known solutions for the priors
and the means, while the overall class covariance matrix becomes the prior
weighted sum of the ML estimates of the individual class covariance matrices.

• For the NMC the parameter space is further restricted. In addition to the
covariance matrix being the same for all classes it is also constrained to be the
a multiple of the identity matrix. Moreover, the priors are ixed to be equal
for all classes. In (Loog and Jensen, 2014) one can ind the solution to this
parameter estimation problem. Here we note that this model is not necessarily
unique: there are of course various ways in which one can formulate the NMC
(as well as other classiiers) in terms of an optimization problem. Ours is but
one choice.

EM and Self-Learning

Self-learning or self-training is a rather generally applicable semi-supervised learn-
ing approach (Basu et al., 2002; McLachlan, 1975; Vittaut et al., 2002). In an initial
step, the classiier of choice is trained on the available labeled data. Using this
trained classiier all unlabeled data is assigned a label. Then, in a next step all of
this now labeled data is added to the training set and the classiier is retrained with
this enlarged set. Given this newly trained classiier one can relabel the initially un-
labeled data and retrain the classiier again with these updated labels. This process
is then iterated until convergence, i.e., when the labeling of the initially unlabeled
data remains unchanged. The foregoing only gives the basic recipe for self-learning.
Many variations and alternatives are possible. One can, for instance, only take a
fraction of the unlabeled data into account when retraining, once labeled one can
decide to not relabel the data, etc.

Another well-known, and arguably more principled semi-supervised approach
treats the absence of certain labels as a missing data problem. Most of the time this
is formulated in terms of a maximum likelihood objective (Dempster et al., 1977)
and relies on the classical technique of expectation maximization (EM) to come to
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a solution (Nigam et al., 1998; O’Neill, 1978). Although self-learning and EM may
at a irst glance seem diferent ways of tackling the semi-supervised classiication
problem, (Basu et al., 2002) efectively shows that self-learners optimize the same
objective as EM does (though they may typically end up in diferent local optima).
Similar observations have been made in (Abney, 2004; Hafari and Sarkar, 2007).

A major problem with EM and self-learning strategies is the fact that they of-
ten sufer from severely deteriorated performance with increasing numbers of un-
labeled samples. This behaviour, which has been extensively studied in various
previous works (Cohen et al., 2004; Cozman and Cohen, 2006; Loog, 2014; Yang
and Priebe, 2011), is typically caused by model misspeciication, i.e., the setting in
which the statistical model does not it the actual data distribution. We note that
this is at contrast with the supervised setting, where most classiiers are capable
of handling mismatched data assumptions rather well and adding more labeled
data typically improves performance. NMC will most deinitely sufer from model
misspeciication, because of the rather rigid, low-complexity nature of this classi-
ier. LDA is more lexible, but still only able to model linear decision boundaries.
Hence, also LDA will often be misspeciied.

Intrinsically Constrained NMC

In (Loog, 2010) and (Loog, 2012), a novel way to learn in a semi-supervised man-
ner was introduced. On a conceptual level, the idea is to exploit constraints that
are known to hold for the NMC and LDA and that deine relationships between
the class-speciic parameters of those classiiers and certain statistics that are inde-
pendent of the particular labeling. These relationships are automatically fulilled in
the supervised setting but typically impose constraints in the semi-supervised set-
ting. Speciically, for NMC and LDA the following constraint holds (see Fukunaga
(1990)):

Nm =
K

∑
k=1

Nkmk , (4.1)

where K is the number of classes, m is the overall sample mean of the data, and mk

are the diferent sample means of the K classes. N is the total number of training
instances and Nk is the number of observations for class k. For LDA there is an
additional constraint that holds (again see Fukunaga (1990)):

B + W = T . (4.2)

It relates the standard estimates for the average class-conditional covariance matrix
W, the between-class covariance matrix B, and the estimate of the total covariance
matrix T. W is the covariance matrix that models the spread of every class in LDA.
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Figure 4.3 | Mean log-likelihood for the supervised (black), self-learned (yellow), and the
constrained NMC (blue) on the eight real-world datasets for various unlabeled
sample sizes and a total of four labeled training samples. Compare these to
the respective error rates in Figure 4.1.
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In the supervised setting these constraints do not need to be assumed as they
are automatically fulilled. Their beneit only becomes apparent with the arrival of
unlabeled data. In the semi-supervised setting, the label-independent estimates m

and T can be improved. Using these more accurate estimates, however, results in
a violation of the constraints. Fixing the constraints again by properly adjusting mi,
W, and B, these label-dependent estimates become more accurate and in expecta-
tion lead to improved classiiers. For a more detailed account of how to enforce
these constraints, we refer to Loog (2014) (see Krijthe and Loog (2014) and Loog
and Jensen (2012) for related approaches).

The constrained estimation approach is less generally applicable, but it can avoid
the severe deteriorations self-learning displays: when the model does not match the
data, the model it will obviously not be good, but the constrained semi-supervised
it will generally still be better, in terms of the error rate, than the supervised equi-
valent. Still, also in this constrained setting, the results turn out not to be univocal
either. Error rates can increase with increasing number of unlabeled samples and
we consider further insight into this issue paramount for a deeper understanding
of the semi-supervised learning problem in general.

4.3 Experimental Setup and Results

For the experiments, we used eight datasets from the UCI Machine Learning Re-
pository (Lichman, 2013), all having two classes. The datasets used, together with
some basic speciications, can be found in Table 4.1. We carried out the experiments
in a way similar to those performed in (Loog, 2014).

Table 4.1 | Basic properties of the eight two-class datasets from the UCI Machine Learning
Repository (Lichman, 2013).

Data Objects Dimensions Smallest Prior
haberman 306 3 0.26
ionosphere 351 33 0.36
pima 768 8 0.35
sonar 208 60 0.47
spect 267 22 0.21
spectf 267 44 0.21
transfusion 748 3 0.24
wdbc 569 30 0.37

Experiments with the three NMCs were done for two diferent total labeled
training set sizes, four and ten, while the unlabeled training set sizes considered
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Figure 4.4 | Mean log-likelihood for the supervised (black), self-learned (yellow), and the
constrained NMC (blue) on the eight real-world datasets for various unlabeled
sample sizes and a total of ten labeled training samples. Compare these to the
respective error rates in Figure 4.2.
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are 21 = 2, 23, …, 29, and 211 = 2048. For the supervised and semi-supervised
LDAs, experiments were carried out with 100 labeled samples and unlabeled train-
ing set sizes of 20 = 1, 21, …, 212, and 213 = 8196. In the experiments, we study
learning curves for increasing numbers of unlabeled data. For every combination of
the amount of unlabeled objects and labeled objects, 1000 repetitions of randomly
drawn data were used to obtain accurate performance estimates. In order to be
able to do so based on the limited amount of samples provided by the datasets, in-
stances were drawn with replacement. This basically means that we assume that
the empirical distribution of every dataset is its true distribution and this therefore
allows us to measure the true error rates and the true log-likelihoods. It enabled
us to properly study our learning curves on real-world data without having to deal
with the extra variation due to cross validation and the like.

Following the introductory section, we constructed learning curves both for the
expected error rate and the expected log-likelihood (based on the 1000 repetitions).
Figure 4.1 shows the error rates for the NMCs on the various datasets when only
four training samples are available. Figure 4.2 shows the error when ten samples
are at hand. The corresponding average log-likelihood curves can be found in Fig-
ures 4.3 and 4.4, respectively. Figure 4.5 reports the error rates obtained with 100
training samples and using the supervised and semi-supervised LDAs. Figure 4.6
reports on the corresponding log-likelihoods. The supervised classiication per-
formance is displayed in black, self-learners are in yellow (NCS 0580-Y10R), and
the constrained versions are in blue (NCS 4055-R95B). The lighter bands around
the learning curves give an indication of the standard deviations of the averaged
curves, providing an idea of the statistical signiicance of the diferences between
the curves.

4.4 Discussion and Conclusion

To start with, it is important to note that when we look at the error rates, beha-
viours can indeed be quite disperse. For both classiiers and both constrained and
self-learned semi-supervised approaches, there are examples of error rates higher
as well as lower than the averaged error rate the regular supervised learners achieve.
Sometimes rather erratic behaviour can be noted, like for self-learned NMC on wdbc
in Figure 4.1 (yellow curve) and constrained LDA on haberman and transfusion in
Figure 4.5 (blue curves). On these last two, also the behaviour of self-learned LDA
does not seem very regular. Overall, the performance of the self-learners is very dis-
appointing as only on wdbc with 4 labeled training samples, some overall but not
very convincing improvements can be observed. Regarding expected error rates,
the constrained approach fares signiicantly better, showing clear performance im-
provement in at least 6 of the 16 NMC experiments and in 5 out of 8 of the LDA
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Figure 4.5 | Mean error rates for supervised (black), self-learned (yellow), and constrained
LDA (blue) on the eight real-world datasets for various unlabeled sample sizes
and a total of 100 labeled training samples.
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Figure 4.6 | The curves for the log-likelihood of the three LDAs corresponding to the
error curves in Figure 4.5.
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experiments. Still, in at least 3 of the 16, classiication errors become signiicantly
worse for NMC and, in 5 out of 8 experiments, constrained LDA is not convincing.

Things drastically change indeed when we look at the log-likelihood curves. For
the constrained approaches, looking at Figure 4.3 and the lower half of Figure 4.6,
the story is very simple: where for the error rate deteriorations, improvements, and
erraticism could be observed, the log-likelihood improves—i.e., increases—in every
single case in a smooth, monotonic, and signiicant way. Only for LDA on haber-
man and maybe transfusion, the constrained approach does not improve as con-
vincingly as in all 22 other cases.

For self-learned NMC and LDA, the results are still mixed. In many a case, we
now do see improvements, but there are still some datasets on which the likelihood
decreases. Notably, for self-learned NMC with 4 labeled samples, the log-likelihood
on the test data improves in all cases. But we do not see the monotonic behaviour
that the constrained approach displays. Still, curves are less erratic than those for
the error rates. Nonetheless, it seems that even if we quantify performance in terms
of log-likelihoods, we should be very critical towards self-learning and EM-based
approaches. Behaviour deinitely is much more regular in terms of its surrogate
loss, but performances worse than the supervised approach provides still do occur.

Nevertheless, the results illustrate that it can be interesting to study not only
the performance in terms of error rates but also in terms of the surrogate loss. This
is irrespective of the possibility that, ultimately, one might only be interested in
the former. It is encouraging to observe empirically that there seem to be semi-
supervised learning schemes that can guarantee improvements in terms of the in-
trinsic surrogate loss. This really is a nontrivial observation, as similar guarantees
for error rates seem out of the question, unless strict conditions on the data are
imposed; cf. (Castelli and Cover, 1995; Ben-David, Lu et al., 2008; Laferty and
Wasserman, 2007; Singh et al., 2008). Although our illustration is in terms of semi-
supervised learning, it seems rather plausible that similar observations can be made
for other learning settings in which two or more diferent estimation techniques for
the same type of classiier, relying on the same surrogate loss, are compared. All
in all, it is worthwhile considering the behaviour of the surrogate in general, as it
provides us with a view on a classiier’s relative performance that a mere error rate
cannot capture.





CHAPTER FIVE

The Pessimistic Limits of
Margin-based Losses
in Semi-supervised Learning

We show that for linear classifiers defined by convex margin-based surrogate losses
that are monotonically decreasing, it is impossible to construct any semi-supervised
approach that is able to guarantee an improvement over the supervised classifier meas-
ured by this surrogate loss. For convex margin-based loss functions that also increase,
we demonstrate safe improvements are possible.

5.1 Introduction

Semi-supervised learning has been reported to deliver encouraging results in vari-
ous settings, e.g. for object detection in computer vision (Rasmus et al., 2015), pro-
tein function prediction from sequence data (Weston et al., 2005) or prediction of
cancer recurrence (Shi and Zhang, 2011) in the bio-medical domain and part-of-
speech tagging in natural language processing (Elworthy, 1994). In other settings,
however, using unlabeled data has been shown to lead to a decrease in perform-
ance when compared to the supervised solution (Elworthy, 1994; Cozman and Co-
hen, 2006). For semi-supervised classiiers to be used safely in practice, we may at
least want some guarantee that they improve performance over their supervised
alternatives. Some have attempted to provide such guarantees either empirically
by restrictions on the parameters to be estimated (Loog, 2010) or under particular

The work in this chapter has been submitted and was under review at the time of printing.
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assumptions on the data (Li and Zhou, 2015). In general, however, it is unclear for
what classiiers one can construct ‘safe’ semi-supervised approaches that can be
expected to not decrease performance, or whether this is at all possible.

Safety and Pessimism

This work is concerned with the limits of pessimistic semi-supervised classiication.
That is, we explore whether and, if so, how we can guarantee unlabeled data to im-
prove, or at least not decrease the performance of a semi-supervised classiier in
comparison to a supervised classiier. The ‘pessimism’ refers to the property that
we want this guarantee to hold for every single instantiation of a problem, even for
the worst possible unknown labeling of the unlabeled data. The reason we choose
such a strict criterion is that it is the only criterion that can guarantees (with prob-
ability one), that performance degradation will not occur, for the particular dataset
one is faced with. Therefore, a semi-supervised approach can only be called truly
safe if it guarantees non-degradation of performance in this pessimistic sense.

We compare the performance of the supervised and semi-supervised classiier
measured on the labeled and unlabeled data. This is, strictly speaking, a transduct-
ive setting (Joachims, 1999), where one is interested in the performance on a speciic-
ally deined set of objects, and not a semi-supervised setting where one is interested
in induction to unseen objects. As the number of unlabeled objects grows, however,
and they start to better represent the distribution of interest in the inductive/semi-
supervised setting, the limits and possibilities that we derive continue to hold.

Surrogate Losses

As our deinition of performance, we consider the surrogate loss a classiier typic-
ally optimizes and compare this loss for the supervised and the semi-supervised
learner on the combined labeled and unlabeled data. The surrogate loss corres-
ponds to the loss one would minimize if we did have labels for the unlabeled objects.
Considering the same criterion in the supervised and semi-supervised case aligns
the goal of constructing a semi-supervised classiier with the one used when con-
structing a supervised classiier. By doing this, we avoid conlating improved per-
formance based on a change in surrogate loss function with improvements gained
by the availability of unlabeled data. For the same reason we also keep the reg-
ularization parameter ixed in the objective functions of the supervised and semi-
supervised classiiers.

In other words: we take the view that a semi-supervised version of, for instance,
logistic regression is a classiier that still attempts to minimize logistic loss, but uses
unlabeled data to improve its ability to do so. So it should be judged on how well
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it generalizes in terms of this intrinsic loss. If we were to compare performance
in terms of some other loss, like the error rate, one runs the risk of attributing im-
provements to the use of unlabeled data that are, in fact, caused by other changes
to the classiier. For instance, the semi-supervised classiier might implicitly use
some other surrogate loss that turns out to be better aligned with the loss used for
evaluation.

Outline

The main conclusion from our analysis (Theorems 3 and 4) is that for classiiers
deined by convex margin-based surrogate losses that are monotonically decreas-
ing, it is impossible to come up with any semi-supervised approach that is able to
guarantee safe improvement. We also consider the case of non-monotonically de-
creasing losses and in particular explore the case of the quadratic loss. We show
under what conditions it is possible in this case to come up with a semi-supervised
classiier that provides safe improvements over the supervised classiier.

The rest of this work is structured as follows. We start by introducing margin-
based loss functions in the empirical risk minimization framework and the exten-
sion to the semi-supervised setting. In this, we only treat binary linear classiiers.
Though not a real restriction, it does simplify our exposition and allows us to fo-
cus on the core ideas. In Section 5.3, we formalize our strict notion of safe semi-
supervised learning. We irst show that for the class of monotonically decreasing
loss functions it is impossible to derive any semi-supervised learning strategy that
is not worse than the supervised classiier for all possible labelings of the unlabeled
data. We then consider the case of soft assignment of unlabeled objects to classes.
Here, too, it is impossible to provide a strict improvement guarantee for this class
of loss functions. We subsequently show for what losses it is possible to get strict
improvements and discuss methods that use the idea of pessimism to construct
semi-supervised classiiers. In Section 5.5 we apply the theory to a few well-known
loss functions. In Section 5.6 we discuss how these results relate to other results on
the (im)possibility of (safe) semi-supervised learning and what the implications of
these results are for approaches to safe semi-supervised learning.

5.2 Preliminaries

We consider binary linear classiiers in the empirical risk minimization framework.
Let X be an L × d design matrix of L labeled objects, where each row x⊤ is a d-
dimensional vector of feature values corresponding to each labeled object. Let
y ∈ {−1,+1}L be the corresponding label vector. The vector w ∈ R

d contains the
weights deining a linear classiier through sign(x⊤w). We consider convex margin-
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Figure 5.1 | Different Margin-based losses

based surrogate loss functions, which are loss functions of the form ϕ(yx⊤w). Many
well-known classiiers can be described in this way, including logistic regression,
least squares classiication and support vector machines (Bartlett et al., 2006) (see
also Figure 5.1).

Empirical Risk Minimization

In the empirical risk minimization framework a classiier is obtained by minimizing
a chosen surrogate loss ϕ over a set of training objects plus an optional regulariza-
tion term Ω, which we take to be a convex function of w:

Rϕ(w, X, y) =
L

∑
i=1

ϕ(yix
⊤
i w) + λΩ(w) . (5.1)

By minimizing this with respect to w we get a supervised classiier:

wsup = arg min
w

Rϕ(w, X, y) .
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In the semi-supervised setting, we have an additional design matrix correspond-
ing to unlabeled objects Xu, sized U × d, with unknown labels yu ∈ {−1,+1}U . We
therefore consider the corresponding semi-supervised risk function:

Rsemi
ϕ (w, X, y, Xu, q) = Rϕ(w, X, y) +

U

∑
i=1

qiϕ(x
⊤
i w) + (1 − qi)ϕ(−x⊤i w) , (5.2)

where q ∈ [0, 1]U are what we will refer to as responsibilities, indicating the unknown
and possibly ‘soft’ membership of each object to a class. For instance, if the true la-
bels were known these would correspond to ‘hard’ responsibilities qtrue ∈ {0, 1}U

and the semi-supervised risk formulation becomes equal to the supervised risk for-
mulation in Equation (5.1), where the sum is now over the L labeled objects and the
U objects for which we did not have a label.

5.3 Limits of Safe Semi-supervision

Even though we know the true labeling of the unlabeled objects in Equation (5.2)
belongs to some q ∈ {0, 1}U , we do not know which one. We say that a semi-
supervised procedure wsemi is safe if it is guaranteed to attain a loss on the labeled
and unlabeled objects equal to or lower than the supervised solution for all possible
labelings of the data, since this is guaranteed to include the true labeling of the
unlabeled objects. In the remainder of this section we formalize this deinition of
safety, consider the cases of hard and soft labeling, and come to our negative results:
for many loss functions safe semi-supervision is, in fact, not possible.

Hard labeling

Let Dϕ denote the diference in terms of the chosen loss ϕ on a set of objects between
a new classiier w and the supervised classiier wsup for some set of responsibilities
for the unlabeled data:

Dϕ(wsemi, wsup, X, y, Xu, q) = Rsemi
ϕ (wsemi, X, y, Xu, q)− Rsemi

ϕ (wsup, X, y, Xu, q) .

The true unknown labels can in principle correspond to any q ∈ {0, 1}U . For a
semi-supervised classiier wsemi to be safe we therefore need that:

max
q∈{0,1}U

Dϕ(wsemi, wsup, X, y, Xu, q) ≤ 0 . (5.3)

If the inequality is strict for at least one instantiation of q, the semi-supervised solu-
tion is diferent from the supervised solution and potentially better. Is it possible
to construct some semi-supervised strategy that has this guaranteed improvement
over the supervised solution for margin-based surrogate losses? The following the-
orem gives a condition under which this strict improvement is never possible.
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Theorem 3. Let wsup be a minimizer of Rϕ(w, X, y) and assume it is unique. If ϕ is a
monotonically decreasing convex margin-based loss function, meaning ϕ(a) ≥ ϕ(b) for
a ≤ b, then there is no safe semi-supervised procedure which guarantees Equation (5.3)
while having at least one q∗ for which Dϕ(wsemi, wsup, X, y, Xu, q∗) < 0 .

Proof. We are going to prove this by contradiction. Let us start by assuming that
Dϕ(wsemi, wsup, X, y, Xu, q∗) < 0 and deine M to be Rϕ(wsemi, X, y)−Rϕ(wsup, X, y).
The latter is the diference in surrogate loss between the semi-supervised and su-
pervised learner on the labeled data. Based on our assumption we can now write

M+
U

∑
i=1

q∗i (ϕ(x
⊤
i wsemi)− ϕ(x⊤i wsup)) (5.4)

+ (1 − q∗i )(ϕ(−x⊤i wsemi)− ϕ(−x⊤i wsup)) < 0 .

