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c h a p t er i

Use of population approach 
non-linear mixed effects models 
in the evaluation of biosimilarity 

of monoclonal antibodies

J.A.A. Reijers, T. van Donge, F.M.L. Schepers, J. Burggraaf, J. Stevens

Population pharmacokinetic analyses (ppk) have been used to establish bioequivalence for 
small molecules and some biopharmaceuticals. We investigated whether ppk could also be 
useful in biosimilarity testing for monoclonal antibodies (mAbs).

Data from a biosimilarity trial with two trastuzumab products were used to build popula-
tion pharmacokinetic models. First, a combined model was developed and similarity between 
test and reference product was evaluated by performing a covariate analysis with trastuzumab 
drug product (test or reference) on all model parameters. Next, two separate models were de-
veloped, one for each drug product. The model structure and parameters were compared and 
evaluated for differences.

Drug product could not be identified as statistically significant covariate on any parameter in 
the combined model and the addition of drug product as covariate did not improve the model 
fit. A similar structural model described both the test and reference data best. Only minor dif-
ferences were found between the estimated parameters from these separate models.

ppk can also be used to support a biosimilarity claim for a mAb. However, in contrast to the 
standard non-compartmental analysis, there is less experience with a ppk approach. Here, we 
describe two methods of how ppk can be incorporated in biosimilarity testing for complex 
therapeutics.

D uring the past decades, many bio
pharmaceuticals have been marketed, 
mostly for use in the field of oncology 

and rheumatology. Although efficacious, high costs 
often limit the availability of these therapies or greatly 
burden the health care system. For example, treatment 
of a rheumatological us patient with biopharmaceu-
ticals costs on average $20,000 to $30,000 annually,1 
and a single cycle of bevacizumab or other monoclonal 
antibody (mAb) can cost $2,000 or more.2 In 2014, the 
top 20 in global medicinal product sales contained 10 

biopharmaceuticals, generating revenues between 4.4 
and 11.8 billion dollar each.3 Because of the growing 
number of patent expirations for the original biophar-
maceuticals, it is expected that research of biosimilars 
will increase.

A first requirement for registration of the novel 
compound is to establish pharmacokinetic ‘biosimi-
larity’. Although the terminology slightly differs be-
tween the regulatory agencies, all agree on the basic 
concept of biosimilarity, which is that the novel (‘test’) 
compound should be highly similar to its originator 
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(‘reference’) in terms of quality, efficacy, and safety, 
and that any remaining difference should be clinically 
insignificant.4–6

Notwithstanding specific criteria for biopharma-
ceuticals, often parts of guidelines for establishing 
bioequivalence – not biosimilarity – between chem-
ically derived substances (‘small molecules’) are ap-
plied. These guidelines require that similarity should 
be demonstrated for key pharmacokinetic param-
eters, most commonly area under the concentra-
tion-time curve (auc) and maximum concentration 
(Cmax), based on predefined acceptance limits at the 
highest dose level used. According to an evaluation 
by the World Health Organisation, studies proving 
biosimilarity generally use the 80–125% equivalence 
range due to lack of specific acceptance criteria for 
biopharmaceuticals.4

Although it is widely recognised that a non-com-
partmental analysis (nca) is less appropriate when 
dealing with complex pharmacokinetics, it is still 
the most commonly used analytical method for 
demonstrating biosimilarity. Mentré’s group has 
extensively studied the use of population phar-
macokinetic techniques in bioequivalence testing 
and found that it yielded similar results, with 
the modelling approach leading to a better un-
derstanding of the underlying biological system, 
and the nca being a relatively easy approach that 
does not require modelling and whose results can 
be used in a statistical analysis. The same was 
found for two biopharmaceuticals, somatropin 
and epoetin-α.7–9

We investigated whether a population pharma-
cokinetic analysis (ppk) could also be useful in bioe-
quivalence testing for monoclonal antibodies (mAbs), 
which display complex elimination mechanisms, in-
cluding non-linear routes, and have a plasma half-life 
of one to multiple weeks. Two approaches in model-
ling pharmacokinetic (pk) data were studied. First, 
we developed a combined model built on all avail-
able data for both the test and reference product, 
and tested whether adding product (test/reference) 
as a covariate would improve the model, indicat-
ing non-similarity. Second, we developed separate 
models, one for test and one for reference product. 
This approach does not assume similarity as a start-
ing point and allows comparison of the model struc-
tures and parameters. For this exercise, we chose the 
humanised mAb trastuzumab, which targets the 
her2-receptor.

m e t h o d s

Study population and treatment

Data were gathered in a phase i randomised, single 
dose, parallel group bioequivalence study, preceded 
by a placebo-controlled dose escalation part.10 In 
this study, 110 male volunteers, aged 18–45 years, who 
were deemed healthy after a full medical screening, 
received trastuzumab in 250 mL 0.9% NaCl as an in-
travenous infusion over 90 min. Two trastuzumab 
products were administered: the biosimilar product 
(test, T), codenamed ftmb (Synthon bv, Nijmegen, 
The Netherlands), and the eu-licensed product (ref-
erence, R), marketed as Herceptin®.

