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Numerous studies have contributed to our current understanding of autoimmune 
diseases (AIDs), however, pathogenesis of many AIDs can still not be fully 
explained. Both genetic factors and environmental factors are involved in the 
onset of autoimmunity. Which mechanisms explain the contribution of these 
genetic and environmental factors to disease pathogenesis, and how the 
different factors interplay remain unanswered key questions. The studies 
presented in this thesis aimed at identifying and unravelling some of the 
enigmatic mechanisms in rheumatoid arthritis (RA) and systemic sclerosis (SSc).  
 
Epigenetic changes are thought to play a role in passing on environmental 
influences to gene expression alterations that can contribute to disease. In 
Chapter 2 of this thesis, we investigated whether monocytes from diagnosed but 
yet untreated RA patients contain a distinct, disease-related, epigenetic signature 
of genes associated with RA. No large epigenetic differences were observed 
between RA and healthy monocytes indicating that such differences are either 
small or not present in the tested cell type for TNFα and IL6. However, epigenetic 
differences were observed in RA patients in other cell types indicating that 
epigenetic changes can play an important role in RA. DNA hypomethylation was 
found in synovial fibroblast from RA patients and indicate that cells in a disease-
affected environment may display epigenetic differences1. Therefore, also 
monocytes or other cell types in the synovium may display differences and 
thereby contribute to disease pathogenesis. It would be interesting to investigate 
whether epigenetic differences are also present and maintained in precursor cells 
(like CD34+ cells). Upon differentiation, these cells may end up in the joints and 
trigger or enhance the inflammatory status found in RA patients2,3. Which cell 
types do contain these epigenetic traces, how they obtain these marks and how 
we can restore an autoimmune epigenetic landscape are topics for future 
studies. Moreover, another key question is whether these epigenetic marks are 
present prior to the onset of the disease or whether these marks are a 
consequence of disease pathogenesis. This question may be answered by 
longitudinal retrospective studies in which the responsible cell types have been 
collected. In case these marks are present prior to the onset of a disease, they 
may also play a crucial role in the diagnoses and treatment of autoimmunity by 
opening early treatment options. Together, further efforts investigating how and 
which epigenetic changes are involved in disease pathogenesis on a genome-
wide level and a cell-type specific manner are needed to increase our 

 

 

understanding in disease pathogenesis and may reveal early diagnostic markers 
or open up novel treatment options.  
 
Large genetic studies containing the genetic information of over 100.000 
individuals have been performed to relate variants and genes to a role in disease 
pathogenesis of rheumatoid arthritis4. These genetic population studies can 
identify hundreds of variants in a single locus that all associate with disease due 
to high linkage disequilibrium. Identifying the causal SNPs is often difficult as the 
highest associated variant (lead SNP) of a disease associated locus is not 
necessarily the causing variant5. Revealing which functional mechanisms shelter 
behind associated SNPs aids in understanding how genes are affected and which 
pathways may play a role in disease pathogenesis. Chapter 3 of this thesis 
reviews identified variants contributing functionally to disease, and the involved 
pathways that are hypothesized to play a role in RA. For example, the coding 
variant (Arg620Trp) in PTPN22 was shown to affect both BCR and TCR signalling6. 
Moreover, several variants in different genes have shown to affect NF-kB 
signalling, including: the variants Val194Ala and Pro175Leu in NFKBIE, variant 
Phe127Cys in TNFA3 and variant Ala288Thr in RTKN2. Similar evidence for the 
involvement of these pathways came forward from gene enrichment analysis of 
candidate genes located in the 100 associated risk loci which identified T-cell 
receptor (TCR) signalling, NF-ĸb signalling and JAK-STAT signalling as the most 
enriched processes (Chapter 3)6. Several other studies have investigated the role 
of these pathways in context of autoimmunity7,8. In the JAK-STAT signalling 
cascade, STAT is phosphorylated by JAK proteins resulting in the activation of pro-
inflammatory cytokines thereby promoting the inflammatory state in RA 
patients9. Inhibitors of this cascade have with success been tested as therapeutics 
reducing the level of pro inflammatory cytokines10. Tofacitinib, a JAK-STAT 
inhibitor has received FDA approval and several other inhibitors are being tested 
in clinical trials11–13. Similarly, functional studies have highlighted enhanced NF-κB 
activity and defective TCR signalling in RA patients1415. Studies are undergoing 
investigating potential therapeutics targeting both TCR receptor signalling and 
the NF-ĸB cascade16–19. Together, we hypothesize that non-HLA RA-associated 
variants in these genes and pathway are responsible for a decreased immune 
activation threshold and for disturbing a healthy ratio between pro and anti-
inflammatory cytokines increasing the probability of developing RA. Although for 
some RA-associated variants the casual mechanisms has been revealed, future 
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studies should be conducted for the remaining variants. Thereby, understanding 
the influence of variants in these genes from the identified pathways might also 
explain why some of the used therapeutics is not beneficial for all RA patients 
and stimulates the research into personal medicine within the field of RA and 
autoimmunity.  
 