Let Ai = ϕ(x⊤i wsemi) − ϕ(x⊤i wsup) and Bi = ϕ(−x⊤i wsemi) − ϕ(−x⊤i wsup).
Since ϕ is monotonically decreasing, either Ai ≥ 0 and Bi ≤ 0, or Ai ≤ 0 and Bi ≥ 0.
Set qnew

i = 1 in the former case and qnew
i = 0 in the latter. Then, when using qnew

instead of q∗ in Equation (5.4), the sum will be non-negative. Also, M > 0, because
wsup is the unique minimizer of Rϕ(w, X, y) and wsemi ̸= wsup. We therefore have
that

Dϕ(wsemi, wsup, X, y, Xu, qnew) > 0 ,

which contradicts Equation (5.3).

Remark 1. Alternatively, we can drop the requirement that wsup is the unique minimizer
of Rϕ(w, X, y) by requiring the loss functions to be strictly decreasing.

Beyond Hard Labelings

In Equation (5.3) we considered improvement over all hard labelings of the un-
labeled data. Alternatively we could also consider improvements for the larger set
of all soft assignments of labels to classes, deining safety to mean

max
q∈[0,1]U

Dϕ(wsemi, wsup, X, y, Xu, q) ≤ 0 . (5.5)

If there is at least one q ∈ [0, 1]U for which the inequality is strict, the semi-supervised
solution is potentially better than the supervised solution. There are several reas-
ons why this is an interesting relaxation to consider. First of all it requires the semi-
supervised solution to guarantee improvements for a larger class of responsibilities
than just the hard labelings, meaning it becomes more diicult to construct a pro-
cedure with this property. If a procedure guarantees improvement in this sense, it
implies it also works for all possible hard labelings. Secondly, it corresponds to a
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scenario diferent from the hard labeling where there is uncertainty in the labels of
the unlabeled objects. And lastly, the convex constraint makes the problem more
amenable to analysis and is, in fact, used by approaches such as MCPL (Loog, 2016)
and ICLS (Krijthe and Loog, 2015).

The set of classiiers given by all diferent responsibilities turns out to be a useful
concept.

Deinition 1. The constraint set Cϕ is the set of all possible classiiers that can be obtained
by minimizing the semi-supervised loss for any vector of responsibilities q assigned to the
unlabeled data, i.e.,

Cϕ =

{

arg min
w

Rsemi
ϕ (w, X, y, Xu, q)

∣

∣

∣
q ∈ [0, 1]U

}

.

The following lemma provides an intermediary step towards our second negat-
ive result. It tells us that no strict improvement is possible if the supervised solution
is already part of the constraint set.

Lemma 1. If Rϕ(w, X, y) is strictly convex and wsup ∈ Cϕ, then there is a soft assignment
q∗ such that for every choice of semi-supervised classiier wsemi ̸= wsup:

Dϕ(wsemi, wsup, X, y, Xu, q∗) > 0 .

Proof. As wsup ∈ Cϕ there is a soft labeling q∗ such that wsup minimizes the semi-
supervised risk Rsemi

ϕ (w, X, y, Xu, q∗). This risk function is strictly convex because
the supervised risk is strictly convex and therefore wsup is its unique minimizer.
This immediately implies that for every wsemi ̸= wsup, we have that

Rsemi
ϕ (wsemi, X, y, Xu, q∗) > Rsemi

ϕ (wsup, X, y, Xu, q∗) .

Remark 2. The requirement to have a strictly convex supervised risk function can be
relaxed. What we basically need in the proof is that wsup is the unique optimizer for
Rsemi

ϕ (w, X, y, Xu, q∗). Nevertheless, unlike, for instance, a hinge loss that is not regular-
ized by something like a 2-norm of the weight vector, many interesting objective functions
are strictly convex.

For monotonically decreasing margin-based losses, we now show that we can
always explicitly construct a q∗, such that the corresponding semi-supervised solu-
tion equals the original supervised one. With this, a result similar to Theorem 3 for
the soft-assignment guarantee directly follows, but irst we formulate that explicit
construction of the necessary soft labeling.
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Lemma 2. If ϕ is a monotonically decreasing margin-based loss function where for each un-
labeled object x, ϕ′(−x⊤wsup) and ϕ′(x⊤wsup) exist, we can recover wsup by minimizing
the semi-supervised loss by assigning responsibilities q ∈ [0, 1]U as follows:

q =
ϕ′(−x⊤wsup)

ϕ′(x⊤wsup) + ϕ′(−x⊤wsup)
. (5.6)

Proof. Consider the case where we have one unlabeled object x with responsibility
q. The semi-supervised objective then becomes

Rsemi
ϕ (w) =R

sup
ϕ (w, X, y)

+ qϕ(x⊤w) + (1 − q)ϕ(−x⊤w) .

We need to ind a q ∈ [0, 1] that causes the gradient of this objective, evaluated in
the supervised solution, to remain equal to zero:

∇wRsemi
ϕ (wsup) = 0 + qϕ′(x⊤wsup)x

− (1 − q)ϕ′(−x⊤wsup)x

= 0

(5.7)

where ϕ′ denotes the derivative of ϕ(a) with respect to a. As long as ϕ′(x⊤wsup) +

ϕ′(−x⊤wsup) ̸= 0, we can explicitly solve for q to get

q =
ϕ′(−x⊤wsup)

ϕ′(x⊤wsup) + ϕ′(−x⊤wsup)
. (5.8)

If ϕ is a monotonically decreasing loss, then

ϕ′(a) ≤ 0

and for each object 0 ≤ q ≤ 1. Since this can be done for each object individually,
we can do it for all objects to get a vector of responsibilities q ∈ [0, 1]U .

Now that we have shown by a constructive argument that for monotonically
decreasing margin-based losses it always holds that wsup ∈ Cϕ, the following result
is straightforward.

Theorem 4. Let ϕ be a monotonically decreasing convex margin-based loss function and
wsup be the unique minimizer of Rϕ(w, X, y). There is no semi-supervised classiier wsemi

for which Equation (5.5) holds, while having at least one q∗ for which

Dϕ(wsemi, wsup, X, y, Xu, q∗) < 0 .

Proof. This follows directly from Lemma 1 and Lemma 2.



5.4. possibilities for safe ssl 115

This means that for monotonically decreasing loss functions it is impossible to
construct a semi-supervised learner that is diferent from the supervised learner
and, in terms of its surrogate loss on the full training data, is never outperformed
by the supervised solution. In other words, if the semi-supervised classiier is taken
to be diferent from the supervised classier, there is always the risk that there is a
true labeling of the unlabeled data for which the loss of the semi-supervised learner
on the full data becomes larger than the loss of the supervised one.

Is it unexpected that semi-supervised learning cannot be done safely in this set-
ting? For whom it is not, it may then come as a surprise that there are margin-based
losses for which it is actually possible to construct safe semi-supervised learners.

5.4 Possibilities for Safe SSL

If we look beyond the previous losses, and consider non-monotonically decreasing
ones, we may still be able to get a classiier that is guaranteed to be better than the
supervised solution in terms of the surrogate loss, even in the pessimistic regime.
When can we expect safe semi-supervised learning to allow for improvements of
its supervised counterpart? And if improvements are possible, how then do we
construct an actual classiier that does so in a safe way?

To construct a semi-supervised learner that at least is guaranteed to never be
worse, we need to ind wsemi, the w that minimizes Dϕ(w, wsup, X, y, Xu, q) for all
possible q. This corresponds, more precisely, to the following minimax problem:

min
w

max
q∈[0,1]U

Dϕ(w, wsup, X, y, Xu, q) . (5.9)

This is a formulation similar to the one used by Loog (2016), where instead of
margin-based losses, the loss functions are log-likelihoods of a generative model. It
is clear that Equation (5.9) can never be larger than 0. This simply indicates that we
can always ind a semi-supervised learner that is at least as good as the supervised
one, by simply sticking to the supervised solution. To show that we can sometimes
do better than that, consider the following.

If Rsemi
ϕ is convex in w, then since the objective is linear in q and [0, 1]U is a

compact space we can invoke (Sion, 1958, Corrolary 3.3), which states that the value
of the minimax problem is equal to the value of the maximin problem:

max
q∈[0,1]U

min
w

Dϕ(w, wsup, X, y, Xu, q) . (5.10)

Assume the function Dϕ is strictly convex in w for every ixed q. Now suppose
wsup is not in Cϕ. In that case, the inner minimization in Equation (5.10) is always
strictly smaller than 0 for each q because of the strict convexity of the loss. This
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means that Equation (5.10) is strictly smaller than 0 and in turn the same holds for
Equation (5.9).

So, if wsup /∈ Cϕ, wsemi will strictly improve upon wsup.

Some Suicient Conditions

So all that is required to show that the procedure just described leads to an im-
proved classiier is therefore that wsup /∈ Cϕ. For an unlabeled data set consisting
of a single sample x, this is readily done by reconsidering the proof of Lemma 2. In
particular, rewriting Equation (5.7), we can conclude the following:

Lemma 3. If for Xu = x⊤ there is no q ∈ [0, 1] such that

(ϕ′(x⊤wsup) + ϕ′(−x⊤wsup))xq = (ϕ′(−x⊤wsup))x

then wsup /∈ Cϕ so wsemi has to be diferent from wsup and, therefore, the former has to
improve over the latter.

The case in which U > 1 turns out to be hard to fully characterize. Again starting
from Equation (5.7), we can state that if there is no q such that

U

∑
i=1

qiϕ
′(x⊤i wsup)xi − (1 − qi)ϕ

′(−x⊤i wsup)xi = 0

then the gradient evaluated in the supervised solution of the objective function over
all training data is not zero and so the semi-supervised solution is diferent, there-
fore improving over the supervised solution. But this result is hardly insightful.
For one, it is unclear if this at all happens when U > 1. We do, however, have a
suicient condition that leads the semi-supervised learner to improve over the su-
pervised counterpart. For this, we consider convex, margin-based losses ϕ that are
decreasing to the left of 1 and to the right of 1 start to increase monotonically, as for
instance, in the cases of the quadratic or absolute loss. So these losses increasingly
penalize overestimation of the label value of every object.

Theorem 5. Let

ϕ′(a)

{

≤ 0, if a ≤ 1

> 0, if a > 1.

If, for all x ∈ Xu, |x⊤wsup| is larger than 1, then wsemi ̸= wsup. That is, we get an
improved semi-supervised estimator if all points in Xu are outside of the margin.

Proof. Without loss of generality, we can assume that we have translated, rotated,
and scaled our data such that the supervised solution is given by wsup = (1, 0, . . . , 0)⊤.
Such standardization of the data does not lead to an essentially diferent problem.
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It is easy to check that for every x⊤i wsup = xi1 > 1, we have ϕ′(x⊤i wsup) =

ϕ′(xi1) > 0, where xi1 indicates the irst coordinate of sample xi. Likewise, we have
ϕ′(−x⊤i wsup) = ϕ′(−xi1) < 0. It therefore follows, for every choice of qi ∈ [0, 1],
that qiϕ

′(x⊤i wsup)xi1 − (1− qi)ϕ
′(−x⊤i wsup)xi1 > 0. Likewise, for every x⊤i wsup =

xi1 < 1, we have the same result: for every choice of qi ∈ [0, 1], qiϕ
′(x⊤i wsup)xi1 −

(1 − qi)ϕ
′(−x⊤i wsup)xi1 > 0. This shows that the irst equation in the system given

by
U

∑
i=1

qiϕ
′(x⊤i wsup)xi − (1 − qi)ϕ

′(−x⊤i wsup)xi = 0

does not equal 0, and so the gradient difers from zero, meaning that the supervised
solution cannot be the optimal one.

The restriction that all points should be outside of the margin is, of course, rather
strong. But, as indicated, the requirement is only suicient and certainly not neces-
sary. Subsection 5.5 gives an additional result for the squared loss.

Methods for Pessimistic SSL

The idea of using the constraint space to construct a semi-supervised learner has
been operationalized in two ways. In implicitly constrained semi-supervised learn-
ing, Krijthe and Loog (2017b) propose to minimize a supervised loss function on
the L labeled objects, under the constraint that this solution has to be the loss min-
imizer on all of the data, for a particular (partial) labeling of the data:

min
w∈Cϕ

Rϕ(w)

with Cϕ as in Deinition 1. If wsup ∈ Cϕ, this approach will not update the su-
pervised classiier. Only if wsup /∈ Cϕ will the implicitly constrained solution be
diferent from the supervised alternative.

A related but diferent approach is to enforce the non-degradation guarantee by
using Equation (5.9) directly, proposed by Loog (2016). This approach is referred to
as a pessimistic and contrastive objective, where the pessimism refers to considering
all possible labelings, and the contrast refers to the fact that the loss of the semi-
supervised solution is compared to the loss of the supervised solution.

Thus, in both implicitly constrained and contrastive pessimistic learning, the
minimization only leads to a solution diferent from wsup if wsup /∈ Cϕ. In both cases
there are theorems stating that, under certain conditions, if the resulting classiier is
diferent from the supervised solution, it improves over the supervised alternative.
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Table 5.1 | Margin-based loss functions and their corresponding responsibilities

Name ϕ(yx⊤wsup) q(x⊤wsup) Range

Logistic
√

2 log(1 + exp(−yx⊤wsup) (1 + exp(−x⊤wsup)))−1 (0, 1)

Hinge max(1 − yx⊤wsup, 0)











1
2 , if − 1 < x⊤wsup < 1

1, if x⊤wsup > 1

0 if x⊤wsup < −1

{0, 1
2 , 1}

Exponential exp(−yx⊤wsup) exp(x⊤wsup)(exp(−x⊤wsup) + exp(x⊤wsup))−1 (0, 1)

Quadratic (1 − yx⊤wsup)2 1
2 (x

⊤wsup + 1) (−∞, ∞)

Absolute |1 − yx⊤w|
{

1
2 , if − 1 < yx⊤wsup < 1

No solution, otherwise
{ 1

2 }

5.5 Examples

In this section, will consider examples of monotonically decreasing losses and non-
monotonically decreasing losses, corresponding to well-known classiiers. The res-
ults are summarized in Table 5.1. For monotonically decreasing losses, the range
of the responsibilities will always be between [0, 1], meaning the (partial) labels of
the unlabeled data can always be set in such a way that the supervised solution
is obtained from the semi-supervised objective function. This in turn implies that
no safe semi-supervised method, beyond just taking the supervised solution, exists
for these losses. This shows, for instance, that it is not possible to construct a safe
semi-supervised version of the support vector machine or for logistic regression.
The quadratic loss is an example of a loss for which it is not always possible to set
the responsibilities in such a way as to recover the supervised solution and a safe
semi-supervised classiier is sometimes possible. We derive a condition when this
improvement will occur.

Logistic Loss

Consider the logistic loss function given by

ϕ(yx⊤w) = log(1 + exp(−yx⊤w)) ,

and whose minimization leads to the logistic regression classiier. Its derivative is
given by

ϕ′(yx⊤w) =
− exp(−yx⊤w)

1 + exp(−yx⊤w)
,
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Figure 5.2 | For a single unlabeled object, the responsibility that causes a zero gradient of
the semi-supervised objects at the supervised solution, for different decision
values of the unlabeled object.

from which we can verify it is a monotonically decreasing loss. Applying Equa-
tion (5.6) we ind that

q =
− exp(x⊤wsup)

1 + exp(x⊤wsup)

×
(

− exp(−x⊤wsup)

1 + exp(−x⊤wsup)
+

− exp(x⊤wsup)

1 + exp(x⊤wsup)

)−1

.

Because the second term equals −1, after rewriting the irst term, we have

q =
1

1 + exp(−x⊤wsup)
.
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Thus we see that the responsibility assigned to the new object is exactly the class
posterior assigned by logistic regression.

Support Vector Machine

The hinge loss, employed in support vector classiication, has the form

ϕ(yx⊤w) = max(1 − yx⊤w, 0) .

The value for the derivative at all points except 1 − yx⊤w = 0 is given by

ϕ′(yx⊤w) =

{

−1, if 1 − yx⊤w > 0

0, otherwise .

Plugging this into Equation (5.6), we have that

q =















1
2 , if − 1 < x⊤wsup < 1

1, if x⊤wsup > 1

0 if x⊤wsup < −1 .

If the prediction is strongly positive (respectively, negative), it will be assigned to
the positive (negative) class. If on the other hand, it is within the margin, it gets as-
signed to both classes equally. It means that for the unlabeled objects in the margin,
any change in x⊤wsup has an opposite contribution for the part of the loss corres-
ponding to the positive and the negative class. Only by weighting the two options
equally will a change in x⊤wsup not yield a change in the loss.

Quadratic Loss

Now consider the quadratic loss, which is a non-monotonically decreasing loss
function:

ϕ(yx⊤w) = (1 − yx⊤w)2 .

Its derivative is
ϕ′(yx⊤w) = −2(1 − yx⊤w) .

Again using (5.6) we ind that

q =
−2(1 + x⊤wsup)

−2(1 − x⊤wsup)− 2(1 + x⊤wsup)

which we can simplify to

q =
x⊤wsup + 1

2
.
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This is the rescaling of the decision function from the interval [−1,+1] to [0, 1]. Note
that in this case x⊤w is not necessarily restricted to be within [−1,+1] and so it may
occur that q /∈ [0, 1]. In this case there is no assignment of the responsibilities that
recovers the supervised solution and thus the unlabeled data forces us to update
the decision function x⊤w for the semi-supervised classiier.

When U > 1, for the monotonically decreasing loss functions, it was enough
to show that each qi ∈ [0, 1] can be set individually in order to reconstruct the su-
pervised solution using a responsibility vector q ∈ [0, 1]U . For the quadratic loss,
however, the situation is more complex when multiple unlabeled objects are avail-
able. This is because, considering each qi individually might not allow us to ind
q ∈ [0, 1]U for which the gradient of the semi-supervised objective at the super-
vised solution is equal to zero, but there could still be a combined q ∈ [0, 1]U for
which this does hold, as we discussed for the general case in Theorem 5.

It turns out that if the dimensionality d ≥ U, such a q ∈ [0, 1]U does not exist as
long as

Xuwsup /∈ [−1, 1]U .

The proof of this is given in the appendix but is basically a restatement of Theorem 5.
If d ≤ U, however, then it is also guaranteed that such q ∈ [0, 1]U does not exist if

∥Xuwsup∥2 >

√
U .

This last result is essentially diferent from Theorem 5 as it shows that even if some
of the unlabeled points are within the margin, the semi-supervised learner has to
be diferent from the supervised learner if one or more of the unlabeled points are
suiciently far outside of the margin. The proof is given in the appendix.

Absolute Loss

The absolute loss is given by

ϕ(yx⊤w) = |1 − yx⊤w| .

and its derivative at all values except 1 − yx⊤w = 0 then becomes

ϕ′(yx⊤w) =

{

−1, if 1 − yx⊤w > 0

+1, otherwise .

When −1 < yx⊤wsup < 1, we can use Equation (5.6) to ind q = 1
2 . Otherwise,

ϕ′(x⊤wsup) + ϕ′(−x⊤wsup) = 0 and there is no q that makes the gradient of the
semi-supervised objective in the supervised solution equal to zero. In that case,
when we have a single unlabeled object, the semi-supervised solution is an im-
provement over the supervised solution. For the case of multiple unlabeled objects
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it may again be possible to ind a vector of responsibilities q ∈ [0, 1]U that recovers
the supervised solution. Again, Theorem 5 ofers a suicient condition where the
semi-supervised solution must improve over its supervised counterpart.

5.6 Discussion

Impossibilities of Semi-supervised Learning

As Seeger (2001) and others have argued, for diagnostic methods, where p(y|x) gets
modeled directly and not through modeling the joint distribution p(y, x), it seems
semi-supervised learning without additional assumptions should be impossible be-
cause the parameters of p(y|x) and p(y, x) are a priori independent. Considering
why these methods do not allow for safe semi-supervised versions ofers a difer-
ent understanding of why this may or may not be true. While our results applied
to logistic regression corroborates their claim, the quadratic loss shows a counter
example. This shows that for non-monotonically decreasing losses, even safe im-
provements can be possible in the diagnostic setting. One important strength of
our analysis is that we also consider the minimization of loss functions that may not
induce a correct probability. It is the monotonic decreasingness of the loss, rather
than correspondence to a probabilistic model that determines whether safe semi-
supervised learning is possible. Moreover, some of the losses for which safe semi-
supervised learning is possible are successfully applied in supervised learning in
practice and it is therefore interesting that safe semi-supervised versions exist.

