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Chapter 1

Undirected multiplex networks

Several systems can be represented as multiplex networks, i.e. in terms of a super-
position of various graphs, each related to a different mode of connection between
nodes. Hence, the definition of proper mathematical quantities aiming at cap-
turing the added level of complexity of those systems is required. Various steps
in this direction have been made. In the simplest case, dependencies between
layers are measured via correlation-based metrics, a procedure that we show to
be equivalent to the use of completely homogeneous benchmarks specifying only
global constraints. However, this approach does not take into account the hetero-
geneity in the degree and strength distributions, which is instead a fundamental
feature of real-world multiplexes. In this chapter, we compare the observed depen-
dencies between layers with the expected values obtained from maximum-entropy
reference models that appropriately control for the observed heterogeneity in the
degree and strength distributions. This information-theoretic approach results
in the introduction of novel and improved multiplexity measures that we test on
different datasets, i.e. the International Trade Network and the European Airport
Network. Our findings confirm that the use of homogeneous benchmarks can lead
to misleading results, and highlight the important role played by the distribution
of hubs across layers.

The results presented in this chapter have been published in the following reference:
V. Gemmetto, D. Garlaschelli, Scientific Reports, 5, 9120 (2015).
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1.1 Introduction

1.1 Introduction

The study of networks allows scientists to suitably represent and analyze biolog-
ical, economic and social systems as a set of units (nodes) connected by edges
(links) symbolizing interactions [1, 2, 3, 4].

However, this approach may actually lead to an oversimplification: indeed,
several systems are composed by units connected by multiple kinds of interaction.
In such systems, the same set of nodes is joined by various types of links, each
of those representing a different mode of connection [5]. The simplest way to
analyse such systems is the aggregation of the various levels in a single network,
but it turns out that such a simplification may discard fundamental information
about the real topology of the network and therefore about possible dynamical
processes acting on the system [6]. For instance, such an aggregation may result
in a loss of information about the distribution of the hubs across layers, which is
instead crucial for the control of several processes arising on an interdependent
network [7]. Then, in order to solve such an issue, in the last few years the study of
multi-layer networks has been pursued. In this context, new quantities aiming at
mathematically analyzing multi-level networks have been provided [8, 9, 10, 11];
furthermore, models of growth [12, 13, 14] and dynamical processes occurring on
multiplexes, such as epidemic spreading [15], diffusion [16], cooperation [17] and
information spreading [18] have been designed.

In this chapter, we follow the path towards the definition of measures that can
be applied to multi-level networks, in order to characterize significant structural
properties of these systems, in particular focusing on the analysis of the depen-
dencies between layers. We argue that, in order to properly characterize such
dependencies, a comparison between the observed correlation and some notion of
expected correlation is required. We therefore exploit the concept of multiplex en-
semble [19, 20, 21], aiming at the definition of suitable null models for multi-layer
complex networks, in order to compare the observed overlap between layers with
the expected overlap one would find in a random superposition of layers with the
same node-specific properties. In particular, since our purpose is precisely that of
measuring such dependencies, we will consider uncorrelated multiplex ensembles,
in order to define a null model for the real system so that it is possible to compare
the observed correlations with reference models where the overlap between layers
is actually randomized and, at the same time, important node-specific properties
of the real network are preserved.

Various efforts have already been made about the study of correlations in
multi-level networks [22, 23, 24], but the comparison of the observed results with
the expected ones has generally been based on a - sometimes implicit - assumption:
the benchmark was a completely homogeneous graph. In particular, here we show
that correlation-based measures of inter-layer dependency (of the type used e.g. in
ref.[22]) build on an implicit assumption of homogeneity, which in the unweighted
case is equivalent to the choice of the Random Graph as null model. Similarly,
for weighted networks, the chosen benchmark was equivalent to the Weighted
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Undirected multiplex networks

Random Graph, where the weight distribution is independent from the considered
pair of nodes [25].

However, this assumption of uniformity in the probability distributions strongly
contrasts with the observed findings in real-world complex systems. Indeed, one of
the most well-known features of complex networks is their heterogeneity [26], both
in the degree distribution and in the strength distribution; it is therefore crucial
to take this aspect into account when proper null models for graphs are designed.
Moreover, it has been recently shown that, in multiplex networks, the correla-
tion between degrees (and strengths) of nodes across different layers is also an
important structural feature that can have strong effects on the dynamics [7, 27].
Ultimately, such inter-layer degree correlations determine the distribution of hubs
across layers, i.e. whether the same nodes tend to be hubs across many layers,
or whether different layers are characterized by different hubs. We therefore aim
at measuring multiplexity in terms of the “residual” inter-layer dependencies that
persist after we filter out, for each layer separately, the effects induced by the
heterogeneity of the empirical degree (for unweighted networks) or strength (for
weighted graphs) distribution. We show that such a refinement can completely
change the final findings and lead to a deeper understanding of the actual depen-
dencies observed between layers of a real-world multiplex.

First, we introduce a new “absolute” measure of multiplexity designed to quan-
tify the overlap between layers of a multi-level complex network. Second, we de-
rive the expression of the expected value of such a quantity, both in the binary
and in the weighted case, for randomized networks, by enforcing different con-
straints. Third, we combine the “absolute” multiplexity and its expected value
into a filtered, “relative” measure of multiplexity that has the desired properties.
We finally apply our measures to two different real-world multiplexes, namely
the World Trade Multiplex Network and the European Airport Network, show-
ing that the analysis of the dependencies between layers can actually make some
important structural features of these systems explicit.

Indeed, while the former shows significant correlations between layers (i.e.,
traded commodities), in the latter almost no overlap can generally be detected,
thus clearly defining two opposite classes of multiplexes based on the observed
correlations. Furthermore, we will link such a behaviour with the distribution
of the hubs across layers, hence providing a straightforward explanation to the
observed findings.

1.2 Methods

1.2.1 Null models

It is possible to design null models for multi-level networks as maximum-entropy
ensembles on which we enforce a given set of constraints [21]. In particular, we
exploit the concept of uncorrelated multiplex ensemble, so that the definition of
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1.2 Methods

proper null models for the considered multiplex reduces to the definition of an
indipendent null model for any layer of the system. In order to do this, we take
advantage of the concept of canonical network ensemble, or exponential random
graph [28], i.e. the maximum-entropy family of graphs satisfying a set of con-
straints on average. In this context the resulting randomized graph preserves
only part of the topology of the considered real-world network and is entirely ran-
dom otherwise, thus it can be employed as a proper reference model. However,
fitting such previously defined models to real datasets is hard, since it is usually
computationally demanding as it requires the generation of many randomized
networks whose properties of interest have to be measured.

In this perspective, we exploit a fast and completely analytical maximum-
entropy method, based on the maximization of the likelihood function [29, 30, 31],
which provides the exact probabilities of occurrence of random graphs with the
same average constraints as the real network. From such probabilities it is then
possible to compute the expectation values of the properties we are interested in,
such as the average link probability or the average weight associated to the link
established between any two nodes. While the adoption of such a method is not
strictly required when dealing with global constraints like the total number of links
observed in a network (the so-called Random Graph), it becomes crucial when
facing the problem of enforcing local constraints such as the degree sequence or the
strength sequence (Binary or Weighted Configuration Model). More information
about such null models can be found in the following subsections and appendices.

1.2.2 Homogeneous null models
The simplest null model for a binary multiplex is an independent superposition
of layers in which each layer is a Random Graph (RG) [28], which enforces as
constraint the expected number of links in that layer. Such model, therefore,
provides a unique expected probability pα that a link between any two nodes is
established in layer α: however, such a reference model completely discards any
kind of heterogeneity in the degree distributions of the layers, resulting in graphs
where each node has on average the same number of connections, inconsistently
with the observed real networks. Thus, the probability of connection between any
two nodes in layer α is uniformly given by:

pα =
Lα

N(N − 1)/2
(1.1)

where Lα is the total number of links actually observed in layer α.
Similar considerations apply to weighted networks and the related Weighted

Random Graph (WRG) [25], i.e. the straightforward extension of the previous
Random Graph to weighted systems; in such a null model, the probability of
having a link of weight w between two nodes i and j is independent from the
choice of the nodes and only depends on the total weight observed in a layer and
on the number of nodes.
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Undirected multiplex networks

Analogously to the corresponding Binary Random Graph, also this kind of
null model discards the simultaneous presence of nodes with high and low values
of the strengths (that is, a high or low sum of the weights associated to links
incident on that node).