However for the majority of risk loci, the causal mechanisms for their association 
with RA remain elucidative. One of these loci is the TRAF1-C5 locus which 
contains multiple RA-associating variants in high linkage disequilibrium of which 
the causal variant has not yet been identified. Although variants in C5 have been 
identified as variants affecting C5 function, these variants do not significantly 
associate with RA. It is therefore unlikely that these variants can explain the 
association of this region with RA as described in Chapter 4. The TRAF1-C5 locus 
lacks RA-associated variants that change amino acids of the nearby candidate 
genes and therefore no functional mechanism have been identified. In Chapter 5 
of this thesis we describe our discovery of a novel gene named C5T1lncRNA in 
this region. Interestingly, two SNPs are located in the RNA sequence of this 
presumably long non-coding RNA (lncRNA). Non-coding RNAs do not translate 
into proteins and these SNPs are therefore not identified as amino acid changing 
variants. Nonetheless, SNPs in lncRNAs can be functional variants as several 
studies have shown that SNPs can alter i.) the binding potential of the lncRNA, ii.) 
the structure of the lncRNA and iii.) lncRNA expression levels20–22. Moreover, the 
identified lncRNA in the TRAF1-C5 locus was found to be expressed and 
functional in RA-relevant cell types as synovial fibroblasts and may therefore 
have a functional role in RA pathogenesis. We speculate a mechanism in which 
variants in C5T1-lncRNA might interfere with the function of this gene. In Chapter 
5, we found that decreasing levels of C5T1lncRNA also decreased levels of the 
nearby gene C5 indicating a regulatory role. Variants in C5T1lncRNA might 
therefore interfere with this regulatory role and might thus also affect the 
function of C5, a potent pro-inflammatory immune gene. Future studies should 
be designed to investigate the effect of the variants in the TRAF1-C5 locus and 
what consequences this brings for C5. Thereby, we cannot rule out the possibility 
that variants in the TRAF1-C5 region influences either with C5 and TRAF1 via 
other mechanisms. Several eQTL effects were found from variants in the TRAF1-
C5 region23,24. These variants could interfere with C5 and TRAF1 levels by for 
example influencing the mRNA stability or by interfering with transcription 

 

 

factors binding sites. Such mechanisms could function as causal mechanisms for 
RA independent of C5T1lncRNA. Additionally, a cell-type specific manner in which 
variants affect genes in the TRAF1-C5 locus is possible25. C5T1lncRNA is highly 
expressed in the liver, similar to C5, but C5T1lncRNA is also strongly induced by 
LPS in monocytes, similar to TRAF1, illustrating the complex nature of this locus26. 
In order to aid in addressing the functional mechanisms of such loci, large studies 
have been set up to collect cell type specific expression in hundreds of cell 
types27. Currently, FANTOM5, TiGER and GTEX are large databases that provide 
such expression data of over 20.000 genes in more than 400 cell types and over 
100 different tissues providing useful platforms for future expression studies27–29. 
 
