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Chapter 4

Scattering media characterization with phase-only wavefront
modulation

A new approach for probing the scattering properties of complex media is
proven experimentally. Using phase-only modulation of the light illuminating
a random scattering sample, we induce and record fluctuations in the reflected
speckle patterns. Using predictions from diffusion theory, we obtain the scat-
tering and absorption coefficients of the sample from the average change in
the speckle amplitude. Our approach, which is based on interference, is in
principle able to give better signal to noise ratio as compared to an intensity
modulation approach. We compare our results with those obtained from a
knife-edge illumination method and enhanced back-scattering cone. Our work
can find application in the non-invasive study of biological specimens as well
as the study of light propagation in random scattering devices like solar cells
or LEDs.

This chapter is submitter for publication as:
F. Mariani, W. Loeffler, M. Aas, O. S. Ojambati, P. Hong, W. L. Vos and M. P. van
Exter, Optics Express (2017)
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4. Scattering media characterization with phase-only wavefront modulation

4.1 Complex scattering media

Complex scattering media are ubiquitous, spanning from artifical ones like
white paint or paper to biological forms like cellular tissue or bones. In all these
materials the light propagation is scrambled by multiple scattering events [1],
with the effect of a reduced overall transmission when the sample thickness is
larger than the transport mean free path, i.e. the average distance before a
change in propagation direction occurs. The complexity of the processes hap-
pening in scattering media makes these materials challenging and fascinating
to study.

Different techniques have been used to characterize optical properties of
complex media. Some methods approximate light propagation as a diffusion
process, thus neglecting the wave nature of light and the associated interfer-
ence phenomena; examples of diffusion-based techniques are total transmission
measurement [2, 3, 4] and diffuse imaging analysis [5, 6]. Other methods are
based on interference and require the light to be treated as a wave. This is the
case for the enhanced back-scattering (EBS) technique [7, 8, 9], the analysis
of speckles statistics [10] to measure diffusion parameters [11, 12, 13], and the
measurements of the transmission matrix [14, 15].

Being able to study the properties of complex media is interesting for
fundamental reasons as well as for those applications that require controlling
light propagation within the scattering material. Recently, wavefront-shaping
techniques have been employed to control the propagation of light in complex
media [16, 17] or even produce images of objects positioned beyond opaque
screens [18]. Studying how light transport is affected by structural and com-
positional properties of a medium if of great interest in materials diagnostic
and analysis of biological specimens [19], where non-invasive methods are par-
ticularly relevant.

In this work we demonstrate a new non-invasive method to measure trans-
port and absorption parameters in three dimensional random scattering media.
We spatially modulate the phase of the light illuminating a sample and an-
alyze the intensity variations in the reflected speckle patterns. We interpret
the results using an analytic solution of the diffusion equation applied to a
semi-infinite complex scattering medium. Compared to diffuse imaging with
point-like illumination [6], where transport is studied by measuring diffusion
profile, our technique is promising in studying fields that propagate deeper
into the sample, is not affected by the direct backscattered light, and does not
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4.2. From diffusion theory to speckles fluctuations

require a very large detection dynamic range.

4.2 From diffusion theory to speckles fluctuations

The interaction of coherent light with a random scattering medium pro-
duces speckle patterns; these appear to have a random structure [20] which
is nonetheless deterministically defined by the structure of the medium. In a
linear optical process, such as elastic scattering, the relation between the in-
put field Ein(x′, y′) and the reflected field ER(x, y) is described by the Green’s
tensor G(x, y, x′, y′):

ER(x, y) = G(x, y, x′, y′)⊗Ein(x′, y′) ≡

≡
∫∫

G(x, y, x′, y′) Ein(x′, y′) dx′dy′
(4.1)

The method that we introduce in this work is based on optical phase
modulation and uses the properties of Eq. (4.1), without requiring any direct
knowledge of the Green’s function G(x, y, x′, y′). We consider the field incident
on the sample Ein(x′, y′) and divide it into two halves around x = 0. By
making use of the linearity of Eq. (4.1), we rewrite the reflected field as the
sum of two components ER(x, y) = E−(x, y) + E+(x, y), each given by:

E±(x, y) = G(x, y, x′, y′)⊗
[
H(±x′) Ein(x′, y′)

]
(4.2)

where H(±x′) is the Heaviside step-function. The functions E+/−(x, y) rep-
resent the field reflected, after propagation, upon illumination with light on
only half of the illumination beam for x > 0 (”+” case) or x < 0 (”-” case);
this is sketched in the inset in Fig. 4.1. In the following we consider only one
polarization component of E+/− and write the fields as E+/−.

