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Abstract In covariate (sub)models of population pharma-

cokinetic models, most covariates are normalized to the

median value; however, for body weight, normalization to

70 kg or 1 kg is often applied. In this article, we illustrate

the impact of normalization weight on the precision of

population clearance (CLpop) parameter estimates. The

influence of normalization weight (70, 1 kg or median

weight) on the precision of the CLpop estimate, expressed

as relative standard error (RSE), was illustrated using data

from a pharmacokinetic study in neonates with a median

weight of 2.7 kg. In addition, a simulation study was per-

formed to show the impact of normalization to 70 kg in

pharmacokinetic studies with paediatric or obese patients.

The RSE of the CLpop parameter estimate in the neonatal

dataset was lowest with normalization to median weight

(8.1%), compared with normalization to 1 kg (10.5%) or

70 kg (48.8%). Typical clearance (CL) predictions were

independent of the normalization weight used. Simulations

showed that the increase in RSE of the CLpop estimate with

70 kg normalization was highest in studies with a narrow

weight range and a geometric mean weight away from

70 kg. When, instead of normalizing with median weight, a

weight outside the observed range is used, the RSE of the

CLpop estimate will be inflated, and should therefore not be

used for model selection. Instead, established mathematical

principles can be used to calculate the RSE of the typical

CL (CLTV) at a relevant weight to evaluate the precision of

CL predictions.

Key Points

Normalization to a weight outside the observed

weight range (e.g. 70 kg normalization in a

paediatric study) can increase the uncertainty of

parameter estimates in pharmacokinetic covariate

models.

The predictive performance of pharmacokinetic

models and their covariate submodels is unaffected

by weight normalization.

When normalizing outside the observed covariate

range, the RSEs of the corresponding population

estimates should generally not be used for model

evaluation. The RSE of the typical parameter at a

relevant covariate value can be used instead.
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1 Introduction

In population pharmacokinetic modelling, covariate mod-

els are built to describe between-subject variability in

pharmacokinetic parameters (e.g. clearance [CL]) based on

patient information (e.g. weight) [1, 2]. These covariate

models can then be used to support personalized pharma-

cotherapy [3]. One of the most commonly identified

covariates in population pharmacokinetic models is the

body weight of the patient [4–8]. The relationship between

drug CL and weight is often described using a power

function:

CLTV ¼ CLpop � WTi

WTnorm

� �EXPWT

ð1Þ

CLi ¼ CLTV � eETAi; ð2Þ

where CLTV represents the predicted CL for a typical

individual with weight equal to WTi, CLpop represents the

population estimate of CL for an individual with a weight

equal to the normalization weight (WTnorm), WTi repre-

sents the individual’s weight, EXPWT represents the

exponent that characterizes the influence of weight on CL,

CLi represents the individual post hoc predictions of CL for

individual i, and eETA represents the post hoc estimate of

the deviation of individual i from the predicted CL of a

typical individual.

EXPWT in this weight-based Eq. 1 can be fixed a priori

(for instance to 1, 0.75 or 0.67) or estimated [9–12]. For

continuous covariates other than weight, it is common to

normalize to the mean or the median covariate value of the

covariate in the dataset, whereas for weight, normalization

to 70 kg is often chosen [2, 13–15]. The rationale for this

approach is that the estimate of CLpop will then represent

the value of a typical 70 kg adult, which can easily be

compared with other (adult) studies [2, 5, 10]. For similar

reasons, a WTnorm of 1 kg can be chosen or, when no

explicit normalization is performed, this normalization is

implicitly chosen [9]. Recently, Mahmood and Tegenge

investigated the impact of 70 and 1 kg weight normaliza-

tion on CLTV predictions and concluded that weight nor-

malization has no impact on CLTV predictions [9].