To identify functional variants originating from genome wide association studies 
(GWAS) and to understand genomic variation, large studies have been set up 
focussing on gene expression changes linked to genomic variation, also known as 
eQTL studies. A large study that included over 5000 individuals identified that 
genetic variations can influence gene expression of genes, both in cis and in 
trans30. Another large study investigated expression changes specifically in 
monocytes from over 1000 individuals and reported similar findings31. These 
studies provide a useful platform and starting point for the unravelling of 
functional genetic variants. Such studies also provide insight into which cell types 
play a role in disease by investigating cell-type specific eQTLs. A recent study 
investigated cell type specific eQTLs in monocytes and B-cells and showed that 
disease associating variants can have functional consequences in a cell type 
specific manner32. Moreover, Raj et al. investigated cell type specific traits in T-
cells and monocytes and identified that many variants associated with RA 
specifically influenced the expression of genes in T-cells33. From these studies it 
has been concluded that variants often display cell specific traits and may 
indicate which cell types play a role in disease pathogenesis. Additional genetic 
evidence showed that T-cells play an important role in RA. Overlapping disease-
associating variants with the presence of active or repressing histone 
modifications in a cell type specific manner provides indications in which cell 
type, which variants are being accessible. Farh et al. found that RA-associating 
variants display histone modifications that are enriched in T-cells, B-cells and 
lymphoblastoid cells in a comparison with 33 different cell-types34. Finally, 
examining lncRNA expression in RA-associated loci has been linked to T-cells as 
Hrdlicknova et al. has shown that the lncRNAs located in associated regions are 
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often specifically expressed in T-cells35. These studies illustrate which cell types 
may be responsible and indicate that not only coding genes but also non-coding 
genes are potential disease genes when affected by variants. Although 
enrichment statistics and gene coexpression are not conclusive with regard to 
causality and functionality, additional functional studies are necessary. 
Nonetheless, it is likely that development to RA is affected by defects in multiple 
cell types of which T cells and T-cell activation play an important and determining 
role. Genetic variants likely affect genes in a cell specific manner resulting 
together with other cellular defects and environmental alterations in an 
increased susceptibility to RA.  
 
Aside from genetic studies, RNA sequencing of disease-relevant tissues can also 
highlight genes and pathways involved in disease pathogenesis. In Chapter 6, the 
RNA of skin from SSc patients was compared with skin from healthy donors, and 
resulted in the identification of both deregulated coding and non-coding genes. 
In this chapter specifically non-coding genes were investigated and hundreds of 
deregulated lncRNAs were observed. Among these, several lncRNAs were 
validated using a replication dataset, including AGAP2-AS1, CTBP1-AS2 and 
OTUD6B-AS1. These genes are classified as antisense genes and in both studies, 
also their sense gene was deregulated. Although no functional assessment was 
performed in this study, we hypothesize that such deregulated gene pairs play a 
role in the disease pathogenesis of SSc. In such a model the deregulated 
antisense gene fails to maintain its regulatory role on its opposing sense gene 
resulting in a deregulated gene pair leading to depending on its function to 
disease pathogenesis. Coinciding with this model is the high correlation that was 
found between the expression of both genes within such gene pairs in our study 
and other studies36–38. Overall, we hypothesize that some of these lncRNAs either 
are involved with functions contributing to SSc directly, or by influencing other 
coding genes thereby contributing to SSc pathogenesis. Although thousands of 
long non-coding RNAs have been discovered, very few molecular mechanisms 
have yet been identified. lncRNAs can have a diverse set of functions and 
interfere not only in disease pathogenesis but also developmental processes. Like 
described in Chapter 7, Sox2ot, a lncRNA overlapping Sox2, interferes with Sox2 
gene transcription. Sox2ot is a gene that is located near enhancer and 
transcription regions that are important for Sox2 expression. Expression of 
Sox2ot is hypothesized to interfere with the transcriptional process of Sox2 

 

 