Studied dose levels of the test product in the dose 
escalation part were 0.5 mg/kg (n = 6), 1.5 mg/kg 
(n = 6), 3 mg/kg (n = 6). The bioequivalence part con-
sisted of 92 participants, who randomly received test 
(n = 46) or reference (n = 46) product at 6 mg/kg.

Based on the trastuzumab content of the used test 
and reference product vials, the actual dose levels 
were determined to be 0.49, 1.48, 2.96, 5.92 mg/kg 
for T, and 6.44 mg/kg for R.

Bioanalyses

Trastuzumab was quantitated in serum samples col-
lected pre-dose and at 45 min, 1.5, 2, 3, 4, 5, 6, 8, and 
24 h, and at 2, 4, 8, 14, 21, 28, 35, 42, 49, and 63 days 
after start of administration. A detailed description 
of the assay is given by Wisman et al.10 The lower limit 
of quantification (lloq) was 0.060 μg/mL. All pre-
dose trastuzumab concentrations <lloq were set to 
zero prior to analysis. Post-dose concentrations below 
lloq were not included. A serum sample for the quan-
tification of serum her2 extracellular domain (ecd) 
was collected prior to administration. This assay had 
a lloq of 0.50 ng/mL.

In the original clinical study protocol, the sample 
at day 63 was not collected for pk analysis and hence 
not included in the previously reported nca results.10 
However, as this sample provided valuable insight in 
the non-linear clearance of trastuzumab, it was in-
cluded in the analyses reported in this chapter.

ppk
General modelling approach

Population pharmacokinetic analysis (ppk) followed 
a stepwise approach. First, a general model for tras-
tuzumab, hereafter referred to as ‘combined model’, 
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was developed based on all available pk data for both 
test and reference product, including dose levels of the 
dose escalation part (0.49, 1.48, and 2.96 mg/kg). To 
investigate potential bias in the pk models due to ana-
lysing test and reference products simultaneously, pk 
models were also developed for the test (model T) and 
reference product (model R) separately and included 
only data from subjects who were exposed to 6 mg/kg 
test or reference product. These are hereafter referred 
to as ‘separate models’. The separate models were de-
veloped in parallel in order to maintain a structur-
ally similar model for the test and reference product. 
Consequently, the model was only adopted if the cor-
responding model in the other treatment arm was pre-
ferred over its parent as well.

Model development
Model development was performed using Nonlinear 
Mixed Effects Modelling (nonmem 7.2.0, Icon 
Development Solutions, Ellicott City, Maryland, 
usa) and closely followed the fda and ema guide-
lines for ppk.11,12 Models were built under advan 13 
with tolerance (tol) 9 and the first-order conditional 
method with interaction (foce-i) was used for pa-
rameter estimation. nonmem reports an objective 
function value (ofv), which is the -2 ∙ log likelihood. 
Model hypothesis testing used the likelihood ratio 
test under the assumption that the difference in ofv 
is χ2-distributed with degrees of freedom being de-
termined by the number of additional parameters in 
the more complex model. Hence, with a decrease in 
ofv of ≥7.88 points (p < 0.005), the model is preferred 
over its parent model. Also, model performance was 
evaluated by means of goodness-of-fit plots, using the 
software package R (v3.2.2, R foundation for statisti-
cal computing, Vienna, Austria, 2015).

Several structural models with 2 or 3 compart-
ments, including combinations of linear and non-lin-
ear clearance, were fitted to the data to determine the 
best structural model. Log-normal distribution of the 
between-subject variability (η ) was assumed and sev-
eral residual error (ε ) structures were tested (propor-
tional, additive and combined).

Potential covariate correlations, defined as a sig-
nificant Pearson’s product-moment correlation coef-
ficient (r2 >0.5 with p < 0.01), were tested in the model 
development, in linear and exponential manners, 
and incorporated based on improvement in model 
performance. Explored covariates included lean 
body weight (lbw),13 body weight, body surface area 

(bsa),14 height, bmi, age, her2-ecd concentration, 
dose, and product.

Model evaluation and predictive performance
To evaluate the robustness and predictive perfor-
mance of the developed model, a visual predictive 
check(vpc) with 500 simulations was performed.15 
Prediction intervals of 95% were obtained by simulat-
ing the model results from the original data. Model 
evaluation was performed by calculating the coef-
ficient of variation to derive the uncertainty in the 
parameter estimates of the model, which was consid-
ered acceptable if lower than 50%. Also, shrinkage, 
as defined by Karlsson and Savić,16 was calculated to 
exclude model misspecification; shrinkage less than 
30% was considered acceptable.

Individual pharmacokinetic profiles
Individual pharmacokinetic profiles were simulated 
in R using the individual participant’s model param-
eter estimates. Integration was performed from the 
start of administration until the time point when the 
concentration in the central compartment dropped 
below 0.01 μg/mL. For the simulations, the following 
integration intervals were used: 1 s from administra-
tion until 24 h, 1 min until day 80, and 1 day thereafter. 
The concentrations were stored at original sampling 
times and at every 5 min. Trastuzumab concentra-
tion at the start of administration was assumed to be 
0 μg/mL.

