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Fig. 4 111In-DTPA octreotide for carcinoid tumor localization.  

A Following an intravenous injection of 111In-DTPA octreotide, accumulation in the left side 
of the liver was seen on the scintigram (arrow). B Fused SPECT/CT and c CT image showing 
radiotracer uptake in a prehepatic lymph node. 

 

 
Fig. 5 Multimodal surgical guidance towards the sentinel lymph node.  
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Fig. 3 99mTc-MIBI for parathyroid adenoma localization.  

A 99mTc- MIBI scintigram showing heterogenous thyroid uptake on the early image with B 
retention of the tracer in the left lobe on the 3 h postinjection image. C SPECT/CT clarifies 
the abnormal uptake seen in the dorsal area of the left thyroid lobe. During radioguided 
surgery a parathyroid adenoma was resected  
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ABSTRACT 

Radioguided surgery (RGS) utilizes radiolabeled tracers that accumulate in the lesion of 

interest following local or systemic administration. RGS is an expanding surgical guidance 

technology, but unfortunately most currently available radiotracers are unable to provide 

intraoperative optical information regarding the location of the lesion. In 2011, a new hybrid 

tracer (both radioactive and fluorescent) was introduced for sentinel lymph node detection. 

This hybrid tracer (indocyanine green-99mTc-nanocolloid) has helped to generate a hybrid 

surgical guidance concept that builds on traditional RGS. Based on its radioactive signature a 

hybrid tracer is able to preserve the ‘‘traditional’’ role for RGS. Furthermore, as an additional 

tool in the operating room, a hybrid tracer provides optical information via fluorescence 

guidance. 

This review discusses the most common RGS approaches. Different clinically used radioactive 

tracers and their potential hybrid derivatives are also discussed. Furthermore, the various 

imaging devices designed for radioactivity-based detection are reviewed in the context of 

generating hybrid-imaging modalities.
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INTRODUCTION

The goal of radioguided surgery (RGS) is to take advantage of local accumulation of a 

preoperatively injected radioactive tracer to achieve effective intraoperative localization 

of a lesion of interest. RGS, allows more complete resections, reducing the need for 

reoperations (Figure 1). Both gamma- and beta-emitting radioisotopes can be used for RGS, 

e.g., fluorine-18 (18F), gallium-67 (67Ga), technetium-99m (99mTc), indium-111 (111In) and 

iodine-125 or iodine-131 (125I, 131I) [1]. With the radiation penetrating deeply through tissue, 

the influence of tissue attenuation on the detection sensitivity is limited. This beneficial 

feature also allows the radioactive signal to be used for the acquisition of preoperative (3D) 

images by means of, for example, single photon emission computed tomography (SPECT) 

or positron emission tomography (PET). The value of SPECT or PET data further improves 

when these modalities are supplemented with anatomical detail provided by computed 

tomography (CT) or magnetic resonance imaging (MRI). To this end, SPECT/CT and PET/CT 

were introduced, followed more recently by PET/MRI.

The information provided by these combined modalities, depicting the radioactive target 

lesion(s) within the patient’s body, constitutes a useful roadmap for surgeons. While the 

radioactive signal allows the surgeon to sensitively locate the area of interest prior to 

incision, during the operation itself, the limited spatial resolution of the current nuclear 

modalities may impair resection accuracy. It must be noted that while good spatial resolution 

can be obtained with SPECT in the preoperative setting (0.25 mm), this resolution cannot be 

obtained intraoperatively with the currently available modalities [1, 2]. Furthermore, ‘signal 

bleeding’ can make it difficult to accurately locate the origin of the radioactive signal during 

surgery. To compensate for these limitations, there is an increasing need, alongside RGS, for 

approaches that provide high-resolution (optical) information.

Optical information plays a key role in real-time assessment and surgical decision-making. 