1.2.3 Heterogeneous null models

To take into account the heterogeneity of the real-world networks, in the un-
weighted case we consider a null model where the multiplex is an independent su-
perposition of layers, each of which is a (Binary) Configuration Model (BCM) [32],
i.e. an ensemble of networks satisfying on average the empirical degree sequence
observed in that specific layer. Since we make use of the canonical ensembles, it
is possible to obtain from the maximum-likelihood method each probability pαij
that nodes i and j are connected in layer α (notice that such value pαij is basically
the expectation value of aαij under the chosen Configuration Model). Similarly,
as a null model for a weighted multiplex we consider an independent superposi-
tion of layers, each described by the Weighted Configuration Model (WCM) [33]:
here, for each layer separately, the enforced constraint is the strength sequence as
observed in the real-world multiplex. In this view, the likelihood maximization
provides the expectation value of each weight wαij for any pair of nodes i and j as
supplied by the Weighted Configuration Model. It is worth noticing that enforc-
ing the degree sequence (respectively, the strength sequence in the weighted case)
automatically leads to the design of a null model where also the total number of
links (respectively, the total weight) of the network is preserved. In the appen-
dices attached to this chapter we will provide equations generalizing, for instance,
equation (1.1), whose solution allows then to derive the analytical expression of
the expected link probability pαij and, in the weighted case, the expected link
weight wαij . In order to do this, we make use of a set of N auxiliary variables xαi
for any layer α, which are proportional to the probability of establishing a link
between a given node i and any other node (or, respectively for the weighted case,
establishing a link characterized by a given weight), being therefore directly in-
formative on the expected probabilities pαij (or, respectively, the expected weights
wαij).

Before introducing our measures of multiplexity, we make an important pre-
liminary observation. Simple measures of inter-layer dependency are based on
correlation metrics, which in turn rely on an assumption of uniformity, such as-
sumption being ultimately equivalent to the choice of a uniform Random Graph
as a null model; this will strengthen the choice of emplying heterogeneous bench-
marks throughout the entire thesis. We illustrate this result in more detail in the
appendices.
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1.2 Methods

1.2.4 Multiplexity

When unweighted networks are considered, we define the “absolute” binary mul-
tiplexity between any two layers α and β as:

mαβ
b =

2
∑
i<j min{aαij , a

β
ij}

Lα + Lβ
(1.2)

where Lα is the total number of links observed in layer α and aαij = 0, 1 depending
on the presence of the link between nodes i and j in layer α. Such a quantity
represents a normalized overlap between any pair of layers and can therefore be
thought of as a normalized version of the global overlap introduced in [21].

The previous definition can be easily extended to weighted multiplex networks.
We define the “absolute” weighted multiplexity as:

mαβ
w =

2
∑
i<j min{wαij , w

β
ij}

Wα +W β
(1.3)

where wαij represents the weight of the link between nodes i and j in layer α and
Wα is the total weight related to the links in that layer. Both (1.2) and (1.3)
range in [0, 1], are maximal when layers α and β are identical - that is, if there is
complete similarity between those two layers - and minimal when they are totally
different; in this perspective, they evaluate the tendency of nodes to share links
in distinct layers.

However, the above absolute quantities are uninformative without a compar-
ison with the value of multiplexity obtained when considering a null model. We
may indeed measure high values of multiplexity between two layers due to the
possibly large observed values of density, without any significant distinction be-
tween real dependence and overlap imposed by the presence of many links in each
layer (thus forcing an increase in the overlap itself).

Furthermore, we cannot draw a clear conclusion about the amount of correla-
tion between layers by just looking at the observed value, since such a measure is
not universal and, for instance, no comparison between different multiplexes can
be done based on the raw “absolute” multiplexity.

We therefore introduce the following “relative” or rescaled quantity along the
lines of refs. [34, 35]:

µαβ =
mαβ − 〈mαβ〉

1− 〈mαβ〉
(1.4)

where mαβ is the value measured for the observed real-world multiplex and 〈mαβ〉
is the value expected under a suitably chosen null model. The main null models
that we will consider are respectively the Random Graph (RG) and the Binary
Configuration Model (BCM) in the unweighted case, the Weighted Random Graph
(WRG) and the Weighted Configuration Model (WCM) in the weighted case. We
will characterize them in more detail in the appendices following this chapter.
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Undirected multiplex networks

This rescaled quantity is now directly informative about the real correlation be-
tween layers: in this context, positive values of µαβ represent positive correlations,
while negative values are associated to anticorrelated pairs of layers; furthermore,
pairs of uncorrelated layers show multiplexity values comparable with 0.
One of the motivations of the present work is the consideration that, in the binary
case, when the Random Graph is considered as a null model, the previous quantity
(1.4) can actually be reduced to the standard correlation coefficient between the
entries of the adjacency matrix referred to any two layers α and β of a multi-level
graph, defined as:

Corr{aαij , a
β
ij} =

〈aαija
β
ij〉 − 〈aαij〉〈a

β
ij〉

σασβ
(1.5)

In the appendices, we show that the previous expression is nothing but a different
normalization of the rescaled binary multiplexity defined in (1.4):

Corr{aαij , a
β
ij} = F ·

(
mαβ − 〈mαβ〉

)
(1.6)

where F is a factor depending on Lα, Lβ and N .

1.3 Results

1.3.1 Binary analysis
We validate our definitions applying them to two different real-world multiplexes:
the World Trade Multiplex (WTM) (N = 207 countries, M = 96 layers repre-
senting traded commodities), available as a weighted multi-level network, and the
European Airport Network (N = 669 airports, M = 130 airlines), provided as
an unweighted system. A more detailed description of the International Trade
dataset, which is one of the main focuses of the entire thesis, can be found in the
appendix following this chapter.

The implementation of the concept of multiplexity to different networks can
lead to completely divergent results, according to the structural features of the
considered systems. Indeed, the application of (1.2) to the WTM leads to the
color-coded multiplexity matrix Mb shown in Figure 1.1(a). Such an array gen-
erally shows very high overlaps between layers, i.e. between different classes of
commodities, pointing out that usually each country tends to import from or
export to the same set of countries almost independently of the traded items;
this is true in particular for most of the edible products (layers characterized by
commodity codes ranging from 1 to 22, as listed in the aforementioned appendix.

In order to have a complete picture of the dependencies between layers of the
considered systems, we have to compare our findings with the overlaps expected
for multiplexes having only some of the properties in common with the observed
ones. The simplest benchmark, as well as the most widely used, is the Random
Graph (RG), which discards, as we said, any kind of heterogeneity in the degree
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1.3 Results

a b c

Figure 1.1: Analysis of the binary multiplexity between layers of the
World Trade Multiplex in 2011. Color-coded matrices with entries given by
mαβ
b (a), µαβRG (b) and µαβBCM (c) for any pair of layers (commodities).

distributions of the layers. When we compute µαβRG for the World Trade Net-
work, we obtain the multiplexity matrix shown in Figure 1.1(b). The plot clearly
shows that most of the correlations are still present: this layer-homogeneous null
model, together with the presence of comparable densities across the various lay-
ers, does not significantly affect the expected overlaps. So far, we have discarded
heterogeneity in our null models. However, this can considerably affect the sig-
nificance of our findings. Therefore, we introduce heterogeneity in the degree
distribution within the reference model by means of the previously defined (Bi-
nary) Configuration Model (BCM). This way, it is actually possible to detect only
the non-trivial dependencies, therefore discarding all the overlaps simply due to
the possibly high density of the layers, that would otherwise increase the observed
interrelations even if no real correlation is actually present.

This is exactly what happens when the World Trade Network is analyzed.
Indeed, as shown in Figure 1.1(c), we find out that a significant amount of the
binary overlap observed in this network is actually due to the information included
in the degree sequence of the various layers, rather than to a real dependence
between layers. This method is therefore able to detect the really meaningful
similarity between layers, discarding the trivial overlap caused by the presence, for
instance, of nodes having a high number of connections in most of the layers. This
non-significant overlap is thus filtered out by our procedure. Such observations
clearly show that the Random Graph is not the most proper reference model in
order to obtain an appropriate representation of crucial properties of such multi-
level systems.