It has also been suggested that the possibility of semi-supervised learning de-
pends on the causal direction of pY|X (Schölkopf, Janzing et al., 2012). This seems at
odds with our result that pessimistic semi-supervised learning is possible for non-
monotonically decreasing losses, regardless of the causal structure of the problem.
We think this is again due to the our lack of assumptions that the model that is
used is a correctly speciied probabilistic model, which is required for the results in
(Schölkopf, Janzing et al., 2012) to hold.

Our results also might seem to contradict the result by Sokolovska et al. (2008)
that, when the supervised model is misspeciied, a particular semi-supervised ad-
aptation of logistic regression has an asymptotic variance that is at least as small as
supervised logistic regression. In this work, however, we cover the pessimistic set-
ting where a semi-supervised learner needs to outperform the supervised learner
for all possible labelings in a inite sample setting. This is a much stricter require-
ment than the asymptotic result in (Sokolovska et al., 2008). Moreover, we do not
require the supervised model to be misspeciied. For semi-supervised learning
in general, their result is encouraging, while for safe semi-supervised learning it
makes sense to consider the results in the pessimistic setting.
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The (negative) result presented here is in line with the conclusions of Ben-David,
Lu et al. (2008), who show that the worst-case sample complexity of a supervised
learner is at most a constant factor higher than that of any semi-supervised ap-
proach for a classiier over the real line, and they conjecture this result holds in
general. Darnstädt et al. (2013) prove that a slightly altered and more precise formu-
lation of this conjecture holds when hypothesis classes have inite VC-dimension,
while they show that it does not hold for more complex hypothesis classes. Whereas
these works consider generalization bounds on the error rate in the PAC learning
framework, in our work, we considered a more conservative or pessimistic setting
of safe semi-supervised learning, while considering performance on a inite sample
in terms of the surrogate loss. This leads to an alternative explanation why these
(strict) improvements are not possible for some losses, similar to the claim in Ben-
David, Lu et al. (2008). It also leads, however, to the contrasting conclusion that for
some losses, these improvements are possible (even when the VC dimension is i-
nite), which contradicts the claim of Ben-David, Lu et al. (2008) that improvements
are not possible unless strong assumptions about the distribution of the labels are
made.

Safe Semi-supervised Learning

What do our results mean for purportedly safe approaches to semi-supervised learn-
ing, such as those proposed in (Li and Zhou, 2015) and (Kawakita and Takeuchi,
2014)? The results by Kawakita and Takeuchi (2014) show their proposed proced-
ure is asymptotically safe, similar to the results by Sokolovska et al. (2008), but un-
der weaker assumptions. In our analysis, we consider performance on the limited
set of labeled and unlabeled objects. For monotonically decreasing margin-based
losses, it may still be possible to ind a procedure that outperforms supervised learn-
ing in expectation, but not on a particular set of objects for all its labelings.

The improvement guarantee, in terms of classiication accuracy, of the safe semi-
supervised SVM by Li and Zhou (2015) depends on the assumption that the true
labeling of the objects is given by one of the low-density separators that their al-
gorithm inds. An advantage of our analysis is that we avoid making such un-
testable assumptions. The consequence of this is that all possible labelings have
to be considered, not just those corresponding to a low-density separator. If their
low-density assumptions holds, their method provides one way of making use of
this information to guarantee safe improvements. As we have demonstrated, how-
ever, in a worst case sense no such guarantees can be given, at least in terms of the
semi-supervised objective considered in our work. Without making these untest-
able assumptions, our results show a safe semi-supervised support vector machine
is impossible.



124 chapter 5. margin-based losses in ssl

Consequences and Opportunities

The results of Theorem 3 and Theorem 4 show that for many well-known losses that
are monotonically decreasing, it is impossible to construct a safe semi-supervised
method that is guaranteed to not lead to worse performance than the supervised
solution, without making additional assumptions. In this way, these results ofer a
diferent perspective on why this type of semi-supervised learning is not possible
for some losses, by indicating the monotonic decreasingness property as essential
to the proofs.

One consequence of these results is that if we want to construct semi-supervised
learners with the type of guarantee studied here, we need more constraints than
those given by the pessimistic approach, to reduce the size of the set of possible
label assignments that is considered. For unlabeled data to be helpful, we need ad-
ditional constraints on the semi-supervised solution coming from substantive as-
sumptions, like a low-density or clustering assumption. We need to keep in mind
that these strong assumptions, however, might have also helped improve the su-
pervised solution, without considering the unlabeled data, and properly compare
any improvements of the semi-supervised learner to a supervised learner that also
takes these assumptions into account.

For the non-monotonically decreasing loss functions, safe improvement is pos-
sible. One could ascribe this fact to a peculiar property of these losses: they give
increasingly higher loss even if the sign of the decision function is correct. The
improvements in terms of the loss that we get may therefore not be useful for clas-
siication, since they may be in a part of the loss function where the surrogate loss
already forms a bad approximation to the {0, 1}-loss. In the supervised case, how-
ever, surrogate losses like the quadratic loss generally give decent performance in
terms of the error rate. In some sense it is therefore not surprising that its pessim-
istic semi-supervised counterpart has also shown increased performance as more
unlabeled data is added to the training set (Krijthe and Loog, 2017b).

Our analysis takes a rather extreme view of what is required to be safe, where the
semi-supervised learner has to outperform the supervised learner on every possible
dataset. A less strict notion of safety might consider this improvement to hold in
expectation over datasets or labelings, rather than for a particular dataset. On any
one particular dataset that a practitioner is faced with, however, the unlabeled data
may then cause a decrease in the performance compared to the supervised classiier.

5.7 Conclusion

We have shown that for the class of convex margin-based losses, the fact whether
they are monotonically decreasing or not plays a key role in whether they admit
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safe semi-supervised procedures. In particular, we have shown that, without mak-
ing additional assumptions, it is impossible to construct safe semi-supervised pro-
cedures for monotonically decreasing losses by deriving what partial assignment
of the unlabeled objects leads to the recovery of the supervised classiier from a
semi-supervised objective. This subsequently implied that if we choose any semi-
supervised procedure that deviates from the supervised solution, there is some
labeling of the unlabeled objects (which could be the true labeling) for which it
decreases performance. While this means that for many supervised procedures it
is impossible to construct a safe semi-supervised learner in this strict sense, some
losses do admit such solutions. A less strict guarantee might admit performance
improvement by aiming for semi-supervised solutions that in expectation rather
than on any particular dataset, outperform their supervised counterparts.

The stark reality is that if one sticks to strictly safe semi-supervised learning,
beside opportunities for some surrogate losses, there are clear limits to the devel-
opment of such procedures. It is this reality that we have characterized.
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Appendix

Whether it is possible to ind some q for which minimizing the semi-supervised
objective gives the supervised solution in case of the quadratic loss comes down to
the question whether the system of equations

X⊤
u q =

1

2
(X⊤

u 1 + X⊤
u Xuwsup) (5.11)

has a solution q ∈ [0, 1]U . Let (X⊤
u )

+ denote the Moore-Penrose pseudo-inverse of
X⊤

u . We consider two scenarios: d ≥ U, the number of unlabeled objects is smaller
or equal to the dimensionality of the feature vectors, and d ≤ U, where we have
more unlabeled objects than dimensions.

If d ≥ U, the pseudo-inverse can be written as (XuX⊤
u )

−1Xu meaning we have a
unique solution

q =
1

2
(1 + Xuwsup)

and so the supervised solution cannot be recovered unless Xuwsup ∈ [−1, 1]U .
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If d ≤ U, the pseudo-inverse can be written as (X⊤
u )

+ = Xu(X⊤
u Xu)−1. Rewrit-

ing Equation (5.11) in terms of r = 2q − 1, the condition for improvement is that

X⊤
u r = X⊤

u Xuwsup

has no solution r ∈ [−1, 1]U . Solving this using the pseudo-inverse we ind the
solution r+ with the smallest norm among all possible solutions:

r+ = Xuwsup .

We therefore have for any solution r that

∥r∥2 ≥ ∥Xuwsup∥2

and so if ∥Xuwsup∥2 >

√
U, this implies that every solution r lies outside of the

unit cube [−1, 1]U and no proper solution of responsibilities exists.



CHAPTER SIX

Optimistic Semi-supervised
Least Squares Classiication

The goal of semi-supervised learning is to improve supervised classifiers by using
additional unlabeled training examples. In this work we study a simple self-learning
approach to semi-supervised learning applied to the least squares classifier. We show
that a soft-label and a hard-label variant of self-learning can be derived by applying block
coordinate descent to two related but slightly different objective functions. The result-
ing soft-label approach is related to an idea about dealing with missing data that dates
back to the 1930s. We show that the soft-label variant typically outperforms the hard-
label variant on benchmark datasets and partially explain this behaviour by studying the
relative difficulty of finding good local minima for the corresponding objective functions.

6.1 Introduction

Semi-supervised learning aims to improve supervised classiiers by incorporating
abundant unlabeled training examples in the training of a classiier. Many ap-
proaches to semi-supervised learning have been suggested (for one overview see
Chapelle et al. (2006)), mostly taking advantage of assumptions that allow inform-
ation about the distribution of the feature values to inform decisions as to what
constitutes a good classiier.

Instead of introducing yet another assumption to the literature, the goal of this
work is to revisit a classic approach to semi-supervised learning to incorporate un-
labeled data in the training of the least squares classiier: self-learning. While self-
learning is often proposed as an ad hoc procedure, we properly formulate it as the

This chapter appeared as: Krijthe, J. H., & Loog, M. 2016. Optimistic Semi-supervised Least Squares Classi-
ication. In Proceedings of the 23rd International Conference on Pattern Recognition (pp. 1677–1682).
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minimizer of a particular objective function in the least squares setting. A slightly
diferent formulation then leads to a new type of soft-label self-learning.

This soft-label self-learning procedure is closely related to a procedure that dates
all the way back to an approach to missing data in least squares regression by Yates
(1933) and Healy and Westmacott (1956) from the 1930s and 1950s respectively. We
revisit these ideas in the context of the present paper.

In a set of experiments, we show that the soft-label self-learning variant tends to
outperform the hard-label variant. We explain this behaviour based on the difering
diiculty of inding good local minima of the corresponding objective functions.

The paper is structured as follows: we will irst explain how our ideas relate
to early approaches to deal with missing data in statistics and to the well known
self-learning and expectation maximization (EM) approaches to semi-supervised
learning. Afterwards we will formulate two diferent objective functions for the
semi-supervised least squares classiication problem. We show that applying block
coordinate descent (Bertsekas, 1999, Ch. 2.7) to these objective functions corres-
ponds to either hard-label, respectively soft-label self-learning. We then study the
properties of these objective functions using some simulation studies and end with
a set of experiments on benchmark datasets that shows that soft-label self-learning
tends to outperform the hard-label variant.

6.2 Historical Perspective

Self-learning and EM

Arguably, the most simple and straightforward approach to semi-supervised learn-
ing is a procedure known as self-learning. Starting with the supervised classiier
trained using only labeled data, one predicts the labels for the unlabeled objects
and uses these in the next iteration of training the classiier. This is done until the
predicted labels of the unlabeled objects no longer change. Self-learning was in-
troduced in McLachlan (1975) and McLachlan (1977) as a more feasible alternative
to the proposal by Hartley and Rao (1968) to consider all possible labelings of the
unlabeled data and ind the one that minimizes the log likelihood of an ANOVA
model.

For probabilistic models, such as linear discriminant analysis based on a Gaus-
sian model of each class, a closely related approach to self-learning is to apply the
Expectation Maximization (EM) procedure (Dempster et al., 1977) that attempts to
ind the parameters that maximize the likelihood of the model after marginalizing
out the unknown labels. This leads to an algorithm where in each iteration, the
parameters of the model are estimated based on the current partial assignment of
objects to diferent classes (the maximization step), after which these assignments
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are updated based on the new model parameters (the expectation step). The assign-
ments of unlabeled objects to classes in each stage is a partial assignment based on
the posterior probability given by the current parameter estimates of the model,
rather than a hard assignment to a single class as is typically used in self-learning.

Connection to Missing Data in Regression

In this work we consider the least squares classiier, the classiier that minimizes
the squared error of the it of a (linear) decision function to the class labels encoded
as {0, 1} (Hastie et al., 2009, p.103). While the classiier in this form does not have
a proper likelihood function to which we can apply the EM procedure, it is closely
related to least squares regression where Healy and Westmacott (1956) proposed
a similar iterative procedure. The idea behind this iterative procedure dates back
as early as 1933 to work by Yates (1933). Yates noted that one can get unbiased es-
timates of the regression parameters when outcomes are missing by plugging in
the regression estimates for the missing values that were given by the complete
data alone. The problem is how to ind these regression estimates. While for some
regression designs analytical solutions exist (Wilkinson, 1958) to ill in the missing
values, Healy and Westmacott (1956) describes the simple approach of starting with
random values and iteratively updating the regression parameters and setting the
missing values to the values predicted by the updated model. They prove this pro-
cedure reduces the residual sum of squares at each iteration. It was later shown
(Dempster et al., 1977) that for the linear regression model with Gaussian errors,
this procedure corresponds to the EM algorithm.

Note that the goal of these procedures is to deal with missing values in a con-
venient automatic way, not necessarily to improve the estimator (Little and Rubin,
2002, Ch. 2), as is the case in semi-supervised learning.

Unlike in the regression setting, in least squares classiication, we know that the
true labels are not values in R but rather restricted to {0, 1}, or as we will consider,
[0, 1]. We will show that the iterative approach of Healy and Westmacott (1956),
when taking into account the constraints that missing outcomes are [0, 1] can be
formulated as a block coordinate descent procedure on the quadratic loss function
and that, in fact, an improved classiier can generally be obtained by using this
procedure. For a diferent take on how to introduce soft-labels in self-learning and
how this relates to EM, see Mey and Loog (2016).

Pessimism vs. Optimism

To guard against unlabeled data leading to worse classiiers one can attempt to con-
struct a classiier that improves over the supervised classiier even for the worst
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possible labeling of the unlabeled objects, which is proposed in contrastive pessim-
istic learning, see Loog (2016) and Krijthe and Loog (2015). This is the pessimistic
approach to semi-supervised learning. In contrast, we refer to the approaches stud-
ied here as optimistic approaches, where in each step of the algorithm, we consider
the best-case labels, rather than the worst-case labels.

6.3 Regularized Least Squares Classiication

Let x denote a d × 1 feature vector, potentially containing a constant feature encod-
ing the intercept. X is the L × d design matrix of the labeled examples, while Xu is
the U × d design matrix of the unlabeled examples. y is the L × 1 vector containing
the labels encoded as {0, 1}. w denotes the weight vector of a linear classiier.

In the supervised setting, the binary regularized least squares classiier is deined
by the following loss function:

Js(w) =
L

∑
i=1

(x⊤i w − yi)
2 + λ∥w∥2 . (6.1)

The minimizer of this objective function has a well-known closed form solution:

w =
(

X⊤X + λI
)−1

X⊤y . (6.2)

To label a new object a threshold is typically set at 1
2 :

cw(x) =

{

1, x⊤w >
1
2

0, otherwise

6.4 Optimistic Semi-supervised LSC

We present two closely related ways to extend the supervised least squares object-
ive function to include unlabeled data in an optimistic way. We refer to the irst
formulation as the label based formulation and show that applying a block coordin-
ate descent procedure to this objective function corresponds to a type of soft-label
self-learning, similar to Expectation Maximization. The second formulation is a
very similar responsibility based formulation where a block coordinate descent ap-
proach corresponds to the familiar hard-label self-learning.

Label Based Formulation

A straightforward way to include the unlabeled objects into the objective function
(6.1) is to introduce a variable for the missing labels u and then use the supervised
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Figure 6.1 | Dotplot of example dataset with 4 labeled objects and 396 unlabeled objects.

objective function as if we knew these labels:

Jl(w, u) = ∥Xew −
[

y

u

]

∥2 + λ∥w∥2

where Xe is the concatenation of X and Xu. Since we do not know u, one possibility
is to minimize over both w and u:

min
w∈Rd ,u∈[0,1]U

Jl(w, u) .

Taking the gradient with respect to w and setting it equal to zero gives

w =
(

X⊤
e Xe + λI

)−1
X⊤

e ye .

where ye =

[

y

u

]

. So given a choice of labels u for the unlabeled objects, this natur-

ally has the same form as the solution (6.2) in the supervised setting.
The gradient with respect to the unknown labels is:

∇Jl(w, u)

∇u
= −2(Xuw − u)

so given a set of weights, w, the minimizing labeling is

u = Xuw .
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Figure 6.2 | Convergence paths of the block coordinate descent procedure for different
starting values for the label based objective function (left) and responsibility
based objective function (right). Shown are the weights corresponding to the
intercept and single feature of a classifier applied to the problem shown in
Figure 6.1. Shown in red is the optimization path starting with the supervised
solution.

Taking into account, however, the constraint that u ∈ [0, 1]U , the solution is to pro-
ject each label onto [0, 1]:

ui =















0, if x⊤i w < 0

x⊤i w, if 0 < x⊤i w < 1

1, if x⊤i w > 1

In this formulation, for a given w we get hard labelings whenever the decision func-
tion gives a value outside (0, 1), but a soft assignment, between (0, 1), if it does not.

Responsibility Based Formulation

A diferent way to include the unlabeled data is by introducing a variable q ∈ [0, 1]U

that indicates what portion of the loss of the two classes should be attributed to the
loss for each unlabeled object. We refer to this q as a vector of responsibilities. While
the responsibility is closely related to soft-labels in the previous section, it leads to
a slightly diferent loss function. For generality, let m be the numerical encoding
used for one class and n for the other. In this work, we shall use m = 1 and n = 0.
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The objective function becomes:

Jr(w, q) =∥Xw − y∥2 + λ∥w∥2

+
U

∑
i=1

qi(x
⊤
i w − m)2 + (1 − qi)(x

⊤
i w − n)2 .

Now to solve minw∈Rd ,q∈[0,1]U Jr(w, q) we again consider the gradients

∇Jr

∇w
= 2X⊤

e Xew − 2X⊤y − 2Xu(qm − qn + n) + 2λw

and
∇Jr

∇qi
= m2 − n2 − 2(m − n)x⊤i w .

More speciically, in the encoding used here:

∇Jr

∇qi
= −2(x⊤i w − 0.5) .

If the responsibilities are ixed, this objective function leads to the same solution as
the label based objective. Unlike for the label based objective, the objective function
is now linear in the responsibilities. Minimizing the responsibilities for a given w

leads to setting qi = 1 if x⊤i w > 0.5 and qi = 0 if x⊤i w < 0.5

Unlike in the previous approach, the optimal procedure becomes to assign hard
labelings to each object when w is kept ixed.

6.5 Optimization

A straightforward approach to ind a local minimum of these functions is to use a
block coordinate descend procedure where we iteratively 1) update w, using the
closed form solution given while keeping the labels/responsibilities ixed and 2)
update u or q by the updates derived in the previous section. This leads respectively
to a soft-label self-learning and hard-label self-learning procedure.

The convergence of these procedures can be veriied by the same argument that
was used by Healy and Westmacott (1956): both steps are guaranteed to decrease
the value of the objective function.

While this may seem like a naive approach, block-coordinate descent is the bread
and butter of semi-supervised learning approaches. We see this in the EM algorithm,
which iteratively updates the responsibilities and the model parameters. But even
the seemingly unrelated Transductive SVM (Joachims, 1999), in its algorithm iter-
atively updates imputed labels and the decision function to converge to a local op-
timum of its objective function.
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6.6 Diiculty of the Optimization Problem

A nice property of the supervised least squares objective function is that it is convex
and allows for a simple closed-form solution. To study the convexity of the semi-
supervised extensions of this loss function, we check whether their Hessians are
positive semi-deinite matrices. The Hessian of the label based extension is given
by:

H =

[

2X⊤
e Xe −2X⊤

u
−2Xu −2I

]

,

which is not positive semi-deinite as it has negative values on its diagonal.
For the responsibility based loss function, the Hessian is slightly diferent:

H =

[

2X⊤
e Xe −2(m − n)X⊤

u
−2(m − n)Xu 0

]

.

So for the problem to be convex we would need:

2z⊤1 X⊤
e Xez1 − 2(m − n)z⊤2 Xuz1 ≥ 0

for all z1 ∈ R
d and z2 ∈ R

U . When Xu ̸= 0 and z1 ̸= 0 it is always possible to
pick some z2 such that the constraint does not hold, so this function is typically not
convex either.

Similar to EM-based approaches, we lose convexity for both semi-supervised
extensions. One of the extensions may still be easier to optimize than the other. We
illustrate the diference between the two objective functions by applying both ap-
proaches to the simple dataset shown in Figure 6.1. We randomly generate 100 start-
ing values around the supervised solution and plot the convergence of the block co-
ordinate descent procedure for both algorithms in Figure 6.2. The red line indicates
the path of solution when starting at the supervised solution. For the soft-label ob-
jective, all starting values converge to the same optimum, while for the hard-label
approach, the algorithm converges to four diferent optima, corresponding to as-
signing all objects to one of the classes and the two assignments of the clusters to
the diferent classes.