For example, it allows movement of anatomical structures to be monitored by the surgeon, 

while dyes can be used to mark an area of interest. The surgical identification of lymph 

vessels and lymph nodes using vital blue dye (e.g., patent or methylene blue) during 

radioguided sentinel lymph node (SLN) biopsy is perhaps the best known example of the 

clinical application of dyes [3, 4]. The use of Cerenkov-emitting PET tracers and/or (near-

infrared) fluorescent dyes [e.g., fluorescein, indocyanine green (ICG) or 5-aminolevulinic 

acid] can further improve the optical detection of lesions [5, 6]. Since the tissue penetration 
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of a fluorescent dye is dependent on the excitation and emission wavelength of the dye, an 

increased penetration depth can be achieved by applying near-infrared dyes; ICG, for example, 

allows optical detection of lesions embedded in up to 1 cm of tissue. Clearly, the tissue 

penetration of these optical signals remains limited in comparison to the penetration depth 

of the above-mentioned radioactive tracers, rendering the nuclear approach indispensable 

for 3D localization. Preclinical validation was recently followed by the clinical introduction of 

multimodal (hybrid) tracers that contain both a radioactive and a fluorescent moiety [7, 8], 

and the potential of these hybrid tracers to enhance conventional RGS technologies with the 

beneficial properties of optical guidance has already been demonstrated [9, 10]. This review 

discusses the most common RGS approaches.

Different clinically used radioactive tracers and their potential hybrid derivatives are also 

discussed. Furthermore, the various imaging devices designed for radioactivity- based 

detection are reviewed in the context of generating hybrid-imaging modalities.
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FIGURES

Figure 1. Schematic overview of the addition of optical guidance to the conventional radioguided surgery approach.

A �Radioguided surgery approach. Following radiotracer injection, preoperative imaging can be performed to localize the 

lesion of interest. Intraoperatively, the lesion of interest can then be approached/ localized with a gamma/PET probe and/

or via gamma imaging using a portable gamma camera. 

B �With the injection of a fluorescent tracer, e.g., incorporated in a hybrid tracer, intraoperative fluorescence imaging allows 

visualization of the lesion of interest.
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Fig. 1 Schematic overview of the addition of optical guidance to the conventional 

radioguided surgery approach. 

A Radioguided surgery approach. Following radiotracer injection, preoperative imaging 

can be performed to localize the lesion of interest. Intraoperatively, the lesion of interest can 

then be approached/ localized with a gamma/PET probe and/or via gamma imaging using a 

portable gamma camera. B With the injection of a fluorescent tracer, e.g., incorporated in a 

hybrid tracer, intraoperative fluorescence imaging allows visualization of the lesion of 

interest. 

 



RADIOGUIDED SURGERY TECHNIQUES

RADIOGUIDED SURGERY TECHNIQUES BASED ON INTRAVENOUS 
RADIOTRACER ADMINISTRATION
Radioguided intraoperative margin evaluation (RIME)

In RIME, radioactivity is used to check whether the resection margins are negative. Depending 

on the tumor targeting capabilities of the radiolabeled tracer, accumulation in the tumor, or 

on its surface, can, during the operation, be detected with a gamma-ray detection probe 

(hereafter referred to as gamma probe). The acoustic readout of the gamma probe helps to 

detect the extent of the tumor, and therefore allows more complete surgical removal [11]. If 

any residual activity is encountered in the resection area, this tissue can then also be excised.

Radio-immuno-guided surgery (RIGS) is a technique applied in tumor localization. It involves 

the intravenous injection of radiolabeled monoclonal antibodies, or antibody fragments, 

that target antigens expressed on tumor cells or in the tumor stroma. These radiotracers can 

be used for both diagnostic imaging and, in a similar way, in RIME, for surgical localization 

of tumors [12]. For example, carcinoembryonic antigen-specific monoclonal antibody (anti-

CEA MoAB) can be used to locate specific tumors, e.g., rectal cancer [13].

RADIOGUIDED SURGERY TECHNIQUES BASED ON LOCAL INJECTION 
OF A RADIOTRACER
Sentinel lymph node biopsy

The most commonly applied RGS procedure is SLN biopsy [1]. This approach involves local 

injection of a radiotracer, whose accumulation is used to detect occult lymph node (micro-) 

metastases at an early stage by means of selective identification, and biopsy of the lymph 

node(s) directly draining from the primary tumor (the SLN) [4].

The SLN approach was introduced by Morton et al. [3] and became the clinical standard for 

the staging of clinically lymph node-negative patients. Later, lymphoscintigraphy following 

a radiocolloid injection was combined with the use of optical blue dye for SLN identification 

[14]. Most commonly applied for breast cancer and melanoma, this technique has been 

found to be valuable for lymphatic staging in a variety of cancers [1].

Radioguided seed localization (RSL)

Radioguided seed localization with a radioactive 125I-seed has been introduced as an 

alternative to the wire-guided localization (WGL) technology. The 125I-seed is placed in the 
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tumor center stereotactically or under ultrasound (US) guidance. During surgery, the seed 

can be localized with a dual-isotope gamma probe, without interfering with, for example, 
99mTc-based SLN biopsy. 