If we introduce an arbitrary phase retardation ∆φ in the input beam for
e.g. only the half x < 0, the field propagation is not affected, but the only
results is a phase shift for the output field E−(x, y) as compared to E+(x, y).
The total reflected field becomes ER = ei∆φE− + E+, with the phase shift
∆φ modifying the interference between the two components. The reflected
intensity IR(x, y) ∝ |ER(x, y)|2 at the scattering medium surface is obtained
by substituting the expression for ER(x, y), including the phase retardation
∆φ:

IR(x, y; ∆φ) ∝ IC(x, y) + IA(x, y) cos(∆φ+ ψ) (4.3)

where IC = |E−|2 + |E+|2, IA = 2|E∗−E+| and ψ = arg(E+/E−), with E+/−
complex field amplitudes. The central idea of this work is resumed by Eq. (4.3):
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4. Scattering media characterization with phase-only wavefront modulation

the reflected intensity is locally modified by interference when ∆φ is varied in
a [0, 2π] interval. By recording the intensity variations we can determine both
the product of the reflected fields amplitudes and their relative phase. Since
scattering and absorption properties of the medium influence the amplitudes
of the reflected fields E±(x, y), they also determine the profile of IA(x, y).

To attain a practical use the interference principle in Eq. (4.3) we need
to relate the field amplitudes to the scattering and absorption properties of
our medium. This is possible looking at averaged results for the reflected
intensity, a quantity we can directly measure. The ensemble-averaged reflected
intensity 〈IR±(x, y)〉 corresponds to the mean square value for the reflected
fields amplitude, hence we can write 〈|E±(x, y)|〉 ∝

√
〈IR±(x, y)〉.

While the measured speckle-like reflected intensity IR(x, y) strongly de-
pends on the precise positions of the scatterers, 〈IR(x, y)〉 can be calculated
by using a diffusion approximation to describe the transport of optical energy
in the medium. This approximation is valid when the transport mean free
path ltr for the light in the medium is much smaller than the absorption mean
free path la and light is backscattered after multiple scattering events [1, 21].
These conditions are fulfilled in our experiment.

The diffusion equation has an analytical solution for a point like source
in an infinite scattering medium. This can be used to solve the case for a
point-like illumination incident at x = y = 0 on the interface of a semi-infinite
medium, which yields the radial profile of the diffuse reflected intensity R(ρ)
at the interface, with ρ =

√
x2 + y2. We use here the expression for R(ρ) from

Ref. [5] for a random medium of effective refractive index neff surrounded by
air (nout = 1).

We model the diffuse light as coming from two isotropic point sources
[5, 6]: the first is located inside the medium at a depth z0 = (µa + µ′s)

−1,
with µ′s = l−1

tr and µa = l−1
a . The second source is an image source, necessary

to fulfill the boundary condition, and it is located outside the medium at a
distance d = z0 + 2zb, with the extrapolation length zb = (2/3) z0A and A a
constant that depends on the relative refractive index (e.g. A(neff ) = 4.22,
for neff = 1.5) [5, 22, 23]. The resulting R(ρ) has the form:

R(ρ) ∝ 1
4π (z0(µeff + 1

r1
)exp(−µeffr1)

r2
1

+(z0 + 2zb)(µeff + 1
r2

)exp(−µeffr2)
r2

2
)

(4.4)
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4.3. Experimental setup and samples

where r1 =
√
ρ2 + z2

0 , r2 =
√
ρ2 + (z0 + 2 zb)2, and µeff = [3µa(µa + µ′s)]

1/2 is
introduced as an effective attenuation coefficient, describing the joint effect of
scattering and absorption [19].