Comparison to nca

For comparison to a standard nca, aucs were derived 
using model simulated (predicted) individual concen-
trations at the original sampling times. auc from 
administration (time 0) to the time of the last concen-
tration ≥lloq (aucl) was calculated using the linear 
trapezoidal method. auc extrapolated to infinity 
(auc∞) based on the apparent terminal elimination 
rate constant was calculated as well.

Biosimilarity statistics were performed on auc∞ 
and aucl of all participants who were exposed to 
6 mg/kg, comparing T to R in an unpaired t-test, 
using the software package R. aucs were natural log 
(ln)-transformed prior to statistical analysis. The es-
timated difference in means and the corresponding 
90% confidence interval (ci) were back-transformed 
to obtain the relative geometric mean ratio (gmr) of 
T over R (T/R). These results were then compared to 
those calculated in a standard nca.
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To correct for the difference between actual (5.92  
mg/kg and 6.44 mg/kg) and labelled dose (6 mg/kg), 
a linear normalisation to 6 mg/kg was applied to the 
individual aucs in the nca. In the ppk, individual pro-
files were simulated with the actual and labelled dose. 
Both corrected and uncorrected aucs were calculated 
and statistically compared.

r e s u l t s

Population

Pharmacokinetic data were gathered from 110 healthy 
male volunteers, whose demographics are presented 
in table 1.1. In total, 1,247 serum trastuzumab con-
centrations were available for the test product (T), of 
which 143 were <lloq (64 pre-dose). In the 6 mg/kg 
test group, 60/906 observations were <lloq (46 pre-
dose) and in the reference product (Herceptin®), 
51/912 observations (44 pre-dose).

Model development
First step: combined model

Initial exploration of the data suggested that a 2 or 
3 compartment model would describe the data best. 
Based on the observed non-linear kinetics, Michaelis-
Menten kinetics was incorporated, described in terms 
of maximum rate of elimination (Vmax), and the con-
centration where ½∙ Vmax is reached (Km). Addition of 
a linear elimination pathway, defined by elimination 
rate constant (ke), significantly improved the model fit 
for both the 2 and 3 compartments models.

Adding the third compartment accounted for a de-
layed clearance effect. The 3-compartment model, 
parameterised in terms of a central (V1) and periph-
eral volumes (V2 and V3) of distribution, and in-
ter-compartmental clearances (Q1 and Q2), resulted 
in a significant improvement compared to the 2-com-
partment model. This was confirmed by an improved 
goodness-of-fit, especially for the lower doses of tras-
tuzumab. Thus, the 3-compartment model was con-
sidered superior over the 2-compartmental model 
( figure 1.1). A combined residual error structure (ε ) 
proved best fit for purpose.

After identification of the structural model, indi-
vidual estimates of random effects for between-sub-
ject variability were identified for the parameters V1, 
Km, and ke, with final coefficient of variation values of 
14.8, 35.9, and 17.2%, respectively. The residual coef-
ficient of variation of the best model was 14.98%. An 
omega block was required to correct for the parame-
ter correlation between Km and ke in the model.

Significant correlations were found between V1 and 
lean body weight (lbw), body weight, body surface 
area (bsa), height, and bmi, with correlation coeffi-
cients of 0.61, 0.55, 0.60, 0.54, and 0.28, respectively. 
Linear regression analysis of lbw vs. bsa resulted in a 
coefficient of 1, and for lbw vs. body weight in 0.96. 
Furthermore, significant correlation coefficients 
were observed between bmi and ke (0.60), between 
serum concentrations her2-ecd and ke (0.29), and be-
tween serum concentrations her2-ecd and Km (0.18).

Implementing lbw as a linear covariate on V1 
(equation 1.s1), significantly improved the objection 
function value (ofv) and was added to the model. 
Incorporating other weight-related covariates (body 

table 1.1 Demographics

parameter test 
0.5 mg/kg

(n = 6)

test 
1.5 mg/kg

(n = 6)

test 
3.0 mg/kg

(n = 6)

test 
6.0 mg/kg

(n = 46)

reference 
6.0 mg/kg

(n = 46)

Age  (year) 	 26.9	 (8.9) 	 33.0	 (9.1) 	 23.4	 (2.3) 	 26.0	 (7.3) 	 24.1	 (5.8)

Height  (cm) 	 183	 (12.0) 	 176	 (6.5) 	 184	 (3.3) 	 184	 (7.5) 	 182	 (6.2)

Weight  (kg) 	 73.1	 (12.6) 	 73.0	 (8.7) 	 72.0	 (7.5) 	 79.5	 (11.2) 	 77.1	 (10.2)

bmi  (kg m-2) 	 21.7	 (3.3) 	 23.5	 (2.6) 	 21.2	 (2.1) 	 23.4	 (2.5) 	 23.2	 (2.7)

lbw  (kg) 	 59.4	 (8.4) 	 57.5	 (5.1) 	 59.1	 (3.8) 	 62.6	 (6.6) 	 61.0	 (5.6)

bsa  (m2) 	 1.93	 (0.21) 	 1.89	 (0.13) 	 1.92	 (0.10) 	 2.01	 (0.17) 	 1.97	 (0.15)

ecd  (μg L-1) 	 12.7	 (1.8) 	 11.8	 (2.1) 	 11.4	 (1.5) 	 11.3	 (1.8) 	 11.8	 (1.8)

Mean (standard deviation) demographics per treatment arm.

bsa: body surface area ︳ ecd: her2 extracellular domain ︳ lbw: lean body weight
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weight, height and bmi) separately in the model did 
not result in a significant improvement compared to 
lbw; accordingly, they were not implemented in the 
model. Covariate analyses identified bmi as the one 
most significantly correlated to ke. Incorporating 
this covariate linearly on ke (equation 1.s2), further 
improved the model, and bmi was thus added to the 
model. Including her2-ecd as a covariate did not im-
prove the model fit. Interestingly, the model favours 
lean body weight as a size descriptor to scale trastu-
zumab dose compared to body weight, which is used 
clinically in dose calculation.

