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1 Einstein 1915

2 A subject closely related to free
will, see Atmanspacher 2015.

3 This interpretation takes quan-
tum theory for granted, and
avoids the measurement prob-
lem.

1 Introduction

Building effective relationships requires speaking the

same language. It is remarkable that although we formulate

physics in the language of mathematics, nature itself speaks

it better. After enormous investments into this relationship,

physicists started seeing two different natures of nature. One

of them is elegantly described by Einstein’s geometric theory

of gravitation,1 better known as general relativity. The other,

the nature of small things, is best described by a theory of

complex valued probability amplitudes: quantum theory.

The unfeasible unification of the two theories describing both

natures is one of the biggest conundrums humanity ever

faced. The solution is of utmost importance as it might re-

veal where the universe’s existence originates from, but also

whether the world is deterministic or not.2 Despite incredi-

ble efforts in the last century, physicist and mathematicians

did not succeed creating a consistent theory of everything,

yet.

A large problem of quantum theory is the understanding of

why the squared norm of the normalized quantum states

gives a probability distribution that describes the possible

measurement outcomes, also known as Born’s rule. There are

several interpretations to overcome this measurement prob-

lem. In my opinion, the many worlds interpretation3 has

a great resemblance with the worldview of the prisoners in

Plato’s cave. To free ourselves from the cave we need to

ask nature itself for more information. However, perform-

ing measurements beyond quantum mechanics is a difficult
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4 Bassi et al. 2013

5 Here ’mechanical object’
means a mass with something
attached, such as a mirror, a
magnet, or just being conduc-
tive, such that it can interact
with some physical field
(usually the electromagnetic
field).

6 Penrose 2014

7 Oosterkamp and Zaanen 2013

8 Rademaker et al. 2014

9 Widespread as function of po-
sition.
10 Or better said: spacetime.

11 More on this in Ch. 5

12 Doherty et al. 2013

thing to do. Luckily we are on the edge of a new era of tech-

nical possibilities where we can push systems over the sup-

posed safe boundaries of quantum theory. We then have to

compare the outcomes of these measurements with the con-

ventional quantum theory and the different interpretations,

and other beyond quantum mechanics theories.4

1.1 Spin mechanics

Many research groups that are exploring the boundaries

of quantum mechanics are trying to find a non-classical state

of a mechanical object5 due to the interaction with an easily

controllable quantum state (qubit). A popular version is a

resonating mirror that is part of a cavity for photons. The

branch of physics studying this system is called cavity op-

tomechanics. The cavity can be replaced with other qubit-

holding systems which, together with the mechanical object,

can be called a hybrid quantum system.

In this thesis we describe and work towards an experi-

ment that should eventually be useful in verifying/falsify-

ing gravitational induced spontaneous collapse models3 such

as the Diósi-Penrose model6 and closely related models.7,8

The basic idea, that widespread9 wave functions are ener-

getically unfavorable for the gravitational field10 compared

to collapsed wave functions, can be tested by creating larger

and larger position-separated superpositions of macroscopic

objects. These superpositions can be created by coupling a

well controlled quantum object to the macroscopic one. The

force (or interaction strength) a single qubit can exert onto

the mechanical object is limited and therefore a low spring

constant is necessary to create a large position displacement

of the mass.11 The setup we choose to develop is a Magnetic

Resonance Force Microscope (MRFM) coupled to a Nitrogen-

Vacancy center12 (NV−-center, or just NV) for several rea-

sons: First because MRFM is a technique where the basics
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13 Poggio and Degen 2010

14 Bar-Gill et al. 2013

15 Wagenaar et al. 2016

16 Degen et al. 2009a

have been developed in the last two decades, and nowadays

there are ultrasoft cantilevers available with spring constants

less than 50 µN/m. Moreover, there is a whole range of spin

manipulation protocols created that can directly be used.13

The qubit connected to our mechanical object in MRFM is

a spin which is a big advantage as spin-qubits can decay

and decohere very slowly. Although a nuclear spin is much

more stable than an electron spin, the latter has a larger mag-

netic moment by three orders of magnitude and therefore a

larger interaction strength by the same amount. NV-centers

show the longest longitudinal (T1) and transversal (T2) de-

cay times of individual electron-spin like spins14 and we ar-

gue in Ch. 5 that this is enough for our experiment. The

biggest advantage of NV-centers is that they can be very pre-

cisely controlled using light and radio-frequent (RF) fields.12

Finally it should be noted that creating a hybrid quantum

system in this way, also contributes to the development of

the MRFM technique, thereby making it a win-win situation.

Even when in a follow-up research it turns out that the devel-

oped experiment becomes too difficult or does not give the

results one could have hoped for, it most definitely has been

useful for developing and commercializing the MRFM, and

has provided new important single atom analysis methods to

condensed matter scientists,15 biophysicists,16 and probably

various industries.