The coefficients µ′s and µa are combined in the constants z0 and µeff defined
above. Their effect on R(ρ) is different: µ′s determines the curvature and slope
of R(ρ) for short distances from the excitation point, whereas µa mainly affects
the long range behavior of the reflected intensity.

The function R(ρ) is the Green’s function for intensity transport and al-
lows to calculate the average reflected intensity function 〈IR(x, y)〉 for an ar-
bitrary illumination profile. Considering an illumination in the shape of a
half-Gaussian beam, one obtains:

〈IR±(x, y)〉 = R(ρ)⊗ Iin(x′, y′) ≡

≡
∫∫

R(ρ) H(±x′) exp(−ρ2/w2
in) dx′ dy′

(4.5)

where H(±x′) is the Heaviside step-function and win is the waist of the illu-
mination beam. Equation (4.5) describes the knife-edge method we use later
in this work, where incident light is provided in the shape of a half-Gaussian
profile; for this case the two cross sections 〈IR±(x, y)〉 and Iin(x′, y′) are shown
in Fig. 4.2 (a).

With the results in Eq. (4.5) we can now calculate the expected value for
the speckles intensity variations IA(x, y):

IA(x, y) ∝ 〈|E+(x, y)|〉〈|E−(x, y)|〉 =
√
〈IR+(x, y)〉〈IR+(−x, y)〉 (4.6)

where we use the symmetry in our problem such that 〈IR−(x, y)〉 =
〈IR+(−x, y)〉. The expression in Eq. (4.6) models the quantity IA(x, y) defined
in Eq. (4.3), emerging from the interference of two fields, using the diffusion
model for light transport in complex media. This equation is valid under the
reasonable assumptions that the two fields E±(x, y) are uncorrelated and that
the longitudinal coherence of the incident light is much longer than the diffuse
optical path.

4.3 Experimental setup and samples

Setup description
A schematic of our experimental setup is shown in Fig. 4.1. Light from

a HeNe laser (wavelength λ = 632.8nm) is delivered to the setup with a
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4. Scattering media characterization with phase-only wavefront modulation

single-mode fiber (not shown in Fig.4.3) and collimated for a beam waist of
w0 =1.6 mm. The beam is polarized in the x direction by polarizer P0 and
then reflected at normal incidence on a liquid crystal phase-only spatial light
modulator (SLM) (Holoeye Pluto-VIS). The polarizer P1 placed afterwards
removes any minor depolarization introduced by SLM. In quasi-contact with
the SLM we mount a knife-edge which can be moved into the optical path to
block half of the beam.

50x
NA 0.8

x

z
y

CAMERA

SLM

P0

P1

P2

L2

L1

Knife 
Edge

SLM hologram

L R

Δφn
ER(x,y)=E-(x,y)+E+(x,y)

BS1

BS2 Obj

Figure 4.1: The experimental setup: a collimated laser (wavelength 633 nm) illuminates
the spatial light modulator (SLM) after passing through the polarizer P0. The wavefront-
shaped light is polarized again with the polarizer P1 and imaged on the sample with a
telescope consisting of a tube lens L1 (f=20 cm) and a 50x microscope objective.
The reflected light is collected with the same objective and its polarization is selected
with the analyser P2. A second tube lens L2 (f = 20 cm) images the sample on a CCD
camera. Bottom left: a scheme of the phase-step hologram projected on the SLM. Right:
the interference between the light coming from the two halves of the SLM (red and blue
lines) and exiting the sample at the same point.

The SLM surface is imaged onto the sample with a combination of a tube
lens L1 (focal length f = 20 cm) and a microscope objective (Nikon Epi Plan
Fluor 50x, NA = 0.8) obtaining a final illumination spot with beam waist at
the sample win ' 31 µm. This configuration allows to spatially define the
phase over the incident wavefront. For convenience we choose the origin of the
(x,y) coordinate system coincident with the center of the illumination spot.
We image the sample in back-scattering geometry using the same objective
and a second tube lens L2 (f = 20 cm). We finally record an image of the
sample with a CCD camera (Apogee Alta) after the analyser P2 selects the
measured linear polarization.