Adding trastuzumab drug product (test or refer-
ence) as a covariate to the model did not explain any 
relevant variability. A maximum decrease in ofv of 
only 5.80 points (p >0.01) was observed when treat-
ment was added as a covariate on Km. Thus, drug 
product as covariate did not significantly improve 
model fit. All pk parameter estimates obtained with 
the best fit of the models are listed in table 1.2.

Additionally, the rates of the linear and non-linear 
elimination pathway vs. trastuzumab concentration 
were calculated. At low trastuzumab concentrations 
(<10 μg/mL), total elimination was almost independ-
ent of serum drug concentration, i.e. the non-linear 
elimination exceeded the linear elimination. At 
high concentrations, this pathway became saturated  

and the influence of non-linear elimination seemed 
negligible ( figure 1.s2).

Also, a more complex mechanistic model approach 
was applied to characterise the distribution and clear-
ance of trastuzumab: the target-mediated drug dis-
position (tmdd) model.17,18 In addition to receptor 
and drug-receptor complex quantification, such 
models are able to provide information on binding 
affinity of the drug to the receptor. Fitting a tmdd 
model to our data proved difficult due to over-param-
eterization. A simplified approximation tmdd model 
approach with a dissociation constant Kd19 still re-
sulted in an incorrect fit and instability of the model, 
and the tmdd model approach was abandoned.

Second step: separate models
Model development of the separate models, includ-
ing only data from participants who were exposed 
to 6 mg/kg, followed a similar approach as the com-
bined model to ensure the structural similarity. For 
both trastuzumab products, a third compartment 
could be identified, as well as a linear and a non-linear 
route of elimination, described by Michaelis-Menten 
kinetics.

For the separate models, individual estimates of 
random effects for the between-subject variability 
were identified for the parameters V1, Vmax, and ke, with 

figure 1.1 Schematic representation of the structural pk model with a parallel linear and non-linear elimina-
tion pathway  ︳ Linear elimination is described by an elimination rate constant (ke) and non-linear elimination is calculated as

Vmax � C

Km + C
,

where Vmax is the maximum rate of elimination, Km the concentration which produces half of the Vmax, and C the concentration. V1, V2,  

and V3 are the distribution volumes; Q1 and Q2 are the inter-compartmental clearances to the peripheral compartments.

V1V2 V3

central
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compartment

peripheral
compartment
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final coefficient of variation values in model T of 16.5, 
12.8, and 19%, respectively. The residual coefficient 
of variation of the best model was 14.5%. In model R, 
the final coefficients of variation were 11.1, 18.8, and 
17%, with a residual coefficient of variation of 14.1%. 
 As with the combined model, the best model fit 
with the greatest reduction in ofv was obtained by 
incorporating lbw as linear covariate on V1 and bmi 
on ke for both separate models.

Model evaluation and 
predictive performance

Combined model
Goodness-of-fit plots of the combined model ( figure 
1.2) showed that all predictions lay around the line of 
unity. There was one outlier in the reference group, 
where one subject had a very low mid-infusion con-
centration of 0.088 μg/mL. Virtually all conditional 
weighted residuals with interaction (cwresi) lay ran-
domly scattered around zero without apparent bias.

The variability of the parameters V1, Km, and ke on 
the η  density histograms ( figure 1.s4) seemed normally 
distributed around zero with acceptable coefficient 
of variation values, indicating correct description 
of the between-subject variability. Furthermore, no 

significant shrinkage was observed for parameters 
for which between-subject variability was identified 
(<8.04%).

The vpc proved good predictive performance 
( figure 1.3) of the combined model. For the doses 
>1.48 mg/kg, no signs of bias were apparent and most 
observations lay within the 95% prediction interval. 
Only for the lowest dose administered (0.49 mg/kg), 
a slightly higher prediction of the population mean 
was observed, especially in the lower concentration 
range. However, even for this dose group, most of the 
observations were within the 95% prediction interval.