6.7 Experiments & Results

Why Soft-labeling can Lead to Improved Predictions

For hard self-labeling, it is clear why the semi-supervised solution will generally
be diferent from the supervised procedure: for a lot of classiiers it is unlikely that
the minimizer of the loss after assigning labels to the unlabeled objects is going to
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Figure 6.3 | Example of the first step of soft-label self-learning. The circles indicate two
labeled objects, while the dashed vertical lines indicate the location of two
unlabeled objects. The solid line is the supervised decision function. The
dotted line indicates the updated decision function after finding soft labels
that minimize the loss of the supervised solution and using these labels as the
labels for the unlabeled data in the next iteration.

be exactly the same as the minimizer of the loss on the supervised objects. In the
soft-label case, it is less clear: because the labeling is more ine-grained, it may be
possible to ind some assignment of the labels such that the loss does not change.
Figure 6.3 illustrates when an update of the classiier occurs: starting with the su-
pervised decision function (solid line), we can set the label of the unlabeled object
on the left to 0, such that its contribution to the loss function is 0. For the object
on the right, however, the best we can do is setting the label to 1. In the next step,
the classiier is updated, after which the labels are updated again. This time, the
optimal labeling for the right object is again 1, while the optimum for the left ob-
ject has now changed due to the updated decision function. The efect is that even
as the changes are brought about by objects that have decision values greater than
1 or smaller than 0, updates lead to a weight vector that has not only changed in
magnitude, but the location of the decision boundary has also shifted based on the
coniguration of the unlabeled objects.
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Figure 6.4 | Example where hard-label self-learning decreases classification performance
compared to the supervised solution, while comparable performance to the
supervised solution is obtained by soft-label self-learning. Light-grey line indic-
ates true decision boundary.
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Why Hard-labeling Might Fail

While Figure 6.2 indicated that the hard-label approach can more easily get stuck
in a bad local optimum, using the supervised solution as the initialization leads to
a reasonable solution. Figure 6.4 shows an example where this is not the case, and
the hard-label approach leads away from the reasonable supervised solution to one
that has worse performance. The soft-label procedure, on the other hand, gives a
classiier that is similar to the supervised procedure.

Local Optima

One might wonder how often these bad local minima occur on benchmark data-
sets. We take a set of 16 well-known datasets from Chapelle et al. (2006) and the
UCI repository (Lichman, 2013). Figure 6.5 shows the classiication performance of
the solutions the algorithms converge to for several random initialization of the al-
gorithm and when the algorithms are initialized using the supervised solution. For
each dataset, we randomly assign 20% of the objects to the test set, and randomly
remove labels from 80% of the remaining objects. We randomly initialize the al-
gorithms 50 times. In all experiments, λ = 0. The igure shows that the soft-label
approach reaches far fewer local optima, compared to the hard-label approach.

Increasing the Number of Unlabeled Examples

We study the efects of using an increasing number of unlabeled examples, while
keeping the number of labeled examples ixed. The procedure is set us as follows:
for each dataset we sample L objects without replacement to form the labeled set.
We choose L > d, the number of features in the dataset to ensure the supervised
least squares solution is well-deined. We then sample an increasing number of un-
labeled examples (U = 1, 2, 4, . . . , 256) without replacement, and use the remain-
ing samples as the test set. Each classiier is trained on the labeled and unlabeled
examples and their classiication performance is evaluated on the test set. This pro-
cedure is repeated 1000 times. Apart from the soft- and hard-label self-learning
procedures, we also consider an Oracle least squares solution, which has access to
the labels of the unlabeled objects. This can be considered an upper bound on the
performance of any semi-supervised learning procedure. The results are shown in
Figure 6.6.

The soft-label self-learning approach generally outperforms the hard-label ap-
proach when we increase the amount of unlabeled data. On this collection of data-
sets, the hard-label variant only outperforms the soft-label variant on the Haberman
dataset. Moreover, for the hard-label variant performance can sometimes decrease
as more unlabeled data is added. A partial explanation of the better behaviour of
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cedure, initialized in the supervised solution. The green points indicate the
performance of the soft-label procedure, initialized in the supervised solution.
Blue points indicate the performance of the supervised solution. Notice the
difference in the number of unique minima of the two procedures.
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Figure 6.6 | Classification errors for increasing amounts of unlabeled data. The number
of labeled objects remains fixed at a number larger than the dimensionality
of the dataset to ensure the supervised solution is well-defined. Results are
averaged over 1000 repeats.

the soft-label variant can be found in the results from Figure 6.5. These results sug-
gest that while the hard-label objective has good local minima, there are many more
local minima than in the soft-label case, making it less likely to reach a good one
when starting from the supervised solution.

6.8 Conclusion

We studied a simple, straightforward semi-supervised least squares classiier that
is related to an iterative method that dates back at least 60 years. We described it
both in its historical context and by formulating it as a block coordinate descent
procedure applied to a particular objective function. The resulting procedure can
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be considered a soft-label variant of self-learning and is an optimistic type of semi-
supervised learning, as a contrast to pessimistic approaches to safe semi-supervised
learning. We empirically showed that this simple procedure works well as an al-
ternative to the more ickle hard-label self-learning. Generally, both procedures
outperform the supervised solution.



CHAPTER SEVEN

The Peaking Phenomenon
in Semi-supervised Learning

For the supervised least squares classifier, when the number of training objects
is smaller than the dimensionality of the data, adding more data to the training set
may first increase the error rate before decreasing it. This, possibly counterintuitive,
phenomenon is known as peaking. In this work, we observe that a similar but more
pronounced version of this phenomenon also occurs in the semi-supervised setting,
where instead of labeled objects, unlabeled objects are added to the training set. We
explain why the learning curve has a more steep incline and a more gradual decline in
this setting through simulation studies and by applying an approximation of the learning
curve based on the work by Raudys & Duin.

7.1 Introduction

In general, for most classiiers, classiication performance is expected to improve as
more labeled training examples become available. The dipping phenomenon is one
exception to this rule, showing for speciic combinations of datasets and classiiers
that error rates can actually increase with increasing numbers of labeled data (Loog
and Duin, 2012). For the least squares classiier and some other classiiers, the peak-
ing phenomenon is another known exception. In this setting, the classiication error
may irst increase, after which the error rate starts to decrease again as we add more

This chapter appeared as: Krijthe, J. H., & Loog, M. 2016. The Peaking Phenomenon in Semi-supervised
Learning. In A. Robles-Kelly, M. Loog, B. Biggio, F. Escolano, & R. Wilson (Eds.), Structural, Syntactic, and
Statistical Pattern Recognition. S+SSPR 2016. Lecture Notes in Computer Science, vol 10029. (pp. 299–309).
Springer
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Figure 7.1 | Empirical learning curves for the supervised least squares classifier (Eq. (7.4))
where labeled data is added and the semi-supervised least squares classifier
(Eq. (7.5)) which uses 10 labeled objects per class and the remaining objects
as unlabeled objects. “Base” corresponds to the performance of the classifier
that uses the first 10 labeled objects for each class, without using any addi-
tional objects. Data are generated from two Gaussians in 50 dimensions, with
identity covariance matrices and a distance of 4 between the class means.

labeled training examples. The term peaking comes from the form of the learning
curve: an example of which is displayed in Fig. 7.1.

The term ‘peaking’ is inspired by a diferent peaking phenomenon described
by Hughes (1968) (see also Jain and Chandrasekaran (1982)), who studies the phe-
nomenon that the performance of many classiiers peaks for a certain number of
features and then decreases as more features are added. In this work we consider a
diferent peaking phenomenon that occurs when the number of training objects is
increased, and the peak does not refer to a peak in performance, but a peak in terms
of the classiication error, after which performance starts increasing again. While
this type of peaking also shows up in feature curves, where we increase the number
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of features, we focus on learning curves in terms of the number of training objects
because it relates more closely to the question whether unlabeled data should be
used at all in the semi-supervised setting.

The peaking phenomenon considered here is observed in (Duin, 1995; Skur-
ichina and Duin, 1996; Opper and Kinzel, 1995; Duin, 2000; Opper, 2001) for vari-
ous classiiers in the supervised learning setting and (Duin, 1995; Skurichina and
Duin, 1999; Duin, 2000; Opper, 2001) additionally describe diferent ways to get rid
of this unwanted behaviour, notably, by only considering a subset of relevant ob-
jects, by adding regularization to the parameter estimation, adding noise to objects,
doing feature selection, or by injecting random features.

Grünwald and Ommen (2014) describe a remarkably similar phenomenon in
the context of itting Bayesian linear regression models. They show that, in a set-
ting similar to the one considered here, where the dimensionality of the model is
ixed, too little regularization leads to a peaking phenomenon, as in the unregu-
larized regression models considered in this chapter. They also construct an ex-
ample where, when the number of variables used is inferred by the model as well,
a peaking phenomenon continues to exist when the model is misspeciied, while the
Bayesian model does not exhibit a peak when the model is correctly speciied. Their
example also shows that for very high-dimensional models, the misspeciied model
is not guaranteed to converge to the best predictive model in the hypothesis space
in terms of squared loss. Interestingly, considering our discussion on surrogate
losses in previous chapters, the misspeciied model does lead to good predictions
in terms of the log-loss. They explain, using an information theoretic argument, for
what types of misspeciication this peaking behaviour occurs.

While this peaking phenomenon has been observed for the least squares classi-
ier when the amount of labeled data is increased, we ind similar but worse beha-
viour in the semi-supervised setting. Following the work in Duin (1995) and Fan
et al. (2008), we study a particular semi-supervised adaptation of the least squares
classiier in greater depth. An example of the actual behaviour is shown in Fig. 7.1.
When the amount of labeled objects remains ixed (20 in the igure) while we in-
crease the amount of unlabeled data used by this semi-supervised learner, the peak-
ing phenomenon changes in two ways: the error increases more rapidly when un-
labeled data is added than when labeled data is added and after the peak the error
decreases more slowly than when labeled data is added. The goal of this work is
to describe and explain these efects. More speciically, we attempt to answer two
questions:

1. What causes the performance in the semi-supervised setting to deteriorate
faster than in the supervised case?

2. If we increase the amount of unlabeled data, will the performance of the semi-
supervised learner converge to an error rate below the error rate of the super-
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vised learner that does not take the additional unlabeled data into account?
To answer these questions, we irst revisit the supervised peaking phenomenon and
explain its causes in Sect. 7.2. In Sect. 7.3 we show how the results from Sect. 7.2
relate to the least squares classiier and how we speciically adapt this classiier to
the semi-supervised setting. In Sect. 7.4 and 7.5 we attempt to answer our two ques-
tions in two ways: irstly by adapting the learning curve approximation of Raudys
and Duin (1998) and secondly through simulation studies. We end with an invest-
igation of the semi-supervised peaking phenomenon on some benchmark datasets.

7.2 Supervised Peaking

Raudys and Duin (1998) attempt to explain the peaking phenomenon in the su-
pervised case by constructing an asymptotic approximation of the learning curve
and decomposing this approximation into several terms that explain the efect of
adding labeled data on the learning curve. The classiier they consider is the Fisher
linear discriminant, whose normal to the decision boundary is deined as the direc-
tion that maximizes the between-class variance while minimizing the within-class
variance:

arg max
w

(w⊤m1 − w⊤m2)
2

w⊤Ww
, (7.1)

where mc is the sample mean of class c and W = 1
n ∑

2
c=1 ∑

Nc
i=1(xci − mc)(xci − mc)⊤

is the sample within-class scatter matrix. The solution is given by

w = W−1(m1 − m2) . (7.2)

The intercept (or threshold value) that we consider in actual classiication is right in
between the two class means: − 1

2 (m1 + m2)
⊤w. The peaking phenomenon occurs

when n = 2N < p, where N is the number of (labeled) objects per class and p is
the dimensionality of the data. In this case, a pseudo-inverse needs to be applied
instead of the regular inverse of W. This is equivalent to removing directions with
an eigenvalue of 0 and training the classiier in a lower dimensional subspace, a
subspace whose dimensionality increases as more training data is added.

The goal of the analysis in (Raudys and Duin, 1998) is to construct an approxim-
ation of the learning curve, which decomposes the error into diferent parts. These
parts relate the observed peaking behaviour to diferent individual efects of in-
creasing the number of training objects. To do this they construct an asymptotic
approximation where both the dimensionality and the number of objects grows to
ininity. An important assumption in the derivation, and the setting we also con-
sider in our analysis, is that the data are generated from two Gaussian distributions
corresponding to two classes, with true variance I and a Euclidean distance between
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the true means µ1 and µ2 of δ. Lastly, objects are sampled in equal amounts from
both classes.

The approximation of the learning curve is then given by1

e(N, p, δ) = Φ







− δ

2
Tr

√

(1 + γ2)Tµ + γ2
3δ2

4p

−1






,

where Φ is the cumulative distribution function of a standard normal distribution
and N is the number of objects per class. The main quantities introduced are Tµ,
Tr, and γ and Raudys and Duin (1998) note that the approximation of the learning
curve can be broken down to depend on exactly these three quantities all with their
own speciic interpretation:

Tµ = 1 +
1

N
+

2p2

δ2(2N − 2)N
+

p2

δ2(2N − 2)N2
,

relates to how well we can estimate the means, Tr =
√

2N−2
p relates to the reduction

in features brought about by using the pseudo-inverse and γ is a term related to the
estimation of the eigenvalues or W. The Tµ and Tr terms lead to a decrease in the
error rate as N, the number of objects per class increases. This is caused by the
improved estimates of the means and the increasing dimensionality. The γ term
increases the generalization error as N increases, which is caused by the fact that
the smallest eigenvalues are diicult to accurately estimate but can have a large
efect on the computation of the pseudo-inverse.

When n > p the pseudo-inverse is no longer necessary and other approxima-
tions of the learning curve can be applied. The comparison of these approximations
in (Wyman et al., 1990) shows that the approximation

e(N, p, δ) = Φ

{

− δ

2

√

TµTΣ

−1
}

,

with Tµ = 1 + 2p

δ2 N
and TΣ = 1 + p

2N−p works reasonably well. The former term
again relates to the estimation of the means while the latter term relates to the es-
timation of the within scatter matrix W. Fig. 7.2 shows these approximations and
the empirical learning curve on a simple dataset with 2 Gaussian classes, with a
distance between the means of δ = 4.65.

1While going through the derivation we found a diferent solution than the one reported by Raudys
and Duin (1998), which renders the last term in the formulation independent of N. This slightly changes
the expressions in the explanation of the peaking behaviour.
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Figure 7.2 | Empirical learning curves and their asymptotic approximations for different
classifiers: Supervised learning curve corresponding to the formulation in
Eq. (7.2).

7.3 Semi-supervised Classiier

Unfortunately for our analysis, the classiier studied by Raudys & Duin does not
correspond directly to the least squares classiier we wish to study, nor is it directly
clear how their classiier can be extended to the semi-supervised setting. We there-
fore consider a slightly diferent version in which we follow Duin (1995) and Fan
et al. (2008):

w = T−1(m1 − m2) . (7.3)

Here T is the total scatter matrix. This leads to the same classiier as Equation (7.2)
when n > p (Duin, 1995). Moreover, when the data are centered (m = 0) and
the class priors are exactly equal it is equivalent to the solution of the least squares
classiier, which minimizes the squared loss (x⊤i w − yi)

2 and whose solution is
given by

w = (X⊤X)−1X⊤y , (7.4)
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Figure 7.3 | Empirical learning curves and their asymptotic approximations for different
classifiers: Supervised and semi-supervised learning curves corresponding to
the formulations in Eqs. (7.3), (7.4) and (7.5). Semi-supervised uses 5 labeled
objects per class and the rest as unlabeled objects.

where y is a vector containing a numerical encoding of the labels and X is the L × p

design matrix containing the L labeled feature vectors xi.
While Eq. (7.3) is equivalent to Eq. (7.2) when n > p, this solution is not necessar-

ily the same in the scenario where n < p (compare the dashed black lines in Fig. 7.2
and Fig. 7.3). This makes it impossible to apply the results from (Raudys and
Duin, 1998) directly to get a quantitatively good estimator for the learning curve.
Moreover, their proof is not easily adapted to this new classiier. This is caused
by dependencies that are introduced between the total scatter matrix T (which is
proportional to X⊤X in case m = 0) and the mean vectors mc that complicate the
derivation of the approximation. Their result does, however, ofer a qualitative ex-
planation of the peaking phenomenon in the semi-supervised setting—as we will
see in Sect. 7.4.

How then do we adapt the least squares classiier to the semi-supervised set-
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ting? Fan et al. (2008) proposes to update T, which does not depend on the class
labels, based on the additional unlabeled data. Equivalently, in the least squares set-
ting, Shafer (1991) studies the improvement in the least squares classiier by plug-
ging in a better estimator of the covariance term, X⊤X, which is equivalent to the
update proposed by Fan et al. (2008). We deine our semi-supervised least squares
classiier as this update:

w = ( L
L+U X⊤

e Xe)
−1X⊤y . (7.5)

This is the semi-supervised learner depicted in Fig. 7.1. Here L is the number of
labeled objects, U, the number of unlabeled objects and Xe the (L + U)× p design
matrix containing all the feature vectors. The weighting L

L+U is necessary because
X⊤

e Xe is essentially a sum over more objects than X⊤y, which we have to correct for.

7.4 Why Peaking is More Extreme Under Semi-supervision

One apparent feature of the semi-supervised peaking phenomenon is that before
the peak occurs, the learning curve rises more steeply when unlabeled data are
added vs. when labeled data are.

Asymptotic Approximation

To explain this behaviour using the learning curve approximation, we hold the term
that relates to the increased accuracy of the estimate of the means, Tµ, constant and
consider the change in the approximation. As we noted before, the learning curve
approximation is for a slightly diferent classiier, yet it might ofer a qualitative in-
sight as to the efect of only adding unlabeled data. Looking at the resulting curve in
Fig. 7.3, we indeed see that the semi-supervised approximation rises more quickly
than the supervised approximation due to the lack of labeled data to improve the
estimates of the mean. After the peak we see that the curve drops of less quickly
for the same reason. The approximation, however, is not a very accurate relection
of the empirical learning curve.

Simulation of Contributions

Because the approximation used does not approximate the empirical learning curve
very well, the question remains whether the lack of the updating of the means based
on new data fully explains the increase in the semi-supervised learning curve over
the supervised learning curve. To explore this, we decompose the change in the
supervised learning curve into separate components by calculating the change in
the error rate from adding data to improve respectively the estimator of the total
covariance, T, the means or both at the same time. The result is shown in Fig. 7.4.
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Figure 7.4 | Average gain in error rate by adding 2 additional objects to the training set,
either in a supervised way, by adding labeled objects, or by only using them to
improve the estimator of the total scatter (covariance).

To do this we compare the diference in error of the semi-supervised classiier
that has two additional unlabeled objects available to the supervised classiier that
does not have these unlabeled data available. We see that adding these objects typ-
ically increases the error rate when n < p. We then compare the error of the super-
vised classiier to the one where we remove 2 labels and the classiier where we do
not remove these labels. By negating this diference we get the value of having two
additional labels. We see that for this dataset this efect always decreases the error.
Adding up the efect of adding unlabeled objects to the efect of having additional
labels, we ind this approximates the total efect of adding labeled objects very well.
It seems, therefore, that in the semi-supervised setting, by not having additional
labels, the positive efect of these labels as shown Fig. 7.4 is removed, explaining
the diference between the supervised and semi-supervised setting.

It is also clear from these results that peaking is caused by the estimation of
the inverse of the covariance matrix, which leads to an increase in the error before
n > p. To understand why this happens, consider the “Fixed rank” curve in Fig. 7.4.
This curve shows the change in terms of the error rate when we add two labeled ob-
jects but leave the rank of the covariance matrix unchanged during the calculation
of the inverse, merely considering the largest n eigenvectors of the newly obtained
covariance matrix that was estimated using n + 2 objects. Since this tends to de-
crease the error rate, the error increase for the other curve may indeed stem from
the actual growth of the rank. Especially when n is close to p, the eigenvalues of
the dimensions that are added by increasing the rank become increasingly hard to
estimate. This is similar to the γ term in the approximation, which captures the
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Figure 7.5 | Learning curves for the supervised learner and the semi-supervised learner
with infinite amounts of unlabeled data for different dimensionalities, p, and
distances between the means, δ.

diiculty of estimating the eigenvalues for these directions.