We now note that linear correlations have been used in the literature to pro-
duce dendrograms [22, 36]. As we mentioned, the use of linear correlations corre-
sponds to the choice of the Random Graph as null model. Here, we can instead
make use of µαβBCM to implement an improved hierarchical clustering procedure,
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Undirected multiplex networks

a b c

Figure 1.2: Analysis of the binary multiplexity between layers of the
European Airport Network. Color-coded matrices with entries given by mαβ

b

(a), µαβRG (b) and µαβBCM (c) for any pair of layers (airlines).

as reported in the appendix.

A completely different behaviour can be observed for the European Airport
System. Indeed, low values of multiplexity observed for such a network (Figure
1.2(a)) illustrate nearly no overlap between most of the layers: this highlights the
well-known tendency of airline companies to avoid superpositions between routes
with other airlines. In Figure 1.2(b) we show the residual correlations obtained
after the application of the Random Graph: almost no difference can be perceived
with respect to Figure 1.2(a), since the expected overlap in this case is very small,
due to the very low densities of the various layers. We should point out that the
Random Graph is not a proper reference model for this real-world network, since
the assumption of uniformity in the degree of the different nodes (i.e., airports)
is actually far from the observed structure of such a system, as we will highlight
later. Nevertheless, in Figure 1.2(c) we show that, at first glance, the adoption
of the Configuration Model does not look strictly required when the European
Airport Network is considered, except for a more suitable mathematical approach,
since the overall matrix looks apparently similar to the previous Figure 1.2(b).
However, the presence of a larger number of negative values of multiplexity and the
simultaneous disappearance of most of the significantly high values highlight once
more the anti-correlated character of such a system, and this crucial structural
property of the airport multiplex network was not fully revealed by the application
of the Random Graph.

In this case, a dendrogram designed form matrices reported in Figure 1.2 would
not be meaningful, since most of the layers meet at a single root level, due to the
very low correlation observed between them.
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1.3 Results

a b c

Figure 1.3: Analysis of the weighted multiplexity between layers of the
World Trade Multiplex in 2011. Color-coded matrices with entries given by
mαβ
w (a), µαβWRG (b) and µαβWCM (c) for any pair of layers (commodities).

1.3.2 Weighted analysis

Since the International Trade Network is represented by a weighted multiplex,
the analysis of weighted overlaps between layers of that system can be performed,
in order to obtain more refined information about the dependencies between dif-
ferent classes of commodities. We should indeed point out that, for the World
Trade Web, while the binary overlaps provided by (1.2) only supply information
about the dependencies between the topologies of the various layers representing
trade in different commodities, the weighted multiplexity defined in (1.3) is able
to detect patterns of correlation between quantities of imported and exported
classes of items. In this perspective, observing high correlations is therefore more
unlikely. This is due, mathematically, to the functional form of the definition of
the multiplexity given in (1.3), which is significantly dependent on the balance
between weights of the corresponding links in different layers; such a property,
therefore, tends to assign higher correlations to pairs of commodities character-
ized by similar global amount of trade, as we want.

In Figure 1.3(a) we show the color-coded matrix Mw associated to the raw
values of weighted multiplexity as observed in the International Trade Network:
clear dependencies between different layers are still present, but a comparison with
its corresponding binary matrix Mb(shown in Figure 1.1(a)) explicitly reveals
that, while some pairs of layers are significantly overlapping, several pairs of
commodities are now actually uncorrelated, as expected when the weights of the
links are taken into account. In order to provide information about the relation
between the observed dependencies between layers and the expected ones under a
given benchmark, as a first estimate, we calculate µαβWRG, therefore considering the
corresponding Weighted Random Graph (WRG) as a reference for our real-world
network. Our findings show, in Figure 1.3(b), a strongly uncorrelated behavior
associated to most of the pairs of commodities, in contrast with our intuitive
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Undirected multiplex networks

expectations based on the results obtained in the binary case.
We then compare the observed multiplexity with its expected values under the

Weighted Configuration Model (WCM). Results, shown in Figure 1.3(c), exhibit
a completely different behavior with respect to Figure 1.3(b), thus highlighting
once more the importance of taking into account the heterogeneity in the weight
and degree distributions within the considered null model. Indeed, we observe
that, exploiting this more suitable reference, several pairs are still correlated,
even in the weighted case, some of them are actually uncorrelated, as expected by
looking at the corresponding binary matrix (Figure 1.1(c)), and only a few, with
respect to the Weighted Random Graph case, remain anti-correlated. In general,
however, the dependencies between layers in the weighted case are less noticeable,
as we can see from a comparison between the matrices shown in Figures 1.1(c)
and 1.3(c).

1.3.3 Hubs distribution

The different behaviours observed for the two considered multiplexes can be, at
least partly, explained in terms of distribution of the hubs across layers. As we
show in Figure 1.4(a) and 1.4(b), generally any two layers of the World Trade Mul-
tiplex exhibit the same set of hubs (which in this particular case are represented
by the richest and most industrialized countries). Indeed, the two network layers
plotted in the Figure are, already from visual inspection, very similar to each
other. This property produces a high dependence between layers, since the over-
lap is increased by the multiple presence of links in the various layers connecting
nodes to the hubs.

It is possible to show that this hubs distribution, leading to the higher overlap
between layers, is strongly correlated to the relation existing between the hidden
variables xi associated to each node in the different layers (we provide further
details about such variables in appendices). Indeed, as shown in Figure 1.4(c),
for the considered pair of layers (but several pairs actually exhibit the same be-
haviour) such a trend can be clearly represented by a straight line, thus pointing
out that nodes with higher xi in one layer (hence, with higher probability of es-
tablishing a link with any other node in that layer) generally also have higher xi
in a different layer.

However, when the European Airport Network is considered, an opposite trend
can be observed, thus a clear explanation of the small measured overlap applies;
indeed, Figures 1.5(a) and 1.5(b) show that in this case the layers can be approx-
imated to star-like graphs, with a single, largely connected hub and several other
poorly connected nodes. Though, the hub is in general different for almost any
considered layer, since each airline company is based on a different airport: in
the considered pair of layers, hubs are represented by Rome - Fiumicino airport
(FCO) for Alitalia and Amsterdam - Schiphol airport (AMS) for KLM. Such a
property decreases significantly the overlap between layers, thus leading to the
matrices previously shown in Figure 1.2.
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1.3 Results

a b

c

Figure 1.4: Hubs distribution in the World Trade Multiplex. Top panels:
graphs representing two layers of the system, respectively those associated to trade
in plastic (a) and articles of iron and steel (b); nodes represent trading countries;
size of a node is proportional to its degree in that layer. Only links associated to
a trade larger than 100 millions dollars are reported. Bottom panel: scatter plot
of the hidden variables xi relative to each of the nodes for the same two layers;
the black line represents the identity line.

Similar considerations can be done when looking at Figure 1.5(c), where the
scatter plot of the hidden variables associated to the nodes in two different layers
is shown. We observe that no linear trend can be inferred, since only the two hubs
stand out from the bunch of the other airports (which are actually characterized
by different values of xi, even though this cannot be fully appreciated). It is
anyway clear that the hub of one layer, characterized by the highest value xi
(hence, with the highest probability of establishing a link with any other node in
that layer) is a poorly connected node in a different layer, being characterized by
a small value of xi.
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a b

c

Figure 1.5: Hubs distribution in the European Airport multiplex. Top
panels: graphs representing two layers of the system, respectively those associated
to Alitalia airline (a) and KLM airline (b); nodes represent european airports; size
of a node is proportional to its degree in that layer. All the observed links are
reported. Bottom panel: scatter plot of the hidden variables xi relative to each
of the nodes for the same two layers.

