
On metrics and models for multiplex networks
Gemmetto, V.

Citation
Gemmetto, V. (2018, January 16). On metrics and models for multiplex networks. Retrieved
from https://hdl.handle.net/1887/61132
 
Version: Not Applicable (or Unknown)

License: Licence agreement concerning inclusion of doctoral thesis in the
Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/61132
 
Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/61132


 
Cover Page 

 
 

 
 
 

 
 
 

The following handle holds various files of this Leiden University dissertation: 
http://hdl.handle.net/1887/61132 
 
 
Author: Gemmetto, V. 
Title: On metrics and models for multiplex networks 
Issue Date: 2018-01-16 

https://openaccess.leidenuniv.nl/handle/1887/1
http://hdl.handle.net/1887/61132
https://openaccess.leidenuniv.nl/handle/1887/1�


Chapter 5

Scientific publications network

Community detection techniques are widely used to infer hidden structures within
interconnected systems. Despite demonstrating high accuracy on benchmarks,
they reproduce the external classification for many real-world systems with a
significant level of discrepancy. A widely accepted reason behind such an outcome
is the unavoidable loss of non-topological information (such as node attributes)
encountered when the original complex system is converted into a network. In
this chapter we systematically show that the observed discrepancies may also be
caused by a different reason: the external classification itself. For this end we
use scientific publication data which i) exhibit a well defined modular structure
and ii) hold an expert-made classification of research articles. Having represented
the articles and the extracted scientific concepts both as a bipartite network and
as its unipartite projection, we applied modularity optimization to uncover the
inner thematic structure. The resulting clusters are shown to partly reflect the
author-made classification, although some significant discrepancies are observed.
A detailed analysis of these discrepancies shows that they may carry essential
information about the system, mainly related to the use of similar techniques and
methods across different (sub)disciplines, that is otherwise omitted when only the
external classification is considered.

The results presented in this chapter have been published in the following reference:
V. Palchykov, V. Gemmetto, A. Boyarsky, D. Garlaschelli, EPJ Data Science, 5, 28 (2016).

173



5.1 Introduction

5.1 Introduction

A conflict between two members of a relatively small university organization that
happened more than 40 years ago [1] has attracted a lot of attention in the scien-
tific community so far [2]. A confrontation during the conflict resulted in a fission
of the organization, known as Zachary’s karate club, into two smaller groups,
gathered around the president and the instructor of the club, respectively. Pre-
dicting the sizes and compositions of the resulting factions, given the structure of
the social interaction network before the split, attracted a lot of attention. This
puzzle, supplemented by the known outcome, makes this system among the best
studied benchmarks to test community detection algorithms [3]. Having verified
a high level performance on the aforementioned system and on other benchmarks
[4], community detection algorithms have then been massively applied to uncover
tightly connected modules within large real-world systems. This allowed scientists
to identify, for instance, Flemish- and French-speaking communities in Belgium
using mobile phone communication networks [5], detect functional regions in the
human or animal brain from neural connectivity [6], observe the emergence of
scientific disciplines [7] and investigate the evolution of science using citation pat-
terns and article metadata [8, 9, 10].

A bird’s eye view on the identified clusters in real-world systems certifies their
meaningfulness. However, an in-depth quantitative validation of the community
structure requires its comparison with an external classification of the nodes,
which is accessible only for a limited number of large systems. Examples include
crowd-sourced tag assignments for software packages [11], product categories for
Amazon copurchasing networks [12], declared group membership for various online
social networks [13, 14] and publication venues for coauthorship networks in the
computer science literature [13]. Surprisingly, significant discrepancies have been
identified between the extracted grouping of nodes and their external classification
for these systems [11, 15]. This message remains robust independently of the
system under investigation and the technique used to uncover its community
structure, and calls for a detailed inspection of such discrepancies in order to
understand the reasons behind them.

One of the possible reasons concerns the strong simplification that occurs dur-
ing the projection of the original complex system into a network. This projection
may omit some crucial information that cannot be encoded into the structural
connection pattern [11]. The missing information may correspond to age or gen-
der of individuals in social networks [16, 17] or geographical position of the nodes
within spatially embedded systems [18]. Following this direction, several algo-
rithms [19, 20] have been developed in order to handle specific nodes attributes,
beside the usual connectivity patterns. Such approaches have been shown to
identify groups of nodes that more closely reproduce the external classification in
real-world systems [20] than the techniques that rely on the connectivity patterns
only.