Beside verifying theories, experimental results can also

point towards a yet unknown theory, such as happened af-

ter the famous Michelson-Morley experiment, and the Stern-

Gerlach experiment. On a smaller scale we have also seen

this is this thesis: the temperature dependent dissipation ex-

periment described in Ch. 3 helped finding the general theo-

retical results of Ch. 2 where we explain how a paramagnetic

spin can significantly influence the resonance frequency and

dissipation of a macroscopic resonator. We verified this the-

ory and used it for the new experiment (Ch. 4-5).
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17 Note that q can also be nega-
tive, so not q, but |q| is the norm
of q.

A precise understanding of resonators is necessary

for all chapters in this thesis. Therefore, we continue this

chapter by summarizing the basics regarding classical me-

chanical resonators without any specific interaction with other

systems. The same principles apply to electromagnetic res-

onators, but as we only need this in Sec. 2.4 it is left aside for

the moment. In Sec. 1.2 we provide a Lagrangian description

of a bare mechanical resonator, in Sec. 1.3 we give a treat-

ment of the thermal motion, while in Sec. 1.4 we calculate

under which conditions driving the resonator may heat the

system it is coupled to. In Sec. 1.5 we describe the contents of

the chapters in this thesis and how these are related to each

other.

1.2 Mechanical resonators

The classical motion of the cantilever can be deter-

mined by minimizing the action. For small displacements

q the cantilever can be thought of as a harmonic oscillator,

whose Lagrangian, L, is

L = T −V =
1
2

mq̇2 − 1
2

k0q2. (1.1)

Here, T and V are the kinetic and potential energy, respec-

tively. q and q̇ are the generalized coordinates of the posi-

tion and velocity respectively. Furthermore, m is the effective

mass of the cantilever, k0 the spring constant which the can-

tilever would have in case there is no interaction with parts

outside the system.

As for small displacements q can be taken to point in a single

Cartesian direction, we can work with the scalar q.17 Let us

continue finding a classical solution for q. Minimizing the

action gives us the equations of motion (EOM)

d
dt

∂L
∂q̇
− ∂L

∂q
= Fext(t)⇒ mq̈ + k0q = Fext(t). (1.2)

The external force term is added manually based on the sec-

ond law of Newton. Note that with Fext the energy in the
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system is not conserved. In fact we should also take the dis-

sipative mechanisms into account since this makes the can-

tilever move differently. The dissipative force for a harmonic

resonator can be thought of as an viscous drag −γq̇ because

of the movement and friction in the spring and surround-

ings. Since the dissipated energy depends on the path the

cantilever takes, the force cannot be derived from a poten-

tial description. Therefore we manually add this dissipation

term as a special kind of an external force. Rewriting the

EOM gives

Fext(t) + Ffric(q̇)−
∂V
∂q

=
d
dt

∂T
∂q̇
− ∂T

∂q
, (1.3)

where the right-hand side would be a conserved quantity

(the generalized force) in case the cantilever system would

be dissipationless and not influenced from the outside. From

the last equation it is easy to see that we can effectively recre-

ate a conserved system by choosing Fext(t) = −Ff ric(q̇). We

want this so we are able do continuous measurements, but

therefore we should know the path q̇ first.

If we fill in the terms of the last equations we find

mq̈ + γq̇ + k0q = Fext(t). (1.4)

The solution of this inhomogeneous ordinary differential equa-

tion can be found in several ways. We use the Laplace trans-

form, L{q}(s) =
∫ ∞

0 q(t)e−stdt, as we need to use that as

well in Ch. 2. If we shift the time-axis such that an arbitrarily

chosen initial time t0 → 0, we find

L{q}(s) =

(
s− ω0

2Q

)
q(0) + ωr

(
q(0)√
4Q2−1

+ q̇(0)
ωr

)
(

s + ω0
2Q

)2
+ ω2

r

+
1

ω2
0 + s2 + ω0

Q s
L{Fext}(s)

m
, (1.5)

where ω0 is the natural frequency
√

k0
m , Q the quality fac-

tor
√

k0m
γ , and ωr ≡ ±ω0

√
1− 1

4Q2 , which is the frequency
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18 Technically we should assume
Re{s} > − ω0

2Q . This is automat-
ically satisfied as for the tran-
sients we are only interested in
Re{s} = 0 (the frequency do-
main).

19 Just driving the resonator
without feedback turned on.
20 As there are no poles on the
imaginary axis of s we can take
s → iω, L{q}(s) → q̃(ω), and
L{Fext}(s)→ F̃(ω).