1.4 Discussion

In the last few years the multiplex approach has revealed itself as a useful frame-
work to study several real-world systems characterized by elementary units linked
by different kinds of connection. In this context, we have introduced new measures
aiming at analyzing dependencies between layers of the network, both for binary
and weighted multi-graphs. We showed that our measures of multiplexity are able
to extract crucial information from both sparse and dense networks by testing it
on different real-world multi-layer systems. We clearly found that a distinction
can be done based on the degree of overlap between links in different layers. For
instance, we showed that some multiplexes exhibit small overlap between links in
different layers, since just a limited number of nodes are active in many layers,
while most of them participate to one or few layers. However, for other systems,
such as the World Trade Multiplex Network (WTM), most of the pairs of nodes
are connected in several layers, so that such multiplexes exhibit large overlap
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1.A Uncorrelated null models for multi-layer networks

between layers. Furthermore, we found that the multiplexity can also provide
interesting information about the distribution of hubs across the various layers;
indeed, systems characterized by nodes having many connections in most of the
layers, such as the WTM, tend to show higher values of raw binary multiplexity.
On the other hand, in other networks exhibiting values of multiplexity for most
of the pairs of layers close to 0, a node with a low degree in a given layer may
represent a hub in a different layer: the European Airport Network is a clear
prototype of such systems.

Our findings suggest that adopting proper null models for multi-level networks,
enforcing constraints taking into account dependencies between layers, is required
in order to suitably model such real-world systems.

Further research in this direction, including the studies reported in the fol-
lowing chapters, will hopefully provide a better understanding of the role of local
constraints in real-world multi-level systems.

Appendix

1.A Uncorrelated null models for multi-layer net-
works

We define the multiplex
−→
G = (G1, G2, . . . , GM ) as the superposition of M layers

Gα (α = 1, 2, . . . ,M), each of them represented by a (possibly weighted) network
sharing the same set of N nodes with the other ones, although we do not require
that all the vertices are active in each layer. Therefore, multiplex ensembles can
be defined by associating a probability P (

−→
G) to each multi-network, so that the

entropy S of the ensemble is given by:

S = −
∑
−→
G

P (
−→
G) lnP (

−→
G) (1.7)

It is then possible to design null models for multi-level networks by maximizing
such an entropy after the enforcement of proper constraints. In this context, pre-
vious works, mentioned in the main text, introduced the concepts of correlated
and uncorrelated multiplex ensembles, based on the possibility to introduce cor-
relations between layers within the null models. In particular, for an uncorrelated
ensemble the probability of a given multiplex can be factorized into the probabil-
ities of each single-layer network Gα belonging to that multiplex, as the links in
any two layers α and β are uncorrelated; thus, it is given by:

P (
−→
G) =

M∏
α=1

Pα(Gα) (1.8)

Instead, if we want to take into account correlations between layers, the previous
relation (1.8) does not hold.
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As stated in the main text, since our purpose is precisely that of measuring
such correlations, we are going to consider the former type of ensemble, in order
to define a null model for the real system so that it is possible to compare the
observed correlations with reference models where the overlap between layers
is actually randomized and, at the same time, important properties of the real
network are preserved.

In this perspective, therefore, the definition of proper null models for the
considered multiplex reduces to the definition of an indipendent null model for
any layer of the system. In order to do this, we take advantage of the concept of
canonical network ensemble, or exponential random graph, i.e. the randomized
family of graphs satisfying a set of constraints on average. In this context the
resulting randomized graph preserves only part of the topology of the considered
real-world network and is entirely random otherwise, thus it can be employed as
a proper reference model.

However, fitting such previously defined models to real datasets is hard, since
it is usually computationally demanding as it requires the generation of many
randomized networks whose properties of interest have to be measured. In this
perspective, we make use of a fast and completely analytical maximum-entropy
method, combined with the maximization of the likelihood function, which pro-
vides the exact probabilities of occurrence of random graphs with the same aver-
age constraints as the real network. From such probabilities it is then possible to
compute the expectation values of the properties we are interested in, such as the
average link probability or the average weight associated to the link established
between any two nodes. This procedure is general enough to be applied to any
network, including the denser ones, and does not require the sampling of the con-
figuration space in order to compute average values of the quantities of interest.
While the adoption of such a method is not strictly required when dealing with
global constraints like the total number of links observed in a network, it becomes
crucial when facing the problem of enforcing local constraints such as the degree
sequence or the strength sequence.

Indeed, so far the most widely used graph null model has been represented by
the Random Graph (RG), which enforces on average as constraint the expected
number of links in the network. Such model, therefore, provides a unique ex-
pected probability pα that a link between any two nodes is established in layer
α: however, as we said, such a reference model completely discards any kind of
heterogeneity in the degree distributions of the layers, resulting in graphs where
each node has on average the same number of connections, inconsistently with
the observed real networks. Thus, the probability of connection between any two
nodes in layer α is uniformly given by:

pα =
Lα

N(N − 1)/2
(1.9)
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1.A Uncorrelated null models for multi-layer networks

where Lα is the total number of links actually observed in layer α:

Lα =
∑
i<j

aαij (1.10)

and aαij = 0, 1 depending on the presence of the link between nodes i and j in
layer α.

Similar considerations apply to weighted networks and the related Weighted
Random Graph (WRG), i.e. the straightforward extension of the previous Ran-
dom Graph to weighted systems; in such a null model, the probability of having
a link of weight w between two nodes i and j is independent from the choice of
the nodes, and it is given by the following geometric distribution:

P (wα) = (pα)w(1− pα) (1.11)

where the maximum-likelihood method shows that the optimal value of the pa-
rameter pα is given by:

pα =
2Wα

N(N − 1) + 2Wα
(1.12)

with Wα defined as the total weight observed in layer α (wαij is the weight asso-
ciated to the link between nodes i and j in the same layer):

Wα =
∑
i<j

wαij (1.13)

Similarly to the corresponding binary random graph, also this kind of null models
discards the simultaneous presence of nodes characterized by high and low values
of the strengths (that is, by a high or low sum of the weights associated to links
incident on that node).

To take into account the heterogeneity of the real-world networks within the
null models, in the unweighted case we consider the Binary Configuration Model
(BCM), i.e. the ensemble of networks satisfying on average a given degree se-
quence. Since we make use of the canonical ensembles, it is possible to obtain
from the maximum-likelihood method each probability pαij that nodes i and j are
connected in layer α (notice that such value pαij is basically the expectation value
of aαij under the chosen Configuration Model). Similarly, for weighted graphs
the Weighted Configuration Model (WCM) can be defined: here, the enforced
constraint is represented by the strength sequence as observed in the real-world
network. In this view, the likelihood maximization provides the expectation value
of each weight wαij for any pair of nodes i and j as supplied by the Weighted
Configuration Model. It is worth noticing that enforcing the degree sequence
(respectively, the strength sequence in the weighted case) automatically leads to
the design of a null model where also the total number of links (respectively, the
total weight) of the network is preserved. In the following section, we will provide
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Undirected multiplex networks

equations generalizing equations (1.9) and (1.12), whose solution allows then to
derive the analytical expression of the expected link probability pαij and, in the
weighted case, the expected link weight wαij . In order to do this, we make use of
a set of N auxiliary variables xαi for any layer α, which are proportional to the
probability of establishing a link between a given node i and any other node (or,
respectively for the weighted case, establishing a link characterized by a given
weight), being therefore directly informative on the expected probabilities pαij (or,
respectively, the expected weights wαij).

1.B Maximum-likelihood method

We now briefly explain the maximum-likelihood method (more details about this
technique can be found in the appendix associated to Chapter 2, where it is also
extended to the directed case). In the binary case, when the observed degree
sequence represents the property that we want to preserve (i.e., in the so-called
configuration model), the method reduces to finding the solution to following set
of N coupled nonlinear equation, independently for each layer α = 1, 2, . . . ,M :∑

i<j

xαi x
α
j

1 + xαi x
α
j

= kαi ∀i = 1, 2, . . . , N (1.14)

where kαi is the observed degree of node i in layer α and the unknown variables
of the equation are the so-called N hidden variables associated to that layer.

Thus, the expected link probability pαij is given by, for any pair of nodes (i, j)
in any layer α:

pαij =
xαi x

α
j

1 + xαi x
α
j

(1.15)

which is therefore the generalization of the expression (1.9) in the previous sec-
tion. We can therefore see that such hidden variables xαi are proportional to the
expected link probability pαij in a given layer α: a higher value of xαi will cor-
respond to a higher expected probability of observing a link between i and any
other node j 6= i, and vice-versa.