In this chapter we argue that, independently of the aforementioned issue, the
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Scientific publications network

supposedly poor performance of community detection algorithms may be caused
by the external classification itself and its misinterpretation. For instance, a
system may possess several alternative classification schemes, such as thematic
and methodological groupings in a system of scientific publications or in aca-
demic coauthorship networks [21]. In such situation, the discrepancies between
the community detection results and a single accessible classification (e.g. based
on thematic similarity) may carry, instead, meaningful information (e.g. about
methodological similarity), therefore providing an added value to the system un-
derstanding.

Here we explore this idea by performing a detailed analysis of a scientific pub-
lication record system. This system may be simplified into a structural network
representation, where the nodes correspond to scientific articles, and the links
represent the relationship between them. There are various possibilities to map
these relationships: direct citation [22], cocitation and bibliographic coupling [23]
or content related similarities [24, 25]. In this chapter we focus on the latter, con-
sidering scientific terms or concepts that appear within the articles. Performing
community detection on the corresponding network, we compare the results with
an expert made classification of these articles, considering both similarities and
discrepancies between the two different partitions. Then we investigate the main
reasons causing the most notable deviations.

This chapter is organized as follows. In the section 5.2 we present the dataset
used; in sec. 5.3 we introduce the methodology used to build the networks, extract
the partitions and compare them with the external classification. Finally, in
sections 5.4 and 5.5 we present our findings and discuss them.

5.2 Data

We investigate a collection of scientific manuscripts submitted to e-print reposi-
tory arXiv [26] during the years 2013 and 2014. During the submission process,
the authors were requested to classify the manuscript according to the arXiv
classification scheme by assigning at least one category to it. In our analysis we
are focussed only on the articles that have been assigned to a single category,
restricting ourself to the field of physics. Moreover, the collections of manuscripts
submitted during the years 2013 and 2014 will be considered separately, eliminat-
ing the possible issues related to the temporal evolution of research disciplines.
The resulting datasets consist of 36386 articles submitted during 2013 and 41848
articles submitted during 2014, and will be referred below (together with the
extracted contents) as the arxivPhys2013 and arxivPhys2014 datasets, respec-
tively. The numbers of articles belonging to each category are shown in Tab. 5.1.

Each article is represented by a set of scientific concepts that characterize
its content, i.e. specific words or combinations of them. The concepts have
been identified within the full text by the ScienceWISE.info platform (SW). SW
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5.2 Data

category ns
2013 nm

2013 ns
2014 nm

2014

nucl-th 648 1628 766 1210
nucl-ex 315 924 324 736
hep-ph 2625 3935 3116 2885
hep-ex 602 1726 706 1225
hep-lat 352 695 419 417
hep-th 1787 3717 2316 2960
gr-qc 1118 2782 1527 2204
astro-ph 10984 3023 11445 2437
physics 4452 6479 5711 4880
cond-mat 10549 4609 11397 3538
nlin 392 327 522 905
quant-ph 2558 3240 3187 2471
math-ph 0 3789 412 2668

Table 5.1: Distribution of articles among categories. The number of
manuscript submitted during the year y that have been assigned to a given cate-
gory only (ns

y) or to the category and at least one another (nm
y ). List of cat-

egories: theoretical and experimental nuclear physics (nucl-th and nucl-ex,
respectively), four branches of high energy physics (hep-ph: phenomenology,
hep-ex: experiment, hep-lat: lattice and hep-th: theory), general relativity
and quantum cosmology (gr-qc), astrophysics (astro-ph), physics (physics),
condensed matter physics (cond-mat), nonlinear science (nlin), quantum physics
(quant-ph) and mathematical physics (math-ph).

is a web service connected to the main online repositories such as arXiv, whose
peculiarity is a bottom-up approach in the management of scientific concepts [27].
The initially created scientific ontology was followed by a continuous editing by
the users, for instance by adding new concepts, definitions and relationships. This
crowd-sourced procedure leads to the most comprehensive vocabulary of scientific
concepts in the domain of physics. Such vocabulary takes care of synonyms that
refer to the same concepts and it includes physics concepts explicitely labeled as
generic like mass or energy, or more specific ones like community detection.
Both are the results of crowd-sourcing by the registered expert-users.