Separate models
The goodness-of-fit plots of the separate models  
( figures 1.s1 & 1.s2) showed that predictions lay around 
the line of unity and that the cwresi were observed 
near the central line. No bias or trend in the model 
prediction could be determined. The shrinkage ob-
served for the parameters for which between-subject 
variability was identified (V1, Vmax, ke) was not sig-
nificant (<17.80% for model T, <15.50% for model 
R). Additionally, the variability on the η  density 
plots ( figures 1.s5 & 1.s6) seemed normally distributed 
around zero.

table 1.2 Population pharmacokinetic parameter estimates from the full covariate model for trastuzumab

parametera combined model separate model t separate model r

Fixed effects, estimate (ci)

V1  (L) 	 3.28	 (3.185–3.367) 	 3.59	 (3.418–3.752) 	 3.13	 (3.028–3.232)

V2  (L) 	 1.89	 (1.325–2.457) 	 6.82	 (-5.572–19.21) 	 44	 (28.18–59.77)

V3  (L) 	 1.96	 (1.736–2.179) 	 2.15	 (1.858–2.443) 	 2.09	 (1.929–2.244)

Q1  (L h-1) 	 2.91	 (2.02–3.79) ∙ 10-3 	 2.82	 (1.081–4.566) 	 3.92	 (3.58–4.25) ∙ 10-3

Q2  (L h-1) 	 4.34	 (3.66–5.01) ∙ 10-2 	 3.75	 (2.787–4.706) 	 4.67	 (4.12–5.21) ∙ 10-2

Vmax  (μg h-1) 	 178	 (162.3–193.1) 	 172	 (138.6–205.7) 	 127	 (111–143.4)

Km  (μg L-1) 	 937	 (759.6–1115) 	 995	 (674.6–1316) 	 1440	 (1189–1699)

ke  (h-1) 	 2.20	 (2.02–2.38) ∙ 10-3 	 1.95	 (1.33–2.57) ∙ 10-3 	 1.76	 (1.62–1.9) ∙ 10-3

Random effects, estimate (cv)

Between-subject variability

ω 2 V1 	0.0217	 (14.8%) 	0.0270	 (16.5%) 	0.0122	 (11.1%)

ω 2 Vmax 	 — 	0.0163	 (12.8%) 	0.0347	 (18.8%)

ω 2 Km 	 0.121	 (35.9%) 	 — 	 —

ω 2 ke 	0.0292	 (17.2%) 	0.0355	 (19.0%) 	0.0286	 (17.0%)

Residual error

σ 2 proportional 	0.0222 	0.0207 	0.0198

σ 2 additive 	 1520 	 3090 	 790

a. Explanation of parameters is given in figure 1.1.

ci: confidence interval ︳ cv: coefficient of variation ︳ σ 2: residual variance ︳ ω 2: between-subject variance
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The population pk parameter estimates from the full 
covariate model are presented in table 1.2. When com-
paring parameter estimates, most parameter distri-
butions overlapped. The parameter estimates for V2 
differed between model T and model R, but were in 
the same order of magnitude. However, Q1 and Q2 for 
model T were higher compared to model R. In con-
trast to the combined model, where between-subject 
variability was identified for V1, Km, and ke, in the sep-
arate models, these were found for V1, Vmax, and ke.

Comparison to nca

The geometric mean (gm) aucl obtained from the 
standard nca was 1,301 μg day mL-1 for the test (T) and 
1,588 μg day mL-1 for the reference (R) product. The 
aucl remained virtually unchanged when the same 
calculations were repeated with simulated concentra-
tions, regardless of whether the combined model or the 
separate models were used (table 1.3). Similar results 
were obtained with regard to auc∞. The gm ratio (gmr) 
T/R with all auc methods was 81.66-82.54% with the 
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figure 1.2 Goodness-of-fit plots combined model
Observed vs. population predicted concentrations (a), observed vs. individual predicted concentrations (b), conditional weighted residuals 

with interaction (cwresi) vs. times (c), and conditional weighted residuals vs. population predictions (d) of the combined model.
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lower limit (ll) of the associated 90% confidence in-
terval (ci) below the predefined equivalence bound-
ary of 80% (table 1.3). Applying a linear correction to 
the nca results caused the difference T-R in aucl and 
auc∞ to decrease (gmr T/R 89.11-89.55%, ll 90% ci 
>84.66%). Further reductions were achieved when an 
equal dosage of 6 mg/kg was simulated for both trastu-
zumab products, which affected the aucs in the refer-
ence product arm more profoundly, and increased the 
gmr with approximately 2 %-point (table 1.4).

Using the entire simulated profile, as opposed to only 
the simulated concentrations at the original sam-
pling times, generally resulted in a small decrease of 
1–2% compared with the nca for both aucl and auc∞, 
with the exception of the auc∞ calculated on profiles 
derived with model R, where an average increase of 
1.7% was observed (tables 1.s1 & 1.s2). Conversely, with 
the combined model, lower aucs were obtained com-
pared with the separate models for T only.

figure 1.3 Visual predictive check (vpc)
Visual predictive check (vpc) of the best combined model, conditioned per dose of test product (0.49 [a], 1.48 [b], 2.96 [c], 5.92 mg/kg [d]) 

or reference product (6.44 mg/kg, e). In f all doses are displayed. The circles indicate the observations for the different trastuzumab doses 

administered, the lines are the typical predicted concentrations by the model for each dose, and the grey area is the 95% prediction interval. 

The dashed line is the assay’s lower limit of quantification (lloq) for trastuzumab (0.060 μg/mL).
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d i s c u s s i o n

A s long as generical products are 
being developed, controversy and scepti-
cism regarding the claims of therapeuti-

cal equality have followed marketed bioequivalent 
products. Recently, Bate et al.20 advocated that for the 
more complex pharmaceuticals, two allegedly bioe-
quivalent drug products may not be interchangeable, 
which could have adverse consequences. mAbs are cer-
tainly among the most complex therapeutics and es-
tablishing similarity to the reference product can thus 
be challenging.

