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Chapter 2

Directed multiplex networks

Real-world multi-layer networks feature nontrivial dependencies among links of
different layers. Here we argue that, if links are directed, dependencies are twofold.
Besides the ordinary tendency of links of different layers to align as the result of
‘multiplexity’, there is also a tendency to anti-align as the result of what we call
‘multireciprocity’, i.e. the fact that links in one layer can be reciprocated by
opposite links in a different layer. Multireciprocity generalizes the scalar defi-
nition of single-layer reciprocity to that of a square matrix involving all pairs
of layers. We introduce multiplexity and multireciprocity matrices for both bi-
nary and weighted multiplexes and validate their statistical significance against
maximum-entropy null models that filter out the effects of node heterogeneity. We
then perform a detailed empirical analysis of the World Trade Multiplex (WTM),
representing the import-export relationships between world countries in different
commodities. We show that the WTM exhibits strong multiplexity and multire-
ciprocity, an effect which is however largely encoded into the degree or strength
sequences of individual layers. The residual effects are still significant and allow
to classify pairs of commodities according to their tendency to be traded together
in the same direction and/or in opposite ones. We also find that the multire-
ciprocity of the WTM is significantly lower than the usual reciprocity measured
on the aggregate network. Moreover, layers with low (high) internal reciprocity
are embedded within sets of layers with comparably low (high) mutual multi-
reciprocity. This suggests that, in the WTM, reciprocity is inherent to groups
of related commodities rather than to individual commodities. We discuss the
implications for international trade research focusing on product taxonomies, the
product space, and fitness/complexity metrics.

The results presented in this chapter have been published in the following reference:
V. Gemmetto, T. Squartini, F. Picciolo, F. Ruzzenenti, D. Garlaschelli, Physical Review E, 94 (4),
042316 (2016).
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2.1 Introduction

2.1 Introduction

Several real-world systems are composed by intricately interconnected units, thus
exhibiting a nontrivial network structure. The behaviour and dynamics of such
systems are strongly dependent on how information can propagate throughout
the network. Both the directionality and the intensity of connections crucially af-
fect this process, and should possibly be incorporated in the network description.
For instance, most of the communication relations among individuals, such as ex-
changes of letters, e-mails or texts, are intrinsically directional and are therefore
best represented as directed networks [1]. Furthermore, such interactions typi-
cally have heterogeneous intensities, calling for a description in terms of weighted
networks [2].

Recently, it has been realized that many real-world systems often require an
even more detailed representation, because a given set of units can be connected
by different kinds of relations. This property can be abstractly captured in terms
of so-called edge-colored graphs (where links of different colors are allowed among
the same set of nodes) or equivalenlty multi-layer or multiplex networks (where
the same set of nodes is replicated in multiple layers, each of which is an ordi-
nary network) [3, 4]. The nontrivial properties of these systems, with respect to
ordinary single-layer (‘monochromatic’ or ‘monoplex’) networks, arise from the
fact that the various layers are interdependent and the presence of a link in one
layer can influence the presence of a link in a different layer. A clear example is
represented by the different kinds of relationships existing between employees in a
university department [5], where individuals can be connected by co-authorship,
common leisure activities, on-line social networks etc. The interdependence of lay-
ers implies that the topological properties usually defined for monoplex networks
admit nontrivial generalizations to multiplex networks, and that some properties
which are uninteresting, or even undefined, for single-layer networks become rel-
evant for multiplexes.

This chapter introduces novel metrics characterizing the dependencies among
layers in multiplexes with directed links. While various measures of inter-layer
overlap for multiplexes have already been introduced [6, 7], they suffer from two
main limitations. First, most definitions are available only for multiplexes with
undirected links, and their straightforward generalization to the directed case
would overshadow important properties that are inherent to directed networks,
most importantly the reciprocity (which is one of our main focuses here). Second,
even in ‘trivial’ multiplexes where there is no dependence among layers (i.e. in
independent superpositions of single-layer networks with the same set of nodes), a
certain degree of inter-layer overlap can be created entirely by chance. This effect
becomes more pronounced as the density of the single-layer networks increases
and as the correlation among single-node properties (like degrees or strengths)
across layers increases. For instance, if a node is a hub in multiple layers, there
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Directed multiplex networks

is an increased chance of overlap among these layers, even if the presence of links
in one layer is assumed not to influence the presence of links in another layer.

The two limitations discussed above highlight the need to define metrics that
appropriately filter out both global (network-wide) and local (node-specific) den-
sity effects. Correlation-based measures of inter-layer overlap have been proposed
with this aim in mind [8]. However, as recently pointed out [9], correlation-based
metrics for multiplexes are not a correct solution in general, because they implic-
itly assume that edges observed between different pairs of nodes are sampled from
the same probability distribution. This assumption is strongly violated in real-
world networks, whose markedly heterogeneous topology is a signature of very
different probabilities for edges emanating from different nodes, e.g. the proba-
bility of links being found around more important nodes is clearly different from
the probability of links being found around less important nodes.

The above considerations motivate us to introduce new multiplexity metrics
that explicitly take the directionality of links into account and appropriately fil-
ter out the spurious effects of chance, while controlling for the extreme hetero-
geneity of empirical node-specific properties. In this chapter we carry out this
program by extending recent ‘filtered’ definitions of multiplexity [9], originally
defined for undirected links, to the case of directed links. Although this might
seem a straightforward procedure at first, we will in fact show that it requires
different null models, triggers novel concepts, and leads to new quantities that
are undefined in the undirected case. Indeed, while in the undirected case there
is only one possible notion of dependency among links in different layers, in the
directed case there are two possibilities, depending on whether links are ‘aligned’
or ‘anti-aligned’.

Aligned links between two layers are observed when a directed link from node
i to node j exists in both layers. This situation is the straightforward analogue of
what can happen in undirected multiplex networks, and is a signature of the fact
that the connection from i to j is relevant for multiple layers. We will denote this
effect simply as (directed) multiplexity, in analogy with the undirected case [9],
and will study it in the general case of an arbitrary number of layers. By contrast,
anti-aligned links form between two layers when a link from node i to node j in one
layer is reciprocated by an opposite link from node j to node i in the other layer.
This situation does not have a counterpart in the case of undirected multiplexes
and leads us to the definition of the novel concept of multireciprocity, i.e. the gen-
eralization of the popular concept of reciprocity to the case of multiplex networks.

In monoplex networks - either binary [10] or weighted [11] - reciprocity is de-
fined as the tendency of vertex pairs to form mutual connections. This property,
which is one of the best studied properties of single-layer directed networks, can
crucially affect various dynamical processes such as diffusion [12], percolation [13]
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2.1 Introduction

and growth [14, 15]. For instance, the presence of directed, reciprocal connections
can lead to the establishment of functional communities and hierarchies of groups
of neurons in the cerebral cortex [16].

In binary graphs, a simple measure of reciprocity is the ratio of the number
of reciprocated links (i.e. realized links for which the link pointing in the oppo-
site direction between the same two nodes is also realized) to the total number
of directed links. However, it has been shown [10] that this measure is not per
se informative about the actual tendency towards reciprocation, because even in
a random network a certain number of reciprocated links will appear. So the
number of observed mutual interactions has to be compared with the expected
number obtained for a given random null model, if one wants to understand
whether mutual links are present in the real network significantly more (or less)
often than in the random benchmark [17]. It is therefore crucial to make use of
proper null models for networks. Since in most real-world directed networks the
distribution of the number of in-coming and out-going links (i.e. the in-degree
and out-degree) of nodes is very broad, an appropriate null model should fix the
in- and out-degrees of all nodes equal to their observed values. The null model
of directed networks with given in- and out-degrees often goes under the name of
directed binary configuration model (DBCM) [18]. The rationale underlying the
DBCM is the consideration that the in- and out-degree of a node might reflect
some intrinsic ‘size’, or other characteristic, of that node; therefore a null model
tailored for a specific network should preserve the observed degree heterogeneity.
Conveniently, the DBCM is also the correct null model to use when measuring the
multiplexity among layers of a multiplex with directed links. Indeed, the DBCM
is the directed generalization of the undirected binary configuration model used
in the previous chapter [9] for the definition of appropriately filtered, undirected
multiplexity metrics. This nicely implies that we can use the DBCM as a single
null model in our analysis of both multiplexity and multireciprocity.

Recently, the definition of reciprocity has been extended to weighted net-
works [11]. A simple measure of weighted reciprocity is the ratio of ‘total recip-
rocated link weight’ to total link weight, where the reciprocated link weight is
defined, for any two reciprocated links, as the minimum weight of the two links.
Similarly to the binary case, some level of weighted reciprocity can be generated
purely by chance. So the empirical measure has to be compared to its expected
value under a proper null model, represented in this case by a random weighted
network where each node has the same in-strength and out-strength (i.e. total
in-coming link weight and total out-going link weight, respectively) as in the real
network. This null model is sometimes called the directed weighted configuration
model (DWCM) [19] and, conveniently, is also the relevant null model (gener-
alizing its undirected counterpart [9]) to study the multiplexity in presence of
weighted directed links.
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Directed multiplex networks

We stress that the concept of reciprocity has not been generalized to multiplex
networks yet. Our definition of multireciprocity represents the first step in this
direction and captures the tendency of a directed link in one layer of a multiplex
to be reciprocated by an opposite link in a possibly different layer. While ordi-
nary reciprocity can be quantified by a scalar quantity, multireciprocity requires a
square matrix where all the possible pairs of layers are considered. Similarly, the
multiplexity also requires a square matrix. Together, the multiplexity matrix and
the multireciprocity matrix represent the two ‘directed’ extensions of the undi-
rected multiplexity matrix that has been introduced in Chapter 1 to characterize
undirected (either binary or weighted) multiplexes.

The rest of the chapter is organized as follows. In Sec. 2.2 we introduce
our methods, null models and main definitions for both binary and weighted
multiplexes. In Sec. 2.3 we apply our techniques to the analysis of the World
Trade Multiplex (WTM), a directed weighted multiplex representing the import-
export relations between countries of the world in different products. We identify
a number of empirical properties of the WTM that are impossible to access via the
usual aggregate (monoplex) analysis of the network of total international trade.
We finally conclude the chapter in Sec. 2.4, where we discuss some important
implications of our results, both for the general study of multiplex networks and
for more specific research questions in international trade economics. Several
necessary technical details are given in the follwing appendices.

2.2 Multiplexity and Multireciprocity metrics

In this section we give definitions of (directed) multiplexity and multireciprocity
metrics for both binary and weighted multiplexes. These definitions require, as
a preliminary step, the introduction of appropriate null models. In turn, null
models require the choice of a convenient notation. We address these points in
the resulting order.