Radioguided seed localization is also useful in the neoadjuvant setting. Because of the long 

half-life of the 125I-seed (59 days), it can be placed prior to the start of the neoadjuvant 

chemotherapy while remaining traceable after completion of the chemotherapy regimen 

[15]. Migration of the seed is rare and high rates of radical excision have been reported both 

in primary surgery and after neoadjuvant chemotherapy [15, 16].

Radioguided occult lesion localization (ROLL)

Radioguided occult lesion localization, similar to RSL, also provides an alternative to WGL. 

With this technique, injection of 99mTc-labeled radiocolloid into the tumor is followed by a local 

excision, guided by the gamma probe. In the neoadjuvant setting, a twist marker is inserted 

into the tumor before the start of neoadjuvant chemotherapy. After the chemotherapy and 

prior to surgery, the 99mTc is inserted next to the marker. High rates of radical resections 

have been reported with ROLL [17]. 99mTc has a short half life (6 h) and, for this reason, its 

application in the neoadjuvant setting requires, for ROLL, two interventions before surgery 

(i.e., insertion of the marker and injection of the radiocolloid); for RSL, on the other hand, 

only insertion of the 125I seed is required [18]. An advantage of ROLL over RSL is that ROLL 

can be directly combined with SLN biopsy, resulting in so-called sentinel node occult lesion 

localization (SNOLL) [19, 20].

Radioguided ultrasound-guided lymph node localization (RULL)

In RULL, radiocolloid injection is followed by conventional preoperative SLN mapping. This is 

then combined with US examination of the SLNs to ascertain whether there are metastases 

present. The positive lymph nodes are marked and then surgically excised. RULL constitutes 

a possible refinement of the ‘‘traditional’’ SLN biopsy procedure [21].
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RADIOTRACERS
RADIOTRACERS FOR INTRAVENOUS ADMINISTRATION
Antibodies

In RIGS, the overexpression of specific biomarkers on tumor cells (or in their stroma) is 

used to identify areas of disease. Targeting is accomplished using radiolabeled monoclonal 

antibodies or antibody fragments [12]. In colorectal cancer patients, targeting with anti-

TAG-72 antibodies was used to detect residual tumor tissue; a poorer survival outcome was 

found in patients with residual hot spots residual hot spots after resection [22]. This finding 

suggests that the technique may help optimize radical surgery. Povoski et al. [23] recently 

applied RIGS in the resection of renal cell carcinoma; the imaging and detection approach 

used by these authors was based on 124I-cG250 (124I-girentuximab), which targets carbonic 

anhydrase IX.

In addition to complete antibodies, 111In-labeled antibody fragments of trastuzumab have 

also been used in human epidermal growth factor 2-positive carcinoma of the breast [24]. 

Unfortunately, in a pilot study of six patients this tracer did not aid in intraoperative tumor 

localization; the main reason for the detection failure was believed to be the low dose of 

activity administered (74 MBq).

Although antibodies have a high affinity and specificity for their target antigen, a disadvantage 

of applying antibodies for RGS is their long circulation time. To obtain sufficient tumor to-

background ratios, the unbound antibodies must be allowed to clear [13]. With antibody 

fragments, this unbound antibody clearance should be faster, making it possible to reduce 

the time elapsing between injection and surgery.

123I-iodide and 131I-iodide

The standard therapy for thyroid cancer is complete thyroidectomy followed by 131I-iodide 

ablation therapy. The two most important radionuclides for localization of thyroid tissue 

are 123I-iodide and 131I-iodide. When performing a complete thyroidectomy, tracing the 

radioactive iodine may be used to confirm complete resection; iodine is taken up by thyroid 

tissue and, on the basis of the radioactive signal, can be used to locate residual thyroid tissue 

after resection [25]. However, a study by Tunca et al. [26] concluded that the RGS approach 

was not superior to conventional complete thyroidectomy (Figure 2).
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Figure 2. The landscape of radioguided surgery. 