The concept of normalization has been extensively

studied in linear regression [16, 17]. When normalizing the

data to the mean, the relative standard error (RSE) of the

intercept term is minimized, while normalizing outside of

the data range can result in estimates with poor precision

[16]. In this context, the power function in Eq. 1 can be

considered a linear model in the log domain, with an

intercept of log CLpop [13]. If the same concepts apply, we

might expect the RSE of the estimate of CLpop to be

minimal when normalizing weight to the geometric mean.

Alternatively, normalizing to 1 kg or 70 kg might result in

high RSE of CLpop, especially in populations with high or

low weights.

As the impact of 70 kg normalization on the RSE of

CLpop could be considerable, especially when analysing

data from neonatal or morbidly obese patients, insight into

the statistical consequences of the selected normalization

weight seems important among those involved in popula-

tion pharmacokinetic modelling. In this article, we provide

mathematical derivations of the phenomena and illustrate

the impact of weight normalization on the precision of the

parameter estimate of CLpop. For this, we used an existing

neonatal pharmacokinetic dataset, as well as simulated data

of various paediatric and obese populations.

2 Methods

2.1 Case Study

A dataset from a previously published population phar-

macokinetic analysis of phenobarbital in term and preterm

neonates was used [18]. This dataset contained phenobar-

bital plasma concentrations collected during therapeutic

drug monitoring from 53 neonates up to 80 h after the last

phenobarbital dose. The weight of these neonates ranged

from 0.45 to 4.5 kg and had a median value of 2.7 kg [18].

These data were modelled using a one-compartment

model with interindividual variability on CL and volume of

distribution (V) and a proportional error model. The

covariate model consisted of a linear model (exponent

fixed to a value of 1) for weight on V and a power model

with an estimated exponent for weight on CL (Eq. 1). For

three different values of WTnorm (1, 2.7, and 70 kg),

parameter estimates were obtained using NONMEM 7.3

[19]. The collinearity of the parameter estimates was

assessed using the condition number, which is defined as

the square root of the ratio between the largest and smallest

eigenvalue of the correlation matrix. RSEs of the parameter

estimates (i.e., CLpop and EXPWT) in NONMEM were

obtained using two different methods: calculation from the

estimated variance–covariance matrix in NONMEM, and

calculation calculated from 1000 bootstrap runs, which

were performed using PsN 4.2.0. for each of the three

models [20].

Furthermore, from these 1000 bootstrap runs, the esti-

mates of CLpop and EXPWT (see Eq. 1) were used to cal-

culate the predicted function of CLTV over weight for each

of the bootstrap runs over a weight range of 0.5–200 kg.

For each of the three weight-normalized models, we used

these functions of CLTV over weight to obtain the 95%

confidence interval and RSE of CLTV predictions over the

weight range of 0.5–200 kg for all three values of WTnorm.
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RSE of CLTV predictions over weight were also calcu-

lated using the variance–covariance matrix obtained from

NONMEM [13]. For this, we log-transformed the power

function of Eq. 1, which resulted in the following linear

model:

Log CLTV ¼ LogCLpop þ EXPWT � log
WTi

WTnorm

� �
; ð3Þ

where LogCLpop represents the estimate of the natural

logarithm of CL of an individual whose weight is equal to

the normalization weight. With a linear model, we can use

principles from linear regression to calculate the RSE of

the predictions of CLTV at an arbitrary weight WTi:

VAR Log CLTVð Þ ¼ VARLogCLpop
þ 2

� COVARLogCLpop;EXPwt

� log
WTi

WTnorm

� �
þ VAREXPwt

� log
WTi

WTnorm

� �� �2

ð4Þ

RSE CLTVð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eVARðLogCLTVÞ � 1

p
; ð5Þ

where VARLogCLpop represents the variance of the estimate

of LogCLpop, COVARLogCLpop;EXPwt represents the covari-

ance between the estimates for LogCLpop and EXPWT, and

VAREXPwt represents the variance of the estimate of

EXPWT. Mathematical derivation of Eqs. 4 and 5 are

supplied in the electronic supplementary material.