Similarly, for weighted multiplexes, we can enforce the strength sequence ob-
served in a real network on a network ensemble, thus designing a proper null
model where the strength sequence of the considered real-world network is pre-
served, while the other properties are randomized. In this context, the maximum-
likelihood method for weighted graphs reduces to solving a set of N coupled non-
linear equations. For any node i in any layer α, we have:∑

i<j

xαi x
α
j

1− xαi xαj
= sαi (1.16)
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1.C Binary multiplexity

where sαi is the observed strength of node i in layer α and the unknown variables
of the equation are, again, the N hidden variables associated to the considered
layer.

Thus, the expected link weight wαij is given by, for any pair of nodes (i, j):

wαij =
xαi x

α
j

1− xαi xαj
(1.17)

hence generalizing the corresponding equation (1.12). In this case, the computed
hidden variables xαi are proportional to the expected link weight wαij in a given
layer α; a higher value of xαi will therefore correspond to a higher expected link
weight between i and any other node j 6= i, and vice-versa.

We can now derive the expression for the expectation values of the binary and
weighted multiplexity defined in the main text.

1.C Binary multiplexity
When the unweighted networks are considered we have defined the “absolute”
binary multiplexity between any two layers α and β as:

mαβ
b =

2
∑
i<j min{aαij , a

β
ij}

Lα + Lβ
(1.18)

with the previously introduced notation.
As we said, this quantity is informative only after a comparison with the value

of binary multiplexity obtained when considering a null model. We have therefore
introduced the following transformed or rescaled quantity:

µαβb =
mαβ
b − 〈m

αβ
b 〉

1− 〈mαβ
b 〉

(1.19)

where mαβ
b is the value measured for the observed real-world multiplex and 〈mαβ

b 〉
is the value expected under the chosen null model. We will show in the next
section that, when the Random Graph is considered as a null model, the previous
quantity (1.19) is actually the correlation coefficient between the entries of the
adjacency matrix referred to any two layers α and β of a multi-level graph.

We should point out that the raw intra-layer multiplexity mαα
b always leads to

a measured value equal to 1, representing complete similarity between any layer
and itself. However, the rescaled intra-layer multiplexity µααBCM actually leads
to an indeterminate value; therefore, we choose to set this value by construction
equal to 1 too, for sake of clarity.

In order to compute µαβb we should then calculate the expected multiplexity
under the chosen null model, that is:

〈mαβ
b 〉 =

2
∑
i<j〈min{aαij , a

β
ij}〉

〈Lα〉+ 〈Lβ〉
(1.20)
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However, since both the considered null models preserve the average number of
links in each layer as constraint, we have just to evaluate the analytical expression
for the expected value of the minimum of two variables. In the unweighted case,
this is easy because it reduces to the evaluation of the expected minimum between
two indipendent, binary variables. In particular, when the Configuration Model
is considered (the extension to the Random Graph is straightforward), the prob-
ability that a link exists between nodes i and j is given by the mass probability
function of a Bernoulli-distributed variable:

P (aαij) = p
aij
ij (1− pij)(1−aij) (1.21)

Therefore, we have for the configuration model:

〈min{aαij , a
β
ij}〉BCM =

∑
aαij ,a

β
ij

min{aαij , a
β
ij}P

(
min{aαij , a

β
ij}
)

=

= 0·P
(

min{aαij , a
β
ij} = 0

)
+ 1·P

(
min{aαij , a

β
ij} = 1

)
=

= P
(

min{aαij , a
β
ij} = 1

)
=

= P
(
aαij = 1

)
P
(
aβij = 1

)
=

= pαijp
β
ij (1.22)

and similarly for the Random Graph:

〈min{aαij , a
β
ij}〉RG = pαpβ (1.23)

where we define pα as the fraction of links actually present in that layer, as we
have already done before:

pα =
Lα

N(N − 1)/2
(1.24)

It is now possible to compute the analytical expression for the rescaled multi-
plexity. We obtain for the Random Graph:

µαβRG =
2
∑
i<j

(
min{aαij , a

β
ij} − pαpβ

)
∑
i<j

(
aαij + aβij − 2pαpβ

) (1.25)

and for the Binary Configuration Model:

µαβBCM =
2
∑
i<j

(
min{aαij , a

β
ij} − pαijp

β
ij

)
∑
i<j

(
aαij + aβij − 2pαijp

β
ij

) (1.26)
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1.C Binary multiplexity

1.C.1 Binary multiplexity: z-scores
As we have already said, such rescaled quantities provide proper information
about the similarity between layers of a multiplex, by evaluating the dependencies
measured in a real network with respect to what we would expect, on average, for
an ensemble of multi-level networks sharing only some of the topological properties
of the observed one. However, we cannot understand, from the obtained values of
multiplexity itself, whether the observed value of mαβ

b is actually compatible with
the expected one, as µαβBCM (and the correspondig value related to the Random
Graph) does not provide any information about the standard deviation associated
to the expected value of multiplexity.

In order to solve this issue, we introduce the z-score associated to the previ-
ously defined multiplexity:

z
[
mαβ
b

]
=
mαβ
b − 〈m

αβ
b 〉

σ
[
mαβ
b

] (1.27)

where mαβ
b is the measured multiplexity between a given pair of layers on the

real-world network, 〈mαβ
b 〉 is the value expected under the chosen null model and

σ[mαβ
b ] is the related standard deviation. The z-score, therefore, shows by how

many standard deviations the observed value of multiplexity differs with respect
to the expected one for any pair of layers. In particular, in the binary case such
a quantity becomes:

z
[
mαβ
b

]
=

∑
i<j min{aαij , a

β
ij} −

∑
i<j〈min{aαij , a

β
ij}〉

σ
[∑

i<j min{aαij , a
β
ij}
] (1.28)

Interestingly, not only the expected value, but even the standard deviation
can be calculated analytically. Indeed:

σ2
[
min{aαij , a

β
ij}
]

= 〈min2{aαij , a
β
ij}〉 − 〈min{aαij , a

β
ij}〉

2 (1.29)

Exploiting again the binary character of the two indipendent variables aαij and a
β
ij ,

the expected value of the square of the minimum becomes for the Configuration
Model:

〈min2{aαij , a
β
ij}〉BCM =

∑
aαij ,a

β
ij

min2{aαij , a
β
ij}P

(
min{aαij , a

β
ij}
)

=

= 0·P
(

min{aαij , a
β
ij} = 0

)
+ 1·P

(
min{aαij , a

β
ij} = 1

)
=

= P
(

min{aαij , a
β
ij} = 1

)
=

= P
(
aαij = 1

)
P
(
aβij = 1

)
=

= pαijp
β
ij (1.30)
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Therefore, the standard deviation, required in order to evaluate the z-score asso-
ciated to the multiplexity, is given by:

σ

∑
i<j

min{aαij , a
β
ij}

 =

√√√√∑
i<j

[
pαijp

β
ij −

(
pαijp

β
ij

)2
]

(1.31)

The analytical value of the z-score related to the binary multiplexity, when the
Configuration Model is taken into account, is then:

zαβBCM =

∑
i<j min{aαij , a

β
ij} −

∑
i<j p

α
ijp

β
ij√∑

i<j

[
pαijp

β
ij −

(
pαijp

β
ij

)2
] (1.32)

Extending such results to the Random Graph is immediate, since everything re-
duces to a change in the definition of the probability of observing a link between
any given pair of nodes in each layer. Hence, the z-score associated to the binary
multiplexity according to the binary Random Graph is given by:

zαβRG =

∑
i<j min{aαij , a

β
ij} −

∑
i<j p

αpβ√∑
i<j

[
pαpβ − (pαpβ)2

] (1.33)

where we used the previous definitions for pα and pβ .
We should point out that such z-scores should in principle be defined only if

the associated property (in this case, µαβBCM ) is normally distributed; nevertheless,
even if such assumption does not occur, they provide important information about
the consistency between observed and randomized values. It is worth saying that
these z-scores provide a different kind of information with respect to the previous
multiplexities. Mathematically, the only correlation between, for example, µαβBCM
and the corresponding zαβBCM is the sign concordance; furthermore, the z-score is
useful in order to understand whether, for instance, values of multiplexity close
to 0 are actually comparable with 0, so that we can consider those two layers as
uncorrelated, or they are instead significantly unexpected, although very small.
In this perspective, we should not expect a particular relation between such two
variables µαβBCM and zαβBCM (or, respectively, µαβRG and zαβRG).