We represent a directed multiplex
−→
G = (G1, . . . , GM ) as the superposition of

M directed networks (layers) Gα (α = 1, . . . ,M), all sharing the same set of N
nodes [3]. Links can be either binary or weighted. In the binary case, each layer
α is represented by a N × N binary adjacency matrix Gα = (aαij)

N
i,j=1, where

aαij = 0, 1 depending on whether a directed link from node i to node j is absent or
present, respectively. In the weighted case, each layer α is represented by a N×N
non-negative integer adjacency matrix Gα = (wαij)

N
i,j=1, where wαij = 0, 1, . . .∞

is the weight of the directed link from node i to node j (wαij = 0 indicating
the absence of such link). We denote by GN the set of all (binary or weighted)
single-layer graphs with N nodes, and by GMN ≡ (GN )M the set of all (binary or
weighted) M -layer multiplexes with N nodes.
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2.2 Multiplexity and Multireciprocity metrics

2.2.1 Null models of multiplex networks: maximum en-
tropy and maximum likelihood

Since our purpose is that of measuring correlations between directed links (pos-
sibly, in opposite directions) in different layers, we define independent reference
models for each layer of the multiplex, thus creating an uncorrelated null model
for the entire multiplex [7, 9]. This means that, if P(

−→
G |
−→
θ ) denotes the joint

probability of the entire multiplex
−→
G ∈ GMN (given a set of constraints enforced

via the vector
−→
θ of parameters, see Appendix 2.A) and

Pα(Gα|
−→
θα) ≡

∑
G1∈GN

· · ·
∑

Gβ∈GN

· · ·
∑

GM∈GN︸ ︷︷ ︸
β 6=α

P(
−→
G |
−→
θ ) (2.1)

denotes the (marginal) probability for the single-layer graph Gα ∈ GN (given a
set of layer-specific constraints enforced via the partial vector

−→
θα), we require the

null model to obey the factorization property

P
(−→
G |
−→
θ
)

=
M∏
α=1

Pα(Gα|
−→
θα). (2.2)

The above property ensures that the definition of the null model for the entire
multiplex reduces to the definition of independent null models for each layer sep-
arately (see Appendix 2.A for a rigorous derivation).

In the case of binary multiplexes, the null model we want to use to control
for the heterogeneity of nodes in each layer is, as we have already mentioned, the
Directed Binary Configuration Model (DBCM) [20, 21], defined as the ensemble
of binary networks with given in-degree and out-degree sequences. At this point,
we have to make a major decision, since the DBCM can be implemented either
microcanonically or canonically.

In the microcanonical approach, node degrees are “hard”, i.e. enforced sharply
on each realization. The most popular microcanonical implementation of the
DBCM is based on the random degree-preserving rewiring of links [18] (a.k.a.
the Local Rewiring Algorithm), which unfortunately introduces a bias. This bias
arises because, if the degree distribution is sufficiently broad (as in most real-
world cases), the randomization process explores the space of possible network
configurations not uniformly, giving higher probability to the configurations that
are “closer” to the initial one [22] (more details are given in Appendix 2.B). An-
other possible microcanonical implementation, based on the random matching of
“edge stubs” (half links) to the nodes, creates undesired self-loops and multiple
edges [18, 23]. Besides these limitations, microcanonical approaches are compu-
tationally demanding. Indeed, in order to measure the expected value of any
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quantity of interest, it is necessary to generate several randomized networks, on
each of which the quantity needs to be calculated. This sampling method is per
se very costly, and even more so in the case of multiplex networks, due to the
presence of several layers requiring a further multiplication of iterations (see Ap-
pendix 2.B).

By contrast, in the canonical implementation [20, 21] of the DBCM the in-
and out-degrees are “soft”, i.e. preserved only on average. The resulting probabil-
ity distribution over the ensemble of possible graphs is obtained analytically by
maximizing the entropy subject to the enforced constraints [20, 24, 25, 26] (see
Appendix 2.A for details). This procedure leads to the class of models also known
as Exponential Random Graphs or p? models [27, 28, 29]. In order to fit such
exponential random graphs to real-world networks, we adopt an exact, unbiased
and fast method [20, 21] based on the Maximum Likelihood principle [30]. The
method is summarized in Appendix 2.B and implemented in our analysis using
the so-called MAX&SAM (“Maximize and Sample”) algorithm [21]. The latter
yields the exact probabilities of occurrence of any graph in the ensemble and the
explicit expectation values of the quantities of interest. This has the enormous
advantage that an explicit sampling of graphs is not required: expectation values
are calculated analytically and not as sample averages. In particular, the prob-
ability pαij that a link from node i to node j is realized in layer α (aαij = 1) can
be easily calculated. From the set of all such probabilities, the expected value
of - for instance - the multireciprocity can be computed analytically and directly
compared with the empirical value, in order to obtain a filtered measure.

We now come to the case of multiplexes with weighted links. In this case we
want the enforced constraints to be the in-strength and out-strength sequences of
the real network, separately for each layer. The corresponding model is sometimes
referred to as the Directed Weighted Configuration Model (DWCM) [11]. As for
the binary case, we want to build the null model canonically as a maximum-
entropy ensemble of weighted networks, leading to a weighted Exponential Ran-
dom Graph model [20, 11]. The implementation we use is again based on the
MAX&SAM algorithm [21], which in this case calculates the exact probability
that, in the null model, the weight of the directed link connecting node i to node
j in layer α has a particular value wαij , for each pair of nodes and each layer.
From this probability, the expected weighted multireciprocity can be computed
analytically and compared with the empirical one, thus producing a filtered value
that, in this case as well, does not require the explicit sampling of graphs.

2.2.2 Binary multiplexity and multireciprocity

Our first set of main definitions are specific for multiplexes with binary links.
Consider a directed and binary multiplex ~G with M layers. We quantify the
similarity and reciprocity between any two layers α and β by defining the binary
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2.2 Multiplexity and Multireciprocity metrics

multiplexity mαβ
b and multireciprocity rαβb as follows:

mαβ
b =

2
∑
i

∑
j 6=i min{aαij , a

β
ij}

Lα + Lβ
=

2Lα⇒β

Lα + Lβ
, (2.3a)

rαβb =
2
∑
i

∑
j 6=i min{aαij , a

β
ji}

Lα + Lβ
=

2Lα�β

Lα + Lβ
, (2.3b)

where Lα =
∑
i

∑
j 6=i a

α
ij represents the total number of directed links in layer α

(analogously for layer β), Lα⇒β =
∑
i

∑
j 6=i min{aαij , a

β
ij} is the number of links

of layer α that are multiplexed in layer β (clearly, Lα⇒β = Lβ⇒α), and Lα�β =∑
i

∑
j 6=i min{aαij , a

β
ji} is the number of links of layer α that are reciprocated in

layer β (clearly, Lα�β = Lβ�α). Note that possible self-loops (terms of the type
aαii) are deliberately ignored because they are indistinguishable from links pointing
in the opposite direction, thus making their contribution to either multiplexity or
multireciprocity undefined.

Equations (2.3) can be regarded as defining the entries of twoM×M matrices,
which we will call the binary multiplexity matrix Mb = (mαβ

b )αβ and the binary
multireciprocity matrix Rb = (rαβb )αβ respectively. The matrices Mb and Rb rep-
resent the two natural extensions, to the case of directed multiplexes, of the single
binary multiplexity matrix introduced in Chapter 1 [9] for undirected binary mul-
tiplexes. Both matrices provide information about the ‘overlap’ between directed
links connecting pairs of nodes in different layers. Their entries range in [0, 1] and
are maximal only when layers α and β are respectively identical (i.e. aαij = aβij
for all i 6= j) and fully ‘multireciprocated’ (i.e. aαij = aβji for all i 6= j). The
matrix Mb has by construction a unit diagonal, since the intra-layer multiplexity
trivially has the maximum value mαα

b = 1 for all α. By contrast, the diagonal of
Rb is nontrivial and of special significance, as the intra-layer multireciprocity rααb
reduces to the ordinary definition of binary reciprocity for monoplex networks [10].

For ‘trivial’, uncorrelated multiplexes made of sparse non-interacting layers
with narrow degree distributions, the matrix Mb would asymptotically (i.e. in
the limit of large N , but not necessarily large M) be the M ×M identity matrix,
and the matrix Rb would asymptotically be a M ×M diagonal matrix. This is
because, in presence of sparse uncorrelated layers without hubs, the chance of a
link in one layer ‘overlapping’ with a (mutual) link in a different layer is negligi-
ble. For finite and/or dense networks and/or broad degree distributions, however,
positive values of mαβ

b and rαβb (with α 6= β) can be produced entirely by chance
even in a multiplex with no dependencies among layers. For instance, if the same
node is a hub in multiple layers, the chance of a large overlap of links among all
pairs of such layers is very high, even if the layers are non-interacting.

The above considerations imply that, in order to extract statistically significant
information about the tendency towards multiplexity and multireciprocity in a
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Directed multiplex networks

real-world multiplex, it becomes necessary to compare the empirical values ofmα,β
b

and rα,βb with the corresponding expected values calculated under the chosen null
model of independent multiplexes with given degrees (i.e. the DBCM). Hence, we
introduce the transformed (i.e., rescaled) binary multiplexity and multireciprocity
matrices with entries

µαβb =
mαβ
b − 〈m

αβ
b 〉DBCM

1− 〈mαβ
b 〉DBCM

(α 6= β), (2.4a)

ραβb =
rαβb − 〈r

αβ
b 〉DBCM

1− 〈rαβb 〉DBCM

, (2.4b)

where 〈·〉DBCM denotes the expected value under the DBCM. Note that, since
〈mαα

b 〉DBCM = mαα
b = 1 for all α, we formally set the diagonal terms µααb ≡ 1,

as the definition (2.4a) would produce an indeterminate expression if extended
to α = β. The explicit calculation of the above expected values is provided in
Appendix 2.C and more details are provided later in this section.

The filtered quantities (2.4) are directly informative about the presence of de-
pendencies between layers. Positive values represent higher-than-expected multi-
plexity or multireciprocity (correlated or ‘attractive’ pairs of layers), while nega-
tive values represent lower-than-expected quantities (anticorrelated or ‘repulsive’
pairs of layers). Pairs of uncorrelated (‘noninteracting’) layers are characterized
by multiplexity and multireciprocity values comparable with 0. In principle, a
layer that is uncorrelated with all other layers can be separated from the multi-
plex and analysed separately from it.