124I iodine-124, 125I iodine-125, 131I iodine-131, 111In indium-111, 99mTc technetium-99m, 18FFDG fluorine-18-fluorodeoxyglucose, 

MIBG meta-iodobenzylguanidine
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99mTc-sestamibi (99mTc-MIBI)

Parathyroidectomy with bilateral lymphatic neck dissection is the standard procedure for 

primary hyperparathyroidism patients [27]. This procedure has very high success rates, but 

a single residual adenoma can lead to recurrent hyperparathyroidism. Due to its retention 

in mitochondria, 99mTc-MIBI can be used for preoperative parathyroid identification using 

scintigraphy and SPECT/CT imaging (Figure 3) [28]. During surgery, a gamma probe can then 

be used to localize the 99mTc-MIBI accumulated in adenomas. Similarly, 99mTc-MIBI can also be 

used for recurrent parathyroid adenomas [29].
99mTc-MIBI has also been used for RGS in iodine negative recurrent differentiated and 

medullary thyroid cancer [30]. This agent allowed gamma probe localization and subsequent 

resection of thyroid tissue that had not shown uptake of 123I-iodide or 131I-iodide.
99mTc-MIBI scintigraphy can also be used for the detection of breast carcinoma. Its use in 

a clinical study assessing the RIME technique in breast cancer patients showed a 82.6 % 

success rate, with a mean tumor free margin of 4.8 mm [11].

Meta-iodobenzylguanidine (MIBG)
123I- and 131I-MIBG (Adreview®) can be used for the detection/treatment of neuroendocrine 

tumors (NETs). MIBG mimics the structure of noradrenaline and, therefore, targets the 

noradrenaline transporter. A systematic review by van Hulsteijn et al. [31] discussed the 

application of MIBG for the intraoperative detection and resection of NETs. They concluded 

that in specific cases, like small non-palpable tumors or tumors located in adhesive scar 

tissue, MIBG can be useful for intraoperative detection.

However, in some instances somatostatin analogs like 111In-pentetreotide may have 

higher sensitivity than MIBG labeled with iodine for targeting NETs [31]. 111In- and 99mTc-

octreotate analogs 111In-diethylenetriamine penta-acetic (DTPA)-octreotide (Octreoscan®), 
99mTc-depreotide (Neotect®) and 111In-pentetreotide can be used for the detection of 

tumors overexpressing the somatostatin receptor [e.g. NETs, (non) small cell lung cancer]  

(Figure 4) [32–34]. The highly specific uptake of these compounds in the tumor tissue allowed 

radioguidance towards the tumor. For example, complete resection of ACTH-secreting 

bronchial carcinoids was achieved with RGS after injection of 111In-pentetreotide [34]. 

With this tracer, even millimeter-sized tumor nodules and lymph node metastases could be 

resected. A big advantage of these receptor-targeted peptides is their good biodistribution 

and rapid unbound tracer clearance, which results in a good tumor-to-background ratio in a 

relatively short time (1–24h). However, their short in vivo half-life does impose strict timing 

of injection, preoperative imaging, surgical planning and the RGS procedure.
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Figure 3. 99mTc-MIBI for parathyroid adenoma localization. 

A 99mTc- MIBI scintigram showing heterogenous thyroid uptake on the early image with B retention of the tracer in the left 

lobe on the 3 h postinjection image. C SPECT/CT clarifies the abnormal uptake seen in the dorsal area of the left thyroid lobe. 

During radioguided surgery a parathyroid adenoma was resected
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Figure 4. 111In-DTPA octreotide for carcinoid tumor localization. 

A �Following an intravenous injection of 111In-DTPA octreotide, accumulation in the left side of the liver was seen on the 

scintigram (arrow). 

B Fused SPECT/CT and c CT image showing radiotracer uptake in a prehepatic lymph node.
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18F-FDG

Generally, malignant tumors have an accelerated glucose metabolism, which results in higher 

uptake of the PET tracer 18F-FDG. Due to the high signal-to-background ratios obtained, 
18F-FDG is considered valuable for imaging tumor diffusion throughout the body in a variety 

of malignancies [35]. The ability to detect different types of malignancies makes this tracer 

a possible generic tracer for RGS-based tumor resection [36].

RADIOTRACERS FOR LOCAL ADMINISTRATION
Radiocolloids

The most frequently used radiotracers for RGS, especially for SLN biopsy, are 99mTc-sulfur 

colloid, 99mTc-colloidal human albumin (99mTc-nanocolloid), 99mTc antimony trisulfide colloid, 

and 99mTc-tin colloid [1, 37]. 99mTc-labeled radio colloids have been applied mainly in SLN 

biopsy and ROLL/SNOLL procedures [4, 17]. Particle sizes and the amount/volume of 

radiocolloid injected influence the lymphatic flow and the overflow of these tracers into 

higher echelon nodes; accumulation of all these SLN tracers is based on uptake in the 

macrophages [38]. Recently, a PET derivative was introduced in the form of 89-zirconium 

(89Zr)-labeled nanocolloid [39].