1.C.2 Relationship with the correlation coefficient

A possible definition of correlation between layers of a multiplex builds on the
standard correlation coefficient:

Corr{aαij , a
β
ij} =

〈aαija
β
ij〉 − 〈aαij〉〈a

β
ij〉

σασβ
(1.34)
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1.C Binary multiplexity

Hence, a value of correlation equal to 0 represents a pair of uncorrelated layers
only if the probability distributions of aαij and aβij are independent from the cho-
sen node, that is, if all the edges in a certain layer are statistically equivalent.
However, this leads to a probability of establishing a given link which is common
to each pair of nodes, and this is the assumption behind the Random Graph.

In this context, it is then possible to show that, when the Binary Random
Graph is taken into consideration, our novel measure of multiplexity can be re-
duced to the usual definition of correlation coefficient. Indeed, we have:

〈aαija
β
ij〉 =

2
∑
i<j a

α
ija

β
ij

N(N − 1)
=

=
2
∑
i<j min{aαij , a

β
ij}

Lα + Lβ
Lα + Lβ

N(N − 1)
=

= mαβ
b

Lα + Lβ

N(N − 1)
(1.35)

Moreover, the average value of aαij over all the pairs of nodes in layer α is given
by:

〈aαij〉 =
2Lα

N(N − 1)
(1.36)

and similarly for layer β:

〈aβij〉 =
2Lβ

N(N − 1)
(1.37)

Hence,

〈aαij〉〈a
β
ij〉 =

4LαLβ

N2(N − 1)2
(1.38)

On the contrary, the expected value of multiplexity under random graph is given
by:

〈mαβ
b 〉 =

2
∑
i<j p

αpβ

Lα + Lβ
=

=
N(N − 1)
Lα + Lβ

2Lα

N(N − 1)
2Lβ

N(N − 1)
=

=
1

N(N − 1)
4LαLβ

Lα + Lβ
(1.39)

There is therefore a direct relation between 〈aαij〉〈a
β
ij〉 and 〈m

αβ
b 〉:

〈aαij〉〈a
β
ij〉 =

4LαLβ

N2(N − 1)2
=

= 〈mαβ
b 〉

Lα + Lβ

N(N − 1)
(1.40)
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Furthermore, we need to derive the expression for the standard deviation σα and
σβ :

σα =
√
〈
(
aαij
)2〉 − 〈aαij〉2 =

=
√
〈aαij〉

(
1− 〈aαij

)
=

=

√
2Lα

N(N − 1)

[
1− 2Lα

N(N − 1)

]
(1.41)

and analogously for β. Hence, the correlation coefficient between aαij and aβij is
given by:

Corr{aαij , a
β
ij} =

Lα+Lβ

N(N−1)m
αβ
b −

Lα+Lβ

N(N−1) 〈m
αβ
b 〉

2
N(N−1)

√
LαLβ

(
1− 2Lα

N(N−1)

)(
1− 2Lβ

N(N−1)

)
=

(
Lα + Lβ

) (
mαβ
b − 〈m

αβ
b 〉
)

2
√
LαLβ

(
1− 2Lα

N(N−1)

)(
1− 2Lβ

N(N−1)

) (1.42)

It is therefore clear that, apart from a different normalization factor (depending
on Lα and Lβ), our definition of binary rescaled multiplexity, when the Random
Graph is considered as null model, reduces to the usual correlation coefficient
(1.34).

However, such a property does not hold when a different reference model, such
as the Configuration Model, is considered.

1.D Weighted multiplexity
In the main text, we have also extended the previous definitions to weighted
multiplex networks. We have defined the “absolute” weighted multiplexity as:

mαβ
w =

2
∑
i<j min{wαij , w

β
ij}

Wα +W β
(1.43)

where wαij represents the weight of the link between nodes i and j in layer α and
Wα is the total weight related to the links in that layer.

Furthermore, we have defined the following transformed or rescaled quantity:

µαβw =
mαβ
w − 〈mαβ

w 〉
1− 〈mαβ

w 〉
(1.44)

where 〈mαβ
w 〉 is the value measured for the observed real-world network and 〈mαβ

w 〉
is the value expected under the considered reference model. Again, the sign of
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1.D Weighted multiplexity

µαβw is then directly informative about the weighted dependency existing between
layers.

In this context, the expected value of weighted multiplexity is given by:

〈mαβ
w 〉 =

2
∑
i<j〈min{wαij , w

β
ij}〉

〈Wα〉+ 〈W β〉
(1.45)

However, since both the Weighted Random Graph and the Weighted Configura-
tion Model preserve the average total weight associated to the links in each layer
as constraint, also in this case we just need to evaluate the analytical expres-
sion for the expected value of the minimum of two variables; the only difference
with respect to the binary description is related to a change in the underlying
probability distribution.

Indeed, in the weighted case, when the Weighted Configuration Model is con-
sidered (again, the extension to the Weighted Random Graph is straightforward)
such variables are distributed according to a geometrical distribution:

P (wαij) = p
wαij
ij (1− pαij) (1.46)

In order to quantify such an expectation value, we exploit the cumulative distri-
bution of the minimum between the considered variables:

P
(

min{wαij , w
β
ij} ≥ w

)
= P

(
wαij ≥ w

)
P
(
wβij ≥ w

)
=

=
(
pαijp

β
ij

)w
(1.47)

Thus, the expected minimum, under Weighted Configuration Model, becomes:

〈min{wαij , w
β
ij}〉WCM =

∑
w′

w′[P
(

min{wαij , w
β
ij} ≥ w

′
)

+

− P
(

min{wαij , w
β
ij} ≥ w

′ + 1
)

] =

=
∑
w′

w′
[(
pαijp

β
ij

)w′
−
(
pαijp

β
ij

)w′+1
]

=

=
pαijp

β
ij

1− pαijp
β
ij

(1.48)

and, for the Weighted Random Graph:

〈min{wαij , w
β
ij}〉WRG =

pαpβ

1− pαpβ
(1.49)

where we define pα, according to the likelihood maximization, as:

pα =
Wα

Wα +N(N − 1)/2
, (1.50)
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We can now compute the analytical expression for the rescaled multiplexity, ac-
cording to both the chosen null models. We obtain for the Weighted Random
Graph (WRG):

µαβWRG =
2
∑
i<j

(
min{wαij , w

β
ij} −

pαpβ

1−pαpβ

)
∑
i<j

(
wαij + wβij − 2 pαpβ

1−pαpβ

) (1.51)

and for the Weighted Configuration Model (WCM):

µαβWCM =
2
∑
i<j

(
min{wαij , w

β
ij} −

pαijp
β
ij

1−pαijp
β
ij

)
∑
i<j

(
wαij + wβij − 2

pαijp
β
ij

1−pαijp
β
ij

) (1.52)

with the previously defined notation.

1.D.1 Weighted multiplexity: z-scores
Furthermore, we can extend to the weighted case the analysis of the z-scores
associated to the values of multiplexity as defined in (1.44). We can define it in
the usual way:

z
[
mαβ
w

]
=

∑
i<j min{wαij , w

β
ij} −

∑
i<j〈min{wαij , w

β
ij}〉

σ
[∑

i<j min{wαij , w
β
ij}
] (1.53)

Since:

σ2
[
min{wαij , w

β
ij}
]

= 〈min2{wαij , w
β
ij}〉 − 〈min{wαij , w

β
ij}〉

2

(1.54)

we just have to compute the analytical expression for the expected value of the
square of minimum bewteeen wαij and wβij . Then, following the same procedure
adopted for (1.48) we find:

〈min2{wαij , w
β
ij}〉WCM =

∑
w′

(w′)2 [P
(

min{wαij , w
β
ij} ≥ w

′
)

+

− P
(

min{wαij , w
β
ij} ≥ w

′ + 1
)

] =

=
∑
w′

(w′)2
[(
pαijp

β
ij

)w′
−
(
pαijp

β
ij

)w′+1
]

=

=
pαijp

β
ij +

(
pαijp

β
ij

)2

(
1− pαijp

β
ij

)2 (1.55)
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and therefore the standard deviation is:

σ

∑
i<j

min{wαij , w
β
ij}

 =

√√√√√√∑
i<j

pαijpβij +
(
pαijp

β
ij

)2

(
1− pαijp

β
ij

)2 −

(
pαijp

β
ij

)2

(
1− pαijp

β
ij

)2

(1.56)
Finally, the z-score associated to the weighted multiplexity under Weighted Con-
figuration Model is therefore given by:

zαβWCM =

∑
i<j min{wαij , w

β
ij} −

∑
i<j

pαijp
β
ij

1−pαijp
β
ij√∑

i<j

pαijp
β
ij

(1−pαijp
β
ij)

2

(1.57)

Analogously, we get:

zαβWRG =

∑
i<j min{wαij , w

β
ij} −

∑
i<j

pαpβ

1−pαpβ√∑
i<j

pαpβ

(1−pαpβ)2

(1.58)

for the Weighted Random Graph, where we used the previous definitions for pα
and pβ .