The choice of the denominator of (2.4a) and (2.4b), a priori not obvious,
guarantees that the maximum value for the transformed multiplexity and multi-
reciprocity is 1. Moreover, it ensures that ρααb reduces to the rescaled reciprocity
ρb defined for single-layer networks [10]. It should also be noted that the multi-
plexity defined in (2.3a) is just the normalized version of the inter-layer overlap
introduced in [6] and [7], extended to directed multiplex networks. In this context,
the novel contribution that we give is the comparison with a null model. Indeed,
while (2.3a) only provides information about the raw similarity of the layers,
which is strongly density-dependent, the transformed measure (2.4a) is mapped
to a universal interval. In combination with the z-scores that we introduce later,
it can be used to consistently compare the statistical significance of the multiplex-
ity of different systems. The quantity defined in (2.3b), which focuses explicitly
on the reciprocity properties of the multiplex, has never been introduced before,
along with its transformed quantity defined in (2.4b). The latter can be used
for a consistent comparison of the multireciprocity of multiplexes with different
densities.
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2.2 Multiplexity and Multireciprocity metrics

The calculation of the expected values of mαβ
b and rαβb under the DBCM can

be carried out analytically using the MAX&SAM method [21], with no need to
actually randomize the empirical network or numerically sample the null model
ensemble. Ultimately, the calculation requires the computation of the expected
value of the minimum between two binary random variables (see Appendix 2.C).
If pαij ≡ 〈aαij〉DBCM denotes the probability that, under the DBCM, a directed link
is realized from node i to node j in layer α, then the adjacency matrix entry aαij
is described by the Bernoulli mass probability function

P (aαij) = (pαij)
aαij (1− pαij)(1−aαij). (2.5)

Using the above equation, and given the explicit expression for pαij , it is pos-
sible to calculate µαβb and ραβb analytically as reported in the aforementioned
Appendix 2.C.

It is instructive to compare the multivariate quantities measured on the multi-
plex with the corresponding scalar quantities defined on the aggregate monoplex
network obtained by combining all layers together. This comparison can high-
light the gain of information resulting from the multiplex representation, with
respect to the ordinary monoplex projection where all the distinct types of links
are treated as equivalent. The binary aggregate monoplex can be defined in terms
of the adjacency matrix with entries

amono
ij = 1−

M∏
α=1

(1− aαij) =
{

1 if ∃α : aαij = 1
0 otherwise . (2.6)

For the quantities we defined so far, the only meaningful comparison between
the multiplex and the aggregate network can be done in terms of the reciprocity,
because the multiplexity of the aggregate is mmono

b = 1 by construction. The
single, global reciprocity of the aggregated monoplex network is given by

rmono
b =

∑
i

∑
j 6=i min{amono

ij , amono
ji }

Lmono
(2.7)

where Lmono =
∑
i

∑
j 6=i a

mono
ij . Similarly, it is possible to define the correspond-

ing filtered quantity ρmono
b , in analogy with (2.4b).

The transformed quantities µαβb and ραβb defined in (2.4) capture the similarity
and reciprocity between layers of a multiplex via a comparison of the empirical
values with the expected values under a null model. However, those quantities
do not consider any information about the variances of the values of multiplex-
ity and multireciprocity under the null model, thus giving no direct information
about statistical significance. In particular, even multiplexes sampled from the
null model with independent layers would be characterized by small, but in gen-
eral nonzero, values of µαβb and ραβb . This makes it difficult to disentangle, for
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an observed real-world multiplex, weak inter-layer dependencies from pure noise.
Moreover, the random fluctuations around the expectation values will be in gen-
eral different for different pairs of layers, potentially making the comparison of
the values of µαβb and ραβb for different pairs of layers misleading. To overcome
these limitations, we define the z-scores associated to mαβ

b and rαβb as:

z
(
mαβ
b

)
=

mαβ
b − 〈m

αβ
b 〉DBCM√

〈(mαβ
b )2〉DBCM − 〈mαβ

b 〉2DBCM

, (2.8a)

z
(
rαβb
)

=
rαβb − 〈r

αβ
b 〉DBCM√

〈(rαβb )2〉DBCM − 〈rαβb 〉2DBCM

. (2.8b)

As for the quantities defined in (2.4), it is possible to obtain an analytical ex-
pression for the z-scores as well. This is shown in detail in Appendix 2.C.

Each z-score in (2.8) has the same sign as the corresponding quantity in (2.4),
since the numerator is the same and both have positive denominators. However,
except for the common sign, the two sets of quantities can have a priori very
different values. In particular, the z-scores count the number of standard devi-
ations by which the observed raw quantities deviate from their expected values
under the null model. As such, they are useful in order to understand whether
small measured values of µαβb or ραβb are actually consistent with zero within a
small number of standard deviations, in which case we can consider the layers
α and β as uncorrelated. We point out that, in general, z-scores have a clear
statistical interpretation only if their distribution is Gaussian under repeated re-
alizations of the model. In our case, although the quantities mαβ

b and rαβb are not
truly normally distributed under the null model, they are defined as the sum of
many independent 0/1 random variables (of the type min{aαij , a

β
ij} or min{aαij , a

β
ji}

respectively), which all have variance in the interval (0, 1/4] and are thus approx-
imately described by a central limit theorem ensuring an asymptotic convergence
to the normal distribution. We can therefore consider as statistically significant
all the z-scores having an absolute value larger than a given threshold, which we
set at zc = 2. This selects the observed pairs of layers with values of multiplexity
and/or multireciprocity that differ from their expectation values by more than 2
standard deviations, i.e. with |z| > zc.

2.2.3 Weighted multiplexity and multireciprocity

We now move to our second set of definitions, valid for weighted multiplexes.
In analogy with (2.3), we define the weighted multiplexity and multireciprocity
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matrices Mw and Rw having entries

mαβ
w =

2
∑
i

∑
j 6=i min{wαij , w

β
ij}

Wα +W β
=

2Wα⇒β

Wα +W β
, (2.9a)

rαβw =
2
∑
i

∑
j 6=i min{wαij , w

β
ji}

Wα +W β
=

2Wα�β

Wα +W β
, (2.9b)

where Wα =
∑
i

∑
j 6=i w

α
ij is the total weight of the links in layer α (analo-

gously for layer β), Wα⇒β =
∑
i

∑
j 6=i min{wαij , w

β
ij} is the total link weight of

layer α that is multiplexed in layer β (clearly, Wα⇒β = W β⇒α), and Wα�β =∑
i

∑
j 6=i min{wαij , w

β
ji} is the total link weight of layer α that is reciprocated in

layer β (clearly, Wα�β = W β�α). The matrices Mw and Rw represent the two
generalizations, for directed multiplexes, of the weighted multiplexity matrix in-
troduced in the previous chapter and in [9] for undirected weighted multiplexes.
Like their binary counterparts, both matrices have entries in the range [0, 1], the
maximum value being attained by identical (wαij = wβij for all i, j) and fully ‘mul-
tireciprocated’ (wαij = wβji for all i, j) layers respectively. In analogy with the
corresponding binary case, the diagonal of Mw has all unit entries while that of
Rw has entries that coincide with the recent definition of reciprocity for weighted
monoplex networks [11].

In this case as well, for trivial multiplexes with sparse noninteracting layers and
narrow strength distributions, the two matrices are expected to be asymptotically
diagonal. However, this is no longer true in presence of dense layers and/or for
broad strength distributions, and we therefore need a comparison of the raw
quantities with their expected value under a null model (now the DWCM). This
consideration leads us to introduce the transformed weighted multiplexity and
multireciprocity matrices with entries

µαβw =
mαβ
w − 〈mαβ

w 〉DWCM

1− 〈mαβ
w 〉DWCM

, (2.10a)

ραβw =
rαβw − 〈rαβw 〉DWCM

1− 〈rαβw 〉DWCM

, (2.10b)

where 〈·〉DWCM denotes the expected value under the DWCM. As in the binary
case, we can derive an analytical expression for the expected values that ultimately
requires the expectation of the minimum of wαij and wβij (or wβji). This is done
in Appendix 2.D. It turns out that, under the DWCM, the distribution of link
weights is geometrical [11, 21]:

P (wαij) = (pαij)
wαij (1− pαij), (2.11)

where pαij denotes again the probability that a directed link (of any positive weight)
from node i to node j is realized in layer α. The above probability can be used
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to calculate µαβw and ραβw analytically as discussed in Appendix 2.D.

The weighted multireciprocity of the multiplex can be conveniently compared
with the weighted reciprocity of the aggregated monoplex network. The link
weights of the latter are defined by

wmono
ij =

M∑
α=1

wαij , (2.12)

and the associated aggregate weighted reciprocity [11] is

rmono
w =

∑
i

∑
j 6=i min{wmono

ij , wmono
ji }

Wmono
(2.13)

(where Wmono =
∑
i

∑
j 6=i w

mono
ij ). The corresponding filtered value ρmono

w can be
defined as in (2.10b).

In analogy with the binary case, it is possible to define the z-scores associated
to mαβ

w and rαβw as follows:

z
(
mαβ
w

)
=

mαβ
w − 〈mαβ

w 〉DWCM√
〈(mαβ

w )2〉DWCM − 〈mαβ
w 〉2DWCM

, (2.14a)

z
(
rαβw
)

=
rαβw − 〈rαβw 〉DWCM√

〈(rαβw )2〉DWCM − 〈rαβw 〉2DWCM

. (2.14b)

The explicit analytical expressions for these z-scores are calculated in Appendix 2.D.
Again, the z-scores (2.14) have the same signs as the corresponding quantities
(2.10), but in addition they allow to test for statistical significance using e.g. a
threshold of zc = 2.

2.3 Empirical analysis of the World Trade Multi-
plex

In this section, we apply the framework defined so far to the analysis of a real-
world system. This system is the World Trade Multiplex (WTM), defined as
the multi-layer network representing the directed trade relations between world
countries in different commodities. At both the binary and the weighted level,
the structure of the aggregate (monoplex) version of this network is well studied
[31, 32, 33], as well as that of many of its layers separately [8, 34]. However,
much less is known about the inter-layer dependencies in the WTM. In particu-
lar, an assessment of the inter-layer couplings that are not simply explained by
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the local topological properties of the WTM has been carried out only for the
undirected version of the network [9]. Given the importance of the directionality
of trade flows, especially at the disaggregated level of individual commodities, it
is therefore important to carry out a directed analysis of the WTM. The tools we
have introduced in the previous section allow us to make this step and arrive at a
novel characterization of the WTM where the undirected multiplexity properties
documented in the previous chapter [9] are resolved into their two directed com-
ponents, namely multiplexity and multireciprocity. These results have important
potential implications for problems related to research on international trade, such
as the definition of trade-based ‘product taxonomies’ [8], the construction of the
‘product space’ [35], and the calculation of ‘fitness and complexity’ metrics [36].
These points are discussed later in sec. 2.4.