7.5 Convergence to a Better Solution than the Base Learner?

The slow decline of the error rate after the peak in the learning curve begs the ques-
tion whether the semi-supervised learner’s error will ever drop below the error of
the original supervised learner. If not, it would be worthwhile to refrain from us-
ing the semi-supervised learner in these settings. The approximation in Fig. 7.3
indicates that the learning curve will decline more slowly when n > p when un-
labeled data are added. From this approximation, however, it is not clear if and
under which circumstances the error of the semi-supervised classiier will improve
over the base learner if larger amounts of unlabeled data become available.
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To investigate this issue we consider, for the two-class Gaussian problem with
diferent dimensionalities, p, and diferent distances between the means, δ, whether
adding ininite unlabeled data improves over the supervised learner, for diferent
amounts of limited labeled data. We can simulate this by setting the true means as
µ1 = − δ

2
√

p 1 and µ2 = + δ
2
√

p 1. In this case, when the amount of unlabeled data
increases, the total scatter matrix will converge to

T = I + 11⊤
1

4

δ2

p
.

Using this we can calculate the semi-supervised classiier based on an ininite un-
labeled sample and with a inite amount of labeled data. The results are shown in
Fig. 7.5.

We observe that the dimensionality of the data does not have a large efect on
whether the semi-supervised learner can outperform the supervised learner. It
merely shifts the peak while qualitatively the diferences between the supervised
and semi-supervised curves remain the same. If we decrease the Bayes error by
moving the means of the classes further apart, however, there are clear changes.
For small distances between the means, the semi-supervised learner generally does
increase performance for a larger range of sizes of the labeled set, while for larger
distances this is no longer the case and the semi-supervised solution is typically
worse than the supervised solution that does not take the unlabeled data into ac-
count.

7.6 Observations on Benchmark Datasets

The goal of this section is to observe the semi-supervised peaking phenomenon on
several benchmark datasets (taken from (Chapelle et al., 2006) and (Lichman, 2013))
and relate these observations to the results in the previous sections. We generate
semi-supervised learning curves for eight benchmark datasets as follows. We select
L = ⌈p/2⌉ where p is the dimensionality of the dataset after applying principal
component analysis and retaining as many dimensions as required to retain 99% of
the variance.

We then randomly, with replacement, draw additional training samples, with
a maximum of 100 for the smaller datasets and 1000 for the larger datasets. We
also sample a separate set of 1000 objects with replacement to form the test set. The
additional training samples are used as labeled examples by the supervised learner
and as unlabeled samples for semi-supervised learning. We repeat this process 100

times and average the results. These averaged learning curves are shown in Fig. 7.6.
Both behaviours studied in the previous sections, the steeper ascent in the semi-

supervised setting before the peak and the slower decline after the peak, are ap-
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Figure 7.6 | Learning curves on benchmark datasets. The number of labeled objects is
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parent on these example datasets. We also notice that for most of these datasets it
seems unlikely that the semi-supervised learning will improve over the base classi-
ier. This may suggest we are in a scenario similar to the large diference between
the means in Fig. 7.5. The exception is the SPECT and SPECTF datasets, where the
situation is more similar to the smaller δ. Notice that for all datasets it is still pos-
sible we are in a situation similar to δ = 2 in Fig. 7.5: while adding unlabeled data
does not help with the given amount of labeled examples, this efect might reverse
if a few more labeled objects become available.

7.7 Discussion and Conclusion

In this work, we have studied the behaviour of the learning curve for one particular
semi-supervised adaptation of the least squares classiier. This adaptation, based
on the ideas from Shafer (1991) and Fan et al. (2008), was amenable to analysis.
It is an open question what the typical learning curve for other semi-supervised
least squares adaptations looks like, such as self-learning or the constraint based
approach in Krijthe and Loog (2015) where we irst noticed this behaviour and
which inspired us to look into this phenomenon. The lack of a closed form solution
in these cases makes it more diicult to subject them to a similar analysis. Nev-
ertheless, the current study does provide insight in the additional problems that
small samples entail in the semi-supervised setting and largely explains the learn-
ing curve behaviour, at least for the speciic semi-supervised learner considered.
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CHAPTER EIGHT

Reproducible Pattern Recognition Research:
The Case of Optimistic SSL

In this paper, we discuss the approaches we took and trade-offs involved in making
a paper on a conceptual topic in pattern recognition research fully reproducible. We
discuss our definition of reproducibility, the tools used, how the analysis was set up,
show some examples of alternative analyses the code enables and discuss our views
on reproducibility.

8.1 Introduction

The goal of this work is to describe and discuss the choices involved in making the
results of a conceptual work in pattern recognition fully reproducible. Conceptual,
here, refers to the type and goal of the analysis that was done in that work: us-
ing simulations and experiments, it tries to improve our understanding of one or
more methods, rather than apply an existing method to some new application or
introduce supposedly novel approaches. The work in question is our paper on Op-
timistic Semi-supervised Least Squares Classiication (Krijthe and Loog, 2016), which
reports on two ways in which a supervised least squares classiier can be adapted
to the semi-supervised setting, the connections between these two approaches and
why one of these approaches often outperforms the other.

The conceptual nature of the work has particular advantages in making it re-
producible: the data required to run experiments can easily be made available or,

This chapter appeared as: Krijthe, J. H., & Loog, M. 2016. Reproducible Pattern Recognition Research:
The Case of Optimistic SSL. In B. Kerautret, M. Colom, & P. Monasse (Eds.), Reproducible Research in Pattern
Recognition. RRPR 2016. Lecture Notes in Computer Science, vol 10214. (pp. 48–59). Springer
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for simulated datasets, data are not required and the code to run the experiments
is relatively self-contained, i.e. it has few dependencies on code outside this pro-
ject. One could argue that for these types of projects, there is no reason not to make
results reproducible. We notice, however, that in practice, trade-ofs and problems
still come up. We will discuss our experience in this paper and use it as a case study
to discuss the uses of reproducibility in pattern recognition research.

We will start by giving a short summary of the original paper on optimistic
semi-supervised learning. We will then discuss what we mean by reproducibility
and discuss the tools and strategies used here. After some examples of alternative
analyses enabled by the reproducible nature of the work, we end with a discussion
on the relevance of reproducibility in pattern recognition research.

8.2 Summary of Optimistic SSL

In supervised classiication, classiiers are trained using a dataset of input/output
pairs {(xi, yi)}L

i=1, where xi is a d-dimensional input vector and yi is a binary out-
come encoded using some value m for one class and n for the other. In semi-
supervised learning, one attempts to use an additional set of unlabeled data {(xj)}U

j=1

to improve the construction of a classiier to solve the supervised learning task.
Semi-supervised learning is an active area of research due to its promise of improv-
ing classiiers in tasks where labeling objects is relatively expensive, or unlabeled
data is inexpensive to come by.

The goal of the work in (Krijthe and Loog, 2016) is to study two diferent ways
to adapt the supervised least squares classiier to the semi-supervised learning set-
ting. The supervised least squares classiier for the two-class problem is deined
as the linear classiier that minimizes the quadratic loss on the labeled objects or,
equivalently, least squares regression applied to a numeric encoding of the labels,
with the following objective function:

Js(w) = ∥Xw − y∥2 + λ∥w∥2 ,

where X is the L × d design matrix of the labeled objects, w refers to the weights of
the linear classiier and λ is a regularization parameter. We now deine two straight-
forward ways to include the unlabeled data in this objective function. The irst we
refer to as the label based objective, since it treats the missing labels of the unlabeled
data as a vector u that we should minimize over:

Jl(w, u) = ∥Xew −
[

y

u

]

∥2 + λ∥w∥2 ,

where Xe is an (L + U) × d design matrix containing the d feature values for all,
labeled and unlabeled, objects. A second way to include the data is to consider that
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each unlabeled object belongs to one of two classes, and we can assign each object
a responsibility: a probability of belonging to each class. If the classes are encoded
as m and n, for instance −1 and +1, this responsibility based objective is deined as:

Jr(w, q) =∥Xw − y∥2 + λ∥w∥2 +
U

∑
j=1

qj(x
⊤
j w − m)2 + (1 − qj)(x

⊤
j w − n)2 .

The irst result from the paper is that applying block coordinate descent to these
objectives – where we alternate between minimizing over w and u respectively q

– the second procedure turns out to be equivalent to the well-known hard-label self-
learning approach applied to the least squares classiier, while the irst approach is
equivalent to a soft-label self-learning, similar to a method that was originally pro-
posed for regression as early as the 1930s (Healy and Westmacott, 1956).

The second result from the paper (Krijthe and Loog, 2016) is that the soft-label
variant typically outperforms the hard-label variant on a set of benchmark datasets.
In the paper we showed these results in terms of the error rate on an unseen test
set: the learning curves of the performance for diferent amounts of unlabeled data
are typically lower for the soft-label variant than for the hard-label variant. We
will revisit these results in Sect. 8.4, by showing how to adapt the code to not only
consider the performance in terms of the error rate, but in terms of the quadratic
loss used by the classiier as well.

The third result is a study of one reason for the performance diference by look-
ing at the efect of local minima on the optimization problems posed by both ap-
proaches. We ind that the label based objective corresponding to the soft-label vari-
ant has much fewer local minima for the optimization to get stuck in, compared to
the hard-label variant, which often gets stuck in a bad local minimum, even though
a better local minimum may be available.

8.3 Reproducibility

Deinition of reproducibility

Reproducibility and replicability of experiments has gained increasing interest both
in science in general (Goodman et al., 2016) and in pattern recognition/computer
vision/machine learning as well (Drummond, 2009; Donoho et al., 2009). Much
of this interest can be attributed to what some call the “Reproducibility crisis” in
science: many published results can not be replicated by others trying to verify
these results. Perhaps the most visible and laudable efort to estimate the scale of
this problem in one scientiic discipline has been the Open Science Collaboration’s
eforts in Psychology (Open Science Collaboration, 2015) which ind that by some
measures of replicability, the results of less than half of the 100 studies selected
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for replication could actually be replicated. A related, but diferent phenomenon
is the “credibility crisis” (Donoho et al., 2009) which refers to the decrease in the
believability in computational scientiic results caused by the increasing diiculty
to understand exactly how results were obtained based on the textual description
alone.

While “replicability is not reproducibility” (Drummond, 2009), these terms on
their own may already refer to diferent things. Goodman et al. (2016) attempts to
give clear deinitions for diferent notions of reproducing a result. In this paper,
we are mostly concerned with what they call methods reproducibility, meaning the
ability of diferent researchers to reproduce exactly the same igures and tables of
results based on the data, code and other artefacts provided by the original authors.
Like Patil et al. (2016), we will refer to this simply as reproducibility. Note that the
moniker reproducibility does not say anything about the correctness of results, only
that they can be obtained again by a diferent researcher.

Also like Patil et al. (2016), we will use the word replicability to what Goodman et
al. (2016) calls results reproducibility: the ability to obtain the results that support the
same conclusion by an independent study. Here independent study is still vaguely
deined to mean that we set up a new study, where we gather and analyse data us-
ing a procedure that “closely resembles” the procedures used in the original work.
This is what the “reproducibility crisis” we mentioned at the start of this section
refers to: not being able to obtain the same results by such studies. In the pattern
recognition context, this deinition could often come down to the exact same thing
as reproducibility. The deinition by Patil et al. (2016) is slightly more explicit and
considers a study to be a replication if the population, question, hypothesis, exper-
imental design and the analysis plan remain ixed, but the analyst and the code,
for instance, have been changed. For a proper deinition of a replication in pattern
recognition research, one aspect of a replication could be a re-implementation of
methods. We will come back to this in the discussion.

The reason we attempt to be so explicit about our deinitions here is that the
meaning of the words reproducibility and reproducibility is sometimes interchanged
by other authors. Note, for instance, that by our deinitions, the reproducibility
crisis is best referred to as the replicability crisis. Or consider Drummond (2009)
who refers to methods reproducibility as replicability, and uses reproducibility to
mean obtaining the same result using an independent study.

While our deinition of reproducibility only concerns the reproduction of the
results in the original paper, we will illustrate that having reproducible results re-
duces the friction to make small changes to the code to explore alternative analyses.
This allows one to explore, for instance, how sensitive the results are to particular
parameter choices made be the original authors, or whether the method also works
for slightly diferent datasets. In other words, like in a replication, where many
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things are changed at once to see whether a result can still be obtained, these small
changes teach us something about the robustness of the results.

Even if we stick to our deinition of ‘reproduce exactly the results’, there are
several levels at which this can be interpreted for a pattern recognition study like
ours. We could, for instance, consider the following levels:

• Final paper can be reproduced from the source text
• Figures and tables can be generated from results of computations
• Results of computations can be generated from experiment datasets
• Experiment datasets can be generated from raw data

All using steps for which open source code is available. Although we consider a
paper reproducible when all these steps are fulilled, in practice we will show that
for many of the beneits of reproducibility, it may be useful to consider these as
separate steps: to explore the efect of a diferent outcome measure, we may not
want to redo the computations. Or for a particular experiment, the preprocessing
applied to the raw data may not be particularly relevant, as long as we have the
processed data.

Strategy for Reproducibility

All the code used to produce the results in (Krijthe and Loog, 2016) is written in
the R programming language (R Core Team, 2016), while the paper itself is a com-
bination of Latex and R code to generate the igures. The two are combined using
the knitr package (Xie, 2014). knitr allows one to intersperse Latex with blocks of
R code that get executed and turned into Latex expressions or igures before the
Latex document is compiled. This allows for the code that generates the igures to
be placed where one would usually place a igure environment in the Latex doc-
ument, so that everything that visually becomes part of the paper is deined in a
single document. One of the advantages of this approach is that the author can be
sure that the igures and tables in the paper were actually generated by this code,
i.e. the code did not inadvertently change in the meantime.

In principle, one could also include the code for the experiments itself in this
document. We noticed, however, that even for projects of this relatively small size,
and even though knitr is able to optionally cache results, we found it more conveni-
ent to place the code of the experiments in separate iles, save the results to an R
data ile, and then load these result iles to be used in the generation of the igures
in the knitr document.

The advantage of this particular approach to splitting the computations across
iles was that we could easily transfer the experiment code to a compute server to
run the experiments, while writing the document. A disadvantage of not including
the experiment code in the inal document is that it increases the possibility that the
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chain of reproducibility is broken: for instance, we could apply some transforma-
tion to the data between the time the experiments where run and the igures are
generated and forget, or accidentally save or load an old result ile.

Another trade-of was between writing code for this particular analysis project
or splitting code of into separate packages. For instance, for the implementations
of the classiiers, we decided to make these part of a larger package of methods for
semi-supervised learning (Krijthe, 2016). This makes the methods and some code
used to run experiments available for other applications. It also made sense here,
since this project was part of a larger research programme into semi-supervised
learning. The downside is that it introduces dependencies between projects. The
main practical lesson we learned here is to save the reference to the particular ver-
sion that was used to generate the results in the paper in the version control system,
so that future changes do not efect one’s ability to reproduce the results.

Similar to the implementations of the methods, we split the code used to load
the datasets into a separate project, to be used for other projects. These scripts
download the data and save them locally, unless this is already done previously.

8.4 Examples

In this section we will show some additional analyses that are possible by changing
the original code from Krijthe and Loog (2016) and that lead to some additional
insights into the methods covered in the paper. The examples shown here are meant
to illustrate that reproducible results have utility beyond the mere fact that we are
sure how the results were produced: it allows for small changes by readers that can
lead to additional insights. We order the examples by the size of the changes to the
code required to obtain the results.

Changing an Example Figure

We start with the simplest case where small changes to the code that generates a
igure can help illustrate a point. In the original paper we give an example why the
soft-label self-learning variant would update the decision boundary using the un-
labeled objects, and that this updating depends on the location of the unlabeled
objects. Here we change the location of the unlabeled objects, by changing the
line X_u <- matrix(c(-1, 4), 2, 1) to X_u <- matrix(c(-1, 0.5), 2, 1) to
show that when the decision values for all unlabeled objects are within [−1, 1], the
soft-label self-learning is no diferent than the supervised solution. The result is
shown in Fig. 8.1. Note that this would be a case where an interactive version of the
plot could be illustrative, instead of manually changing values and regenerating the
plot.
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Figure 8.1 | Example of the first step of soft-label self-learning. The circles indicate two
labeled objects, while the dashed vertical lines indicate the location of two
unlabeled objects. The solid line is the supervised decision function. A dotted
line indicates the updated decision function after finding the labels that minim-
ize the loss of the supervised solution and using these labels as the labels for
the unlabeled data in the next iteration. This last line is barely visible because
the unlabeled data do not cause an update of the decision function in this case.

Changing the Outcome Quantity for the Learning Curves

In the original paper, we report the error rate on a test set, for a ixed number of
labeled training examples and an increasing amount of unlabeled examples. Altern-
atively, one might be interested in the performance in terms of the loss, instead of
the classiication error. Since this quantity was already computed during the exper-
iment, we need not redo the experiment: a simple change in the code to plot the res-
ults suices. More explicitly, we simply change the line filter(Measure=="Error")
to filter(Measure=="Average Loss Test").

The results in Fig. 8.2 show an interesting discrepancy when compared to the
results in terms of the error rate: here in all cases the soft-label variant outperforms
the hard-label variant, even on the dataset (Haberman) where it did not in terms
of the error rate. Additionally, the loss starts increasing in more cases than for the
error rate, especially for the hard-label variant.
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Figure 8.2 | Average squared loss on the test set for increasing amounts of unlabeled train-
ing data. The number of labeled objects remains fixed at a number larger
than the dimensionality of the dataset to ensure the supervised solution is
well-defined. Results are averaged over 1000 repeats. Oracle refers to the
supervised classifier that has access to the labels of all the objects.

Sensitivity to Random Seed

In the original work, we gave an example of a dataset where the hard-label self-
learner is clearly outperformed by the soft-label self-learner. One might wonder
how sensitive this dataset is to slight perturbations: is hard-label self-learning al-
ways much worse in this type of dataset or does it depend on the particular seed
that was chosen when generating the data? This can be easily checked by changing
the random seed and computing the classiiers.

In Fig. 8.3 we show two common conigurations we ind when we change the
random seed. These conigurations are qualitatively diferent from the result re-
ported in the paper. In one case, there is no big diference between the two classi-
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Figure 8.3 | Additional examples of the behaviour of hard-label and soft-label self-learning.
Light-grey line indicates true decision boundary. In (a), there is only a minor
difference between soft-label and hard-label self-learning. In (b), the hard-label
self-learner is not visible and assigns all objects to one class.

iers, unlike the result in the original work, while in the other, the hard-label self-
learner gives deteriorated performance for a diferent reason: it assigns all objects
to a single class.

These results show that the original example is not stable to changes in the ran-
dom seed. However, the conclusion that soft-label self-learning does not sufer
from as severe a deterioration in performance as hard-label self-learning still holds.
Our experience generating these additional examples does indicate, though, that
other conigurations than the prototypical example given in the paper are just as
likely, if not more likely, to occur.

Diferent Type of Learning Curve

For a more involved example, we use the code to generate a diferent type of learn-
ing curve. While we reported the learning curves for a ixed number of labeled
samples and an increasing number of unlabeled samples, alternatively one could
consider learning curves where the total number of training objects remains ixed,
while the fraction of labeled objects is increased. Since the datasets are already
available, we can easily set up these experiments by making some changes to the
code that generates the other learning curves. We report these results in Fig. 8.4.
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Figure 8.4 | Classification accuracy when different fractions of the training set are labeled.
20% of the data is left out as test data, the fractions indicate the fraction of
objects of the remaining data that was labeled. Oracle refers to the supervised
classifier that has access to the labels of all the objects.

Although the ordering, in terms of performance, is similar in these curves as in
the learning curves we originally reported, in many more cases the semi-supervised
learners perform worse than the supervised learner. This indicates that as more
labeled data becomes available, it is harder to outperform the supervised learner,
especially since in these experiments, the amount of unlabeled data shrinks as we
add more labeled data. Again, hard-label self-learning sufers more from degrada-
tion in performance than soft-label self-learning.
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8.5 Discussion

While reproducible research is sometimes framed as being a requirement for a res-
ult to be believable (Goodman et al., 2016; Donoho et al., 2009), we think it is im-
portant to emphasize that it does not just beneit scientiic discourse, but has ad-
vantages for the researchers carrying out the original work as well. We elaborate in
what follows.

Advantages to the Researcher

Every research project is a collaboration. Sometimes with other individuals, but at
the very least, a collaboration with yourself at some point in the future (Donoho
et al., 2009; Wickham, 2015, Ch. 13). It is rare that one does not have to revisit
results after they were originally generated. Making results reproducible ensures
that collaborators and you yourself in the future can easily get back into old results
and make changes.

Secondly, although reproducibility does not eliminate all errors, it makes it easier
to catch some type of errors. For instance, errors introduced by copying and past-
ing results from one document to another. At the very least, it makes it easier to ix
them.