Tilmanocept (Lymphoseek®)
99mTc-tilmanocept was introduced as an alternative to the above-mentioned radiocolloids 

[40, 41]. 99mTc-tilmanocept is smaller than most radiocolloids (mean molecular diameter of 

7 vs. 10–600 nm); it is based on a dextran backbone substituted with multiple mannose 

subunits and chelates to allow radiolabeling with 99mTc [42]. It has been suggested that 99mTc-

tilmanocept accumulates in the SLNs by binding to mannose receptors on reticulo-endocytes 

[43].
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INTRODUCTION OF (FLUORESCENT) DYE GUIDANCE TO EXTEND 
RADIOGUIDED SURGERY
Radioguided surgery is an excellent technique for the preoperative localization of a lesion 

of interest. However, as mentioned above, in the intraoperative setting the limited spatial 

resolution of this modality is suboptimal for precise (last millimeter) localization. For this part 

of the resection, an additional tool based on real-time and high-resolution imaging (e.g., 

fluorescence) can be of great benefit.

Blue dye is commonly used to visualize the lymph vessels and the SLN during the surgical 

procedure. Motomura et al. [44] were the first to describe the use of the near infrared 

dye ICG for SLN biopsy in breast cancer; ICG was used in a manner similar to blue dye. 

Thereafter, many different research groups adapted this fluorescence-based approach with 

ICG for SLN biopsy in different types of cancer, e.g., in melanoma and breast cancer [45, 46].

Fluorescent dyes have a higher tissue penetration compared to conventional blue dye, 

but unfortunately, the tissue penetration remains limited to approximately 1 cm [46]. This 

limitation can be overcome by combining ICG with the high tissue penetration of radioactive 

agents [9, 47, 48].

Hybrid-imaging agents

In 2011, we introduced the clinical application of a hybrid radiolabeled colloid (ICG non-

covalently bound to 99mTc-nanocolloid) in prostate cancer patients [49]. With a single 

injection of this hybrid tracer, we were able to visualize the SLNs both preoperatively, using 

lymphoscintigraphy and SPECT/CT, and intraoperatively via fluorescence imaging (Figure 5). 

The same hybrid tracer has now been used for SLN biopsy in various types of malignancies, 

e.g., melanoma and penile cancer [10, 47, 50]. This success should encourage further 

extension of the hybrid approach to surgical areas where there is room for improvement of 

the RGS technique.

To provide a hybrid derivative for the detection of parathyroid disease, methylene blue has 

been iodinated with 123I [51]. However, in a clinical study, this tracer was not found to be 

effective enough to replaces the standard tracer 99mTc-MIBI [52]. Methylene blue labeled 

with 125I has instead been evaluated for SLN biopsy in a clinical trial in breast cancer [10]. 

The solution of 125I-methylene blue are injected locally in or around the tumor, after which it 

was transported by the lymphatic system to the SLN. With a hand-held gamma camera, the 

gamma rays were detected and the blue signature of methylene blue was used to optically 

identify the SLN. Rapid lymphatic drainage of the hybrid tracer is a possible downside of this 

approach.
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In the preclinical setting, a great number of hybrid alternatives to existing RGS tracers are 

currently being developed and evaluated (Table 1). For example, 99mTc-tilmanocept has been 

covalently labeled with Cy7 for fluorescence imaging. In a mouse model it was shown that 

the popliteal SLN could be visualized with fluorescence imaging following a footpad injection 

with Cy7-99mTc-tilmanocept [53]. Multimodal marker seeds have been shown to allow hybrid 

RSL towards a mouse prostate [54]. Here, the 99mTc signature allowed preoperative SPECT 

imaging, whereas intraoperative fluorescence detection provided optical information about 

the exact location of the seed [54].

Targeted hybrid-imaging agents

Research efforts are currently focusing on the development of targeted hybrid tracers allowing 

accurate tumor identification. Despite these efforts, which have been reviewed by Kuil et 

al. [8] and Azhdarinia et al. [55], to date no such tracers have been clinically implemented. 