2.3.1 Data

We use the already mentioned BACI-Comtrade dataset [37] where international
trade flows among all countries of the world are disaggregated into different com-
modity classes at the 2-digit resolution level, defined as in the standard HS1996
classification [38] of traded goods. Here we take into account the directionality of
trade, hence distinguishing between import and export. As explained in the pre-
vious chapter, it is possible to represent this dataset as a multiplex as in [8, 9, 34].
In particular, we will consider a multi-layer representation defined by N = 207
nodes (countries) andM = 96 layers (commodities), for the year 2011. Since each
trade exchange is reported by both the importer and the exporter (and the two
values may in general differ), the dataset uses a reconciliation procedure to get a
unique value for each flow (see [37] for details). All the resulting trade volumes
are expressed in thousands of dollars in the dataset. Since our approach works
for integer link weights, all the reported trade values have been rescaled by first
dividing by 10 (for computational reasons) and then rounding to the closest inte-
ger. This defines our integer link weights {wαij} for all layers. For each entry wαij ,
we then define aαij = 1 if wαij > 0 and aαij = 0 otherwise. We point out that the
rounding procedure does not significantly affect the structure of the system under
study, as the percentage of original links which are lost (i.e. rounded to zero) is
negligible.

From the multiplex trade flows we also compute the aggregate binary and
weighted links amono

ij and wmono
ij between any two countries i and j in the collapsed

monoplex trade network, as in (2.6) and (2.12) respectively. This allows us to
compare the multiplex structure of trade with the aggregate one and highlight
relevant information that is lost in the aggregation procedure. For instance, for
both the binary and the weighted representation of the system, we can compare
the values of the multireciprocity matrix measured on the commodity-resolved
multiplex with the usual scalar reciprocity measured on the monoplex aggregate
trade network.
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Figure 2.1: Analysis of the binary multiplexity between layers of the
WTM. Top panels: color-coded binary multiplexity matrix Mb (a) and corre-
sponding distribution of off-diagonal multiplexity values mαβ

b (with α 6= β) (b).
Bottom panels: same as for the top panels, but with raw binary multiplexity mαβ

b

replaced by rescaled binary multiplexity µαβb .

2.3.2 Binary analysis

We start with a binary analysis of the WTM, thus taking into account only the
topology of the various layers while disregarding the information about trade vol-
umes. In Figure 2.1(a) we show the color-coded binary multiplexity matrix Mb.
Next to it, in Figure 2.1(b) we show the corresponding frequency distribution of
off-diagonal matrix entries mαβ

b (with α 6= β). In calculating the frequencies,
we discard the diagonal entries because they trivially evaluate to mαα

b = 1, as
discussed above. High values of multiplexity are observed for most of the pairs of
commodities. This result is in agreement with what has been reported in [9] (see
Chapter 1) on the basis of an undirected analysis of the WTM where imports and
exports between any two countries were combined together into a single trade link.

As we mentioned, the multiplexity matrix Mb would be asymptotically diag-
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onal for trivial multiplexes with sparse non-interacting layers and narrow degree
distributions. However, since the layers of the WTM are very dense and their de-
gree distributions significantly broad [8, 9, 34], this system is an ideal case study
requiring the use of a null model in order to assess the presence of a genuine cou-
pling among layers. In Figure 2.1(c) we show the color-coded matrix of rescaled
multiplexity values µαβb , which control for the effects of the heterogeneity of the
layer-specific in- and out-degree sequences. Similarly, in Figure 2.1(d) we show the
corresponding distribution of off-diagonal entries. We find that, after controlling
for the degrees, a significant amount of correlation is destroyed. However all the
values are still strictly positive, indicating a tendency of all pairs of commodities
to be ‘traded together’. The statistical significance of this result is discussed later
in terms of z-scores.

We now move to the analysis of multireciprocity. It is known that, when the
aggregate trade in all commodities is considered, the binary monoplex represen-
tation of the World Trade Network exhibits a high level of reciprocity [10, 39, 40].
It is interesting to see whether such a property is preserved also at the multi-
plex level, and how the values compare with the aggregate case. Figure 2.2(a)
shows the color-coded binary multireciprocity matrix Rb and Figure 2.2(b) the
corresponding distribution of off-diagonal entries 1, with a superimposed delta
function indicating the value of the binary reciprocity rmono

b of the aggregate
monoplex network as a comparison. The results are comparable with those found
above for the multiplexity. Also in this case, the high multireciprocity values are
consistent with the high multiplexity values found for the undirected representa-
tion of the WTM [9] (where pairs of reciprocated links in each layer are merged
into single undirected links). However, for the multireciprocity this result is much
less trivial than for the multiplexity, given the chosen level of disaggregation into
many commodity classes. Indeed one would expect that, at such a relatively high
resolution, it should be not very likely (at least not as likely as in the undirected
representation) that the same commodity is traded “back and forth”, i.e. both
ways between the same two countries. In any case we do find, in accordance with
what we expect, that for all pairs of commodities the multireciprocity is signifi-
cantly smaller than the reciprocity rmono

b of the aggregate monoplex. This means
that, as layers are aggregated, there is a bigger relative increment (with respect
to individual layers) in the overall number of reciprocated links than in the total
number of links.

As an interesting result, the intra-layer reciprocity values rααb lying along the
diagonal of the multireciprocity matrix are found to be very similar to the values
of the matrix entries rαβb lying close to the diagonal. Indeed, in the matrix plot of
Figure 2.2(a) the diagonal is visually indistinguishable from the entries of the ma-

1We discard the diagonal entries in order to make the distribution compatible with the correspond-
ing distribution for the multiplexity shown above; in any case, if the diagonal entries are included, the
distribution looks very similar.
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trix that are “nearby”. Given the order of the commodities in the matrix (as shown
in the appendix of Chapter 1), these nearby entries represent the multireciprocity
between pairs of similar commodities. This result means that the high reciprocity
of the aggregate trade monoplex does not arise from the superposition of layers
with high internal reciprocity and low mutual multireciprocity (as would be the
case in presence of an approximately diagonal multireciprocity matrix). Rather,
we find that a trade flow in one commodity α tends to be reciprocated by compa-
rable trade flows in several different commodities, including (but not dominated
by) the same commodity α and many other related commodities. Specifically,
it can be seen from Figure 2.2(a) that layers characterized by low (high) values
of internal reciprocity are embedded within groups of layers with low (high) mu-
tual multireciprocity. This suggests that the level of reciprocity in international
trade is not an intrinsic property of individual commodities, but rather a property
of whole groups of mutually reciprocated commodities with comparable multire-
ciprocity values.

In Figure 2.2(c) and (d) we show the color-coded binary rescaled multire-
ciprocity matrix and the corresponding distribution of off-diagonal entries ραβb
(with α 6= β). The relatively small values (with respect to the non-rescaled quan-
tities) indicate that, in analogy with what we found for the multiplexity, the
apparent correlation between the topology of pairs of layers is largely encoded
in the relatedness of the degree sequences of such pairs. For the vast majority
of pairs of commodities the multireciprocity is still lower than that measured on
the aggregate network. However, all pairs of layers preserve a positive residual
multireciprocity, the statistical significance of which is studied later in our z-score
analysis.

When we look at the multiplexity matrix in Figure 2.1(a) and the correspond-
ing multireciprocity matrix in Figure 2.2(a), we see the appearance of similar
patterns. Such similarity is further investigated in Figure 2.3(a), where we re-
port the scatter plots of pairwise multireciprocity values versus the corresponding
multiplexity values. We observe a roughly linear trend, which is however lost
when we look at the filtered values, as shown in Figure 2.3(b). We see that, in
the latter case, the relationship between ραβb and µαβb is non-linear and signifi-
cantly scattered. Although the presence of a non-linear relation may be related
to the particular choice of normalization adopted in (2.4), we point out that the
entity of the scatter is so big that it is not possible to retrieve the value of mul-
tiplexity from the multireciprocity, and vice-versa. This illustrates that the two
quantities convey different pieces of information that are irreducible to each other.

Similar considerations apply to the z-scores. In Figure 2.4(a) and 2.4(b) we
show the empirical relation between the transformed multiplexity and multire-
ciprocity and their corresponding z-scores: it is worth recalling that the informa-
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Figure 2.2: Analysis of the binary multireciprocity between layers of the
WTM. Top panels: color-coded binary multireciprocity matrix Rb (a) and cor-
responding distribution of off-diagonal multireciprocity values rαβb (with α 6= β)
(b). Bottom panels: same as for the top panels, but with raw binary multire-
ciprocity rαβb replaced by rescaled binary multireciprocity ραβb . The dashed lines
represent the value of (raw and rescaled) binary reciprocity rmono

b and ρmono
b of

the aggregated monoplex network.

tion provided by these two quantities can be a priori different, given the lack of
information about the standard deviation in the rescaled multiplexity and multire-
ciprocity metrics. Empirically, we however find a strong correlation between these
quantities, indicating that large values of binary multiplexity or multireciprocity
correspond to large z-scores, and vice-versa. Moreover, even the smallest z-scores
(those found for the pairs of layers showing very low multiplexity or multireciproc-
ity) are still quite high (i.e. positive and larger than zc = 2) in terms of statistical
significance. This means that even the pairs of layers with smallest multiplexity
or multireciprocity should be considered as significantly and positively correlated.
We therefore conclude that, at a binary level, every commodity of the WTM tends
to be traded together with all other commodities, both in the same and in the op-
posite direction. As we show below, this is no longer the case when the weighted
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Figure 2.3: Relation between the values of binary multiplexity and multi-
reciprocity for the WTM. Scatter plots of off-diagonal binary multireciprocity
values versus off-diagonal binary directed multiplexity values. Left: raw values
(rαβb vs mαβ

b ); right: rescaled values (ραβb vs µαβb ).

version of the multiplex is considered.

Figure 2.4(c) shows the relation existing between z(rαβb ) and z(mαβ
b ) for each

pair of layers. If we compare this figure with Figure 2.3, we see that in this
case the trend is more linear, although the scatter is again quite large. This
confirms that it is not possible to recover the values of multiplexity from those of
multireciprocity, and vice-versa.

2.3.3 Weighted analysis

We now perform a weighted analysis of the World Trade Multiplex, by taking into
account the values of import and export observed between countries.

In Figure 2.5(a) and (b) we show the color-coded weighted directed multi-
plexity matrix Mw and the distribution of its off-diagonal entries. We clearly
see that, even though several pairs of commodities are still strongly overlapping,
the multiplexity distribution is concentrated over a range of significantly smaller
values with respect to the corresponding binary distribution. Indeed, the notion
of weighted multiplexity, by involving the minimum of the weights of two recip-
rocated links, provides a stricter criterion with respect to the unweighted case.
In particular, for any pair of nodes and any pair of layers, it is more unlikely to
achieve the maximum weighted value min{wαij , w

β
ij} than the maximum binary

71



2.3 Empirical analysis of the World Trade Multiplex

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
mbin

0

5

10

15

20

25

30

35

40

z(
m

)

(a)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
rbin

0

5

10

15

20

z(
r)

(b)

2 4 6 8 10 12 14 16 18 20

z(r)

0

5

10

15

20

25

30

35

40

z(
m

)

(c)

Figure 2.4: Analysis of significance of the values of binary multiplexity
and multireciprocity for the WTM. Left: binary transformed multiplexity
µαβb versus its corresponding z-score z(mαβ

b ); center: binary transformed multi-
reciprocity ραβb versus its corresponding z-score z(rαβb ); right: z(rαβb ) vs z(mαβ

b ).
Only off-diagonal values are reported.

value min{aαij , a
β
ij}. Lower values of multiplexity with respect to Figure 2.1(a)

are therefore expected. We also expect to find a similar reduction for the multi-
reciprocity later on.