On the whole, for the individual researcher, reproducibility reduces friction: it
makes it easy to make changes to igures and experiments even after the whole
analysis is done since the later steps in an analysis can be reused if they are imple-
mented in a reproducible way.

Advantages to Scientiic Communication

The Case for Reproducibility

Unlike the claim by Patil et al. (2016), the requirement of reproducibility is not some-
thing “everybody agrees” on. In this respect, Drummond (2009) argues that rep-
licating results is an important part of scientiic progress, yet exactly reproducing
results is a poor substitute that does not add much other than counter outright
fraud, and reproducibility can become a distraction. It may, in other words, not be
worthwhile to spend much resources on. This is perhaps a bit too pessimistic, for
two reasons.

First, while reproducibility says nothing about the correctness of a result, it does
allow apparent mistakes to be more easily checked than if the code was not available.
Consider, for instance, the well-known case of the inding of Herndon et al. (2014),
after much work, that the conclusions in a highly inluential study on the efect of
government debt on economic growth depended on a data coding error and were
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very sensitive to particular choices in the analysis. While reproducibility does not
eliminate these errors, nor was it required to inally spot them, it would likely have
sped up the eforts to uncover these errors. As this case shows, this can have real
world consequences, since the original conclusions had been used as an argument
around the world by proponents of austerity measures during the recent economic
crisis.

Secondly, Drummond’s main concern is that reproducibility only deals with
keeping steps in an analysis pipeline ixed, while replicability is about changing
things. However, as the case study in this paper has hopefully shown, an important
side efect from exactly reproducing results is that it removes friction for both the
original researchers and the community to make changes and build on the code. We
have seen this has two advantages: it aids in communicating results and insights
and it provides a stepping stone for others to build new results on.

Replicability in Pattern Recognition

One way to deine replicability is to consider a study where the “same procedures
are followed but new data are collected” (Goodman et al., 2016), where this data is
sampled from the same population. Is this deinition of replicability then a useful
construct in methodological pattern recognition research? In the pattern recogni-
tion context, data from the same population may be hard to deine, if your popula-
tion is a set of benchmark datasets. One could wonder whether results generalize
to other problems. This however, does not fall under the conventional deinition
of replicability, but rather under the term generalizability. In most sciences, one of
the things we learn from a replication is what the essential conditions are that are
necessary for a result to hold. Analogously, we argue one aspect of replicability in
pattern recognition research is the implementation of the methods. As we have no-
ticed in our own work, it is an under appreciated point how diicult or easy it is for
another programmer or analyst to replicate the results of a method. It teaches us
not just something about the competence of the programmer (a point that is often
overstated) but also of the elegance of the method and its sensitivity to particular
implementation choices that may have gone unnoticed and even unreported in the
original work.

Practicalities

There is still a technical problem with reproducible results: how do we make sure
they are still reproducible after programming languages, toolboxes and online plat-
forms change or cease to exist? For centuries, the unit of the paper as the narrative
artefact has proven to be a format that stands the test of time and changes in tech-
nology. In the work considered here, we refer to papers from the 1950s, which we
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where able to recover and which got its authors’ point across perfectly well. We
need to ensure this is still the case for the work produced today. The only proposal
we have towards this is that, at the very least, the software used to produce results
is produced using open source software. This both allows one to dig into every
level of the implementation if this is required to answer a particular question, but
also provides some chance of ensuring software is still available in a future where
a particular software vendor may have ceased to exist.

Going Forward

While we still consider reproducibility a worthwhile goal, there is a danger it leads
to a false sense of security. Reproducibility is not replicability and it is replicability
that constitutes progress in science. And reproducibility is not free: it requires ef-
fort on the part of the authors and reviewers of a manuscript. In the case covered in
this paper, which is relatively easy to make reproducible, the advantages to the au-
thors and the advantages to the community easily outweigh this efort. We should
avoid dogmatism by realizing this trade-of might be diferent for other works.

8.6 Conclusion

We covered our approach to reproducing our paper on optimistic semi-supervised
learning and showed some additional interesting, and nontrivial results by making
slight adjustments to the igures and experiments which the reproducible nature of
the paper allows. We argue that the advantages of reproducibility start during the
research itself and extend to scientiic communication. We need to realize, however,
that reproducing results is not the same as replicating experiments, it primarily
ofers a poor but useful substitute.





CHAPTER NINE

Semi-supervised Learning in R

In this paper, we introduce a package for semi-supervised learning research in the R
programming language called RSSL. We cover the purpose of the package, the methods
it includes and comment on their use and implementation. We then show, using several
code examples, how the package can be used to replicate well-known results from the
semi-supervised learning literature.

9.1 Introduction

Semi-supervised learning is concerned with using unlabeled examples, that is, ex-
amples for which we know the values for the input features but not the corres-
ponding outcome, to improve the performance of supervised learning methods that
only use labeled examples to train a model. An important motivation for investig-
ations into these types of algorithms is that in some applications, gathering labels
is relatively expensive or time-consuming, compared to the cost of obtaining an
unlabeled example. Consider, for instance, building a web-page classiier. Down-
loading millions of unlabeled web-pages is easy. Reading them to assign a label
is time-consuming. Efectively using unlabeled examples to improve supervised
classiiers can therefore greatly reduce the cost of building a decently performing
prediction model, or make it feasible in cases where labeling many examples is not
a viable option.

While the R programming language (R Core Team, 2016) ofers a rich set of im-
plementations of a plethora of supervised learning methods, brought together by

This chapter appeared as: Krijthe, J. H. 2016. RSSL: R package for Semi-supervised Learning. In B. Kerautret,
M. Colom, & P. Monasse (Eds.), Reproducible Research in Pattern Recognition. RRPR 2016. Lecture Notes in
Computer Science, vol 10214. (pp. 104–115). Springer
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machine learning packages such as caret and mlr there are fewer implementations
of methods that can deal with the semi-supervised learning setting. This both im-
pedes the spread of the use of these types of algorithms by practitioners, and makes
it harder for researchers to study these approaches or compare new methods to ex-
isting ones. The goal of the RSSL package is to make a step towards illing this
hiatus, with a focus on providing methods that exemplify common behaviours of
semi-supervised learning methods.

Until recently, no package providing multiple semi-supervised learning meth-
ods was available in R1. In other languages, semi-supervised learning libraries that
bring together several diferent methods are not available either, although there are
general purpose machine learning libraries, such as scikit-learn in Python (Pedre-
gosa et al., 2011) that ofer implementations of some semi-supervised algorithms.
A broader set of implementations is available for Matlab, since the original imple-
mentations provided by the authors of many of the approaches covered by our pack-
age are provided for Matlab. The goal of our package is to bring some of these im-
plementations together in the R environment by providing common interfaces to
these methods, either implementing these methods in R, translating code to R or
providing interfaces to C++ libraries.

The goal of this work is to give an overview of the package and make some
comments how it is implemented and how it can be used. We will then provide
several examples on how the package can be used to replicate various well-known
results from the semi-supervised learning literature.

9.2 Overview of the Package

Classiiers

The package focuses on semi-supervised classiication. We give an overview of the
classiiers that are available in Section 9.2. We consider it important to compare
the performance of semi-supervised learners to their supervised counterparts. We
therefore include several supervised implementations and sets of semi-supervised
methods corresponding to each supervised method. Most of the methods are new
implementations in R based on the description of the methods in the original re-
search papers. For others, we either provide a (close to) direct translation of the
original code into R code or an R interface to the original C++ code. For the lat-
ter we make use of the Rcpp package (Eddelbuettel and Francois, 2011). In some
cases (WellSVM and S4VM) it was necessary to also include a customized version
of LIBSVM (Chang and Lin, 2011) on which these implementations depend.

1Recently, the SSL package was introduced whose implementations are mostly complementary to
those ofered in our package: https://CRAN.R-project.org/package=SSL

https://CRAN.R-project.org/package=SSL
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A common wrapper method for semi-supervised learning, self-learning, is avail-
able for all supervised learners, since it merely requires a supervised classiier and
some unlabeled objects. Other types of semi-supervised methods that are avail-
able for multiple supervised classiiers are the moment (or intrinsically) constrained
methods of Loog (2010) and Loog (2014), the implicitly constrained methods of
Krijthe and Loog (2014), Krijthe and Loog (2017b) and Krijthe and Loog (2017a)
and the Laplacian regularization of Belkin et al. (2006).

All the classiier functions require as input either matrices with feature values
(one for the labeled data and one for the unlabeled data) and a factor object con-
taining the labels, or a formula object deining the names input and target variables
and a corresponding data.frame object containing the whole dataset. In the ex-
amples, we will mostly use the latter style, since it its better with the use of the
pipe operator that is becoming popular in R programming.

Each classiier function returns an object of a speciic subclass of the Classifier
class containing the trained classiier. There are several methods that we can call on
these objects. The predictmethod predicts the labels of new data. decisionvalues
returns the value of the decision function for new objects. If available, the loss
method returns the classiier speciic loss (the surrogate loss used to train the clas-
siier) incurred by the classiier on a set of examples. If the method assigns respons-
ibilities –probabilities of belonging to a particular class– to the unlabeled examples,
responsibilities returns the responsibility values assigned to the unlabeled ex-
amples. For linear classiiers, we often provide the line_coefficients method
that provides the coeicients to plot a 2-dimensional decision boundary, which
may be useful for plotting the classiier in simple 2D examples.

Utility Functions

In addition to the implementations of the classiiers themselves, the package in-
cludes a number of functions that simplify setting up experiments and studying
these classiiers. There are three main categories of functions: functions to gener-
ate simulated datasets, functions to evaluate classiiers and run experiments and
functions for plotting trained classiiers.

Generated Datasets

A number of functions, of the form generate*, create datasets sampled from ar-
chetypical simulated problems. An overview of simulated datasets is given in Fig-
ure 9.1. You will notice that these datasets mostly show examples where the struc-
ture of the density of the feature values is either very informative or not informative
at all for the estimation of the conditional distribution of the labels given the feature
value. A major theme in semi-supervised learning research is how to leverage this
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Table 9.1 | Overview of classifiers available in RSSL

Classifier R Interface Port Reference

(Kernel) Least Squares Classiier ✓ (Hastie et al., 2009)
Implicitly Constrained ✓ (Krijthe and Loog, 2017b)
Implicitly Constrained Projection ✓ (Krijthe and Loog, 2017a)
Laplacian Regularized ✓ (Belkin et al., 2006)
Updated Second Moment ✓ (Shafer, 1991)
Self-learning ✓ (McLachlan, 1975)
Optimistic / “Expectation Maximization” ✓ (Krijthe and Loog, 2016)

Linear Discriminant Analysis ✓ (Webb, 2002)
Expectation Maximization ✓ (Dempster et al., 1977)
Implicitly Constrained ✓ (Krijthe and Loog, 2014)
Maximum Constrastive Pessimistic ✓ (Loog, 2016)
Moment Constrained ✓ (Loog, 2014)
Self-learning ✓ (McLachlan, 1975)

Nearest Mean Classiier ✓ (Webb, 2002)
Expectation Maximization ✓ (Dempster et al., 1977)
Moment Constrained ✓ (Loog, 2010)
Self-learning ✓ (McLachlan, 1975)

Support Vector Machine ✓

SVMlin ✓ (Sindhwani and Keerthi, 2006)
WellSVM ✓ (Li, Tsang et al., 2013)
S4VM ✓ (Li and Zhou, 2015)
Transductive SVM (Convex Concave Procedure) ✓ (Collobert et al., 2006)
Laplacian SVM ✓ (Belkin et al., 2006)
Self-learning ✓ (McLachlan, 1975)

Logistic Regression ✓

Entropy Regularized Logistic Regression ✓ (Grandvalet and Bengio, 2005)
Self-learning ✓ (McLachlan, 1975)

Harmonic Energy Minimization ✓ (Zhu, Ghahramani et al., 2003)

connection between the distribution of the features and the conditional distribution
of the labels, and what happens if this connection is non-existent. These simulated
datasets ofer some simple but interesting test cases for semi-supervised methods.

Classiier Evaluation

To evaluate the performance of diferent methods, the package contains three types
of functions that implement standard procedures for setting up such experiments.
The irst is by splitting a fully labeled dataset into a labeled set, an unlabeled set and
a test set. For data in the form of a matrix, the split_dataset_ssl can be used. For
data in the form of a data frame, the easiest way is to use magrittr’s pipe operator,
splitting the data using the split_random command, using add_missinglabels_mar
to randomly remove labels, and missing_labels or true_labels to recover these
labels when we want to evaluate the performance on the unlabeled objects. The
second type of experiment is to apply cross-validation in a semi-supervised setting
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SlicedCookie SlicedCookie (alt) TwoCircles

CrescentMoon FourClusters ParallelPlanes

2ClassGaussian 2ClassGaussian (alt) ABA

Figure 9.1 | Simulated Datasets. Each can be generated using a function of the form
generate*, were * should be replaced by the name of the dataset. (alt)
indicates non-default parameters where used when calling the function.
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using CrossValidationSSL. Distinct from the normal cross-validation setting, the
data in the training folds get randomly assigned to the labeled or unlabeled set. The
third type of experiment enabled by the package is to generate learning curves us-
ing the LearningCurveSSL function. These are performance curves for increasing
numbers of unlabeled examples or an increasing fraction of labeled examples. For
both the learning curves and cross-validation, multiple datasets can be given as in-
put and the performance measures can be user deined, or one could use one of the
supplied measure_* functions. Also in both cases, the experiments can optionally
be run in parallel on multiple cores to speed up computation.

Plotting

Three ways to plot classiiers in simple 2D examples are provided. The most gen-
eral method relies on the ggplot2 package (Wickham, 2009) to plot the data and
is provided in the form of the stat_classifier that can add classiication bound-
aries to ggplot2 plots. geom_linearclassifier works in a similar way, but only
works for a number of linear classiiers that have an associated line_coefficients
method. Lastly, for these classiiers line_coefficients can be used directly to get
the parameters that deine the linear decision boundary, for use in a custom plot-
ting function. In the examples, we will illustrate the use of stat_classifier and
geom_linearclassifier.

9.3 Installation

The package is available from the Comprehensive R Archive Network (CRAN). As
such, the easiest way to install the package is to run the following command using
a recent version of R:

install.packages("RSSL")

The latest development version of the package can be installed using:

# If devtools is not installed run: install.packages("devtools")
devtools::install_github("jkrijthe/RSSL")

9.4 Examples

In this section, we will provide several examples of how the RSSL package can be
used to illustrate or replicate results from the semi-supervised learning literature.
Due to space constraints, we provide parts of the code for the examples in the text
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below. The complete code for all examples can be found in the source version of
this document, which can be found on the author’s website2.

A Failure of Self-Learning

While semi-supervised learning may seem to be obviously helpful, the fact that
semi-supervised methods can actually lead to worse performance than their su-
pervised counterparts has been both widely observed and described (Cozman, Co-
hen and Cirelo, 2003). We will generate an example where unlabeled data is help-
ful (using the 2ClassGaussian problem from Figure 9.1) and one where unlabeled
data actually leads to an increase in the classiication error (2ClassGaussian (alt) in
Figure 9.1), for the least squares classiier and self-learning as the semi-supervised
learner. This can be done using the following code:

library(RSSL)
set.seed(1)

# Set the datasets and corresponding formula objects
datasets <- list("2 Gaussian Expected"=

generate2ClassGaussian(n=2000,d=2,expected=TRUE),
"2 Gaussian Non-Expected"=

generate2ClassGaussian(n=2000,d=2,expected=FALSE))
formulae <- list("2 Gaussian Expected"=formula(Class~.),

"2 Gaussian Non-Expected"=formula(Class~.))

# Define the classifiers to be used
classifiers <- list(
"Supervised" = function(X,y,X_u,y_u) { LeastSquaresClassifier(X,y)},
"Self-learning" = function(X,y,X_u,y_u) {

SelfLearning(X,y,X_u,method = LeastSquaresClassifier)})

# Define the performance measures to be used and run experiment
measures <- list("Error" = measure_error, "Loss" = measure_losstest)
results_lc <- LearningCurveSSL(formulae,datasets,

classifiers=classifiers,
measures=measures,verbose=FALSE,
repeats=100,n_l=10,sizes = 2^(1:10))

2www.jessekrijthe.com

www.jessekrijthe.com
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Figure 9.2 | Example where self-learning leads to better performance as we add more
unlabeled data (left) and increasingly worse performance as unlabeled data is
added (right). The classifier used is the least squares classifier. The datasets
are similar to the ones shown in Figure 9.1.

When we plot these results (using the plot method and optionally changing the
display settings of the plot), we get the igure shown in Figure 9.2. What this shows
is that, clearly, semi-supervised methods can be outperformed by their supervised
counterpart for some datasets, for some choice of semi-supervised learner. Given
that one may have little labeled training data to accurately detect that this is hap-
pening, in some settings we may want to consider methods that inherently attempt
to avoid this deterioration in performance. We will return to this in a later example.

Graph Based Semi-supervised Learning

Many methods in semi-supervised learning attempt to use the assumption that la-
bels change smoothly over dense regions in the feature space. An early attempt to
encode this assumption is ofered by (Zhu, Ghahramani et al., 2003) who propose
to minimize an energy function for the labels of the unlabeled objects that pen-
alizes large deviations between labels assigned to objects that are close, for some
measure of closeness. This so-called harmonic energy formulation can also be in-
terpreted as a propagation of the labels from the labeled objects to the unlabeled
objects, through a graph that encodes a measure of closeness. We recreate (Zhu,
Ghahramani et al., 2003)’s Figure 2, which can be found in Figure 9.3. Due to space
constraints, we will defer the code to the online version of this document, since it
is similar to the code for the next example.
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Figure 9.3 | Replication of Figure 2 from (Zhu, Ghahramani et al., 2003) demonstrating
harmonic energy minimization. The larger points indicate the labeled objects.
The color indicates the predicted class.

Manifold Regularization

Belkin et al. (Belkin et al., 2006) build on the ideas of (Zhu, Ghahramani et al., 2003)
by formulating the smoothness of the labeling function over the data manifold as a
regularization term. In RSSL this Laplacian regularization term is included in both
an SVM formulation and a regularized least squares formulation. For the Laplacian
SVM formulation, Figure 2 from (Belkin et al., 2006) provides an example of its per-
formance on a simulated dataset. We can replicate this result using the following
code. The results are shown in Figure 9.4.

library(RSSL)
library(dplyr)
library(ggplot2)
plot_style <- theme_classic() # Set the style of the plot

set.seed(2)
df_unlabeled <- generateCrescentMoon(n=100,sigma = 0.3) %>%

add_missinglabels_mar(Class~.,prob=1)
df_labeled <- generateCrescentMoon(n=1,sigma = 0.3)
df <- rbind(df_unlabeled,df_labeled)

c_svm <- SVM(Class~.,df_labeled,scale=FALSE,
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Figure 9.4 | Replication of Figure 2 from (Belkin et al., 2006). Laplacian SVM for various
values of the influence of the unlabeled data.

kernel = kernlab::rbfdot(0.05),
C=2500)

c_lapsvm1 <- LaplacianSVM(Class~.,df,scale=FALSE,
kernel=kernlab::rbfdot(0.05),
lambda = 0.0001,gamma=10)

c_lapsvm2 <- LaplacianSVM(Class~.,df,scale=FALSE,
kernel=kernlab::rbfdot(0.05),
lambda = 0.0001,gamma=10000)

# Plot the results
# Change the arguments of stat_classifier to plot the Laplacian SVM
ggplot(df_unlabeled, aes(x=X1,y=X2)) +

geom_point() +
geom_point(aes(color=Class,shape=Class),data=df_labeled,size=5) +
stat_classifier(classifiers=list("SVM"=c_svm),color="black") +
ggtitle("SVM")+
plot_style

Low Density Separation

A number of semi-supervised approaches attempt to leverage the assumption that
the classiication boundary may reside in a region of low-density. The Semi-supervised
SVM or Transductive SVM (Joachims, 1999) is one such approach. In (Zhu and
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Figure 9.5 | Demonstration of potential problems when the low density assumption does
not hold, similar to Figure 6.5 in (Zhu and Goldberg, 2009)

Goldberg, 2009, Chapter 6), an example is given for the potential problems this
low-density assumption may cause when it is not valid by considering two artii-
cial datasets. Here we replicate these results for a diferent classiier that makes
use of the low-density assumption: entropy regularized logistic regression (Grand-
valet and Bengio, 2005). The results are shown in Figure 9.5. The code to generate
these results can be found in the source version of this document.