21 The range of atan2(y, x) is
(−π, π], rather than

(
− π

2 , π
2

)
for atan

( y
x
)
.

where the resonance is the strongest. L{q}(s) has two parts:

the transients and the steady state. The transient solution is

found by setting Fext = 0, so it only depends on the initial

conditions q(0) and q̇(0). Returning to the time-domain18 we

find

q(t) = e−
ω0
2Q t

[
q(0) cos (ωrt)+

(
q(0)√

4Q2 − 1
+

q̇(0)
ωr

)
sin (ωrt)

]
.

(1.6)

This solution will always decrease exponentially to the so-

lution q = 0 and therefore it will be of no interest for con-

tinuous experiments. However, a so called ring down ex-

periment, where one measures the response after giving the

resonator a certain q(0) or q̇(0), is an efficient way to measure

ωr and Q for resonators with large Q-factors.

The steady state solution does not depend on the initial

conditions and is of much more interest for us as we would

like to use the resonator as a continuous detector. The steady

state solution is basically the last part of Eq. 1.5. When we

drive the system19 we can represent the system in the fre-

quency domain20 and find

q̃(ω) =
eiφ(ω)√(

ω2
0 −ω2

)2
+
(

ω0ω
Q

)2

F̃(ω)

m
, (1.7)

where the phase φ can be calculated using the four-quadrant

inverse tangent21 φ(ω) = atan2

(
−ω0ω

Q , ω2
0 −ω2

)
.

For a sinusoidal force Fext = F0 sin (ωdt) the response of the

system is

q(t) = A(ωd) sin (ωdt + φ(ωd)) , with amplitude

A(ω) ≡
F0
m√(

ω2
0 −ω2

)2
+
(

ω0ω
Q

)2
. (1.8)
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22 For example consider a res-
onator with its resonance fre-
quency at 3 kHz and a Q of 104;
then at the frequency where the
spectral density is 100 times be-
low its maximum, that is 15 Hz
from resonance, the error is still
less than 0.3%.

1.3 Thermal noise

From the Fluctuation Dissipation Theorem it follows

that the thermal force noise is related to the imaginary part

of the Fourier transform of the linear response function of the

force, i.e. the force F̃(ω) that the cantilever feels when it is

moved by q(ω). It follows that the one-sided spectral density

function of the force noise is given by

SF(ω) =
4kBT

ω
Im
(

F̃(ω)

q(ω)

)
= 4kBTγ. (1.9)

The (also one-sided) spectral density function of the position

of the cantilever is then found by substituting SF(ω) into the

expression for q(ω)q(ω)∗ which gives

Sq(ω) =
4kBT

m

ω0
Q(

ω2
0 −ω2

)2
+
(

ω0ω
Q

)2 (1.10)

≈ kBT
k0

ω0
Q

(ω0 −ω)2 +
(

ω0
2Q

)2 . (1.11)

In the last step we approximated the result by a Lorentzian

distribution. This can be done by expanding the denomina-

tor until second order in ω0−ω, and neglecting higher order

terms and the term ω2
0

ω2
0−ω2

Q2 . This approximation is thus

only valid for high Q and near resonance ω ≈ ω0. However,

for our experiments the error is neglectable.22 For Lorentzian

distributions it can be shown that the full width at half max-

imum (FWHM) is ω0
Q .

It is easy to check that Sq(ω) satisfies the equipartition

theorem〈
1
2

k0q2
〉

=
1
2

k0

∫ ∞

−∞
q(t)2dt =

1
2

k0

2π

∫ ∞

0
Sq (ω) dω =

1
2

kBT,

(1.12)

where we used Plancherel’s theorem, and the identity∫ ∞
0

a
(1−x2)2+(ax)2 dx = π

2a for Eq. 1.10, or
∫ ∞
−∞

a
(x0−x)2+a2 dx = π

for Eq. 1.11.
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23 The Q-factor is generally de-
fined as 2π

Total energy stored
Energy lost per cycle .

24 Or we inject white noise,
which looks like thermal noise.

1.4 Heating

As the resonator has a dissipation factor, it releases heat

into the environment where the dissipation occurs. Our very

cold materials and samples in the experiment can have very

low heat capacities. Especially the spin or spin bath in the

sample that couples to the resonator is very sensitive to heat-

ing. Therefore we should calculate if the heat production

of the cantilever can raise the temperature significantly, or

even dramatically. Let us consider two cases: a system that

is driven with a sinusoidal force, and one that is excited with

white noise around the resonance peak.

By definition of the Q-factor,23 the average power that is

lost is given by

Pavg =
1
2

k0〈q2〉ω
Q

, (1.13)

For the sinusoidal force with frequency ω = ωd we have

〈q2〉 = (A(ωd))
2, where A is defined in Eq. 1.8.

If the force is coming from a thermal force,24 the total

energy in the resonator is 1
2 kBTm, where Tm stands for the

mode temperature which characterizes the height of the ther-

mal spectrum. The power induced into the sample where the

dissipation occurs is

Pavg ≈
1
2

kBTm
ω0

Q
. (1.14)

The sample also has a temperature, let’s say Ts, and the fluc-

tuations in the sample will induce movement in the cantilever

until the system is in equilibrium (Tm = Ts). The rate at

which this equilibrium process goes is ω0
2Q , and hence the

net power going from the mode to the sample is Pm→s =

kB
ω0
2Q (Tm − Ts).