In Figure 2.5(c) and (d) we report the color-coded weighted rescaled multi-
plexity matrix and the corresponding distribution of off-diagonal entries µαβw . The
fact that many values are now mapped to zero means that a significant compo-
nent of the overlap between commodities can be explained simply in terms of
the correlated strength sequences of the various layers. Importantly, we see that
some pairs of layers actually exhibit negative rescaled multiplexity, even though
the distribution is far from symmetric. This result, which is only visible in the
weighted analysis, means that there are pairs of commodities for which the ob-
served trade multiplexity is actually lower than expected under the null model:
these commodities prefer ‘not to be traded together’.

We then analyze the weighted multireciprocity of the WTM. Recently, it has
been shown that the aggregated version of the network has a strong weighted reci-
procity [11], a result that we can now complement with the analysis of the disag-
gregated multiplex. In Figure 2.6(a) and (b) we report the color-coded weighted
multireciprocity matrix Rw, along with the distribution of its off-diagonal entries.
In analogy with the binary case, we see that the aggregated network exhibits a
reciprocity which is significantly higher than the multireciprocity associated to
any individual pair of layers. Yet several pairs of commodities are characterized
by a substantial level of multireciprocity. In Figure 2.6(c) and (d) we show the
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Figure 2.5: Analysis of the weighted multiplexity between layers of the
WTM. Top panels: color-coded weighted multiplexity matrix Mw (a) and cor-
responding distribution of off-diagonal multiplexity values mαβ

w (with α 6= β) (b).
Bottom panels: same as for the top panels, but with raw weighted multiplexity
mαβ
w replaced by rescaled weighted multiplexity µαβw . Note that, in panel (c),

white entries represent negative values.

corresponding results for the rescaled weighted multireciprocity ρα,βw . We see that
many values become close to zero and some become negative, in analogy with the
behaviour of the multiplexity. The identification of pairs of layers with negative
rescaled multireciprocity indicates that the corresponding commodities ‘prefer not
to be traded in opposite directions’, in contrast with the results we found in the
binary analysis.

In Figure 2.7 we compare the weighted multireciprocity and the weighted mul-
tiplexity. When we consider the raw values (a), we observe a clear linear trend
(although more scattered than in the corresponding unweighted case). The trend
becomes even more robust, and less noisy, for the filtered values, as shown in (b).
In both panels, the most significant commodities (both in terms of trade volumes
and economic relevance) mainly lie along the diagonal, while the outliers represent

73



2.3 Empirical analysis of the World Trade Multiplex

Agriculture, 
farming

Chemicals

Textiles

Metals

Heavy, precision 
industry

Figure 2.6: Analysis of the weighted multireciprocity between layers of
the WTM. Top panels: color-coded weighted multireciprocity matrix Rw (a)
and corresponding distribution of off-diagonal multireciprocity values rαβw (with
α 6= β) (b). Bottom panels: same as for the top panels, but with raw weighted
multireciprocity rαβw replaced by rescaled weighted multireciprocity ραβw . The
dashed lines represent the value of (raw and rescaled) weighted reciprocity rmono

w

and ρmono
w of the aggregated monoplex network. Note that, in panel (c), white

entries represent negative values.

less relevant products (for instance, some textiles or less traded craft goods). We
also see pairs of commodities whose multireciprocity is similar to the reciprocity
of the aggregate trade network. These commodities, such as cereals and heavy
industry products, are not necessarily the most traded ones, still they better rep-
resent the reciprocity patterns of total trade among countries, possibly because
they give the main contribution to the reciprocity of the aggregated network.

Quantitatively, another important difference between the binary and the weighted
approach lies in the statistical significance of the values of multiplexity and mul-
tireciprocity, as we can see from the analysis of the z-scores (Figure 2.8). Indeed,
in the unweighted case we found that even the smallest values of µαβb and ραβb
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Figure 2.7: Relation between the values of weighted multiplexity and
multireciprocity for the WTM. Scatter plots of off-diagonal weighted multi-
reciprocity values versus off-diagonal weighted directed multiplexity values. Left:
raw values (rαβw vs mαβ

w ); right: rescaled values (ραβw vs µαβw ).

are significant, as the corresponding z-scores are larger than the critical value zc.
Instead, here we observe almost no correlation (except for the aforementioned
sign concordance) between weighted multiplexity or multireciprocity and the cor-
responding z-scores (see Fig. 2.8(a) and 2.8(b) respectively). Indeed, the same
value of µαβb or ραβb may even correspond to z-scores with different orders of mag-
nitude. This means that, even for two pairs of layers with the same observed
value of weighted multiplexity or multireciprocity, the statistical significance of
the inter-layer coupling can be very different. Moreover, the absolute value of
many weighted z-scores is found below the significance threshold zc = 2, identi-
fying pairs of uncorrelated layers (a result that is unobserved in the binary case).
Finally, many pairs of commodities have a negative z-score below −zc for the mul-
tiplexity and/or multireciprocity. For these pairs, the tendency not to be traded
in the same direction and/or in opposite direction is statistically validated and
confirms a difference with respect to the binary case.

As a final result, in Figure 2.8(c) we show the relation existing between z
(
mαβ
w

)
and z

(
rαβw
)
. We find an overall level of correlation which however leaves room for

a significant scatter of points around the identity line. This scatter is big enough
to imply that, for a given significance threshold zc, the pairs of commodities can
be partitioned in the following five classes:

1. a few pairs of commodities that tend to be traded in the same direction
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(z(mαβ
w ) > zc) but not in opposite directions (z(rαβw ) < −zc): examples are

apparel articles vs ships and boats; food industry residues, prepared animal
feed vs ores, slag and ash;

2. a few pairs of commodities that tend to be traded in opposite directions
(z(rαβw ) > zc) but not in the same direction (z(mαβ

w ) < −zc): examples are
ores, slag and ash vs footwear and gaiters; apparel articles vs ores, slag and
ash;

3. a moderately-sized group of pairs of commodities that tend to be traded
neither in the same direction (z(mαβ

w ) < −zc) nor in opposite ones (z(rαβw ) <
−zc): examples are raw hides and skins vs arms and ammunitions; tobacco
vs ships and boats;

4. a large group of pairs of commodities for which there is no statistically
significant tendency in at least one of the two directions (|z(mαβ

w )| < zc
and/or |z(rαβw )| < zc): examples are tobacco vs inorganic chemicals; explo-
sives, pyrotechnic products vs vehicles (note that this class can be further
split in sub-classes where commodities are uncorrelated in one direction but
correlated in different ways in the other direction);

5. a very large group of pairs of commodities that tend to be traded both in the
same direction (z(mαβ

w ) > zc) and in opposite ones (z(rαβw ) > zc): examples
are sugar vs cocoa; soap, waxes, candles vs sugar.

It should be noted that, in contrast with the above classification, the binary anal-
ysis concluded that all pairs of commodities belong to the last class only.
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Figure 2.8: Analysis of significance of the values of weighted multiplexity
and multireciprocity for the WTM. Left: weighted transformed multiplexity
µαβw versus its corresponding z-score z(mαβ

w ); center: weighted transformed multi-
reciprocity ραβw versus its corresponding z-score z(rαβw ); right: z(rαβw ) vs z(mαβ

w ).
In panel (c), numbered circles correspond to the bullet points reported in Sec.
2.3.3. Only off-diagonal values are reported.

2.4 Discussion and conclusions

The study of multi-layer networks has received substantial attention in the last
few years, leading to the introduction of several novel quantities characterizing
the structure of multiplexes as well as the behaviour of several dynamical pro-
cesses taking place on them. The aim of all these studies is that of highlighting
the role of the inter-layer couplings, the latter being the ultimate reason why
layers of a multiplex should be analyzed together in the first place, rather than
separately. In this chapter we have argued that even the simplest definitions of
inter-layer coupling, based merely on the structural overlap of links across layers,
are strongly biased by the density, finiteness, and heterogeneity of the network.
We have shown that controlling for the above effects requires a quite elaborate
statistical treatment. Focusing on multiplexes with (binary or weighted) directed
links, we have introduced maximum-entropy multiplex ensembles with given node
properties as the unbiased null models serving as a benchmark for the empirically
observed properties. We have then defined novel multiplexity and multireciprocity
metrics, respectively quantifying the tendency of pairs of links to ‘align’ and/or
‘anti-align’ across each pair of layers of a real-world directed multiplex. Since
links can exist in both directions in every layer, the possible tendencies of forming
aligned (multiplexed) and anti-aligned (multireciprocated) links do not conflict
with each other and can actually coexist. Both multiplexity and multireciproc-
ity are matrix-valued, as they represent the possible couplings among all pairs of
layers. While multiplexity is a natural extension of the corresponding definition
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for undirected multiplexes, multireciprocity is a novel concept representing a non-
trivial extension of the notion of single-layer reciprocity to multi-layer networks.

We believe that our results can be of value for several applications. For in-
stance, they provide a statistically rigorous way to identify possible (groups of)
layers that are uncorrelated from the other layers, thus allowing to simplify the
whole multiplex into mutually independent sub-systems with smaller numbers of
layers. This problem has received significant attention recently [41, 42]. Our
finding of a strong influence of the local node properties on the overall level of
inter-layer coupling suggests that many of the results found with alternative tech-
niques that do not control for these effects might be subject to an uncontrolled
level of bias.

Other more specific applications are relevant for the specific case study of the
WTM. In extreme summary, our detailed analysis of this system confirmed that
its multiplex structure contains much more information than the aggregated net-
work of total trade does. At a binary level, we found that all pairs of commodities
tend to be traded together between countries, both in the same direction (high
multiplexity) and in opposite directions (high multireciprocity). At a weighted
level, this result only holds for a subset of pairs of commodities. Other commodity
pairs are not correlated and others even tend to avoid being traded together in
the same direction and/or in opposite ones. The multireciprocity structure of the
WTM highlights a tendency of groups of commodities to have a comparably high
mutual reciprocity, of the same entity of the internal single-layer reciprocity of
these commodities. When aggregated into the monoplex network of total inter-
national trade, the WTM has a resulting reciprocity that is much bigger than the
multireciprocity among its constituent layers.