The number k of concepts significantly vary among the manuscripts, reaching
up to kmax ∼ 400 for review articles. The average number of identified con-
cepts 〈k〉 per article, together with some other characteristics of the datasets
arxivPhys2013 and arxivPhys2014, are shown in Tab. 5.2.
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Scientific publications network

N V Vgen 〈k〉 Lidf Lbp

arxivPhys2013 36386 12200 347 37 3.3× 108 1.3× 106

arxivPhys2014 41848 12728 344 38 4.5× 108 1.6× 106

Table 5.2: Basic characteristics of the datasets. Total number of articles
(N), total number of identified concepts (V ) and the number of generic ones
(Vgen) among them; 〈k〉 gives the average number of non-generic concepts within
arbitrary chosen article. The number of links in a unipartite network (provided
that the generic concepts are excluded) Lidf is two orders of magnitude larger than
the corresponding number of links in bipartite networks (Lbp)1. This results in
significant differences in computational resources needed to perform community
detection analysis.

5.3 Methods
The dataset may be represented as a network, whose nodes correspond to arti-
cles. Two nodes i and j are connected by a link if the corresponding articles share
at least a single common concept. The resulting networks are extremely dense,
covering almost 90% of all possible network connections; this number may be
reduced to 50% if the generic concepts are ignored (see Tab.5.2). Below, to save
the computational resources, we will ignore the generic concepts in our analysis.
The weight of the link between two manuscripts is designed to reflect the level
of content similarity between two articles, i.e. the overlap between the respec-
tive lists of concepts. Different concepts, however, may contribute differently to
the similarity among two articles. Indeed, sharing a widely used concept should
affect the similarity between two articles differently than sharing a specific one,
suggesting that specific concepts should have a higher impact on the similarity.
Each concept c in the dataset is therefore weighted according to its occurrence,
which may be accounted for by the so-called idf(c) factor [28]:

idf(c) = log
N

N(c)
. (5.1)

Here N is the total number of articles and N(c) is the number of articles that
contain concept c. As mentioned above, among the V concepts identified by
SW, we will consider only the specific ones, discarding the Vgen generic concepts.
The content of each article can be therefore expressed by means of a (V − Vgen)-
dimensional concept vector ~vi. The element vic of the concept vector of the article
i has non-zero value equal to idf(c) only if the concept c appears within the article
i and equals zero otherwise.

The similarity between the contents of two articles i and j, and the link weight
wij between the corresponding nodes, may then be estimated by the cosine simi-

1These represent, in all the cases, roughly the 60% of all the links, i.e. including also the contri-
bution given by the generic concepts.
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5.3 Methods

larity between the two concept vectors ~vi and ~vj as follows:

wij =
~vi · ~vj
|~vi||~vj |

. (5.2)

The resulting network will be referred below as the idf representation of the data.
Alternatively to idf representation, the dataset may be mapped into a bipar-

tite network. Such network consists of the nodes of two types that correspond
to manuscripts and scientific concepts, respectively. The unweighted links in the
simplest case reflect the appearance of a concept within the article. This network
will be referred below to as a bp representation of the data, and the usage of
the two alternative representation will serve the robustness of our results. The
number of links (Lidf , Lbp) of these networks are shown in Tab. 5.2. As one may
see, the number of links in bp representation is about two orders of magnitude
smaller than the number of links in the corresponding idf representation. This
has significant consequences on the run-time and memory used to analyse the
networks.