Hybrid-labeled derivatives of the clinically applied octreotide have been extensively evaluated 
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Figure 5. Multimodal surgical guidance towards the sentinel lymph node. 

A �Following ICG-99mTc-nanocolloid injection, preoperative lymphoscinitigraphy and SPECT/CT imaging are performed to 

locate the SLN (circle). 

B Prior to the start of the operation patent blue dye is injected. 

C Prior to incision, an image with gamma camera is obtained to confirm the localization of the SLN. 

D Pre-incision gamma tracing with the gamma probe allows localization of the SLN. 

E Incision. 

F �Camera used to detect the fluorescent signal in the SLN. G Fluorescence signal detected in the SLN. SLN sentinel lymph 

node.
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preclinically, yielding fluorescent and radioactively labeled imaging agents with high affinity 

for the somatostatin receptor [8, 56]. Alongside these hybrid counterparts of clinically 

used peptide-based tracers, several other interesting hybrid tracers are being developed, 

based, for example, on tumor targeting peptides targeting the chemokine receptor 4 and 

the gastric releasing peptide receptor [8]. A hybrid tracer targeting the prostate-specific 

membrane antigen (PSMA), which is frequently overexpressed in prostate cancer, was 

recently developed by Banerjee et al. [57] by combining the near-infrared dye CW800 and 
111In-1,4,7,10-tetraazycyclododecane-1,4,7,10-tetracarboxylic acid (DOTA) with a PSMA-

inhibitor.

Multiple hybrid tracers have been generated for avb3- integrin, which is overexpressed by 

activated endothelial cells during angiogenesis. These hybrid tracers contain a Cy5- or Cy7-

derivative as fluorescent dye and a DTPA, deferoxamine or DOTA chelate to introduce 111In, 
64Cu or 68Ga, respectively [8]. Liu et al. [58] recently introduced a tracer that combines the 

fluorescent dye BODIPY, containing 18F, with the cyclic arginine–glycine–aspartate (RGD) 

peptide targeting the avb3-integrin for combined PET and optical imaging.

In addition, various hybrid-labeled antibodies have been tested in mouse models [59–62]. 
64Cu-1,4,7-triazacyclononane-1,4,7-triacetic acid (NOTA)-bevacizumab-800CW was applied 

to detect human glioblastoma tumors by both nuclear and optical imaging [63]. The anti-

CD105 antibody TRC105 was labeled with 64Cu or 89Zr for PET imaging and 800CW for 

intraoperative optical fluorescence-based detection in a mouse model of breast cancer-

derived lung metastases [64]. Recently, Cohen et al. [65] described a protocol for the 

labeling of monoclonal antibodies with 800CW and 89Zr for hybrid imaging. Although not 

yet used for clinical studies these antibody-based hybrid tracers seem promising for future 

applications.

MODALITIES USED DURING HYBRID-RADIOGUIDED SURGERY
Different modalities can be used for the intraoperative localization of the preoperatively 

injected radiotracers. Devices to locate both gamma- and positron-emitting radioisotopes, as 

well as devices that can excite fluorescent dyes and collect their emission light, are discussed 

below. Ideally, the introduction of a hybrid approach also drives the development of hybrid-

imaging devices.
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Table 1. Currently used radiotracers and preclinically and clinically used hybrid-imaging agents
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Table 1 Currently used radiotracers and preclinically and clinically used hybrid-imaging 

agents  

 
  



PET detection probes 

Positron emission tomography detection probes are capable of detecting the 511-KeV 

gamma rays that are emitted by the annihilation of a positron–electron pair. Unfortunately, 

the collimators and shielding used for detection make these probes less convenient during 

surgery; 511-keV gamma rays are highly penetrating [36, 66, 67]. Another PET tracer-

detection method is direct detection of the β-particles (positrons). These particles have 

limited soft tissue penetration (max. 2.4 mm) [68]. As a result, direct positron detection 

is easily hindered by overlying/ surrounding tissue, similarly to what happens with the use 

of fluorescent dyes [6]. On the other hand, this property may provide increased resolution, 

making it possible to distinguish between tumor tissue and healthy tissue [66].

Cerenkov luminescence emitted by β-emitters can also potentially be used for intraoperative 

optical detection and might be an alternative to hybrid agents with a fluorescent dye [69]. 

That said, Chin et al. [6] concluded that with the current imaging modalities, the fluorescent 

signature of a hybrid tracer is superior to Cerenkov luminescence.