2.2 Impact of WTnorm on the Relative Standard

Error of CLpop for Different Weight

Distributions

To further study the impact of WTnorm in a covariate

function on the RSE of the estimate of CLpop with different

weight distributions, we generated pharmacokinetic data-

sets of patient populations with six different weight dis-

tributions in R version 3.3.2. We then fitted a one-

compartmental pharmacokinetic model described in the

previous subsection, re-estimating all parameters.

For this purpose, three paediatric weight distributions

(PEDIAT1, PEDIAT2 and PEDIAT3) and three weight

distributions of adult populations including obese patients

(OBESE1, OBESE2 and OBESE3) were used to generate

simulated datasets (Table 2).

For each weight distribution, 250 datasets consisting of

50 patients were randomly sampled from the distributions

using R software. For each patient, concentrations were

simulated for 24, 72 and 120 h after a single 10 mg/kg

dose. The simulated datasets were fitted with the models

described in Sect. 2.1 and weight was normalized to either

70 kg or the expected geometric mean of the weight

distribution. Geometric mean was chosen as we hypothe-

sized that this would result in the minimum RSE of CLpop,

as discussed in the Introduction. The proportion of suc-

cessful covariance steps was compared for a statistically

significant difference between the different normalization

strategies, using a two-sample test for equality of propor-

tions with continuity correction (prop.test function in R).

For datasets that yielded successful covariance steps in

both model fits, we calculated the ratio of the RSEs for the

estimate of CLpop of both model fits:

RSE ratio ¼ RSE CLpop70 kg normalization

RSE CLpop Geometric mean normalization

ð6Þ

3 Results

3.1 Case Study

Table 1 shows that only the RSE of the estimate of CLpop

varied with normalization weight. Normalizing to median

weight (2.7 kg) resulted in a lower RSE of CLpop, com-

pared with 1 kg and 70 kg normalization. RSEs were 10.6,

8.0, and 48.2% for 1, 2.7 and 70 kg, respectively (Table 1).

These RSE values were obtained from NONMEM’s

covariance step, but similar results were obtained using a

bootstrap (1 kg: 10.5%; 2.7 kg: 8.1%; 70 kg: 48.8%).

Additionally, there was a stronger correlation between the

uncertainty of the parameter estimates of CLpop and

EXPWT when normalizing to 1 kg or 70 kg (Table 1).

Finally, increased collinearity between the parameters was

observed for the 1 kg and 70 kg normalizations, as iden-

tified by a higher condition number (Table 1).

The parameter estimates of CLpop varied with normal-

ization weight (Table 1), which results from the fact that

this parameter represents the typical CL of a subject whose

weight is equal to the normalization weight. However, the

same predicted CLTV (Eq. 1) is obtained for the three

model fits with different normalization weights since

CLTV ¼ 0:00615 � WTi

1kg

� �0:665

� 0:0119 � WTi

2:7kg

� �0:665

� 0:104 � WTi

70kg

� �0:665

This is further illustrated by Fig. 1 where the results on

predicted CLTV for the model with a normalization weight

of 2.7 kg is shown, while the models with different

normalization weights produced equivalent results.

Additionally, Fig. 1a shows that the 95% bootstrap

confidence interval of predicted CLTV broadens the

further the weight moves away from the centre of the

weight distribution of the patient population in the dataset.

Influence of Normalization Weight in Population PK Covariate Models



Figure 1b illustrates that the CLTV functions from different

bootstrap samples are very similar within the range of the

data, and diverge outside the weight range of the original

dataset, explaining the broader confidence intervals seen in

Fig. 1a.

Figure 2 shows the RSE of the predicted function of

CLTV over weight, as well as the RSE of the estimate of the

parameter CLpop. The RSE of the CLTV function was cal-

culated using either bootstrap or the variance–covariance

matrix (Eq. 5), with both methods resulting in similar

results (Fig. 2). Using Eq. 5, the minimum RSE of CLTV

(5.8%) was calculated at 1.9 kg, which is close to, but not

equal to, measures of the central tendency of the weight

distribution, such as the mean (2.4 kg, RSE = 6.6%),

median (2.7 kg, RSE = 7.5%) or geometric mean (2.1 kg,

RSE = 6.0%). The RSE of the estimate of the CLpop

parameter reported by NONMEM for a model with a given

normalization weight matches the RSE of the CLTV func-

tion at the normalization weight. The former results in

6.4% RSE with 1.9 kg normalization, and 8.0% RSE with

normalization to the median.