The sample is mounted on a 3-axis piezo stage for accurate positioning.
A filtered halogen lamp provides the incoherent illumination used to focus
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4.3. Experimental setup and samples

40 20 0 20 40

x position [µm]

40

20

0

20

40

y
 p

o
si

ti
o
n
 [
µ
m

]
Iin(x, 0)

〈IR− (x, 0)〉

40 20 0 20 40

x position [µm]

20

10

0

10

20

y
 p

o
si

ti
o
n
 [
µ
m

]

a) b)IA(x, y)

0 1 2 3 4 5 6

phase shift ∆φ [rad]

0

5

10

15

20

25

30

I R
(∆
φ
)/

10
3
 [

a
u
]

Figure 4.2: (a) Knife-edge method: the spatial speckles measured in reflection upon
illumination with half a Gaussian beam (bottom part) are compared with the average
speckle intensity pattern calculated with diffusion theory (top part). The two cross sections
Iin(x, 0) (red dashed line) and 〈IR(x, 0)〉± (green dashed line) from Eq. (4.5) are also
shown. (b) Phase-step method: (Top) an example of measured speckle intensity variations
IA(x, y) under phase-modulated illumination, with indicated the rectangular region used
for ensemble averaging; (Bottom) the intensity as a function of the phase delay ∆φ for
the pixel pixel highlighted by a cross in the upper panel.

the sample; this avoids the appearance of speckles and allows to find regions
where the sample appears flat and homogeneous within the field of view. We
calculate the spatial resolution of the imaging system using the full width at
half maximum of the spatial autocorrelation peak for the reflected speckle
pattern, resulting in a value of 0.44µm; this value is close to the expected
diffraction limit of 0.40µm and provides a resolution sufficient to resolve the
spatial scale at which the reflected intensity decreases as an effect of diffusion.

Sample preparation
For our experiments we use three different scattering materials: dried liquid

corrector (brand: Tipp-Ex) (sample 1), white paint (sample 2), and a disor-
dered aggregate of polydisperse silica spheres (sample 3). Both samples 1 and 2
were stirred in form of suspension and deposited on a cleaned microscope slide
and left to dry overnight at the room temperature. To prepare sample 3, we
mixed thoroughly a suspension of silica micro-spheres (Sigma-Aldrich S5631)
and deposited a few drops of the suspension on a cleaned objective substrate.
The sample was then dried in an oven at 80 degrees for 30 minutes. The thick-
ness of the samples are determined using with the microscope of our setup and
have values, in the measurement regions, h1 = 640± 6 µm, h2 = 290± 4 µm,
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4. Scattering media characterization with phase-only wavefront modulation

h3 = 170± 2 µm, respectively. The overall thickness tolerance is estimated as
10%.

Experiment
We perform three different experiments (phase-step, knife edge and EBS)

on each of the three samples and measure over multiple regions to verify con-
sistency of the results. For the phase-step method, we project a phase-step
hologram on the SLM with the step aligned at x = 0 on the sample. The pro-
jected hologram introduces a phase difference ∆φ between the right and left
side of the illumination spot. We image the reflected intensity IR(x, y,∆φi)
while applying N = 15 discrete phase-steps ∆φi = i2π

N with i = 0, . . . , N − 1.
By fitting Eq. (4.3) to the measured intensity as a function of ∆φi for each
pixel, we obtain the experimental values for the speckle intensity variations
IA(x, y). The bottom plot in Fig. 4.2(b) shows IR(x, y,∆φi) for a single pixel
as a function of ∆φi.

The second approach is the knife-edge method, a diffuse imaging mea-
surement. In this case half of the incident intensity profile is blocked with
a knife-edge (see Fig. 4.1) obstructing the beam for x > 0, as described in
Eq. (4.5). A typical intensity profile measured with sample 1 is shown in
Fig. 4.2(a), where it is compared to the prediction obtained by numerically
integrating Eq. (4.5). Note that the measurements show a speckle pattern,
because we measure only for one specific realization of the random medium,
whereas the diffusion theory only describes a smooth average intensity.