Improvement Guarantees

We now return to the example of deterioration in performance from Figure 9.2. The
goal of our work in (Loog, 2016; Krijthe and Loog, 2016; Krijthe and Loog, 2017b) is
to construct methods that are guaranteed to outperform the supervised alternative.
The guarantee that is given in these works is that the semi-supervised learner out-
performs the supervised learner on the full, labeled and unlabeled, training set in
terms of the surrogate loss (cf. (Loog and Jensen, 2014)). The following code trains
semi-supervised classiiers in these cases and returns the mean loss on the whole
training set, the output is shown below the code example. It shows that indeed,
these methods do not deteriorate performance in terms of the surrogate loss, while
the self-learning method does show this deterioration in performance.
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library(RSSL)
set.seed(1)

# Generate Example
df <- generate2ClassGaussian(n=1000, d=2, expected=FALSE)
df_semi <- add_missinglabels_mar(df, Class~., prob=0.995)

# Train and evaluate classifiers
mean(loss(LeastSquaresClassifier(Class~.,df_semi),df))
mean(loss(SelfLearning(Class~.,df_semi,

method=LeastSquaresClassifier),df))
mean(loss(ICLeastSquaresClassifier(Class~.,df_semi),df))
mean(loss(ICLeastSquaresClassifier(Class~.,df_semi,

projection="semisupervised"),df))

## [1] 0.1763921
## [1] 0.4813863
## [1] 0.1185772
## [1] 0.1236701

9.5 Conclusion

We presented RSSL, a package containing implementations and interfaces to im-
plementations of semi-supervised classiiers, and utility methods to carry out ex-
periments using these methods. We demonstrated how the package can be used
to replicate several results from the semi-supervised learning literature. More us-
age examples can be found in the package documentation. We hope the package
inspires practitioners to consider semi-supervised learning in their work and we
invite others to contribute to and use the package for research. Moreover, we hope
the package contributes towards making semi-supervised learning research, and
the research of those who use these methods in an applied setting, fully reprodu-
cible.



Discussion

Given the increasing amounts of available (unlabeled) data, semi-supervised learn-
ing is an important practical problem. What is more, it is an interesting theoretical
problem because it gets at the heart of the value of diferent types of information in
estimating statistical models. The results in the previous chapters contribute to a
better understanding of the limits of semi-supervised learning as well as introduce
robust methods that guarantee improvements over the supervised alternative. In
this inal part of the thesis, let us revisit the main indings in the broader perspective
of the research questions considered in the introduction.

Semi-supervised Learning without Additional Assumptions

One of the basic tenets in semi-supervised learning research has been that learn-
ing without additional assumptions about the relationship between pX and pY|X
is impossible. The results in Chapters 1 to 3 and 5 nuance this view. For some
supervised classiiers, guaranteed improvements are possible in terms of the sur-
rogate loss on the labeled and unlabeled data. For other supervised methods, these
guarantees are essentially impossible. To us, this suggests that taking into account
the way supervised models are itted, and recognizing the inite sample available,
leads to diferent views on the possibilities of semi-supervised learning than con-
sidering models that are correctly speciied. In practice, models are never perfect,
and unlabeled data can be one way to correct some of these imperfections.

Improvement Guarantees

The improvement guarantees that we ofer in Chapter 3 are the irst of their kind:
they guarantee performance will not degrade for any possible labeling of the un-
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labeled data. The setting considered, however, does not necessarily correspond to
generalization performance in terms of the error rate.

Firstly, we make a claim about performance on the labeled and unlabeled data,
rather than some unseen test set. In case the size of the unlabeled set grows to in-
inity, this guarantee converges to a generalization guarantee. Alternatively, the
results can be adapted to the transductive setting where one is interested in predic-
tions on a speciic unlabeled set of objects.

Nonetheless, it is interesting that we never use the assumption that the un-
labeled data originate from the same distribution as the labeled data. A way for-
ward to get to more general guarantees is to take this assumption into account while
letting go of the requirement that the supervised solution is not better than the semi-
supervised solution for every possible dataset with probability one.

A second property of the improvement guarantee considered in this work is that
it is in terms of the surrogate loss of the supervised classiier. The reason we think
this makes an interesting guarantee is two fold. For one, it guarantees that we con-
struct a true semi-supervised version of the supervised classiier by ensuring we
do well in terms of the criterion we would be optimizing if we did have the labels
of the unlabeled objects. Secondly, for some of the supervised models, even for in-
creasing numbers of labeled objects we can not guarantee classiication performance
increases, while they do improve in terms of the surrogate loss. “Improving” a clas-
siier using unlabeled data should, therefore, be evaluated in terms of this measure,
or the improved procedure is best considered a totally diferent method than the
original supervised procedure.

It is important to consider what the improvement guarantee means for the loss
for speciic objects in the unlabeled set. Especially in the presence of outliers, a
change in the classiier can lead to a higher loss for almost every observation, ex-
cept for a few observations where the loss is reduced by a large amount. This is a
consequence of considering the loss on all objects together, and has an efect sim-
ilar to what one observes in James-Stein estimators (Efron and Morris, 1977), where
these estimators dominate estimators that do not consider the loss on all objects
simultaneously.

Instead of the surrogate loss, one could only be interested in getting improved
classiication performance. As mentioned, even in the supervised case, we do not
minimize this loss directly. The goal in this thesis is to construct semi-supervised
versions of common supervised procedures that are guaranteed to not perform
worse. Since these supervised procedures consider surrogate losses, it makes sense
to consider these same losses in the semi-supervised case. We may still be able to get
performance guarantees in terms of the classiication error through generalization
bounds, similar to the supervised setting. While we guarantee performance im-
provements for any number of labeled objects, the efect of the unlabeled data may
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diminish as more labeled examples are added. As such, unlabeled data may have
no efect on the convergence rate, as conjectured by (Ben-David, Lu et al., 2008).

On the Impossibility of Safe Semi-supervised Learning

For a number of common supervised methods, the results in Chapter 5 show that
our notion of safe semi-supervised learning is inherently impossible. This is con-
trary to earlier claims for some of these models, such as for the support vector ma-
chine (Li and Zhou, 2015). Our deinition of safety, is conservatively strict: the su-
pervised solution has to not be better than the semi-supervised procedure for any
possible labeling of the unlabeled data. Compare this to the claim of Li and Zhou
(2015) where this only has to hold for a labeling that is generated by a low-density
separator. The claim we make is that, true safety concerns all possible contingen-
cies, and this type of semi-supervised learning may well be impossible, in line with
what others have claimed. It is all the more surprising, then, that for some classii-
ers, this notion of safety does lead to useful semi-supervised procedures.

Thoughts on the Least Squares Classiier

The reasons for measuring performance in terms of the surrogate loss have been
outlined above. But in the thesis, we often considered one particular surrogate loss:
the squared loss. This loss allowed us to derive simple, convex problems to obtain
the semi-supervised estimator with interesting performance guarantees. These im-
provements, however, might only tell us something about the squared loss, and not
about the classiication problem we are trying to solve at all. One particular prop-
erty of the squared loss is that the loss for an object may increase if the magnitude
of the decision function is increased even when the object is correctly classiied.
Any improvements that we get, therefore, might “improve” the decision function
in ways that have little to do with the classiication problem. Furthermore, as we
saw in the chapter on peaking, the least squares classiier can behave erratically
when we have only little data compared to the number of features. The gains in
classiication performance that we do observe empirically, may just be because of
the slight regularizing efect that the semi-supervised procedure has on a very un-
stable classiier. Nevertheless, this improvement is guaranteed, and it is more than
we might have been able to hope for, given the extremely strict conditions under
which we consider safe improvements.
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Projections and Minimax Principles

Within the projection framework we showed in Chapter 5 that for many supervised
methods the constraint set is basically too large to put any useful constraint on
the semi-supervised solution. Leaving this issue of the size of the constraint set
aside for now, there is the additional question what distance measure should be
employed for losses other than the squared loss. This measure is important since
it not only determines what semi-supervised solution is selected by determining
the closest solution to the supervised solution within the constraint set, but also
determines in what sense we are closer to the oracle solution. As of yet, we have
no deinite suggestion on how this should be solved. Initially, for some models,
one might expect the KL-divergence to be a promising candidate. Unfortunately,
the simple proof in Chapter 3 does not directly apply in that case, since it is not a
proper distance metric.

An answer may be found in an equivalent (for the least squares case) formula-
tion proposed by Loog (2016). One can show the projection is equivalent to inding
the solution that minimizes the diference in loss between the supervised and semi-
supervised solutions over all possible assignments of responsibilities of unlabeled
objects to classes. For similar connections in a diferent problem see Arnold and
Stahlecker (2000). By using this minimax formulation for other classiiers and ind-
ing a distance measure that (approximately) leads to the same optimization prob-
lem, we may be able to generalize the projection procedure to other losses.

It is important to note that the novelty of the projection procedure proposed here
is not in inding some solution within the constraint set – self-learning, by deini-
tion, does this as well – but by deining which solution to select from the set and
the properties that follow. For instance, looking at the problem from the viewpoint
of projections suggests how to improve semi-supervised estimators for which the
implicit constraints are too loose. It suggests the constraint space is too large and
we should somehow decrease its size. This has some correspondence with the ba-
sic intuition behind many semi-supervised approaches covered in the introduction
which assume the unlabeled data limit the hypotheses that should be considered.
A nice property of the implicit constraints is that they are guaranteed to contain
the solution corresponding to the true labeling, which in turn can guarantee non-
degradation of the semi-supervised estimator. But letting go of our strict notion of
non-degradation, one could construct constraint sets that contain the oracle with
high probability, but which are much smaller than the implicit constraints set. In
experiments we conducted, assuming information about the proportion of objects
of each class did not lead to large improvements in performance, but other such
assumptions might.

One of the nice properties of the squared loss is that it leads to a closed form
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solution if we know the labels. This, in turn, leads to an eicient way to move
through the constraint set to calculate the projection. For other losses this may be
more diicult to achieve, but using tools like the implicit function theorem to deal
with the constraints, one may still be able to ind a reasonable formulation of the
problem. In general, however, the computation of the projection does not scale well
in terms of the number of unlabeled examples. Approximations to the constraint
set may alleviate some of the computational burden without introducing a high
probability of lowering performance.

Semi-supervised Learning in Practice

While the results in this thesis ofer both insights into the semi-supervised learning
problem and methods that guarantee performance improvements, in practice, we
might be willing to forego some of this certainty if this means we might get large im-
provements in performance for many problems. We will irst consider whether per-
formance degradation is actually a problem and then make some comments about
the future of semi-supervised learning in machine learning research and practice.

Conservatism

In this thesis, we have taken an extremely conservative view to semi-supervised
learning: because the semi-supervised solution might lead to worse performance
than the supervised solution, we should explicitly construct methods that guard
against this.

One of the reasons for considering these types of methods is that it may be hard
to detect when semi-supervised learning is failing and fall back on a supervised
methods, especially given the limited amounts of labeled data available. Many
semi-supervised methods have been developed and shown to be efective by illus-
trating performance improvements for the most efective settings of the hyperpara-
meters that are introduced, when efectiveness is evaluated based on the test set.
This is not how one can apply these methods in practice, however, where hyper-
parameters and algorithms have to be selected based on the data at hand. We do
not have a good grasp of how big this selection problem is in practice. How often
will the wrong setting be selected and result in decreased performance? A big step
forward to answer this question would be a large scale study over both datasets and
methods to characterize the size of this problem, or whether it is a problem at all.
One attempt has been made by Goldberg and Zhu (2009), for two semi-supervised
methods, which suggests the semi-supervised methods outperform the supervised
method in the majority of cases when the hyperparameters are selected using cross-
validation, but still lead to degradations in performance on a signiicant number of
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occasions. Studying this for a broader set of methods and datasets will give us
some indication whether conservatism is mostly theoretically interesting or a prac-
tical necessity.

Automatically Correct Methods

This classiier selection problem also relates to the goal of constructing conservat-
ive methods: our ultimate goal is to construct methods that work “automatically”,
just like in the supervised case, where adding more data typically leads to better
decision functions, or understand when this is not possible. As of yet, it is unclear
whether this can also be achieved through some cross-validation strategy. Yet, even
if it could, having methods automatically ensure this property has both advantages
in understanding the limits of these methods, as shown in this thesis, and possible
computational advantages.

Violations of Basic Conditions

As we noted in the introduction of this thesis, in semi-supervised learning it is as-
sumed that the labels are missing at random. This means that the unlabeled data
is assumed to come from a distribution that is identically to the distribution gener-
ating the labeled examples, when we integrate over the the label. In many settings,
this is not a realistic assumption. Unlabeled data may be used because they were
easy to gather and this type of convenience sampling may introduce biases in the
type of data that are gathered. Consider, for instance, the example of gathering
documents downloaded from the web to improve the performance of a system that
attempts to classify newspaper articles. The two underlying distributions are likely
to be diferent. Biases may also be introduced through the labeling of objects, even
if the objects themselves originate from some i.i.d. process. This could happen if
objects with certain labels are easier to label than others, and therefore more likely
to be labeled.

Because the assumption of the identical distribution of the unlabeled data is
in many cases not realistic, the semi-supervised learning setting is often an ideal-
ized version of the actual problem that needs to be solved. Related learning settings
cover scenarios where we do take violations of this assumption into account. In gen-
eral, we can often describe these settings as transfer learning problems (Torrey and
Shavlik, 2010; Quinonero-Candela et al., 2009), where the data which one learns
from do not come from the distribution on which the inal classiier will be applied.
More speciically, when the unlabeled data come from the target distribution we
are interested in, this is known as domain adaptation (Kouw et al., 2016; Cortes and
Mohri, 2011).
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One can expect these related learning settings to require even more prior inform-
ation than the more restricted semi-supervised setting, since we somehow have to
model the relationship between the labeled and the unlabeled distribution as well
as learn from the unlabeled data. The projected estimators framework presented
in this thesis can, in principle, be adapted to some of these related learning settings
as well. As of yet, it is unclear how efective this will be. For instance, in the do-
main adaptation setting, on the one hand, the regular supervised solution may be
expected to perform poorly, leading to potential large improvements when using
the projected estimator. On the other hand, the conservative nature of this estim-
ator may not lead to large improvements because substantive prior assumptions are
likely needed to model the transfer between domains.

Overall, it is worthwhile to keep in mind that the semi-supervised problem may
be an idealized version of the problem we face in many applications. The insights
gained by studying the semi-supervised setting could be extended to scenarios
where we make more appropriate assumptions about the process that led us to
observe the labeled and unlabeled datasets.

The Reinvention of Self-Learning

Handling missing data in general and semi-supervised learning in particular is not
a new problem (Little and Rubin, 2002). In Chapter 6 we have covered methods
going back to the 1930s that implement some form of self-learning in the context
of missing outcomes. Many procedures, in one form or another, use this general
concept by using imputation steps for the unlabeled data, followed by optimization
steps, to ind a semi-supervised solution. Expectation Maximization (Dempster
et al., 1977) can be considered in this light, but also some approaches to solving
Transductive SVMs (Joachims, 1999). Many graph based approaches can also be
considered in this way (Zhu, Ghahramani et al., 2003), where labels are propagated
over the graph. What these approaches have in common is that the labels are treated
as missing variables in an optimization function and the main problem is inding
their value that minimizes this objective. This thesis has shown that alternatives are
possible, by not including an additional term in the objective function, but rather
using the unlabeled data in diferent ways, such as formulating constraints on the
solution.

Reinventing self-learning and renaming it in the process has become somewhat
of a tradition in semi-supervised learning research. So much so that, to some,
semi-supervised learning has become synonymous to self-learning. Among others,
self-learning is known in the literature as self-training (Zhu, 2005), Baum-Welch
reestimation (Elworthy, 1994), Yarowsky’s algorithm and more recently, pseudo-
labeling (Lee, 2013).
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While this is not a problem in and of itself, it is important to heed the lessons
we learned in the past and resist the dream of thinking these unlabeled data will
automatically be as valuable as labeled examples, or that they will be a panacea for
all problems. If anything, this thesis shows getting the full use out of these data
often requires modelling and making assumptions. After all, statistical machine
learning is as much about the model, as it is about the data.

The New Frontier

While many issues remain, it is encouraging to see semi-supervised methods are
starting to get used on large scale problems (Ravi and Diao, 2016). Some of the as-
sumptions discussed in the introduction appear to be useful in these real-world ap-
plications, using enormous amounts of unlabeled data. Moreover, semi-supervised
learning research is not immune to the recent advances in efectively learning hier-
archical architectures. Advances are being made by sharing properties of networks
that learn to reconstruct inputs and networks that predict labels from inputs (Rasmus
et al., 2015) which suggests something akin to the manifold assumption is efective
in their application domain. Or by learning to distinguish between the unlabeled
objects and generated objects that are similar to but not like the classes we are try-
ing to learn using generative adversarial networks (Salimans et al., 2016). These
and other approaches have shown promising performance on image recognition
tasks, using relatively few labeled objects.

While the models are becoming more complex, the basic questions still remain
the same. For what problems does this work and why? What assumptions do we
need to make to guarantee the unlabeled data are useful? And why is it essentially
impossible to do this for some problems and models and possible for others? Steps
have been made in these areas, but leaps still remain.

From Reproducibility to Replicability

In part three of the thesis, we covered the reproducibility of results in the context
of the research that we did in the chapters prior. We argued that reproducibility
is important, and often requires little extra efort, or even a reduction in efort to
the researcher, while having various advantages in scientiic communication. Yet,
we noted that ultimately the goal is replicability: being able to produce the same
qualitative indings from scratch. We are aware the deinitions we used in these
chapters are but a starting point and are glad to see developments to make these
more concrete. The issues are becoming especially pertinent for research involving
large models trained on enormous datasets, where the inancial or time investment
of reproducing results can be prohibitive. While scientiic communication is built
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on trust, it is also requires an ability to operationalize skepticism by reproducing
and replicating claims. How we will deal with this as a scientiic community is an
open problem.

On Conceptual Research

Lastly, let me comment on the type of research project that the work presented in
the prior chapters represents. As you might have noticed, it contains a small num-
ber of important theorems but no long, complex proofs. It presents interesting new
approaches, but no large complex models. It presents experiments on archetyp-
ical simulated datasets and well-known benchmark datasets but no ‘state-of-the-
art’ results on groundbreaking new problems. And in doing so, I hope that most of
all, it contains an interesting new perspective on the problem of semi-supervised
learning. Rather than theoretical research, whose implications can be hard to re-
late to practice, or applied research, which can be too focused on the details of the
problem at hand, the work in this thesis represents what I would refer to as con-
ceptual research in pattern recognition. Many have noted the large gap between
theory and practice in semi-supervised learning. We hope to have contributed to
this fascinating topic. But many questions remain. Apart from the answering some
questions about semi-supervised learning and bringing up new ones, I hope to have
gotten across that as with many problems in machine learning, statistics and pat-
tern recognition, the issues are not just computational, but statistical, conceptual
and sometimes even epistemological in nature. The work has given me a better un-
derstanding of the problem of semi-supervised learning, and I hope to have gotten
these insights across in this thesis.
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Summary

ROBUST SEMI-SUPERVISED LEARNING

Through advances in sensor, storage and communication technology and adoption
of digital technology in every aspect of our lives, large amounts of data are routinely
gathered. Statistical learning from data, in many cases, requires a speciic type of
datum: labeled examples for which we know both the input and some outcome we
would like to predict. The problem of semi-supervised learning is how to use, in-
creasingly abundantly available, unlabeled examples to improve supervised learn-
ing methods that typically only consider labeled examples.

One of the issues of semi-supervised learning methods is that adding unlabeled
data, unlike our experience in the supervised paradigm, does not guarantee im-
proved performance, nor do we understand very well when semi-supervised learn-
ing will be helpful. Robust or safe semi-supervised methods are those that attempt
to ensure performance of a semi-supervised method is at least as good as its super-
vised counterpart.

It is often assumed particular assumptions need to be made to allow for semi-
supervised learning to be possible at all. Yet these assumptions may also be the
cause of a decrease in performance. The main claim brought forth by this thesis is
that, by avoiding these assumptions, for some classiiers, it it possible to construct
robust semi-supervised classiiers, when we consider performance in terms of the
so-called surrogate loss that the supervised classiier is optimizing and we measure
performance on the labeled and unlabeled data. We also consider, for the class of
classiiers deined by a margin-based loss function, under what conditions such im-
provements are possible, and for which methods such improvements are inherently
impossible to obtain.

In the irst part of this thesis, we show that by implicitly considering all pos-
sible labelings of the unlabeled data and the corresponding classiiers, and project-
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ing the supervised solution unto this set of solutions, it is possible to construct a
semi-supervised version of the least squares classiier, which, under strict theor-
etical conditions can be considered safe. We apply the same framework to linear
discriminant analysis to show this idea can also be applied to other classiiers. Sub-
sequently, by changing the distance measure used in the projection, we construct
a procedure for the least squares classiier that is guaranteed to improve perform-
ance under much weaker conditions. This is the irst method for which such strict
improvement guarantees can be provided.