For demonstrating pharmacokinetic biosimilarity 
in a human population, a nca is virtually always per-
formed and its results (auc and Cmax) compared sta-
tistically, even though it is widely recognised that the 
nca is less suitable for drugs with complex non-linear 
kinetics, as is the case for mAbs.

Population approach pharmacokinetic (pk) mod-
elling and simulation techniques have been suc-
cessfully applied to quantitatively describe the pk 
of mAbs in humans.21–26 Such an approach has been 
used in bioequivalence studies, also for biopharma-
ceuticals,9 where it was found to give indistinguisha-
ble results on the standard nca-parameters (auc and 
Cmax), as was the case in our analysis. However, as was 
also argued by Dubois et al.,9 a pk model can provide 

valuable insight in the biological systems underlying 
the pk properties. Although the standard nca-de-
rived parameters, such as Cmax, auc∞, terminal half-
life, etc., may seem similar, the two drug products 
could behave quite differently in terms of pk, a feature 
that goes undetected in a nca.27 Furthermore, similar 
plasma concentrations do not invariably mean simi-
lar concentrations at the site of action.

Here, we describe two methods of incorporating 
pk modelling in biosimilarity research. The first ap-
proach is developing a model on all available data 
from both test and reference product(s) and care-
fully examining possible bias in one of the treatment 
groups. Testing for (statistically) significant differ-
ences between drug products can be done for all the 
model parameters via covariate analysis. Covariate 
testing follows a well-established statistical distribu-
tion that can be used for statistical inference.28,29 If 
no significant correlations can be identified between 
the drug products and if attempts to incorporate 
treatment as covariate in the model fail to improve it, 
the biosimilarity claim is supported.

The second method entails the development of 
different models, one for each test and reference 
product(s), which in contrast to a combined model 
does not assume similarity between test and refer-
ence product as a starting point. This method allows 
comparison of the model structure, that should be 

table 1.3 auc comparison actual dose

gm gmr (%)

T R T/R

aucl

nca 1301 1588 	 81.91	 (77.82–86.22)

Separate models 1300 1588 	 81.86	 (78.08–85.82)

Combined model 1296 1588 	 81.59	 (77.88–85.47)

auc∞

nca 1311 1593 	 82.32	 (78.17–86.69)

Separate models 1313 1591 	 82.54	 (78.70–86.57)

Combined model 1300 1592 	 81.66	 (77.93–85.56)

Geometric mean (gm, μg day mL-1) and gm ratio (gmr) with the 

90% confidence interval for the actual dose (5.92 mg/kg for T; 

6.44 mg/kg for R) as derived by different methods per treatment 

arm.

auc: area under the concentration-time curve ︳ aucl: auc from ad-

ministration (time 0) to the time of the last concentration ≥lloq 

(lower limit of quantification) ︳ auc∞: aucl extrapolated to infinity 

nca: non-compartmental analysis ︳ R: reference ︳ T: test

table 1.4 auc comparison after dose correction

gm gmr (%)

T R T/R

aucl

nca 1318 1479 	 89.11	 (84.66–93.79)

Separate models 1323 1455 	 90.93	 (86.72–95.35)

Combined model 1319 1443 	 91.41	 (87.25–95.76)

auc∞ 	

nca 1329 1484 	 89.55	 (85.03–94.30)

Separate models 1337 1457 	 91.74	 (87.46–96.24)

Combined model 1324 1446 	 91.54	 (87.37–95.92)

Geometric mean (gm, μg day mL-1) and gm ratio (gmr) with the 90% 

confidence interval for the labelled dose (6 mg/kg) as derived by 

different methods per treatment arm. For the nca-results, a linear 

dose correction was applied; in the models, the labelled dose was 

used to simulate the individual profiles (see main body).

auc: area under the concentration-time curve ︳ aucl: auc from ad-

ministration (time 0) to the time of the last concentration ≥lloq 

(lower limit of quantification) ︳ auc∞: aucl extrapolated to infinity 

nca: non-compartmental analysis ︳ R: reference ︳ T: test



populationa pproachmodelsintheeva luationofbiosimila r ityofma bs–stickyproteins

22

identical for biosimilar products, and of model pa-
rameters for both test and reference product.

Comparing different pk models inevitably reveals 
minor differences for which the clinical significance 
needs to be discussed. For example, in model T the 
optimal inter-compartmental clearances (Q1 and Q2) 
were estimated to be a factor 102–103 higher than 
the corresponding parameters in the other models, 
while the striking dissimilarity did not seem to affect 
the descriptive properties of the overall profiles. 
However, as the (fictive) second and third compart-
ment were not sampled, this finding merely reflects 
a mathematical solution to a rather complex problem 
and not necessarily a true (e.g. physiological or phar-
macological) difference. Additionally, the higher 
dose administered for the reference product could 
have allowed a better characterisation of the termi-
nal portion of the pk profile (elimination parame-
ters), which also affects the estimation of remaining 
parameters, such as Q1 and Q2.