Indeed, the run-time t of the Louvain algorithm scales with the number of links
L of the considered network. Since empirically in the bipartite representation
Lbp ∼ O(N) while in the unipartite case Lidf ∼ O(N2), this reflects in much
different computational resources required to perform the community detection.
Moreover, here we point out that the bipartite representation is the most natural
and suitable characterization of the dataset, since the null model behind such
representation of the data is definitely more correct. In fact, the bipartite null
model is consistent with the constraints on both the types of node (number of
papers per concept and concepts per article). This feature is instead lost when
the system is projected into a unipartite network, since the previous constraints
are not matched any more. Furthermore, the bipartite representation and null
model already take into account the presence of more frequent concepts, sparing
us the use of any idf factor. In this context, we therefore propose the use of the
bipartite representation as a possible alternative to the more widespread idf (or
tf-idf) unipartite representation.

In order to find a unipartite network partition, we will maximize a modularity
function [29]. To deal with bipartite networks, we adopt a co-clustering approach
[30] and Barber’s generalization of modularity [31].

In both cases, we assume that each article may belong to a single cluster
only, hence exploiting the notion of non-overlapping communities. Furthermore,
the co-clustering approach makes stronger restrictions on a bipartite partition,
compared to a unipartite one. Indeed, the resulting clusters of a bipartite partition
consist of both articles and related concepts, and we assume that each concept
belongs to a single cluster as well. Such restriction may be relaxed, for instance
by using alternative ways to generalize modularity for bipartite network [32] or
by employing stochastic block model techniques [33]. However, we will consider
co-clustering of bipartite networks since it allows us to straightforwardly employ
the same greedy optimization algorithm [5] for the networks of both types.
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Scientific publications network

The restriction towards a single algorithm is also caused by the result [11]
that i) the selected algorithm is among the ones that perform best on real-world
networks and ii) the major influence on the accuracy is related to the dataset
itself rather than the algorithm. Due to the stochastic origin of this algorithm, it
has been applied 100 times for unipartite networks and 1000 times for bipartite
ones (due to the significantly different number of links and, therefore, the required
computational resources). Among the detected partitions, for each network we
will select the single partition that corresponds to the highest value of modularity;
this partition will be referred below as the optimal partition for each network.

5.4 Results

A partition of a bipartite network consists of clusters that contain both articles
and scientific terms (concepts), while clusters of a unipartite network partition
consist of articles only. To compare both unipartite and bipartite partitions with
the external article classification, we will be focussed only on the articles that fall
into each cluster. Thus, by referring below to a cluster of bipartite partition we
mean the set of articles that belong to the specified cluster. In this perspective,
the external classification of the articles is represented by the arXiv standard split
into different subject classes or categories (astro-ph, cond-mat, etc.).

Then, given two partitions P and Q of the same network (for instance a
detected network partition and the arXiv classification), an initial comparison
between them has been performed using an information-based symmetrically nor-
malized mutual information:

IN(P,Q) =
2I(P,Q)

H(P ) +H(Q)
. (5.3)

Here I(P,Q) is the mutual information [34] between two partitions P and Q, and
H(P ) is the entropy of partition P . The normalized mutual information IN(P,Q)
may vary between 0 and 1. A value of 0 indicates that the two partitions have
no information in common, while a value of 1 corresponds to identical partitions.
In Tab. 5.3 we show the level of similarity between each optimal partition and
the arXiv classification ones. The reported values of normalized mutual informa-
tion indicate the existence of some common information between automatically
identified clusters of articles (both in the bipartite and unipartite cases) and the
author based classification. However, the values being quite far from the possi-
ble maximum of 1 reflect evidence for some discrepancies between the partitions.
Below we perform a detailed analysis of these discrepancies. Here we will show
the results for the arxivPhys2013 dataset; similar findings can be observed in the
arxivPhys2014 case and are shown in the following appendix.

The first difference is observed in the numbers of detected clusters and of
arXiv subject classes: while the number of categories in the arXiv classification
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5.4 Results

idf bp
arxivPhys2013 0.60± 0.02 0.56± 0.03
arxivPhys2014 0.55± 0.00 0.54± 0.02

Table 5.3: Similarity between network partitions and external classifi-
cation. Average value of the normalized mutual information IN (5.3) between a
partition of each network representation and arXiv classification of the articles
and the corresponding standard deviations. Both bp and idf partitions demon-
strate similar value of closeness to arXiv classification.

scheme is 12 2, the number of clusters in our partitions is only equal to 4 in
the idf and to 6 in the bp network representations, respectively3. Indeed, the
articles of some different arXiv categories tend to belong to a single cluster. This
may be clearly observed in Fig. 5.1 that shows the fraction of articles of each
arXiv category belonging to each cluster in the resulting partitions. This merger
is especially visible for different high energy physics (hep) categories (hep-ph,
hep-ex, hep-lat and hep-th): in the idf partition, almost 99% of all these
articles fell into a single cluster, independently of the sub-field. This result, despite
deviating from the arXiv classification scheme, is reasonable since we observe a
union of almost all papers about high energy physics, no matter if they deal with
experimental or theoretical issues.