thereby regulating its levels. In a developmental point of view, similar 
mechanisms are possible for other development genes. For example, Sox1 and 
Sox4 display a similar genetic landscape and might therefore also be under 
regulation of non-coding RNA transcripts. The hypothesized mechanism of Sox2ot 
that came forward from the study in Chapter 7 was interference of enhancer 
regions by altering DNA-looping events. Currently, studies are on-going to reveal 
in-depth genetic landscapes and cross-communication of genes, enhancers, 
transcription factors, via chromatin-loops39,40. Novel methods allow more 
detailed overview of this genetic landscape and will aid in unravelling non-coding 
RNA functions and disease mechanisms. Together, our studies contribute to a 
better understanding of how genes are regulated, which DNA regions are 
responsible for gene activation and gene silencing and whether non-coding genes 
might be involved. 
Unravelling the function of lncRNAs is essential to understand their role and 
involvement in development but also in diseases like autoimmunity. Currently 
several laboratories have set up large scale experiments to investigate these 
functions, especially in cancer by evaluating lncRNAs involved in cell growth41,42. 
These studies have identified numerous lncRNAs functionally involved in cell 
growth in several cancer cell lines. However not all lncRNAs function through 
interference with cell growth and therefore similar studies should be set up 
focusing on other cellular functions. An example would be to knock down levels 
of (or knockout) lncRNAs in immune cell types followed by various immune 
activation signals to identify which lncRNAs are involved in the immune response. 
In the near future, such studies will be performed and will be aided by the 
revolution of CRISPR technology allowing largescale knockdown technology.  
 
More and more lncRNAs are being identified as deregulated genes in disease and 
development which opens the possibility to use them as diagnostic markers or 
therapeutic targets. Although, non-coding genes are overall lower expressed 
compared to coding genes, they also possess characteristics that will prefer non-
coding genes over coding genes as future drug targets. For example their cell-
type specificity allows drugs to be effective in one cell-type only, preventing 
unwanted side effects in other cell types or tissues. Especially in cancers, where 
cancer-specific lncRNA expression can be used as a therapeutic targets thereby 
leaving healthy tissue unaffected. The first report has already shown that 
targeting a lncRNA known as MALAT by antisense oligo nucleotides was able to 
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More and more lncRNAs are being identified as deregulated genes in disease and 
development which opens the possibility to use them as diagnostic markers or 
therapeutic targets. Although, non-coding genes are overall lower expressed 
compared to coding genes, they also possess characteristics that will prefer non-
coding genes over coding genes as future drug targets. For example their cell-
type specificity allows drugs to be effective in one cell-type only, preventing 
unwanted side effects in other cell types or tissues. Especially in cancers, where 
cancer-specific lncRNA expression can be used as a therapeutic targets thereby 
leaving healthy tissue unaffected. The first report has already shown that 
targeting a lncRNA known as MALAT by antisense oligo nucleotides was able to 
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prevent lung cancer metastasis in mice displaying the feasibility of targeting 
lncRNAs43. Other potential intervention approaches through lncRNAs that are in 
pre-clinical development include siRNAs, aptamers, ribozymes or small molecules 
and are reviewed in ref44. As lncRNAs are often highly expressed in specific 
diseased cells (like cancer cells) they can also be used as biomarkers and for 
diagnostic purposes. A diagnostic test using an overexpressed lncRNA is currently 
under development and is applicable for the diagnoses of prostate cancer45. This 
test can measure levels of PCA3, a prostate specific lncRNA overexpressed in 
prostate cancer, in the urine of patients45. With rapidly advancing technology it 
will be easier to detect and target lncRNAs and therefore an increasing amount of 
specific biomarkers for early diagnoses, better prognostic prediction and more 
efficient therapy will undoubtedly be available in future clinical applications.  
 
The studies presented in this thesis contributed to the identification of lncRNAs 
involved in disease pathogenesis. Although non-coding RNAs are overall lower 
expressed, still they may regulate crucial functions and should not be disregarded 
merely based on present abundances. Future single-cell sequencing studies will 
be able to gather detailed information regarding non-coding RNAs and their 
mechanisms in cell specific manners. Together the reducing costs for sequencing, 
the increasing single cell resolution to study gene expression and the efficient 
single cell isolation technology provide a highly accurate platform to study both 
basic and translational research. Expression profiles of both coding and non-
coding RNAs on single cell levels may aid in the identification and characterisation 
of novel and existing cell types. Therefore further unravelling mechanisms by 
which non-coding RNAs function not only lead to insight in disease development 
but we hypothesise the idea that non-coding genes will one day be used as target 
genes in future therapies, including diseases of autoimmunological nature. 
Finally, if epigenetic alterations (such as histone modifications or non-coding RNA 
dysregulation) occur years before the onset of a disease, they may be better 
therapeutic targets prevent the disease compared to current medicines who are 
often used to supress the disease or to treat the symptoms only.  
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