In the light of the above results, our approach has implications relevant to var-
ious directions in international trade research. In particular, it indicates concrete
ways to refine existing measures of inter-commodity correlation or similarity that
are widely used to construct, among others, ‘product taxonomies’ [8], the ‘prod-
uct space’ [35] and ‘fitness and complexity’ metrics [36]. All these applications
are briefly explained below.

Inter-commodity correlation metrics have been introduced to quantify the
coupling among layers of the WTM [8], with the goal of constructing ‘product
taxonomies’ that reflect empirical trade similarities, as opposed to pre-defined
product categories. However, as already pointed out inthe first chapter and in [9],
correlation metrics make an implicit and totally unrealistic assumption of struc-
tural homogeneity of the network, by interpreting all the edges of a layer as inde-
pendent observations drawn from the same probability distribution. Our results
provide alternative metrics of inter-layer coupling that replace the homogeneity
assumption with a much more realistic null model that accurately controls for
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the observed degree of node heterogeneity in each layer. The use of our metrics
is likely to change the structure of correlation-based product taxonomies signifi-
cantly.

The ‘product space’ is defined as a network of commodities connected by links
whose weight quantifies the tendency of a pair of commodities to be traded to-
gether (in the same direction) between the same two countries [35]. Our results
clearly indicate that, to be statistically reliable, such an analysis should include a
way to filter out the strong empirical heterogeneity of node degrees and/or node
strengths. Moreover, they highlight a second layer of information that should
be relevant for the product space construction, namely the fact that, besides
the tendency of pairs of commodities to be traded together in the same direction
(multiplexity), there can be a substantial tendency of being traded in the opposite
direction (multireciprocity). We found that these two effects have a comparable
magnitude. We also found that pairs of commodities with approximately the same
multiplexity can be characterized by very different levels of multireciprocity. This
suggests that neglecting multireciprocity in the construction of the product space
can represent a substantial loss of information.

Finally, the ‘fitness and complexity’ approach focuses on the bipartite network
of countries and their exported products, and uses the structure of this network
to recursively define metrics of product complexity and country competitiveness
(fitness) [36]. This method can reveal the ‘hidden’ potential of countries that
is not (yet) reflected in their current GDP levels. Clearly, the output of this
approach entirely depends on how the bipartite country-product matrix is con-
structed. This matrix is ultimately a projection of the WTM but is generally
filtered using a null model based on the concept of ‘revealed comparative advan-
tage’ [43], which however operates at the aggregate country-product level and not
at the level of the underlying multiplex. As such, it does not control for the size of
importers. Our approach provides a way to enforce a more accurate null model on
the original WTM and obtain an alternative bipartite country-product projection.

We believe that all the research directions outlined above deserve future ex-
plorations and we expect the results reported in this chapter to be of use.

Appendix

2.A Maximum-entropy method for multiplex net-
works

As in the previous chapter, we define null models of multiplexes as canonical
maximum-entropy ensembles satisfying a given set

−→
C of K constraints on aver-
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age. If Gα ∈ GN denotes the graph realized in layer α of the multiplex (recall
that GN is the set of all directed monoplex graphs with N nodes), and if

−→
G ∈ GMN

denotes the entire multiplex (where GMN is the set of all directed multiplex graphs
with N nodes andM layers), we write

−→
G = (Gα)Mα=1. Now let

−→
C denote a vector-

valued function on GMN , evaluating to
−→
C (
−→
G) on the particular multiplex

−→
G . The

vector
−→
C (
−→
G) is to be regarded as a set of structural properties measured on

−→
G .

A canonical ensemble of binary (weighted) directed multiplex networks with
the soft constraint

−→
C is specified by a probability distribution P

(−→
G |
−→
θ
)
on GMN ,

where
−→
θ is a vector of Lagrange multipliers required to enforce a desired expected

value

〈
−→
C 〉−→

θ
=

∑
−→
G∈GMN

P
(−→
G |
−→
θ
)−→
C (
−→
G) (2.15)

of
−→
C . Note that both

−→
θ and

−→
C are vectors of numbers with the same (but

model-dependent) dimension K, while
−→
G is always an M -dimensional vector of

graphs. Obviously, an additional constraint on the probability is the normalization
condition∑

−→
G∈GMN

P
(−→
G |
−→
θ
)

= 1 ∀
−→
θ . (2.16)

We want our ensembles to produce multiplexes with independent layers. This
requirement corresponds to the enforcement of separate constraints on the differ-
ent layers, i.e.

−→
C = (

−→
Cα)Mα=1, where

−→
Cα is a Kα-dimensional vector of structural

properties of the network in layer α only, evaluating to
−→
Cα(Gα) on the particular

single-layer graph Gα. This leads to a separation in the corresponding Lagrange
multipliers, i.e.

−→
θ = (

−→
θα)Mα=1. Kα is the dimension of both

−→
Cα and

−→
θα, and

we must have
∑M
α=1K

α = K. Consequently, we can express the entropy of the
ensemble of multiplex networks as

S
(−→
θ
)
≡ −

∑
−→
G∈GMN

P
(−→
G |
−→
θ
)

lnP
(−→
G |
−→
θ
)

=
M∑
α=1

Sα
(−→
θα
)
, (2.17)

where

Sα
(−→
θα
)
≡ −

∑
Gα∈GN

Pα
(
Gα|
−→
θα
)

lnPα
(
Gα|
−→
θα
)

(2.18)
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is the entropy of the ensemble of monoplex graphs for the individual layer α, with
Pα
(
Gα|
−→
θα
)
subject to the normalization condition∑

Gα∈GN

Pα
(
Gα|
−→
θα
)

= 1 ∀
−→
θα α = 1,M. (2.19)

At this point, we want to maximize the entropy S
(−→
θ
)
, subject to the soft

constraint
−→
C , to find the functional form of P

(−→
G |
−→
θ
)
we are looking for. Equa-

tion (2.17) ensures that the maximization of S
(−→
θ
)
, subject to (2.15), reduces to

the maximization of each single-layer entropy Sα
(−→
θα
)
, subject to

〈
−→
Cα〉−→

θα
=

∑
Gα∈GN

Pα
(
Gα|
−→
θα
)−→
Cα(Gα), (2.20)

separately. Therefore the probability P
(−→
G |
−→
θ
)
maximizing S

(−→
θ
)
reduces to the

product of all single-layer probability distributions of the type Pα
(
Gα|
−→
θα
)
, each

of which should separately maximize the corresponding entropy Sα
(−→
θα
)
.

The general solution to the problem of maximizing Sα
(−→
θα
)
, subject to (2.20),

for single-layer networks, leads in our notation to the probability distribution

Pα
(
Gα|
−→
θα
)

=
e−H

α(Gα|
−→
θα)

Z
(−→
θα
) , (2.21)

where

Hα
(
Gα|
−→
θα
)

=
−→
θα ·
−→
Cα(Gα) (2.22)

is the graph Hamiltonian (the dot indicating a scalar product, i.e. a linear com-
bination of the enforced constraints) and

Z
(−→
θα
)

=
∑

Gα∈GN

e−H
α(Gα|

−→
θα) (2.23)

is the partition function (representing the normalizing constant for the probabil-
ity).

Equation (2.23), and consequently (2.21), leads to different explicit functional
forms depending on the choice of the constraint(s), i.e. depending on the func-
tional form of

−→
Cα(Gα). In the following Sections we explicitly discuss the cases of

the Directed Binary Configuration Model (where the constraints are the in- and
out-degrees of all nodes in each layer α) and of the Directed Weighted Configu-
ration Model (where the constraints are the in- and out-strenghts of all nodes in

81



2.B Maximum-likelihood method for multiplex networks

each layer α), respectively.

Once an explicit expression for each Pα
(
Gα|
−→
θα
)
is found, we can find the final

expression for the whole multiplex probability in the null model:

P
(−→
G |
−→
θ
)

=
M∏
α=1

e−H
α(Gα|

−→
θα)

Z
(−→
θα
) =

e−H(
−→
G |
−→
θ )

Z
(−→
θ
) , (2.24)

where

H(
−→
G |
−→
θ ) ≡

M∑
α=1

Hα(Gα|
−→
θα) (2.25)

and

Z
(−→
θ
)
≡

M∏
α=1

Z
(−→
θα
)
. (2.26)

The last three equations rephrase the independence of all layers explicitly.

2.B Maximum-likelihood method for multiplex net-
works

The maximization of the entropy is a constrained, functional maximization of
S
(−→
θ
)
in the space of probability distributions. As such, its result is the func-

tional form of the maximum-entropy distribution P
(−→
G |
−→
θ
)
, given by (2.24), but

not its numerical values. In fact, the distribution depends on the whole vector
of parameters

−→
θ , and any expectation value calculated analytically using the ex-

plicit expression of P
(−→
G |
−→
θ
)
can only be evaluated numerically after a value of

−→
θ is specified. This leads to the problem of choosing

−→
θ . Since we are interested

in the case where all layers of the multiplex are independent, choosing a value of−→
θ reduces to the problem of choosing

−→
θα separately for each layer.

The problem of finding the parameter values of a maximum-entropy model
of single-layer networks has been solved in the general case using the maximum
likelihood principle. In our notation here, this solution can be restated as follows.
Let Gα∗ denote, among all graphs Gα ∈ GN , the particular empirical network
realized in layer α of the multiplex. Given Gα∗ , the log-likelihood function

Lα
(−→
θα
)
≡ lnP

(
Gα∗ |
−→
θα
)

(2.27)

represents the log of the probability to generate the empirical graph Gα∗ , given a
value of

−→
θα. The maximum likelihood principle states that the optimal choice for
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−→
θα is the one that maximizes the chances to obtain Gα∗ from the model, i.e. the
one that maximizes Lα

(−→
θα
)
. Let this parameter choice be denoted by

−→
θα∗ , where

−→
θα∗ ≡ arg max

−→
θα

Lα
(−→
θα
)
. (2.28)

As a general result, the value
−→
θα∗ defined above is such that

〈
−→
Cα〉−→

θα∗
=
−→
Cα(Gα∗ ), (2.29)

i.e. the expectation value of each constraint coincides with the empirical value
measured on the empirical network Gα∗ . This is precisely the outcome we desire,
given that our ultimate goal is the construction of ensembles of networks with the
same numerical value of the constraints as in the real network.