3.2 Impact of 70 kg Normalization in Different

Paediatric and Obese Populations

Evaluation of the impact of 70 kg normalization on the

RSE of CLpop estimates for simulated paediatric and obese

datasets with various weight distributions showed that,

generally, 70 kg normalization resulted in a higher RSE of

the CLpop estimate compared with normalization to geo-

metric mean weight, resulting in an RSE ratio above 1

(Table 2, Fig. 3). The results show that the degree of

impact of 70 kg normalization depends on the weight

distribution in the dataset. The three paediatric weight

distributions had a geometric mean weight of 20 kg, but

different dispersion around the geometric mean. The RSE

ratio was highest (median RSE ratio = 4.3) for the log-

normal distribution with a standard deviation on the loga-

rithmic scale of 0.25 (PEDIAT1).

Table 1 Parameter estimates

and relative standard errors (%)

from the NONMEM covariance

step for the neonatal dataset

using different normalization

weights

WTnorm 1 kg 2.7 kg (median) 70 kg

OFV 1091 1091 1091

CLpop (L/h) 0.00615 (10.6%) 0.0119 (8.0%) 0.104 (48.2%)

V (L) 2.37 (4.4%) 2.37 (4.4%) 2.37 (4.4%)

EXPWT 0.665 (20.3%) 0.665 (20.3%) 0.665 (20.3%)

Proportional error [%] 2.89 (23.5%) 2.89 (23.5%) 2.89 (23.5%)

Condition number 4.4 2.8 16.2

CorrelationCLpop, EXPwt
a - 0.840 0.545 0.988

aCorrelation of the uncertainty of the parameter estimates of CLpop and EXPWT

OFV objective function value, CLpop typical clearance of subject whose weight is equal to normalization

weight, V volume of distribution, EXPWT exponent in Eq. 1, WTnorm normalization weight in Eq. 1

Fig. 1 Clearance predictions versus weight (0.5–200 kg) in an

example neonatal dataset. (a) Median (solid black line) and 95%

confidence interval (dotted line) of 1000 functions of CLTV versus

weight obtained from 1000 bootstrap runs; green dots represent the

individual post hoc CLi estimates of the studied patients. (b) Estimated

function of CLTV versus weight from the original dataset (solid black

line) and illustrative set of functions of CLTV versus weight (grey

solid lines) obtained in six (of 1000) separate bootstrap runs; green

dots represent the individual post hoc CLi estimates of patients in the

original dataset. Depicted results were obtained using a normalization

weight of 2.7 kg. CLTV clearance for a typical individual, CLi
clearance for individual i

S. C. Goulooze et al.



The weight distributions of OBESE1 and OBESE2 have

a similar standard deviation on a logarithmic scale, but

different geometric means of the weight (162 and 118 kg,

respectively). The results in Table 2 and Fig. 3 show that

this results in a lower RSE ratio in OBESE2, compared

with OBESE1 (median RSE ratio of 2.3 and 3.5,

respectively). Normalizing to 70 kg has only marginal

impact on RSE in OBESE3 (median RSE ratio = 1.1), with

a geometric mean that is closer to 70 kg than OBESE2

(97 kg vs. 118 kg), as well as a higher standard deviation

on a logarithmic scale (0.35 vs. 0.2).

Table 2 shows that for both paediatric and adult popu-

lations, the impact of 70 kg normalization on the RSE of

the estimate of CLpop was highest for studies with a narrow

weight range (low standard deviation on a logarithmic

scale) and a median weight away from 70 kg.