In the third method we measure the EBS cone of the samples using the
setup described previously in Ref. [9]. The EBS cone appears on top of the
diffuse reflection from the scattering media because of interference in the far
field of counter-propagating optical paths in the medium. Experimental and
theoretical work shows that the maximum intensity of the EBS cone is exactly
two times the value of the diffuse reflected intensity and that the angular width
of the cone depends on the transport mean free path of the scattering medium
[8, 7].

To compare our measurements with both the models for phase-step and
knife-edge methods we first average IA(x, y) and I−(x, y) along the y direction
over a rectangular region, centred with the beam, spanning the full width of
the images and limited to a band of ∆y = 18 µm in the vertical direction (see
Fig. 4.2(c)). In this region the diffuse reflected intensity modelled in Eq. (4.5)
has almost no dependence on y. Since ∆y is about M = 40 times wider
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4.4. Results

than the average speckles size, it is safe to assume that the average values
I−(x) ≡ 〈I−(x, y)〉y and IA(x) ≡ 〈IA(x, y)〉y are equivalent to an ensemble
average over different realizations of the scattering medium. The averaging
also reduces the relative error on I−(x) and IA(x) by a factor M−1/2.

The results we present for phase-step and knife-edge experiments are ob-
tained detecting only the crossed-polarized backscattered light. This choice
offers the advantage of removing the specular reflection of the sample surface,
which conserves the incident linear polarization and is not accounted for by
the diffusion model. Additionally, this also removes the stray light, originat-
ing from reflections from the optical components, in particular the microscope
objective. We note that for all samples the reflected intensity in parallel and
orthogonal polarization has about the same value, indicating that we are in
the regime of nearly complete depolarization.

4.4 Results

The execution of the three experiments and subsequent data analysis are
identical for all three samples: here we present the procedure applied to sample
2 (white paint) and only summarize the results for the other samples. The
results for sample 2 are based on an average over n = 4 different positions.
Ensemble averaging is further assured by the averaging along the y direction,
as previously mentioned. For the EBS measurements we only present the final
results.

To determine the transport and absorption mean free path it is necessary
to know the effective refractive index neff . The values we use for neff for our
three samples are approximate values and are listed in Table4.1. These value
for neff are only parameter and are not critical when comparing three different
methods. Real values can be measured with transmission measurements [24]
or approximated with the effective medium theory [25].

In the phase-step experiment we measure IA(x, y), the speckle amplitude
modulation defined in Eq. (4.6). In Fig. 4.3(a) we show the experimental
curve IA(x) = 〈IA(x, y)〉y for sample 2, after averaging over four position on
the sample surface and normalized to its values in proximity of x = 0. The
measured IA(x) is symmetric around a maximum at x = 0, decaying almost
exponentially with increasing distance form the phase step.

Using non-linear least-squares method, we fit the experimental data with
the model in Eq. (4.6). The values of transport and absorption mean

51



i
i

i
i

i
i

i
i

4. Scattering media characterization with phase-only wavefront modulation
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Figure 4.3: Phase-step results for the white paint. (a) Average speckle intensity mod-
ulation IA(x), normalized to its value at x = 0, for illumination with the phase-step
positioned at x = 0. The red solid line shows the best fit curve with ltr = 3.0 µm and
la = 14 µm. In the plot we also indicate the model with a transport coefficient altered
by ±25% (dotted lines) and the model without absorption (dashed line). (b) The nor-
malized error function in the parameter space (ltr, la), calculated as defined in the text,
with indication of the error minimum identifying the best fit parameters for the fit curve
in panel (a), with the error bar for ltr.

free path that fit the experimental data best are ltr = 3.0 ± 0.3 µm and
la = 14.0 ± 9 mm, where the errorbars are given by the standard deviation
calculated from the covariance matrix

The results of the knife-edge method are shown in Fig. 4.4(a), in the form
of a typical average intensity profile I−(x) = 〈I−(x, y)〉y normalized to its
value at x = 0. The measured curve shows a nearly half-Gaussian profile
with a rounded top on the illuminated side and a diffuse intensity on the
non-illuminated side, with its value decaying wit the distance from the knife
edge.