From a practical point of view, eqs. (2.28) and (2.29) represent two equivalent
ways to determine

−→
θα∗ . The former requires the maximization of a scalar function

over a Kα-dimensional space, while the latter requires the solution of a system
of Kα nonlinear coupled equations. For various choices of the graph ensemble
GN and of the constraints

−→
Cα (including those required for our analysis), both

approaches are implemented in the MAX&SAM algorithm (see references in the
main text of this Chapter). More details are given in Sections 2.C and 2.D. Once
the value

−→
θα∗ is found, it is used to find the numerical value P

(
Gα|
−→
θα∗
)
of the

probability of any graph Gα ∈ GN . So, while the maximization of the entropy
generates the functional form of the graph probability, the maximization of the
likelihood fixes its numerical values. If Xα denotes any single-layer structural
property X of interest, the above procedure allows us to evaluate the expected
value

〈Xα〉 ≡ 〈Xα〉−→
θα∗

=
∑

Gα∈GN

P
(
Gα|
−→
θα∗
)
Xα(Gα) (2.30)

(and similarly the standard deviation) of Xα explicitly over the desired ensemble.
For many properties of interest, the expected value (2.30) can be calculated an-
alytically given the explicit expression of P

(
Gα|
−→
θα∗
)
, without the need to sample

the graph ensemble explicitly. For more complicated properties, one can instead
use the knowledge of P

(
Gα|
−→
θα∗
)
to sample graphs from the ensemble in an unbi-

ased way and then calculate expectations as sample averages.

The multiplexity and multireciprocity metrics introduced in the main text are
not single-layer properties like Xα, as they require measurements on multiple
layers simultaneously. We therefore need to generalize eq. (2.30) to the case of
an arbitrary multiplex quantity X , evaluating to X (

−→
G) on a specific multiplex

83



2.B Maximum-likelihood method for multiplex networks

−→
G ∈ GMN , as follows:

〈X 〉 ≡ 〈X〉−→
θ∗

=
∑
−→
G∈GMN

P
(−→
G |
−→
θ∗
)
X (
−→
G) (2.31)

where
−→
θ∗ = (

−→
θα∗ )Mα=1 contains the Langrange multipliers (2.28) for all layers and

−→
G∗ = (Gα∗ )Mα=1 ∈ GMN denotes the whole empirical multiplex. Both the expected
values and the standard deviations of multiplexity and multireciprocity can be
calculated explicitly, and we will therefore follow the analytical approach, which
is exact and faster than the sampling approach (see Sections 2.C and 2.D).

From a computational point of view, the above canonical approach based on
soft constraints has many benefits with respect to the microcanonical approach
with hard constraints. Indeed, the microcanonical approach cannot be controlled
analytically, and necessarily requires sampling many randomized multiplexes ex-
plicitly from the ensemble. Generating even only a single randomized multiplex re-
quires the iteration of many random constraint-preserving ‘rewiring moves’, which
is computationally costly. Such a procedure must be repeated several times, to
produce a large sample of R randomized multiplexes, on each of which any topo-
logical property X of interest has to be calculated. Finally, a sample average
should be performed to obtain an estimate of 〈X〉.

For instance, on single-layer networks with constrained degree sequence one
should iterate the so-called ‘local rewiring algorithm’ that preserves the degrees
while randomizing the network. On a monoplex network with L links, the above
approach would require a computational time of order O(L), only to generate a
single realization of the randomized network. On such a realization, one would
then need to measure X (for instance the monoplex reciprocity), which would
require a certain time TX . The total time needed for a single realization would
therefore be TX +O(L), and for all realizations R · TX +O(R · L).

In a multiplex network withM layers, the corresponding time required to gen-
erate a single randomized multiplex would in principle be of order O(

∑M
α=1 L

α),
where Lα is the number of links in the α-th layer. However, if layers are inde-
pendent in the null model, the randomization could (if computational resource
allows) be run in parallel on the different layers, thus reducing the above time
to O(L̄) where L̄ is the average number of links per layer, which does not scale
with M . However, the calculation of multiplex quantities X (e.g. the multire-
ciprocity) which would require a time TX for a single layer (e.g. the monoplex
reciprocity) would now need to be iterated for each pair of layers, thus requiring
a time O(TX ·M2). In total, this means that the total microcanonical computa-
tional time for a multiplex is Tmic = O(R · TX ·M2) + O(R · L), before carrying
out the final sample averages.
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By contrast, our canonical approach does not require the sampling of any
multiplex. For individual layers, the calculation of the expected value of most
properties of interest basically requires replacing the adjacency matrix of the net-
work with the corresponding expected matrix (or more complicated replacements
that in any case require a comparable calculation time). Therefore calculating the
expected value 〈X〉 takes the same time TX that it would take for the empirical
property X to be calculated on the real system. The same holds true for the entire
multiplex. Therefore the total canonical time needed is Tcan = O(TX ·M2) + TL,
where TL is the one-off time required to preliminary maximize the likelihood
(possibly of each layer in parallel) defined in (2.27).

As already mentioned above, the time TL required to maximize the likelihood
function can be proxied by the time required to solve a system of coupled, non-
linear equations ( 2N equations in the case of directed networks, as shown below).
However, since such systems can be further simplified by rewriting them only in
terms of the sequences of distinct directed degrees/strengths (which are always
less than 2N), the computational time drops to the order of seconds or minutes
(depending on the chosen constraints) for each layer. Moreover, further analyses
on synthetic networks have shown that this time scales roughly quadratically with
the number of nodes; this is anyway considerably shorter than the corresponding
total microcanonical time Tmic estimated above.

Besides the computational advantages described above, the canonical approach
has the statistical advantage of being a truly unbiased method, in the sense that
its maximum-entropy nature implies that no preference is given to specific graph
configurations, other than on the basis of the enforced constraints. So unbiased-
ness is ensured by the maximum degree of randomness encoded in the graph
probability, given the constraints. By constrast, microcanonical approaches are
not guaranteed to ensure the same property. In the microcanonical case, unbiased-
ness means that the realizations of the network should be sampled uniformly (i.e.
with exactly the same probability) from the whole set of configurations compati-
ble with the constraints. Ensuring uniform sampling is highly nontrivial and often
impossible. For instance, in the case of graphs with fixed degree sequence, it can
be proved that the local rewiring algorithm is biased, as it preferentially samples
configurations that are ‘close’ to the empirical one. Previous studies showed that
it is in principle possible to remove this bias, by calculating the so-called ‘mobil-
ity’ function (which is a quantity that depends on the current configuration being
randomized) and accepting the ‘next’ randomized configurations with a probabil-
ity that depends on the mobility itself. This requirement further increases, and by
a large extent, the already heavy computational requirements of the microcanon-
ical approach, because the mobility should be continuously recalculated during
the randomization process.
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2.C Directed Binary Configuration Model

In this Section we explicitly discuss the DBCM model, obtained through the
maximum entropy and maximum likelihood methods in the specific case where
GN contains all binary directed graphs with N nodes and

−→
Cα is a vector of di-

mension Kα = 2N containing the out-degree kouti and the in-degree kini of all
nodes (i = 1, N). Correspondingly, the 2N -dimensional vector

−→
θα contains the

associated Lagrange multipliers φαi and χαi for all nodes. Note that we enforce
the in- and out-degree sequences on all layers, which means that, as a function,
−→
Cα = (

−−→
kout,

−→
kin) is the same for all α. However, the numerical values of the

degrees in different layers will in general be different, i.e.
−→
C (Gα) 6=

−→
C (Gβ) for

α 6= β, thus
−→
θα = (

−→
φα,
−→
χα) must still depend on α explictly.

For single-layer networks, this model has been fully discussed. Here we simply
summarize the main steps leading to the final expressions for the expected binary
multiplexity and binary reciprocity. Using the notation introduced in the main
text and in Appendix 2.A, the single-layer Hamiltonian (2.22) reads

H
(
Gα|
−→
φα,
−→
χα
)

=
−→
φα ·
−−→
kout(Gα) +

−→
χα ·
−→
kin(Gα) =

=
N∑
i=1

[
φαi k

out
i (Gα) + χαi k

in
i (Gα)

]
=

=
N∑
i=1

∑
j 6=i

(
φαi + χαj

)
aαij (2.32)

and the partition function (2.23) can be calculated as:

Z
(−→
φα,
−→
χα
)

=
N∏
i=1

∏
j 6=i

(
1 + e−φ

α
i −χ

α
j
)

=
N∏
i=1

∏
j 6=i

(
1 + xαi y

α
j

)
, (2.33)

where we have set xαi ≡ e−φ
α
i and yαi ≡ e−χ

α
i . This implies that the probabil-

ity (2.21) can be written explicitly as

Pα
(
Gα|
−→
φα,
−→
χα
)

=
N∏
i=1

∏
j 6=i

(xαi y
α
j )a

α
ij

1 + xαi y
α
j

=
N∏
i=1

∏
j 6=i

(pαij)
aαij (1− pαij)1−aαij , (2.34)
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where

pαij =
xαi y

α
j

1 + xαi y
α
j

(2.35)

is the probability of a directed link from i to j in layer α. Equation (2.34) shows
that the random variable aαij is drawn, for all i 6= j, from a Bernoulli distribution
with success probability pαij .

Given the real-world multiplex
−→
G∗ = (Gα∗ )Mα=1, the single-layer log-likelihood

function (2.27) to be maximized is then given by

L
(−→
xα,
−→
yα
)

=
N∑
i=1

[
kouti (Gα∗ ) lnxαi + kini (Gα∗ ) ln yαi

]
+

−
N∑
i=1

∑
j 6=i

ln
(
1 + xαi y

α
j

)
, (2.36)

and the equivalent set of 2N coupled nonlinear equations (2.29) to be solved is∑
j 6=i

xαi y
α
j

1 + xαi y
α
j

= kouti (Gα∗ ) ∀i = 1, N (2.37)

∑
j 6=i

xαj y
α
i

1 + xαj y
α
i

= kini (Gα∗ ) ∀i = 1, N. (2.38)

Once found, the values of {xαi } and {yαi } providing the unique solution to the
above problem can be put back in eqs. (2.34) and (2.35), allowing us to analyt-
ically calculate the expected values 〈·〉DBCM of the quantities of interest via the
corresponding probabilities pαij (where for simplicity we drop the asterisk indicat-
ing that pαij is evaluated at the specific values that maximize the likelihood).

In particular, we can calculate the rescaled metrics of multiplexity and mul-
tireciprocity defined in the main text as follows. First of all, since in the DBCM
the in- and out-degrees of all nodes in all layers are equal to their expected val-
ues, we necessarily have 〈Lα〉DBCM = Lα∗ for all α, where Lα∗ ≡ Lα(Gα∗ ) is the
number of links of the observed, layer-specific graph Gα∗ . This means that Lα is
a constrained quantity, and we therefore expect the denominators of the afore-
mentioned quantities to fluctuate around their expected values Lα∗ +Lβ∗ much less
than how the numerators fluctuate around the corresponding expected values. We
therefore approximate their expected values as follows:

〈mα,β
b 〉DBCM =

2〈Lα⇒β〉DBCM

Lα∗ + Lβ∗
(α 6= β), (2.39a)

〈rα,βb 〉DBCM =
2〈Lα�β〉DBCM

Lα∗ + Lβ∗
. (2.39b)
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Consequently,

µα,βb =
2Lα⇒β
∗ − 2〈Lα⇒β〉DBCM

Lα∗ + Lβ∗ − 2〈Lα⇒β〉DBCM
(α 6= β),

ρα,βb =
2Lα�β
∗ − 2〈Lα�β〉DBCM

Lα∗ + Lβ∗ − 2〈Lα�β〉DBCM
.