The percentage of datasets for which a successful

covariance step could be obtained in both model fits ranged

from 28 to 84% in the different scenarios. The proportion

of successful covariance steps was significantly higher

using geometric mean normalization compared with 70 kg

normalization in scenarios PEDIAT1 (p\ 0.001) and

PEDIAT2 (p\ 0.001), but not in any of the other sce-

narios. The most common cause of the missing covariance

steps was boundary issues due to the difficulty in esti-

mating the variance for the interindividual variability of

CL.

4 Discussion

This report illustrates the statistical principle that, when

estimating the exponent in a body weight-based covariate

submodel of a population pharmacokinetic model (Eq. 1),

Fig. 2 Relation between weight and the RSE of both CLTV and

CLpop in an illustrative neonatal dataset. The solid line represents the

RSE of CLTV predictions from 1000 bootstrap runs, the dotted line

represents the RSE of CLTV predictions obtained from the variance–

covariance matrix (Eq. 5), and the red dots represent the RSE of the

estimated CLpop parameter using the corresponding normalization

weight, obtained from the covariance step of a single NONMEM run.

The vertical tick marks on the bottom of the graph depict the body

weights of subjects in the dataset. RSE relative standard error, CLTV
clearance for a typical individual, CLpop population clearance

Table 2 Characteristics of the different weight distributions and summary of the simulation results

Distribution Geometric

mean (kg)

SD

on

log-

scale

Distance between

geometric mean and

70 kg (in SD on log-

scale)

Median RSE ratio

CLpop (Eq. 6) for

70 kg

normalization

Covariance step

successful with

70 kg

normalization (%)

Covariance step

successful with

geometric mean

normalization (%)

Covariate step

successful in

both

normalizations

(%)

PEDIAT1

Log-normal

20 0.25 5.0 4.3 72 57 54

PEDIAT2

Uniform

10–32 kg

20 0.33 3.9 3.5 79 63 59

PEDIAT3

Uniform

1–51 kg

20 0.83 1.5 1.7 85 85 84

OBESE1

Uniform

110–220

162 0.2 - 4.2 3.5 31 32 28

OBESE2

Uniform

80–160

118 0.2 - 2.6 2.3 47 48 45

OBESE3

Uniform

45–160

97 0.35 - 0.9 1.1 52 53 50

RSE relative standard error, SD standard deviation, CLpop population clearance
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the use of a normalization weight outside the observed

weight range can result in an inflated RSE of the estimate

of CLpop. This holds true for 70 kg normalization, but also

for 1 kg normalization (which is sometimes referred to as

‘no normalization’) [9].

The RSE of the CL parameter CLpop represents the RSE

of the predicted typical CL (CLTV) at a particular nor-

malization weight, and is therefore not a universal measure

for the precision of the estimate of CL (Table 2). As we

show, the RSE of the predicted CLTV is not constant, but

dependent on the weight of the subject for whom CLTV is

predicted (Figs. 1 and 2). This means that the RSE of

CLpop represents how precisely CL can be estimated for a

subject at the applied normalization weight. When esti-

mating CLpop at a normalization weight outside the

observed weight range, the RSE of CLpop will be inflated

and cannot be used as a criterion for model selection. Our

example with 70 kg normalization in a neonatal pharma-

cokinetic model showed, for instance, that the RSE of the

CLpop estimate increased sixfold compared with the esti-

mate obtained with normalization to the median.

In linear regression, the minimum RSE is obtained by

normalizing to the mean value. Because the power function

becomes a linear model in the log domain, one might

expect the minimum RSE at the geometric mean weight as

this is equivalent to normalizing to the mean value of log of

weight. The results of the case study show that this is not

necessarily the case for covariate models of non-linear

mixed-effects models. In our case study, we found that the

minimum RSE of CLpop was obtained by normalizing to

1.9 kg, rather than the mean, median or geometric mean

weight. The normalization weight with minimum RSE of

CLpop can be predicted by minimizing Eq. 5, although this

does require that an initial model with a test normalization

weight is run to obtain an estimate of the variance–co-

variance matrix. In our case study, we normalized to the

median weight as this is the most commonly used nor-

malization weight. This increased the RSE of CLpop to

8.0%, from the minimum RSE of 6.4% at a normalization

weight of 1.9 kg. However, normalizing to the median

weight will likely be fit-for-purpose in most cases.