1.E Additional results

As we stated in the main text, in order to have a better understanding of the
correlations between layers, it is possible to implement a hierarchical clustering
procedure starting from each of the aforementioned multiplexity matrices. How-
ever, we have to define a notion of distance between layers, starting from our
notion of dependency. We can define a distance dαβ between any pair of com-
modities in the following way:

dαβ =

√
1− µαβBCM

2
. (1.59)

where we chose to consider, for instance, the transformed multiplexity under Bi-
nary Configuration Model. Hence, the maximum possible distance dαβ between
any two layers is 1 (when layers α and β show multiplexity µαβBCM = 1), while the
minimum one is 0 (corresponding to µαβBCM = −1). We can therefore represent the
layers of the multiplex as the leaves of a taxonomic tree, where highly correlated
communities meet at a branching point which is closer to baseline level. In Figure
1.6 we show the dendrogram obtained by applying the Average Linkage Clustering
Algorithm to the matrix representing values of multiplexity µαβBCM for the World
Trade Multiplex (WTM). We can see that some groups of similar commodities are
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Figure 1.6: Dendrogram of commodities traded in 2011 in the WTM
as obtained applying the Average Linkage Clustering Algorithm to the
binary rescaled multiplexity µαβBCM . Colors of the leaves represent different
classes of commodities, as reported in the last Section of this Appendix.
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clearly visible (for instance, the group of edible commodities can be easily identi-
fied), while in other cases apparently distant commodities are grouped together,
pointing out that some unexpected dependencies are present. The dendrogram
reported in Figure 1.6 therefore represents a refinement of the taxonomic tree
reported in previous studies, where the usual correlation coefficient was employed
to define the dependency between layers. Similar dendrograms can be designed
starting from the matrices representing values of µαβRG or weighted multiplexity
µαβWRG and µαβWCM .

Moreover, it is possible to perform the same analysis on the European Airport
Network. However, a dendrogram in this case would not be meaningful, since
most of the layers meet at a single root level, due to the very low correlation
observed between them.

As we said, color-coded multiplexity matrices, as shown in the main text, are
useful in order to detect the meaninful dependencies between layers in a multiplex,
but they do not supply any information about the discrepancy of the observed
values from the corresponding expected ones. Hence, the introduction of suitable
z-scores associated to the previously defined quantities is required. Moreover, it
is worth reminding that the information provided by (1.26) (respectively (1.25)
for the Random Graph) is not necessarily connected to that supplied by (1.32)
(respectively, (1.33)) Indeed, while the multiplexity by itself detects the degree
of correlation between layers of a multi-level network, the corresponding z-scores
reveal how significant those values actually are with respect to our expectations.
In Figure 1.7(a) we show, for the World Trade Multiplex (WTM), the scatter

a b

Figure 1.7: Significance of the binary multiplexity values for the World
Trade Multiplex. Scatter plots of binary multiplexity values µαβb vs the corre-
sponding z-score for each pair of layers, respectively for Random Graph (a) and
Binary Configuration Model (b), for the WTM.

plot of the values of binary multiplexity versus the corresponding z-scores, after
comparing the observed values with the expected ones under Random Graph.
We show that observed very large values of z-scores reveal a high significance of
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the previously obtained overlaps; such a consideration therefore points out that
even the pairs of layers showing low (but positive) values of multiplexity cannot
actually be considered as uncorrelated. Furthermore, a clear correlation between
µαβRG and zαβRG can be observed, thus large values of binary multiplexity correspond
to large z-scores, and vice-versa.

Similar considerations can be done when the Binary Configuration Model is
considered as a benchmark. Indeed, as we show in Figure 1.7(b), a large cor-
relation between µαβBCM and zαβBCM is still present when we consider the WTM;
moreover, since almost all the z-scores are higher than the widely used critical
value z∗BCM = 2 (so that almost no pair of layers shows a multiplexity lying
within 2 standard deviations form the expected value), we highlight that most
of the pairs therefore exhibit unexpectedly high correlations with respect to the
corresponding average value obtained when randomizing the real-world layers ac-
cording to the Configuration Model, similarly to what we found before for the
Random Graph.

However, if we look at the absolute values of such z-scores, we observe that the
significance of the values of multiplexity under Random Graph (µαβRG) is generally
much higher than that measured under Binary Configuration Model (µαβBCM ).
This property, which will still be true in the following Figures, is actually not
surprising, since the Configuration Model enforces more constraints and therefore
leads to higher similarity with the real network w.r.t the Random Graph.

a b

Figure 1.8: Significance of the binary multiplexity values for the Euro-
pean Airport Network. Scatter plots of binary multiplexity values µαβb vs the
corresponding z-score for each pair of layers, respectively for Random Graph (a)
and Binary Configuration Model (b).

A different trend can be observed when the European Airport Network is taken
into account (Figure 1.8(a)). Indeed, it is still clear a high correlation between
values of multiplexity and their respective z-scores when the Random Graph is
considered. However, many z-scores associated to multiplexities close to 0, in
this case, are now close to 0 themselves, therefore suggesting that many pairs of
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layers (i.e. airline companies) may actually be anti-correlated rather than simply
uncorrelated. In this case, the adoption of a more refined null model is then
crucial in order to deeply understand the structural properties of such a system.

When the Binary Configuration Model is considered as benchmark, however,
the analysis of the corresponding scatter plots dramatically changes. However,
as we said, these results are strongly dependent on the considered network. In-
deed, Figure 1.8(b) exhibits a completely different trend with respect, for instance,
to the corresponding Figure 1.7(b) (related to the World Trade Multiplex): no
correlation between µαβBCM and zαβBCM can be observed in this case, so that the
same value of multiplexity can be either associated to a low z-score (thus being
compatible with the expected value under the chosen Configuration Model) or to
very high z-scores (hence unexpectedly different from the model’s expectation).
Moreover, Figure 1.8(b) clearly shows the sign-concordance existing between the
multiplexity and the associated z-score that we pointed out in the previous Sec-
tion. However, no other clear trend can be inferred from such a plot, therefore
pointing out the importance of taking into account both the quantities (µαβBCM
and zαβBCM ) in order to have a complete understanding of the correlations between
layers of a multiplex.

Furthermore, we should highlight once more that, in terms of absolute z-
scores values, the significance of the values of multiplexity under Random Graph
(µαβRG) is usually much higher than that observed after the comparison with the
Configuration Model (µαβBCM ), as we have already found before for the WTM.

Similarly, we can analyze the patterns of correlations resulting from the z-
scores associated to the weighted multiplexity, as defined in (1.58) and (1.57). In
Figure 1.9(a) we show the relation between the values of weighted multiplexity for
any pair of layers and the related z-score, computed with respected to the expected
multiplexity according to the Weighted Random Graph. The sign concordance
is still clear, but the correlation between µαβWRG and zαβWRG is much less sharp
with respect to the corresponding binary case, especially for negative values of
multiplexity.

Even more so, such a weak correlation between weighted multiplexity and the
corresponding z-score completely disappears when the considered benchmark is
the Weighted Configuration Model (Figure 1.9(b)): in this case the same value
of µαβWCM may correspond to z-scores even characterized by different orders of
magnitude, thus pointing out once more the importance of the introduction of a
notion of standard deviation referred to the average 〈µαβWCM 〉. Indeed, the same
value of observed multiplexity can actually be either extremely unexpected or in
full agreement with the null model’s prediction.
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a b

Figure 1.9: Significance of the weighted multiplexity values for the World
Trade Multiplex. Scatter plots of weighted multiplexity values µαβw vs the
corresponding z-scores for each pair of layers, respectively for Weighted Random
Graph (a) and Weighted Configuration Model (b).