We use Eq. (4.5) as model for the least square method; for sample 2
(neff = 1.4) the best values for the transport and absorption mean free paths
with this method are ltr = 2.6 ± 0.1 µm and la = 19 ± 6 mm.

In Fig. 4.4(a) we also show, for comparison, the diffuse intensity profile of
point-like illumination, instead of step-like, calculated with Eq. (4.4) using
the best-fit parameters obtained from the knife-edge experiment. Fig. 4.4(a)
clearly shows how the knife-edge illumination provides a more accurate view
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Figure 4.4: Knife-edge results for the white paint. (a) The average reflected intensity
with half of the illumination spot blocked by the knife-edge. The intensity is averaged over
the y direction over a 18 µm strip around the center of the illumination spot. Experimental
data are fitted with the diffusion model in Eq. (4.5) to obtain the best fit parameters ltr
and la (in red). In the plot we also indicate the same model with a transport coefficient
altered by ±25% (dotted lines), and the model without absorption (dashed line). The
intensity profile for point-like illumination is plotted for comparison. (b) The normalized
error function in the parameter space (ltr, la), calculated as defined in the text, with
indication of the error minimum identifying the best fit parameters for the fit curve in
panel (a), with the error bar for ltr.

on the diffusion as a result of the dimensionality of the problem. For point
illumination the intensity drops rapidly as it diffuses in two dimensions with
average circular symmetry, whereas the knife-edge case has approximately a
half-plane source and the intensity drops less steep as light diffuses only in one
main direction.

The values of ltr obtained from the two methods for Sample 2 are compat-
ible within the error bars. In both cases, la is almost four orders of magnitude
larger than ltr. In Table 4.1 we summarize the results for scattering and ab-
sorption parameters (for λ = 632.8 nm) obtained from both methods on the
three samples, and compare them to the EBS method. All samples show very
low absorption and different scattering strengths, ranging from ltr ' 0.75 µm
for liquid corrector, to ltr ' 5.0 µm for the aggregates of SiO2 micro-spheres.
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4. Scattering media characterization with phase-only wavefront modulation

Phase Step Knife Edge EBS

Sample 1 (Tipp-Ex) ltr[µm] 1.0 ± 0.4 0.75 ± 0.05 0.95±0.1

(neff=1.6) la[mm] 5.3 ± 2.8 5.3 ± 1.1

Sample 2 (white-paint) ltr[µm] 3.0 ± 0.3 2.6 ± 0.1 1.7±0.2

(neff=1.4) la[mm] 14 ± 9 19 ± 6

Sample 3 (SiO2) ltr[µm] 5.0 ± 1.5 4.2 ± 0.5 2.9±0.3

(neff=1.4) la[mm] 1±1 1 ± 0.4

Table 4.1: Transport and absorption mean free paths ltr and la for λ = 632.8 nm
as determined from fits for three different measurement techniques: phase-step method,
knife-edge method and enhanced back-scattering (EBS), with indicated neff assumed in
the three methods for each sample.

4.5 Discussion

The phase-step method that we introduce to study the properties of a
diffusive medium proves able to measure the transport mean free path for the
three samples under study. We obtain values for ltr that are similar to those
calculated with the knife-edge experiment.

The results from the phase-step and knife-edge experiments agree within
their error bars for all three samples. In the case of Tippex, the agreement
extends also to the results of EBS, whereas for samples 1 and 2 the EBS yields
lower values for ltr than the other methods. The origin of this difference
might be the different relative weights for long and short scattering paths in
the (angular resolved) EBS measurements as compared to (spatially resolved)
knife-edge and phase-step experiments.

The very low absorption in our samples, with la orders of magnitude higher
than ltr, makes it difficult to determine the absorption mean free path accu-
rately, and it is only possible to give an upper limit for absorption. To visualize
this, we report in Figs. 4.4(b) and 4.3(b) the error function between the model
and the measurements in the parameter space (ltr,la), calculated as the sum
of the squared residues for the logarithms of both model and experimental
data Err =

∑
(ln(Ifit)− ln(Iexp)))2 and normalized to its minimum value.
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4.5. Discussion

The two false-color plots show the normalized error function up to a value
of 1 + 1/

√
n ·M , with n = 4 number of averaged measured positions and M

number of speckles over which averaging is performed. The error function
plots indicate that, in our case, we can only determine a lower bound to la.