Since aαij and aβij (for β 6= α), and similarly aαij and aβji (for any β), are indepen-
dently drawn from two Bernoulli distributions, the expected values of min{aαij , a

β
ij}

(with β 6= α) and min{aαij , a
β
ji} are easily calculated as

〈min{aαij , a
β
ij}〉DBCM = pαijp

β
ij (α 6= β), (2.40a)

〈min{aαij , a
β
ji}〉DBCM = pαijp

β
ji, (2.40b)

as shown in Chapter 1 for the undirected case. Therefore the final expressions
for the transformed multiplexity and multireciprocity are:

µα,βb =
2Lα⇒β
∗ − 2

∑
i

∑
j 6=i p

α
ijp

β
ij

Lα∗ + Lβ∗ − 2
∑
i

∑
j 6=i p

α
ijp

β
ij

(α 6= β) (2.41a)

ρα,βb =
2Lα�β
∗ − 2

∑
i

∑
j 6=i p

α
ijp

β
ji

Lα∗ + Lβ∗ − 2
∑
i

∑
j 6=i p

α
ijp

β
ji

, (2.41b)

where the probabilities are defined according to Eq. (2.35).

Similarly, we need to calculate the z-scores associated to our metrics. To
do this, we need to calculate the standard deviations of mαβ

b and rαβb at the
denominator of the z-scores. Neglecting again the fluctuations of the constrained
quantities Lα and Lβ around their average values (with respect to the fluctuations
of the unconstrained quantities), and since all pairs of nodes are independent, we
calculate the variances of mαβ

b and rαβb in a way similar to what we did for the
expressions in eq. (2.42):

Var[mαβ
b ] =

4
∑
i

∑
j 6=iVar[min{aαij , a

β
ij}]

(Lα∗ + Lβ∗ )2
(α 6= β),

Var[rαβb ] =
4
∑
i

∑
j 6=iVar[min{aαij , a

β
ji}]

(Lα∗ + Lβ∗ )2
.

Now we note that the minimum of two 0/1 quantities is also a 0/1 quantity.
This implies that the square of the minimum is equal to the minimum itself, and
that the expected square of the minimum is equal to the expected value of the
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minimum. In formulas:

〈min2{aαij , a
β
ij}〉DBCM = pαijp

β
ij (α 6= β), (2.43)

〈min2{aαij , a
β
ji}〉DBCM = pαijp

β
ji. (2.44)

It then follows that the variance of the minimum is

Var
[

min{aαij , a
β
ij}
]

= pαijp
β
ij(1− p

α
ijp

β
ij) (α 6= β),

Var
[

min{aαij , a
β
ji}
]

= pαijp
β
ji(1− p

α
ijp

β
ji).

Putting these expressions into those for Var[mα,β
b ] and Var[rα,βb ], and taking the

square root to obtain the standard deviations, we finally arrive at the explicit
calculation of the z-scores:

z
(
mαβ
b

)
=

Lα⇒β
∗ −

∑
i

∑
j 6=i p

α
ijp

β
ij√∑

i

∑
j 6=i p

α
ijp

β
ij(1− pαijp

β
ij)

(α 6= β)

z
(
rαβb
)

=
Lα�β
∗ −

∑
i

∑
j 6=i p

α
ijp

β
ji√∑

i

∑
j 6=i p

α
ijp

β
ji(1− pαijp

β
ji)

From a direct comparison between the above equations and Eqs. (2.41), we im-
mediately observe the sign concordance reported in Chapters 1 and 2.

2.D Directed Weighted Configuration Model

Here we consider the DWCM model, obtained when GN contains all weighted
directed graphs (with non-negative integer edge weights) with N nodes and

−→
Cα

is a vector of dimension Kα = 2N containing the out-strength souti and the in-
strength sini of all nodes (i = 1, N). The 2N -dimensional vector

−→
θα contains the

associated Lagrange multipliers φαi and χαi . As for the DBCM,
−→
Cα = (

−−→
sout,

−→
sin)

is the same function for all α. However, the numerical values
−→
θα = (

−→
φα,
−→
χα) still

depend on α.

For single-layer networks, the Hamiltonian (2.22) reads

H
(
Gα|
−→
φα,
−→
χα
)

=
−→
φα ·
−−→
sout(Gα) +

−→
χα ·
−→
sin(Gα) =

=
N∑
i=1

[
φαi s

out
i (Gα) + χαi s

in
i (Gα)

]
=

=
N∑
i=1

∑
j 6=i

(
φαi + χαj

)
wαij (2.45)
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and the partition function (2.23) can be calculated as:

Z
(−→
φα,
−→
χα
)

=
N∏
i=1

∏
j 6=i

(
1− e−φ

α
i −χ

α
j
)−1

=
N∏
i=1

∏
j 6=i

(
1− xαi yαj

)−1
, (2.46)

where we have set xαi ≡ e−φ
α
i and yαi ≡ e−χ

α
i . This implies that the probabil-

ity (2.21) can be written as

Pα
(
Gα|
−→
φα,
−→
χα
)

=
N∏
i=1

∏
j 6=i

(xαi y
α
j )w

α
ij (1− xαi yαj )

=
N∏
i=1

∏
j 6=i

(pαij)
wαij (1− pαij), (2.47)

where

pαij = xαi y
α
j (2.48)

denotes again the probability that a directed link (of any positive weight) from
node i to node j is realized in layer α. Equation (2.47) gives the interpretation of
wαij as a geometrically distributed variable, constructed as the iteration of many
random events, each defined as incrementing wαij by one, starting from wαij = 0.
In this interpretation, pαij is the elementary probability of a ‘success’ event, and
the probability that wαij = w coincides with the probability (pαij)

w(1 − pαij) of
having w consecutive successes followed by one failure. This leads precisely to a
geometric distribution.

The single-layer log-likelihood function (2.27) to be maximized is now given
by

L
(−→
xα,
−→
yα
)

=
N∑
i=1

[
souti (Gα∗ ) lnxαi + sini (Gα∗ ) ln yαi

]
+

+
N∑
i=1

∑
j 6=i

ln
(
1− xαi yαj

)
, (2.49)

and the corresponding equations (2.29) are∑
j 6=i

xαi y
α
j

1− xαi yαj
= souti (Gα∗ ) ∀i = 1, N (2.50)

∑
j 6=i

xαj y
α
i

1− xαj yαi
= sini (Gα∗ ) ∀i = 1, N. (2.51)
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The expected values 〈·〉DWCM of the relevant quantities can be found through
eqs. (2.47) and (2.48), evaluated at the values of {xαi } and {yαi } that solve the
above problem (again, in what follows we drop the asterisk indicating that pαij is
evaluated at the specific values that maximize the likelihood).

We start with the calculation of the expected values of the multiplexity and
multireciprocity metrics defined in the main text. In analogy with what we did
for the DBCM, we expect the (constrained) denominators of both the metrics to
fluctuate much less than the (unconstrained) numerators and we therefore replace
the denominators with their expected values Wα

∗ +W β
∗ . We therefore write

〈mαβ
w 〉DWCM =

2〈Wα⇒β〉DWCM

Wα
∗ +W β

∗
, (2.52a)

〈rαβw 〉DWCM =
2〈Wα�β〉DWCM

Wα
∗ +W β

∗
(2.52b)

and

µαβw =
2Wα⇒β
∗ − 2〈Wα⇒β〉DWCM

Wα
∗ +W β

∗ − 2〈Wα⇒β〉DWCM
(α 6= β),

ραβw =
2Wα�β
∗ − 2〈Wα�β〉DWCM

Wα
∗ +W β

∗ − 2〈Wα�β〉DWCM
.

Since wαij and wβij (for β 6= α), and similarly wαij and wβji (for any β), are
independenlty drawn from two geometric distributions, the expected values of
min{wαij , w

β
ij} (with β 6= α) and min{wαij , w

β
ji} are easily calculated as

〈min{aαij , a
β
ij}〉DBCM =

pαijp
β
ij

1− pαijp
β
ij

(α 6= β), (2.53a)

〈min{aαij , a
β
ji}〉DBCM =

pαijp
β
ji

1− pαijp
β
ji

. (2.53b)

Therefore the transformed multiplexity and multireciprocity read

µαβw =
2Wα⇒β
∗ − 2

∑
i

∑
j 6=i

pαijp
β
ij

1−pαijp
β
ij

Wα
∗ +W β

∗ − 2
∑
i

∑
j 6=i

pαijp
β
ij

1−pαijp
β
ij

(α 6= β) (2.54a)

ραβw =
2Wα�β
∗ − 2

∑
i

∑
j 6=i

pαijp
β
ji

1−pαijp
β
ji

Wα
∗ +W β

∗ − 2
∑
i

∑
j 6=i

pαijp
β
ji

1−pαijp
β
ji

, (2.54b)

91



2.D Directed Weighted Configuration Model

where the probabilities are defined in Eq. (2.48).

We then calculate the z-scores. Following an argument similar to the binary
case, we write

Var[mαβ
w ] =

4
∑
i

∑
j 6=iVar[min{wαij , w

β
ij}]

(Wα
∗ +W β

∗ )2
(α 6= β),

Var[rαβw ] =
4
∑
i

∑
j 6=iVar[min{wαij , w

β
ji}]

(Wα
∗ +W β

∗ )2
.

After calculating the variance of the minimum of two geometrically distributed
random variables, we get

Var
[

min{wαij , w
β
ij}
]

=
pαijp

β
ij(

1− pαijp
β
ij

)2 (α 6= β),

Var
[

min{aαij , a
β
ji}
]

=
pαijp

β
ji(

1− pαijp
β
ji

)2 .
Combining all the relevant expressions together, we get for the z-scores:

z
(
mαβ
w

)
=

Wα⇒β
∗ −

∑
i

∑
j 6=i

pαijp
β
ij

1−pαijp
β
ij√∑

i

∑
j 6=i

pαijp
β
ij(

1−pαijp
β
ij

)2 (α 6= β)

z
(
rαβw
)

=
Wα�β
∗ −

∑
i

∑
j 6=i

pαijp
β
ji

1−pαijp
β
ji√∑

i

∑
j 6=i

pαijp
β
ji(

1−pαijp
β
ji

)2
in analogy with the results shown in the first chapter for the undirected case.
Comparing with Eqs. (2.54), we confirm the concordance of the sings.
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