This represents an important limitation of the 
second method, which may be of particular relevance 
when modelling pk data from two different popula-
tions separately. Unfortunately, pharmacokinetic 
biosimilarity of biopharmaceuticals is regularly in-
vestigated in trials of parallel design, because of the 
long half-life and the potential of anti-drug antibod-
ies development, which could influence the pharma-
cokinetics.30 Theoretically, all mAbs share common 
pharmacokinetic properties, e.g. small central volume 
of distribution, no renal excretion due to large molec-
ular size, metabolism into amino-acids and peptides, 
both specific (non-linear) and non-specific (linear) 
cellular uptake and degradation elimination mech-
anisms.31–35 Thus, the remaining variability is prob-
ably determined by patient characteristics. When 
comparing the model parameters of the separate 
models, one of the most prominent differences is the 
population estimate for V1, which is unlikely caused 
by a difference between test and reference product.

The combined model equally well described the 
data, without bias in either the test or reference 
group. Adding trastuzumab drug product as covar-
iate to the model could not explain any residual var-
iability, which strongly supports the biosimilarity 
claim, but also indicates that the difference in aucs 
must be attributed to population characteristics.

From a regulatory perspective, another limitation 
of the second method is the lack of proper statisti-
cal inference testing on the model parameters. One 

might consider overlapping confidence intervals for 
parameter estimates indications for biosimilarity, 
but many parameters are related, so that – for exam-
ple – a low inter-compartmental clearance may be 
‘compensated’ in the model by a low volume of dis-
tribution. An extension of ‘bioequivalence statistics’ 
has been applied to model parameters by Wilkens et 
al.,36 although their method suffers from the afore-
mentioned limitations as well.

Notwithstanding the limitations of ppk, it has 
several benefits over a nca. Importantly, a ppk is not 
concerned with differences in administered doses. 
Although the ema allows a dose correction in the bi-
oequivalence guideline (for chemically derived prod-
ucts) if the difference exceeds 5%, the nca assumes 
linearity in its correction, which is not appropriate 
for mAbs, that display non-linear pharmacokinet-
ics. Other benefits of ppk include the possibility to 
identify and thus correct for certain covariates, and 
the relative robustness of a ppk against protocol de-
viations, with regard to timing of sample collection, 
missing samples, duration of intravenous adminis-
tration, and incomplete administration.8,37

Simulations with model R revealed that the two 
allowed extremes for protein content per batch (ef-
fective doses 5.28 mg/kg and 7.2 mg/kg) would result 
in a 90% ci for the gmr for aucl of 146.39–147.22% 
in a crossover design (n = 46). If such batch-to-batch 
variations are not considered relevant, then the con-
sequences on the standard biosimilarity parameters 
may also be argued to be irrelevant.

With a pk model, multiple scenarios can be sim-
ulated within these extremes, which can be used to 
build the case that the test product achieves thera-
peutical drug concentrations, similar to the reference 
product, when administered according to a certain 
dosing regimen. This approach also circumvents 
some of the aforementioned limitations of direct 
comparison of two or more models. If a biomarker or 
pharmacological effect can be measured in the bio-
similarity trial and incorporated in a pharmacoki-
netic-pharmacodynamic model (pharmacodynamic 
model), a relevant clinical target may be simulated 
and lend further support to a biosimilarity claim.

The nca will most likely remain a gold standard in 
biosimilarity research, even for the complex mAbs. 
Nonetheless, the model approach can serve as an el-
egant add-on. Questions that need to be addressed 
before a ppk can fully substitute the nca in demon-
strating biosimilarity relate to selection of the most 
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meaningful pk or pharmacodynamic parameter from 
the model, and the minimal population size to detect 
with sufficient statistical power relevant (model) 
differences.

Previously, the benefits of modelling and simulation  
have been proposed for proof of biosimilarity, to which  
this chapter adds similar benefits for mAbs.
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table 1.s1 auc comparison actual dose

test reference

auc %-changea %-changeb auc %-changea  %-changeb

aucl

nca 	 1318	 (220) 	 1602	 (220)

Separate models

Actual time 	 1315	 (211) 	 100.0	 (5.0) 	 1599	 (190) 	 100.1	 (4.5)

Continuous time 	 1292	 (206) 	 98.3	 (4.9) 	 1571	 (188) 	 98.4	 (4.5)

Combined model

Actual time 	 1310	 (204) 	 99.8	 (5.4) 	 99.7	 (1.1) 	 1599	 (193) 	 100.1	 (4.9) 	 100.0	 (1.5)

Continuous time 	 1287	 (199) 	 98.0	 (5.2) 	 99.7	 (1.1) 	 1571	 (191) 	 98.4	 (5.0) 	 100.0	 (1.5)

auc∞ 	 	 	 	

nca 	 1328	 (225) 	 1607	 (224)

Separate models

Actual time 	 1329	 (216) 	 100.3	 (5.2) 	 1602	 (192) 	 100.0	 (4.5)

Continuous time 	 1312	 (208) 	 99.0	 (5.0) 	 1630	 (201) 	 101.7	 (4.7)

Combined model

Actual time 	 1315	 (206) 	 99.3	 (5.7) 	 99.1	 (3.3) 	 1604	 (195) 	 100.1	 (4.9) 	 100.1	 (1.5)