Instead, in the bp partition the articles of the four hep categories are almost
entirely distributed among two clusters, focussed on experimental and theoret-
ical issues, respectively. The first of them joins 95% of all articles that belong
to experimental categories (hep-ph, hep-ex or hep-lat), while the second one
contains 94% of all theoretical (hep-th) articles. Thus, the presence of more
clusters within the bipartite network partition allows us to identify methodologi-
cally different clusters of articles within the hep categories, in particular dividing
theoretical papers from experimental ones.

Even though the split of hep articles into two groups may be simply explained
by the different approaches used to study the phenomena, a further result can
be observed from Fig. 5.1: in the bipartite network partition, hep-th articles
tend to form a single cluster with the articles that belong to general relativity
and quantum cosmology (category gr-qc) rather than with the other high energy
physics articles, thus appearing to be more similar to gr-qc papers rather than
to the other hep ones. Intuitively, indeed, we know that both hep-th and gr-qc
both focus mostly on general relativity, while the other hep categories focus on
particle physics 4.

2In fact, there are 13 physics categories in arXiv classification scheme, but there is no single article
in arxivPhys2013 dataset that belong to math-ph category only.

3By performing a detailed comparison we ignore all single-node clusters, which contain the articles
for which no concept has been identified.

4Indeed, it is very likely that nowadays the hep- categories would be split in multiple subcategories
(namely hep-th, hep-lat, etc.). However, here we point out that our study (in particular in the
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Figure 5.1: Inner composition of arxivPhysics2013 partitions. The color
of each cell accounts for the fraction of articles of a given category belonging to
a cluster (each column sums to 1). The articles of the same categories tend to
incorporate into single clusters as justified by the clearly visible block-diagonal
structure of both idf and bp partitions. Nevertheless, the split of some categories
into distinct clusters may be observed. For instance, the articles of nucl-th cat-
egory are roughly equally split among hep- and cond-mat-dominated categories.
On the right, the most representative concepts for each cluster are shown.

Such a relatedness between the articles of the two theoretical physics categories
(hep-th and gr-qc) may be verified independently by a category co-occurrence
analysis. To show this, we will use the complementary part of the investigated
dataset. This set consists of all articles that have been submitted to arXiv during
the same 2013 year, but for which the authors have assigned at least two different
categories. Thus, no article of this set overlaps with the clustered arxivPhys2013
collection. Irrespective of the details of the decision-making process through which
authors assign multiple categories, this multiplicity reflects the authors’ decision
that the scope of the article can not be properly covered by a single category of
a given classification scheme. Whilst several categories may cover the scope of a
single research article, the co-occurrence of the same two categories in a significant
fraction of articles may reflect some hidden relationships between them. The
corresponding empirical co-occurrence matrix is shown in Fig. 5.2 and indicates

bipartite case) shows that hep-th looks actually more similar to gr-qc than to the other hep- classes.
This therefore seems to strengthen the apparently counterintuitive choice of dividing the high energy
articles in different primary classes.
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5.4 Results

the fraction of articles of a given category that have been co-submitted to the other
categories. The diagonal elements of this matrix indicate the fraction of articles
of each category that have been assigned to a single category by the author(s),
i.e. the articles of the arxivPhys2013 dataset. A normalization procedure has
been performed such that each column of the matrix sums to 1.