Regardless of the normalization weight that is used,

Eqs. 4 and 5 can be used to calculate RSE values for any

given body weight based on a variance–covariance matrix.

This can be useful as normalization to 70 kg as a ‘stan-

dardized individual’ is sometimes advocated to improve

comparisons of results from different studies [5]. In these

cases, normalization to 70 kg can applied and Eqs. 4 and 5

can be used to calculate the RSE values for a relevant body

weight to enable its use as a model selection criterion.

Alternatively, model estimation can be performed with

median weight normalization, and both the estimated

CLpop parameter for the median weight and the derived

CLTV for a 70 kg individual are reported, in which case the

calculated RSE of the latter is relevant when comparing

results from different studies.

The expected increase in RSE of centring to 70 kg is

dependent on both the variance of the weight distribution

and the distance of the mean of the distribution from the

chosen normalization weight (Fig. 3). The effect seems to

be largest in cases of narrow distributions with a mean

covariate value far away from the centre of the data. This

Fig. 3 RSE ratio of CLpop

(Eq. 6) when using 70 kg

normalization compared with

geometric mean weight

normalization. For each weight

distribution, 250 datasets were

generated and refitted. Only

results of datasets for which the

covariance step was successful

for both the 70 kg and

geometric mean weight

normalization were included in

this graph (Table 2). RSE

relative standard error, CLpop
population clearance

S. C. Goulooze et al.



especially holds true for (pre)term neonates, infants and

young children and (morbidly) obese patients. In cases

where the population mean is away from 70 kg but the

range of weights includes 70 kg (such as scenario

OBESE3), normalizing to 70 kg will likely result in an

RSE increase of CLpop that will not affect its application in

model selection (Fig. 3).

It is important to realize that weight normalization only

impacts the precision of the CLpop parameter estimate, in

case a covariate model according to Eq. 1 is chosen. If the

exponent is fixed, the RSE of the estimate of CLpop will be

unaffected by normalization weight. Similarly, in this sit-

uation, the RSE of the predicted CLTV will be independent

of the subject’s weight. Whether or not the exponent should

be estimated or fixed is an ongoing discussion that is out-

side the scope of this paper [5, 11, 12].

In the simulation study, the calculation of the RSE ratio

required that both model fits resulted in a successful

covariance step. This requirement introduces the potential

for selection bias as the results from the excluded datasets

might have had a different impact of normalization on the

RSE of CLpop. However, performing a bootstrap on each of

the 3000 model fits to obtain the RSE ratio independent of

covariance step success was not feasible due to its com-

putational demands.

Interestingly, the simulation study showed that in two of

the six simulated scenarios, a higher percentage of runs

with successful covariance steps was obtained when using

geometric mean normalization instead of 70 kg normal-

ization. Additionally, the paediatric case study showed that

with normalization outside the observed weight range,

collinearity between the CLpop and EXPWT parameter

estimates is increased (Table 1). This suggests that nor-

malization affects the stability of the parameter estimation

process, which has been described for both linear models,

as well as population pharmacokinetic models [15].

Although the increased stability was not observed in all

simulated scenarios, it might be a reason to advocate

median weight normalization over normalization outside

the observed weight range.

5 Conclusions

Normalizing body weight-based covariate relationships in

population pharmacokinetic models to 1 kg or 70 kg can

inflate the RSE of the parameter estimate of CLpop in

population pharmacokinetic models. The predictive per-

formance of the models are unaffected by normalization.

However, when normalizing with a weight outside the

observed weight range, the CLpop RSE represents the

precision of the CLTV at this extrapolated weight, and this

value should therefore not be used for model selection.

Instead, the precision of CLTV at a relevant weight value

can be calculated from the covariance matrix.
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