In practice, the performance of classiication models is often evaluated in terms
of the classiication error, area under the ROC curve, F-score or other measures
that consider the number of mistakes the classiier makes in one way or the other.
On the other hand, the guarantees given in Part One of this thesis are in terms of
the surrogate loss of a classiier. In Part Two, we consider these surrogate losses to
show that they are interesting quantiies to study in their own right. We then prove
it is impossible to construct any semi-supervised learner that guarantees the strong
notion of robust/safe semi-supervised learning from Part One for a large class
of common supervised algorithms deined by monotonically decreasing margin-
based loss functions. This sheds additional light on the (im)possibilities of semi-
supervised learning in general, and safe semi-supervised learning in particular.

Continuing with the squared loss of Part One, we construct a simple formulation
of the well-known self-learning approach to semi-supervised learning, for the least
squares classiier. A slight adaptation of this formulation leads to a type of soft-label
self-learning which is shown to outperform the hard-label self-learning variant in
many cases. While for these self-learning methods there are no safety guarantees,
such as for the methods in Part One, these ideas are often applied in practice, and
we show how this can be properly formulated and analyzed for the least squares
classiier.

In some of the experiments carried out in this thesis, we ind that a peaking
phenomenon occurs. This is known to occur for some supervised classiiers, where,
when there are fewer training examples than features, the error irst increases as we
add more data before it decreases again. We observe that a similar phenomenon
occurs in the semi-supervised setting in a more extreme form. We argue the dif-
ference in severity between the supervised and semi-supervised setting can be ex-
plained by a lack of updating of the estimate of the class means while the intrinsic
dimensionality of the problem grows. We also consider under what conditions the
semi-supervised classiier recovers from the bad performance at the peak, as we
add more unlabeled data.

Finally, in Part Three, we cover the reproducibility and replicability of the results
uncovered in the course of this research programme and in pattern recognition re-
search in general. We argue that reproducibility has many advantages which often
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outweigh the cost, but that this should not lead to complacency about replicating
results, which in pattern recognition research, often means re-implementing meth-
ods. Additionally, we introduce a software package that can be used to reproduce
the results presented in this thesis, and to replicate various well-known results in
the semi-supervised learning.

Overall, the result of the work covered in this thesis is a new look at the pos-
sibilities and impossibilities for (robust) semi-supervised learning, and a novel per-
spective on using projections of estimators to construct these methods. As statistical
learning starts to pervade many parts society, and unlabeled data become increas-
ingly available, making use of this data and understanding its possibilities and lim-
itations remains an important topic. As statistical models become more complex,
the basic questions remain the same, questions whose answers we hope to have
contributed to in this work.





Samenvatting

ROBUUST SEMI-BEGELEID LEREN

Door vooruitgang in technologie voor het meten, opslaan en delen van gegevens en
door de toepassing van digitale technologie in alle facetten van ons leven, worden
grote hoeveelheden gegevens op grote schaal verzameld. Om hier statistisch van te
kunnen leren is een speciiek soort gegevens nodig: gelabelde voorbeelden waarvan
de invoer en de gewenste uitkomst die we willen voorspellen bekend is. De uitda-
ging van semi-begeleid leren is hoe ongelabelde voorbeelden, die in steeds grotere
hoeveelheden beschikbaar zijn, gebruikt kunnen worden om methoden voor bege-
leid leren, die typisch enkel leren van gelabelde voorbeelden, te verbeteren.

Een van de problemen met semi-begeleide methoden is dat het toevoegen van
ongelabelde voorbeelden niet altijd leidt tot een verbetering van de resultaten, in
tegenstelling tot begeleid leren. Bovendien is er beperkt begrip over in welke situ-
aties semi-begeleide methoden wel werken. Robuuste of Veilige semi-begeleide me-
thoden zijn methoden die een garantie proberen te geven dat de prestaties van een
semi-begeleid algoritme minstens zo goed zijn als die van zijn (volledig-)begeleide
tegenhanger.

Er wordt vaak aangenomen dat speciieke vooronderstellingen nodig zijn om
semi-begeleid leren mogelijk te maken. Deze vooronderstellingen zijn tevens een
mogelijke oorzaak voor de slechtere resultaten. De voornaamste stelling in dit
proefschrift is dat het, door het vermijden van deze aannames, mogelijk is om ro-
buuste semi-begeleide classiicatie algoritmen te construeren. Hierbij meten we de
prestaties van een algoritme in termen van een zogenaamde surrogaat verliesfunc-
tie die door een begeleid classiicatie algoritme wordt geoptimaliseerd en meten de
prestaties op de gelabelde en ongelabelde voorbeelden. Naast de constructie van
dergelijke robuuste algoritmen laten we zien onder welke voorwaarden robuuste
prestatieverbeteringen mogelijk zijn, voor de klasse van classiicatie algoritmen die
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gedeinieerd worden door middel van op de marge gebaseerde verliesfuncties, en
voor welke methoden zulke verbeteringen inherent onmogelijk zijn.

In het eerste deel van dit proefschrift laten we zien dat door het impliciet be-
kijken van alle mogelijke labelings van de ongelabelde voorbeelden en de bijbeho-
rende classiicatie functies, en het projecteren van de begeleid-leren oplossing op
deze verzameling van functies, het mogelijk is een semi-begeleide versie van het
minste kwadratische afwijking classiicatie algoritme te construeren. Onder strikte
theoretische voorwaarden kan deze versie als veilig worden beschouwd. We pas-
sen dit zelfde conceptuele raamwerk toe op lineaire discriminanten analyse om te la-
ten zien dat dit idee ook toegepast kan worden voor andere classiicatie algoritmen.
Vervolgens construeren we een alternatieve procedure voor de minste kwadratische
afwijking methode door een andere afstandsmaat toe te passen om de projectie uit
te voeren. Voor deze procedure kan onder veel mildere voorwaarden worden aan-
getoond dat deze de prestaties gegarandeerd niet verslechterd ten opzichte van de
begeleide methode. Dit is de eerste procedure waarvoor een dergelijke strikte ga-
rantie gegeven kan worden.

In de praktijk worden de prestaties van classiicatiemethoden vaak gemeten aan
de hand van de classiicatie fout, de oppervlakte onder de ROC curve, de F-score
of andere maatstaven die gerelateerd zijn aan de classiicatie fout. De garanties die
in het eerste deel van dit proefschrift zijn afgeleid gelden echter voor de surrogaat
verliesfunctie van de classiicatie methode. In deel twee van het proefschrift kijken
we naar deze surrogaten en laten we zien dat dit objecten zijn die op zichzelf interes-
sant zijn om te bestuderen. Vervolgens bewijzen we dat het onmogelijk is om semi-
begeleide versies te verzinnen die de strikte garanties uit deel een van het proef-
schrift kunnen geven voor een grote klasse aan veel gebruikte begeleid leren metho-
den. Deze klasse bestaat uit methoden die gedeinieerd worden door op de marge
gebaseerde verliesfuncties. Dit resultaat werpt licht op de (on)mogelijkheden van
semi-begeleid leren in het algemeen en veilig/robuust semi-begeleid leren in het
bijzonder.

Voor de kwadratische verliesfunctie die we veelvuldig bekijken in het eerste deel
van het proefschrift leiden we een simpele formulering af voor een semi-begeleide
variant die overeenkomt met een zachte-label variant van de bekende zelf-leer aan-
pak. We laten zien dat deze methode over het algemeen beter presteert dan de
harde-label variant van zelf-leren. Hoewel we voor deze methode geen garanties
kunnen bieden zoals in de eerdere hoofdstukken van het proefschrift, relateert deze
aanpak aan veelgebruikte methoden in de praktijk. Hiervoor laten we zien hoe deze
op een juiste wijze geformuleerd en bestudeerd kunnen worden.

In een aantal experimenten in het proefschrift observeerden wij een zogenaamd
piek fenomeen. Dit fenomeen is bekend bij begeleide classiicatie methoden, waar,
wanneer minder voorbeelden dan eigenschappen van deze voorbeelden beschik-
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baar zijn, de classiicatie fout eerst toeneemt en vervolgens af neemt als extra voor-
beelden aan het leerproces worden toegevoegd. Wij observeren een gelijksoortig
fenomeen in het semi-begeleide geval, maar in extremere vorm. We beargumente-
ren dat dit verschil in de grootte van het piek fenomeen verklaard kan worden door
het gebrek aan extra informatie over de gemiddelden van de verschillende klassen,
terwijl de intrinsieke dimensionaliteit van het probleem groeit. We laten tevens zien
onder welke voorwaarden de semi-begeleide methode herstelt van de hoge classi-
icatie fout van de piek door het toevoegen van grote hoeveelheden ongelabelde
voorbeelden.

Ten slotte besteden we in deel drie van het proefschrift aandacht aan de reprodu-
ceerbaarheid en replicatie van onderzoeksresultaten in ons onderzoek en patroon-
herkenningsonderzoek in het algemeen. We laten zien dat reproduceerbaarheid
vele voordelen heeft die vaak opwegen tegen de kosten, maar dat we er zorg voor
moeten dragen dat dit niet leidt tot een verminderde inzet voor het repliceren van
resultaten, wat in patroonherkenningsonderzoek vaak neerkomt op het opnieuw
implementeren van bestaande methoden. Daarnaast presenteren we een software-
pakket om de resultaten in dit proefschrift te reproduceren en om het gemakkelijker
te maken om bekende resultaten uit de literatuur te repliceren.

Het resultaat van het werk beschreven in dit proefschrift is een nieuwe kijk op de
mogelijkheden en beperkingen van (robuust) semi-begeleid leren, en een nieuw per-
spectief op het construeren van methoden door het gebruik van projecties van schat-
ters van model parameters. Nu statistische leermethoden doordringen in grote de-
len van onze maatschappij en ongelabelde gegevens in grotere hoeveelheden be-
schikbaar komen, blijft het begrip van de mogelijkheden en beperkingen van dit
soort data een belangrijk onderwerp. Ook nu de gebruikte statistische modellen
steeds complexer worden, blijven de fundamentele vragen in de statistiek dezelfde.
We hopen bijgedragen te hebben aan de antwoorden op deze vragen door middel
van dit proefschrift.





Acknowledgements

Science is not – metaphorically, although sometimes physically – carried out in a
vacuum. There is an intellectual basis that we build on: ideas, books, papers, code,
a community. But there is also the personal support without which a four year
research project would be a great deal less enjoyable. I am grateful to all the people
who have helped me carry out the research that resulted in this thesis, who I will
try to mention here.

As for the intellectual basis to fall back on, I am thankful for the wonderful world
of statistics books and blogs for helping shape my statistical thinking. In particular:
Andrew Gelman, Larry Wasserman, James O. Berger, Judea Pearl, Hadley Wickham
and Edward Tufte. In the wonderful world of R programming, I am grateful to the
people whose code I built on and all the volunteers responsible for helping me get
my packages on CRAN.

The research in this thesis would not have been possible without Prof. Joost Kok
and Prof. Eline Slagboom. Joost and Eline, thank you for giving me the opportunity
that allowed me to explore these, at times esoteric, topics, while always keeping me
focused on the overall goal of a inished thesis. I would like to thank Mark Kroon
and Jonathan Vis, my COMMIT companions, and Jeroen Laros, for making the pro-
ject meetings enjoyable and useful. I would also like to thank Nadine Mascini and
Ron Heeren for their hospitality during my time at the AMOLF. And of course
thanks to everybody at MolEpi, who put up with me during my times in Leiden, in
particular Marian Beekman, Erik van den Akker, Joris Deelen and at earlier times
Eric-Wubbo Lameijer and Kai Ye.

I thank everyone in the Pattern Recognition and Bioinformatics group in Delft
who I had the pleasure to interact with over the years. Prof. Marcel Reinders, for
his hospitality, by allowing me to be part of the PRB group. Erdogan, Sjoerd and
Ahmed for showing me what bioinformatics is all about and welcoming my small
contributions. Laura, Ekin, Hayley, Marieke, Lu, Hamdi, Yazhou, Alex, Taygun, Ju-

209



210 acknowledgements

lian, Laurens, Jan, Emile, Wenjie, Yuanhao, Cuong, Yan and Bob for the cofeetalks,
discussions and general merrymaking. David for all the observant questions. Ver-
onika for being my trusted oice mate and for all the fun activities outside the oice.
Wouter, for all the scientiic discussions, friendship and your never ending enthu-
siasm for anything we come up with.

Marco, some of my fondest memories from the past four years are of our times
together in front of the whiteboard, discussing machine learning, science, academia
and the important things in life. The ideas presented in this thesis are as much
yours as they are mine. To hark back to your own disseration: if only I had taken
the time to write down some more of them... For those I did write down, I hope I
have done them some justice. Thank you for being a great mentor, for guiding me
to unknowns and standing by as a supporter and a friend in times of need.

Voor ik eindig wil ik waardering uitspreken naar mijn ouders voor hun nooit
alatende steun, ook wanneer mijn interesses misschien moeilijk te begrijpen zijn.
Ali en Arie, voor de boterhammen met hagelslag. Kees en Margriet, voor de steun
en de warmte van Terschelling. Arne, Roos en Adrian, voor de vriendschap door
de jaren heen ondanks alle veranderingen en afstand. En mijn broers, Jelmer en
Bouwe, voor de voorbeelden die jullie altijd zijn geweest waarnaar ik kan streven.

Ten slotte, mijn Imzadi, Anne-Lotte. Alles wat ik nodig had om dit proefschrift
te kunnen schrijven, leerde ik niet voordat ik jou leerde kennen. Met jou waag ik
graag de volgende sprong in het ongewisse: zonder pretentie, maar vol vertrouwen.



Curriculum Vitae

Jesse Hendrik Krijthe was born in Wijk bij Duurstede, The Netherlands on 12 Octo-
ber 1988. After attending high school at the Revius Lyceum in Doorn, The Nether-
lands (2007), he got his bachelor’s degree in Econometrics & Management Science
from Erasmus University Rotterdam (2010) spending a semester at the University
of Bergen, Norway (2009). Afterwards, he obtained a master’s degree in Computer
Science (cum laude) from Delft University of Technology (2012), writing his thesis
on ”Improving Cross-Validation Based Classiier Selection using Meta-Learning”,
under the supervision of Marco Loog and Tin Kam Ho during a research visit to
Alcatel-Lucent’s Bell Labs, New Jersey. He carried out his PhD research in the Pat-
tern Recognition and Bioinformatics group of Delft University of Technology and
the Department of Molecular Epidemiology of the Leiden University Medical Cen-
ter with Marco Loog and Joost N. Kok. He is married to Anne-Lotte van der Kooi
and is currently living in Rotterdam, The Netherlands.

Publications

Krijthe, J. H. and M. Loog (2017a). ‘Projected Estimators for Robust Semi-supervised Classi-
ication’. In: Machine Learning 106.7, pp. 993–1008. doi: 10.1007/s10994-017-5626-8.
arXiv: 1602.07865.

— (2017b). ‘Robust Semi-supervised Least Squares Classiication by Implicit Constraints’.
In: Pattern Recognition 63, pp. 115–126. doi: 10.1016/j.patcog.2016.09.009. arXiv:
1512.08240.

— (2016a). The Pessimistic Limits of Margin-based Losses in Semi-supervised Learning. arXiv:
1612.08875.

— (2016b). ‘Optimistic Semi-supervised Least Squares Classiication’. In: Proceedings of the
23rd International Conference on Pattern Recognition, pp. 1677–1682. doi: 10.1109/ICPR.
2016.7899877. arXiv: 1610.03713.

211

https://doi.org/10.1007/s10994-017-5626-8
http://arxiv.org/abs/1602.07865
https://doi.org/10.1016/j.patcog.2016.09.009
http://arxiv.org/abs/1512.08240
http://arxiv.org/abs/1612.08875
https://doi.org/10.1109/ICPR.2016.7899877
https://doi.org/10.1109/ICPR.2016.7899877
http://arxiv.org/abs/1610.03713


212 curriculum vitae

Krijthe, J. H. and M. Loog (2016c). ‘The Peaking Phenomenon in Semi-supervised Learning’.
In: Structural, Syntactic, and Statistical Pattern Recognition. S+SSPR 2016. Lecture Notes in
Computer Science, vol 10029. Ed. by A. Robles-Kelly, M. Loog, B. Biggio, F. Escolano and
R. Wilson. Springer International Publishing, pp. 299–309. doi: 10.1007/978- 3- 319-
49055-7_27. arXiv: 1610.05160.

Krijthe, J. H. (2016). ‘RSSL: R package for Semi-supervised Learning’. In: Reproducible Research
in Pattern Recognition. RRPR 2016. Lecture Notes in Computer Science, vol 10214. Ed. by B.
Kerautret, M. Colom and P. Monasse. Springer International Publishing, pp. 104–115. doi:
10.1007/978-3-319-56414-2_8. arXiv: 1612.07993.

Krijthe, J. H. and M. Loog (2016d). ‘Reproducible Pattern Recognition Research: The Case of
Optimistic SSL’. In: Reproducible Research in Pattern Recognition. RRPR 2016. Lecture Notes
in Computer Science, vol 10214. Ed. by B. Kerautret, M. Colom and P. Monasse. Springer
International Publishing, pp. 48–59. doi: 10.1007/978-3-319-56414-2_4. arXiv: 1612.
08650.

Kouw, W. M., J. H. Krijthe, M. Loog and L. Van der Maaten (2016). ‘Feature-Level Domain
Adaptation’. In: Journal of Machine Learning Research 17, pp. 1–32. arXiv: 1512.04829.

Taskesen, E., S. M. H. Huisman, A. Mahfouz, J. H. Krijthe, J. de Ridder, A. van de Stolpe,
E. van den Akker, W. Verheagh and M. J. T. Reinders (2016). ‘Pan-cancer subtyping in
a 2D-map shows substructures that are driven by speciic combinations of molecular
characteristics’. In: Scientiic Reports 6, p. 24949. doi: 10.1038/srep24949.

Loog, M., J. H. Krijthe and A. C. Jensen (2016). ‘On Measuring and Quantifying Performance:
Error Rates, Surrogate Loss, and an Example in SSL’. In: Handbook of Pattern Recognition
and Computer Vision. Ed. by C. H. Chen. 5th ed. World Scientiic. Chap. 1.3. arXiv: 1707.
04025.

Krijthe, J. H. and M. Loog (2015). ‘Implicitly Constrained Semi-Supervised Least Squares
Classiication’. In: Advances in Intelligent Data Analysis XIV. Lecture Notes in Computer Sci-
ence, vol 9385. Ed. by E. Fromont, T. De Bie and M. van Leeuwen. Saint Étienne. France:
Springer, pp. 158–169. doi: 10.1007/978-3-319-24465-5_14. arXiv: 1507.06802.

— (2014). ‘Implicitly Constrained Semi-Supervised Linear Discriminant Analysis’. In: Pro-
ceedings of the 22nd International Conference on Pattern Recognition. Stockholm, pp. 3762–
3767. doi: 10.1109/ICPR.2014.646. arXiv: 1411.4521.

Krijthe, J. H., T. K. Ho and M. Loog (2012). ‘Improving cross-validation based classiier se-
lection using meta-learning’. In: Proceedings of the 21st International Conference on Pattern
Recognition, pp. 2873–2876.

https://doi.org/10.1007/978-3-319-49055-7_27
https://doi.org/10.1007/978-3-319-49055-7_27
http://arxiv.org/abs/1610.05160
https://doi.org/10.1007/978-3-319-56414-2_8
http://arxiv.org/abs/1612.07993
https://doi.org/10.1007/978-3-319-56414-2_4
http://arxiv.org/abs/1612.08650
http://arxiv.org/abs/1612.08650
http://arxiv.org/abs/1512.04829
https://doi.org/10.1038/srep24949
http://arxiv.org/abs/1707.04025
http://arxiv.org/abs/1707.04025
https://doi.org/10.1007/978-3-319-24465-5_14
http://arxiv.org/abs/1507.06802
https://doi.org/10.1109/ICPR.2014.646
http://arxiv.org/abs/1411.4521

	Introduction
	CONSTRAINTS & PROJECTIONS
	Implicitly Constrained Semi-supervised Least Squares Classification
	Implicitly Constrained Semi-supervised Linear Discriminant Analysis
	Projected Estimators for Robust Semi-supervised Classification

	SURROGATE LOSSES
	On Measuring and Quantifying Performance
	The Pessimistic Limits of Margin-based Losses in Semi-supervised Learning
	Optimistic Semi-supervised Least Squares Classification
	The Peaking Phenomenon in Semi-supervised Learning

	REPRODUCIBILITY
	Reproducible Pattern Recognition Research
	Semi-supervised Learning in R
	Discussion
	References
	Summary
	Samenvatting
	Acknowledgements
	Curriculum Vitae