Fig. 5.2 confirms that the hep-th subject class is indeed more related to the
gr-qc class than to the other hep categories: hep-th co-occurred with gr-qc in
1721 articles, and with all other hep categories in only 1286 articles, even though
the number of the corresponding hep papers (hep-ph, hep-ex, hep-lat) exceeds
the number of gr-qc ones threefold. This high level of relatedness between hep-th
and gr-qc categories justifies the merging of the articles of these categories into a
single cluster and indicates the meaningful deviation from the arXiv classification
scheme. It is worth to mention that in the idf partition, where all hep category
articles tend to belong to a single cluster, the same cluster is supplemented by
87% of all gr-qc articles, in agreement with the result observed above. Moreover
such a tendency is not restricted to the dataset for the selected year: it has also
been observed for the arxivPhys2014 one (as shown in the appendix).

The same approach explains the presence of a significant fraction of physics,
non-linear (nlin) and quantum physics (quant-ph) articles into the cond-mat
clusters. It also allows us to understand a possible reason why nuclear physics
articles (both theory and experiment) occur significantly within the hep clusters.
However, it cannot explain the presence of roughly one half of nucl-th articles
into the condensed matter cluster (cluster No. 3 in idf and No. 5 in bp par-
titions) in both network representations. The latter deviation from the article
classification, which is not explained by category co-occurrence, does not exclude
that similarities between these topics exist but are considered not strong enough
by the authors to label the articles with both subject classes. To uncover the
possible essence of these similarities, we examine the top representative concepts
that characterize the nucl-th articles that belong to the two different clusters,
see Table 5.4. In both cases, the top representative concepts contain the ones
that characterize the object of investigation within theoretical nuclear physics,
such as Isotope, Isospin or Nuclear matter. However, one may clearly iden-
tify method-related concepts, such as Hartree-Fock, Hamiltonian, Mean field
and Random phase approximation, among the top representative concepts of ar-
ticles in the cond-mat cluster. These concepts clearly characterize methods that
are widely used in condensed matter physics research, and that have not been
identified among top concepts in any other cluster. This result emphasizes the
ability of scientific concepts found within research articles to highlight not only
topics focussed on the same objects, but also methodologically similar research
directions.
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Figure 5.2: Co-occurrence matrix of arXiv categories during year 2013.
Built on the complementary dataset to arxivPhys2013, this matrix reflects the
relationships between arXiv categories and allows to justify the meaningfulness
of some remarkable discrepancies, like the merger of hep-th and gr-qc articles.
Each non-diagonal element reflects the fraction of articles in which two specified
categories have co-occurred. The diagonal cells represent the fractions of articles
that have been assigned to a single category, i.e. they concern the articles of the
arxivPhys2013 dataset. A normalization procedure has been performed such that
each row of the matrix sums to 1. Thus, the aforementioned fractions correspond
to the fractions of manuscripts that have been labeled with a given category.
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% Concept (cluster no. 1) % Concept (cluster no. 3)
43 Hadronization 55 Isotope
39 Isospin 53 Hamiltonian
37 Pion 39 Hartree-Fock
33 Degree of freedom 36 Quadrupole
32 Heavy ion collision 34 Isospin
31 Quark 31 Nuclear matter
29 Chirality 30 Degree of freedom
29 Hamiltonian 28 Mean field
29 Nuclear matter 26 Harmonic oscillator
26 Coupling constant 25 Spin orbit

Table 5.4: Representative concepts of two groups of articles categorized
as nucl-th. The left side of the table represents the group of articles that fell
into the hep dominated cluster (no. 1) in idf partition. The right side – the
other group: the nucl-th articles that fell into the cond-mat dominated cluster
(no. 3). For each group, the numbers next to the concepts give the percentage of
articles in which the concept has been identified. The table allows us to make a
suggestion that the two groups of articles significantly differ by the methods used
to investigate nuclear matter.

5.5 Conclusions
The differences between the outcomes of community detection algorithms and
possible external classifications may have various reasons. The most notable of
them concern a possible failure of the considered algorithm or the unavoidable
loss of data about real complex systems determined by their representation as
networks. To deal with the first issue, algorithms are heavily tested on bench-
marks, while the second issue is still under investigation [20]. In this chapter, we
emphasize a third possible reason behind such discrepancies, i.e. the fact that
the external classification itself may possess its own limitations. For this reason
we performed a detailed investigation of a scientific publication system which i)
may be naturally represented as a network and ii) owns an external author-made
classification of scientific articles. While, indeed, some discrepancies are caused
by the lack of data (for instance in the case of the articles for which no concept
has been identified), we argue that the most remarkable of them may reflect real
commonalities across different subject classes. Academic publications are tra-
ditionally categorized and classified5 according to objects or phenomena under
investigation. The same phenomena, however, may be explored using various ap-
proaches, experimental observation and theoretical modeling being among them.