1.F International Trade Multiplex Network: list
of layers

Throughout this thesis we meticulously analyze the World Trade Multiplex Net-
work (WTM), as provided by the BACI database mentioned in the main text. The
data provide information about import and export between N = 207 countries
(we focus in particular on the year 2011) and turn out to have a straightforward
representation in terms of multi-layered network; it is indeed possible to disag-
gregate the global trade between any two countries into the import and export in
a given commodity, so that the global trade system can be thought of as the su-
perposition of all the layers. The network is then composed by 207 countries and
M = 96 different commodities, according to the standard international classifica-
tion HS1996 (the list of commodities is reported below in Table 1.1). While the
aggregated network shows a density higher than 55%, the various layers are char-
acterized by densities from 6% (related to trade in silk) to 45% (for import-export
of mechanical appliances and parts thereof). Such heterogeneity may suggest that
a multiplex analysis is therefore required. Interestingly, in this case each of the
layers is represented by a weighted network, where the weight associated to any
link in a layer stands for the amount of money exchanged by a given pair of
countries in that layer (i.e., commodity).
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Commodity
01 Live animals •
02 Meat and edible meat

offal
•

03 Fish, crustaceans and
acquatic invertebrates

•
04 Dairy produce; birs eggs;

honey and other edible
animal products

•

05 Other products of animal
origin

•
06 Live trees, plants; bulbs,

roots; cut flowers and
ornamental foliage tea

and spices

•

07 Edible vegetables and
certain roots and tubers

•
08 Edible fruit and nuts;

citrus fruit or melon peel
•

09 Coffee, tea, mate and
spices

•
10 Cereals •
11 Milling products; malt;

starch; inulin; wheat
gluten

•

12 Oil seeds and oleaginous
fruits; miscellaneous

grains, seeds and fruit;
industrial or medicinal
plants; straw and fodder

•

13 Lac; gums, resins and
other vegetable sap and

extracts

•

14 Vegetable plaiting
materials and other
vegetable products

•

15 Animal, vegetable fats
and oils, cleavage
products, etc.

•

16 Edible preparations of
meat, fish, crustaceans,
mollusks or other aquatic

invertebrates

•

17 Sugars and sugar
confectionary

•
18 Cocoa and cocoa

preparations
•

19 Preparations of cereals,
flour, starch or milk;

bakers wares

•

20 Preparations of
vegetables, fruit, nuts or

other plant parts

•

21 Miscellaneous edible
preparations

•
22 Beverages, spirits and

vinegar
•

23 Food industry residues
and waste; prepared

animal feed

•

24 Tobacco and
manufactured tobacco

substitutes

•

25 Salt; sulfur; earth and
stone; lime and cement

plaster

•

26 Ores, slag and ash •
27 Mineral fuels, mineral oils

and products of their
distillation; bitumin

substances; mineral wax

•

28 Inorganic chemicals;
organic or inorganic

compounds of precious
metals, of rare-earth
metals, of radioactive
elements or of isotopes

•
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29 Organic chemicals •
30 Pharmaceutcal products •
31 Fertilizers •
32 Tanning or dyeing

extracts; tannins and
derivatives; dyes,

pigments and coloring
matter; paint and

varnish; putty and other
mastics; inks

•

33 Essential oils and
resinoids; perfumery,
cosmetic or toilet

preparations

•

34 Soap; waxes; polish;
candles; modeling pastes;
dental preparations with

basic of plaster

•

35 Albuminoidal substances;
modified starch; glues;

enzymes

•

36 Explosives; pyrotechnic
products; matches;

pyrophoric alloys; certain
combustible preparations

•

37 Photographic or
cinematographic goods

•
38 Miscellaneous chemical

products
•

39 Plastics and articles
thereof

•
40 Rubber and articles

thereof
•

41 Raw hides and skins
(other than furskins) and

leather

•

42 Leather articles; saddlery
and harness; travel goods,
handbags and similar;
articles of animal gut
(not silkworm gut)

•

43 Furskins and artificial fur;
manufactures thereof

•
44 Wood and articles of

wood; wood charcoal
•

45 Cork and articles of cork •
46 Manufactures of straw,

esparto or other plaiting
materials; basketware and

wickerwork

•

47 Pulp of wood or of other
fibrous cellulosic material;
waste and scrap of paper

and paperboard

•

48 Paper and paperboard
and articles thereof;
paper pulp articles

•

49 Printed books,
newspapers, pictures and
other products of printing
industry; manuscripts,

typescripts

•

50 Silk, including yarns and
woven fabric thereof

•
51 Wool and animal hair,

including yarn and woven
fabric

•

52 Cotton, including yarn
and woven fabric thereof

•
53 Other vegetable textile

fibers; paper yarn and
woven fabrics of paper

yarn

•

54 Manmade filaments,
including yarns and

woven fabrics

•

55 Manmade staple fibers,
including yarns and

woven fabrics

•
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56 Wadding, felt and
nonwovens; special yarns;
twine, cordage, ropes and
cables and article thereof

•

57 Carpets and other textile
floor coverings

•
58 Special woven fabrics;

tufted textile fabrics;
lace; tapestries;

trimmings; embroidery

•

59 Impregnated, coated,
covered or laminated
textile fabrics; textile

articles for industrial use

•

60 Knitted or crocheted
fabrics

•
61 Apparel articles and

accessories, knitted or
crocheted

•

62 Apparel articles and
accessories, not knitted or

crocheted

•

63 Other textile articles;
needlecraft sets; worn

clothing and worn textile
articles; rags

•

64 Footwear, gaiters and the
like and parts thereof

•
65 Headgear and parts

thereof
•

66 Umbrellas, walking sticks,
seat sticks, riding crops,
whips, and parts thereof

•

67 Prepared feathers, down
and articles thereof;

artificial flowers; articles
of human hair

•

68 Articles of stone, plaster,
cement, asbestos, mica or

similar materials

•

69 Ceramic products •
70 Glass and glassware •
71 Pearls, precious stones,

metals, coins, etc.
•

72 Iron and steel •
73 Articles of iron and steel •
74 Copper and articles

thereof
•

75 Nickel and articles thereof •
76 Aluminum and articles

thereof
•

77 Lead and articles thereof •
78 Zinc and articles thereof •
79 Tin and articles thereof •
80 Other base metals;

cermets; articles thereof
•

81 Tools, implements,
cutlery, spoons and forks
of base metal and parts

thereof

•

82 Miscellaneous articles of
base metal

•
83 Nuclear reactors, boilers,

machinery and
mechanical appliances;

parts thereof

•

84 Electric machinery,
equipment and parts;
sound equipment;

television equipment

•

85 Railway or tramway;
locomotives, rolling stock,
track fixtures and parts
thereof; mechanical and
electromechanical traffic

signal equipment

•
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86 Vehicles (not railway,
tramway, rolling stock);
parts and accessories

•

87 Aircraft, spacecraft, and
parts thereof

•
88 Ships, boats and floating

structures
•

89 Optical, photographic,
cinematographic,

measuring, checking,
precision, medical or

surgical
instruments/apparatus;
parts and accessories

•

90 Clocks and watches and
parts thereof

•
91 Musical instruments;

parts and accessories
thereof

•

92 Arms and ammunition,
parts and accessories

thereof

•

93 Furniture; bedding,
mattresses, cushions, etc.;
other lamps and light

fitting, illuminated signs
and nameplates,

prefabricate buildings

•

94 Toys, games and sports
equipment; parts and

accessories

•

95 Miscellaneous
manufactured articles

•
96 Works of art, collectors

pieces and antiques
•

Table 1.1: List of commodities of
the WTM, according to the stan-
dard international classification
HS1996, and associated codes, as
provided by the BACI-Comtrade
dataset. In the first column we show
the number representing each product.
In the third column we divide such com-
modities in classes of similar traded
items, each of them being represented
by a different colored circle; colors are
the same as reported in the dendrogram
in Figure 1.6.
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