To help to understand how sensitive both methods are to ltr and la, we
also plot in Figs.4.4(a) and Fig.4.3(a) the models with virtually no absorption
(la = 106µm) and with ltr modified by 25%.

One aspect that limits the accuracy of the calculation of transport and
absorption mean free path with the phase-step method is, in our case, the size
of the illumination spot. In our setup w0µeff ' 1 − 10 and as a consequence
illumination and diffused reflected light decay on the same spatial scale, mak-
ing it more difficult to separate the two dynamics. By calculating the case of a
half-plane illumination, obtained as the limit case of a Gaussian illumination
with w0 → ∞, we noticed that the function IA(x) shows a more prominent
dependence on the values of ltr and la. This suggests that the use of high
magnification objectives is not necessarily optimal for the phase-step method,
as a larger illumination area might instead be preferred. We also note that a
reduction of the collection NA increases the visibility of the spatial speckles,
and thus the absolute value of IA(x) together with the signal to noise ratio,
but at the price of a reduced resolution.

For both knife-edge and phase-step experiments we use results from the
diffusion model, but the two techniques measure different quantities, the dif-
fuse intensity and the speckle intensity modulation amplitude, respectively.
This difference offers a potential advantages for the phase-step method over
intensity modulation. First the dynamic range: the intensity observed in the
knife-edge experiment depends on the square of the field I−(x) ∝ |E−(x)|2, and
therefore decays faster away from x = 0 than the speckle intensity modulation
IA(x), which depends linearly on the field E−(x, y). Weak fields are there-
fore easier to measure, similarly as in homodyne-detection schemes, as visible
from the curves in Figs. 4.4 and 4.3. The second advantage of the phase-step
method is that it is insensitive to a constant incoherent background, allow-
ing for instance conventional microscopy images taken simultaneously. Finally,
both our knife-edge and phase-step technique have an advantage over the more
common diffuse imaging with spot-like illumination: by avoiding concentrating
the input intensity in a focused spot they prevent the presence of non-linear
optical effects and therefore also produce useful results while measuring the
scattering properties of non-linear optical media.
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4. Scattering media characterization with phase-only wavefront modulation

We conclude our discussion with a technical remark on the use of the SLM.
In many SLM-based experiments it is crucial to apply a position dependent
phase correction to the SLM prior to the experiment in order to control the
wavefront curvature. This is not necessary in our experiment, since the SLM
is in the image plane of the sample and the measurements are based only on
relative phase shifts rather than absolute phase value. Our experiment can
even be performed without an SLM, using only a phase-step λ/4 plate on the
image plane of the sample, centred with respect to the beam: rotating the
plate by 1800 around its axis produces an effective phase change of ∆φ =
π between the two halves of the beam. This is sufficient to measure the
average amplitude variation of spatial speckles, although with a loss of signal-
to-noise ratio of factor 〈cos2(φ)〉−1 = 1/2 with respect to our implementation.
Finally, although we use a wavelength calibration for our SLM, this is also
not strictly necessary as it can be calculated after the experiment from the
intensity fluctuation of even a single pixel.

4.6 Conclusions

We have shown a new method to measure optical transport properties
of a random scattering medium via illumination with phase-only modulated
light. From the position dependence of the intensity modulation of the spatial
speckle in reflection we are able to determine the transport mean free path
and the absorption length. Better estimations would be possible in samples
with shorter absorption mean free path but still in the diffusion regime, as
for instance in biological tissues. All this is possible thanks to the linearity of
the field transport and by implementing a numerical integration of the known
diffusion model for light transport in random media.

The phase-modulation method has potential advantages over diffused
imaging: it is not sensitive to incoherent background and offers the ability
to investigate longer propagation lengths. Our method can be implemented in
standard optical microscopes also without a SLM and is a viable non-invasive
technique for studying materials and biological tissues.
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