5Document classification and categorization are different processes: classification refers to the
assignment of one or more predefined categories to a document, while categorization refers to the
process of dividing the set of documents into priory unknown groups whose members are in some way
similar to each other [35].
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On the other hand, the phenomena that belong to different research topics may
be investigated using the same methods, composing the core of the interdisci-
plinary research. Thus, a more comprehensive classification or research articles
may be represented by a two layer categorization scheme, where one layer reflects
phenomena or objects while the other one stands for the methods of investiga-
tion. Usually, these two layers are not taken equally into account. The expert
made classification may include rather a strong bias towards the object layer. The
reasons involve the classification scheme itself and the limited knowledge about
all other research disciplines that employ the same methods. Instead, automatic
concept-based categorization has no direct preference for any of the layers: the
extracted concepts correspond both to phenomena and methods, and the algo-
rithm has no information about the possible division of the concepts. Thus, the
observed discrepancies may reflect the dominance of the methodological layer over
the other one, which corresponds to phenomena or objects. Similar results have
been previously observed within the collaboration network of scientists at Santa
Fe Institute [21], where, besides the expected grouping around common topics,
some methodologically driven clusters have been observed.

This shows that the failure in reproducing an external classification may in-
dicate a genuinely more complicated organization within the system, in addition
to the lack of data or algorithmic mistakes. Besides developing sophisticated al-
gorithms to deal with real systems, we should therefore keep in mind that some
observed discrepancies may go beyond the standard classification and carry im-
portant information about the system under study. We believe that similar results
may be observed in other systems. Indeed, the ground truth necessarily follows
from a given classification criterion; however, the considered data may contain
more than that single type of information (perhaps in conflict one with each
other). In general, therefore, it may happen that what we consider as the ground
truth is just one of the possible reference points, rather than some absolute truth.
Understanding the information employed to define the so-called ground truth is
therefore crucial in order to perform a proper comparison between external clas-
sification and automatically retrieved communities.

Appendix

5.A Scientific publications network in 2014

Here we show the results of the community detection algorithm to the so-called
arxivPhys2014 dataset, representing the content-relations between 41848 scien-
tific articles that have been assigned to a single physics category, submitted to
arXiv in 2014; our findings are reported in Figure 5.3 (top panel). The parti-
tions obtained through the Louvain algorithm are very similar to those observed
for the arxivPhys2013 dataset: we see that, also in this case, the manuscripts
belonging to the same category tend to merge into single clusters as illustrated
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by the block-diagonal structure of both idf and bp clusterings. Still, the split
of some categories into different communities may be observed, such as nucl-th
and math-ph.

Furthermore, we can justify our results based on the co-occurrence matrix
reported in Figure 5.3 (bottom panel). This matrix, built on the complementary
dataset of arxivPhys2014, namely the set of articles showing more than one
physics category, reflects the relations between the various arXiv categories in
2014 and can therefore explain the reason of some of the observed discrepancies,
such as the union of hep-th and gr-qc manuscripts.
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Figure 5.3: Results of the analysis for the arxivPhys2014 dataset. Top:
inner composition of the obtained partitions. The color of each cell accounts for
the fraction of articles of a given category belonging to a cluster (each column
sums to 1); the articles of the same categories tend to incorporate into single
clusters as justified by the clearly visible block-diagonal structure of both idf
and bp partitions. Bottom: co-occurrence matrix of arXiv categories during year
2014. Each non-diagonal element reflects the fraction of articles in which two
specified categories have co-occurred; the diagonal cells represent the fractions of
articles that have been assigned a single category, i.e. they concern the articles
of the arxivPhys2014 dataset. A normalization procedure has been performed
such that each row of the matrix sums to 1.
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