Gamma probes

Gamma probes can be used to locate different isotopes with low, medium and high energies. 

The technical features and capabilities of common gamma probes have been reviewed by 

Zanzonico and Heller [66, 70]. In these reviews they also discuss the capabilities of the 

gamma probes. 

With gamma probes, it is sometimes difficult to locate areas of interest near the injection 

site, because the signal can be masked by background ‘signal bleeding’ [71]. As hybrid 

radioactive and fluorescent imaging agents emerge, a possible future development would 

be a gamma probe that is also capable of (acoustic) fluorescence detection.

Hybrid-imaging devices can be obtained either by modifying existing RGS devices or 

fluorescence cameras or by developing new imaging devices. Although it is not yet available 

for fluorescence imaging, there does exist a system that allows acoustic gamma tracing and 

acoustic blue dye tracing (Eurorad, Strasbourg, France). A gamma probe that can also detect 

fluorescence could be used to determine margins intraoperatively, overcoming the limited 

tissue penetration of near-infrared dyes.

Gamma cameras

While a gamma probe provides an acoustic signal when it detects gamma rays, a gamma 

camera allows the generation of 2D visual images of the location of the radioactive signal 

[36]. Compared to gamma probes, mobile gamma cameras show improved imaging 
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resolution [66]. Several hand-held and mobile gamma cameras are described in a review by 

Tsuchimochi and Hayama [36]. The main advantage of a mobile gamma camera is that it 

allows reproduction, in the operating room, of preoperatively acquired images. Moreover, by 

generating pre-incision and post-excision images, a comparison can be made to determine 

whether there is any residual activity at the excision site, which should also be removed.

A disadvantage of gamma cameras is the delay in visualization of hot spots, which results in 

long acquisition times in the presence of a weak radioactive signal in the lesion of interest. 

Moreover, since the current systems do not provide ‘white light’ options to visualize the 

surgical field, there is a lack of anatomical information of the area of interest. Furthermore, 

the current gamma camera systems do not usually provide depth information.

A promising development for gamma cameras may therefore be their integration with 

optical cameras to provide visualization of radioactive hot spots within the corresponding 

anatomical context. Blake et al. [72] published data relating to the application of a prototype 

mini-gamma camera integrated with an optical camera: the first results in patients injected 

with 99mTc-hydroxymethylene diphosphate for a standard bone scan showed accumulation 

of the activity in the thumb. 

A next step may be the integration of fluorescence cameras. In combination with the right 

hybrid tracer, devices of this kind would be capable of hybrid surgical guidance using a 

single modality.

Intraoperative navigation devices

The simplest example of navigation uses a mobile gamma camera that allows dual-isotope 

detection, as shown by Vermeeren et al. [73] during laparoscopic SLN biopsy in prostate 

cancer. After a 125I-seed had been attached to the tip of a laparoscopic gamma probe, its 

location could be detected on screen together with the signal coming from 99mTc in the 

SLN. By moving the gamma probe towards the SLN, the signal from the 125I-seed could be 

followed on the gamma probe, providing on-screen 2D navigation to the SLN [74].

The introduction of freehand SPECT technology has made it possible for surgeons to 

intraoperatively acquire a SPECT scan of a region of interest. By tracking both the gamma 

probe and a positioning system fixed on the patient’s body, this technique allows intraoperative 

3D mixed reality-based navigation of the gamma probe to the lesion of interest, e.g., during 

SLN biopsy for breast cancer [75]. As well as allowing real-time acquisition of SPECT scans in 

the operating room, the system can also load preoperatively acquired SPECT/CT data. It has 

been shown that this approach can also be used to navigate tools other than the gamma 

probe, e.g., a fluorescence laparoscope, towards radioactive hotspots [76]. Fluoresence 
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imaging allows errors within the 1-cm range (due to organ movement or deformation for 

example) to be compensated for [76].

With the exception of a navigation system that uses virtual reality to visualize the radioactive 

hot spots in the anatomical context, the current RGS techniques do not provide anatomical 

information [77]. An additional tool that combines the beneficial properties of both 

modalities would be of great value in this field of surgery.

CONCLUSION
The applications of RGS are continuously expanding as new receptor-targeted imaging 

agents and intraoperative tools emerge. Since radio- and fluorescence-based surgical 

guidance modalities each have their own beneficial properties, the development of hybrid 

approaches, which combine advantageous features of both techniques, holds great promise 

for the further refinement of RGS.
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