Continuous time 	 1298	 (200) 	 98.1	 (5.3) 	 99.1	 (1.1) 	 1577	 (193) 	 98.4	 (5.0) 	 96.8	 (1.2)

Mean (standard deviation) aucs (μg day mL-1) and mean (standard deviation) percentage change for the actual dose (test 5.92 mg/kg; refer-

ence 6.44 mg/kg), as derived by different methods per treatment arm. aucs of combined and separate models are compared to the nca result 

(a); aucs of combined model are compared to the aucs of the separate model (b, actual time compared to actual time, continuous time to 

continuous time). For comparison to a standard nca, aucl was calculated using model simulated (predicted) individual concentrations at 

the original sampling times (‘actual time’). Extrapolation to infinity (auc∞) was based on the apparent terminal elimination rate constant. 

Additionally, the aucs were derived by integration of the simulated concentration-time profiles (‘continuous time’); aucl from the adminis-

tration time to the last concentration used in the nca, auc∞ until infinity.

auc: area under the concentration-time curve ︳ nca: non-compartmental analysis

V1,i =θp eη i
xi

ẍ
(1.s1) ke,i =θp eη i

xi

ẍ
(1.s2)

Here, i is the ith individual, V1 the volume of distribution, ke the 

elimination rate constant, θp the population parameter estimate, 

x the covariate (respectively lbw and bmi), ẍ  the median of x, and η 

the inter-individual variability.

s u p p l e m e n t
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table 1.s2 auc comparison after dose correction

test reference

auc %-changea %-changeb auc %-changea %-changeb

aucl

nca 	 1335	 (223) 	 1493	 (205)

Separate models

Actual time 	 1338	 (215) 	 100.5	 (5.1) 	 1465	 (176) 	 98.4	 (4.5)

Continuous time 	 1315	 (210) 	 98.7	 (5.0) 	 1439	 (174) 	 96.7	 (4.4)

Combined model

Actual time 	 1334	 (208) 	 100.2	 (5.4) 	 99.7	 (1.1) 	 1453	 (176) 	 97.7	 (4.8) 	 99.2	 (1.2)

Continuous time 	 1310	 (202) 	 98.5	 (5.3) 	 99.7	 (1.2) 	 1427	 (174) 	 95.9	 (4.8) 	 99.2	 (1.3)

auc∞

nca 	 1346	 (228) 	 1497	 (209)

Separate models

Actual time 	 1353	 (220) 	 100.7	 (5.2) 	 1467	 (177) 	 98.3	 (4.5)

Continuous time 	 1335	 (212) 	 99.5	 (5.0) 	 1493	 (185) 	 100.0	 (4.7)

Combined model

Actual time 	 1339	 (210) 	 99.8	 (5.8) 	 99.1	 (3.4) 	 1456	 (177) 	 97.6	 (4.8) 	 99.2	 (1.2)

Continuous time 	 1322	 (204) 	 98.6	 (5.3) 	 99.1	 (1.2) 	 1432	 (175) 	 96.0	 (4.8) 	 96.0	 (1.0)

Mean (standard deviation) aucs (μg day mL-1) and mean (standard deviation) percentage change for the labelled dose (6 mg/kg), as derived by 

different methods per treatment arm. For the nca-results, a linear dose correction was applied; in the models, the labelled dose was used to 

simulate the individual profiles (see main body). aucs of combined and separate models are compared to the nca result (a); aucs of combined 

model are compared to the aucs of the separate model (b, actual time compared to actual time, continuous time to continuous time). For 

comparison to a standard nca, aucl was calculated using model simulated (predicted) individual concentrations at the original sampling 

times (‘actual time’). Extrapolation to infinity (auc∞) was based on the apparent terminal elimination rate constant. Additionally, the aucs 

were derived by integration of the simulated concentration-time profiles (‘continuous time’); aucl from the administration time to the last 

concentration used in the nca, auc∞ until infinity.

auc: area under the concentration-time curve ︳ nca: non-compartmental analysis
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figure 1.s1 Goodness-of-fit plots model T 
Observed vs. population predicted concentrations (a), observed vs. individual predicted concentrations (b), conditional weighted residuals 

with interaction (cwresi) vs. times (c), and conditional weighted residuals vs. population predictions (d) of the separate model for the test 

product.
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figure 1.s2 Goodness-of-fit plots model R
Observed vs. population predicted concentrations (a), observed vs. individual predicted concentrations (b), conditional weighted residuals 

with interaction (cwresi) vs. times (c), and conditional weighted residuals vs. population predictions (d) of the separate model for the ref-

erence product.
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figure 1.s3 Linear and non-linear clearance combined model
The linear clearance (a), the non-linear clearance (b), the combined linear and non-linear clearances (c), and the total clearance (d) of the 

combined model.
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figure 1.s4 η density combined model
Distribution of η s in the combined model for V1 (η 1, a), Km (η 7, b), and ke (η 8, c).
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figure 1.s5 η density model T
Distribution of η s in model T for V1 (η 1, a), Vmax (η 6, b), and ke (η 8, c).
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figure 1.s6 η density model R
Distribution of η s in model R for V1 (η 1, a), Vmax (η 6, b), and ke (η 8, c).