However, it might be that the sample is cooled by the envi-

ronment. Let us assume that this environment has a constant

temperature Th, the heat capacity of the sample is C(T), and

the rate at which the temperature energy transfers from sam-
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Figure 1.1: A thermodynamic
schematic of the MRFM. The
force working on the resonator
causes a certain mode temper-
ature. Sample 1, which is con-
nected due to it’s contribution
to the Q-factor, is affected by
the mode temperature. How-
ever, the sample is also (badly)
connected to a heat bath. Th
is known, Tm can be measured,
but what is Ts?

ple to heat bath, and vice versa, is τ. When there is a steady

flow of heat, i.e. Tm and Th are fixed, then the temperature

of the sample can be derived from the stationary condition

Pm→s = Ps→h, which gives

ω0

2Q
kB (Tm − Ts) =

1
τ

∫ Ts

Th

C(T′)dT′. (1.15)

To solve this equation we need to know C(T′). For Ts ∼ Th

we can use the fundamental theorem of calculus and find

Ts =

ω0τ
2Q kBTm + C(Th)Th

ω0τ
2Q kB + C(Th)

. (1.16)

Usually the resonator will loose its energy in more than one

area. For calculating the temperature of each different part

of the sample, one should only use the contribution of that

specific part to the dissipation, and thus replace 1
Q → ∆ 1

Qs
,

see Fig. 1.1.

Finally, we calculate the sample temperature for a specific

situation. In this thesis, the sample is usually a semiclassical

spin interacting with a magnetic tip on the resonator. The

precise coupling and dissipation mechanism are further ex-

plained in Ch. 2. For a two-state spin, the heat capacity is

C(T) = kB

(
µsB0
kBT

)2
cosh−2

(
µsB0
kBT

)
, with µs the magnetic mo-

ment of the spin and B0 the average (constant) magnetic field.

If we in advance already use Eq. 2.11 for the dissipation fac-

tor ∆ 1
Q , and assume k0〈q2〉 � Ts ∼ Th, we find

Ts ≈

1 +
1
2

∣∣∣B′‖B̂0

∣∣∣2
B2

0
〈q2〉

 Th, (1.17)

where B′‖B̂0
is the gradient of the magnetic field in the di-

rection of the constant B0 field. We assumed that the spin

is connected to the heat bath with a relaxation time (τ =

T1) longer than the resonator’s period. The imposed as-

sumptions show that the approximation is only valid when√
〈q2〉 � 2B0/

∣∣∣B′‖B̂0

∣∣∣, which for typical values in this thesis

leads to a maximal rms amplitude of 100 nm. Comparing

this to the 0.05− 0.5 nm which we would have when the can-
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tilever was thermalized to a heat bath of 0.01− 1 K, we see

that it is not likely that the temperature of the spin bath is

significantly changed due to the cantilever thermal motion.

However, note that the mode temperature Tm is the sum over

the squared movement of the resonator and can be signifi-

cantly higher than Th if the resonator is driven. In certain

situations, such as during one of the OSCAR spin resonance

protocols, the amplitude might be several 10s of nm,25,26 and

the spin bath might heat up. When Ts becomes very differ-

ent from Th, we should recalculate Ts by solving Eq. 1.15.

More on this subject is given in Ch. 2, where we take spin’s

resonance properties into account.

1.5 Contents

Apart from formulating the basics in this introduc-

tion chapter, we already touched on the main challenges that

we need to overcome for creating an experiment that is able

to measure gravitational collapse of the wave function. In

our proposed experiment, where a macroscopic resonator is

manipulated with the qubit, all we care about is a very good

coupling between the resonator and the qubit, plus a very

low dissipation of the mechanical resonator. We will show

that the coupling can be very good. However, a central ques-

tion, that needs to be answered in Ch. 2-4, can we also under-

stand, control, or even avoid the dissipation? Only after we

know that, it makes sense to find the optimal experiment as

is explained in Ch. 5. On the other hand, numerous technical

challenges that we have encountered and solved are summa-

rized in Ch. 6. One of the most difficult parts of the MRFM

experiments was, and still is, the three dimensional coarse

approach at cryogenic temperatures. We tested the stability

of the microscope that is used in Ch. 4 by measuring the sta-

bility of a tunneling current between a temporarily mounted

Scanning Tunneling Microscope (STM) tip and a conductive

sample.27 As the approach of the tip to the sample had to be
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done without optical access, we monitored the approach by

measuring the capacitance between tip and sample continu-

ously. An analysis of this method turned into a relatively new

technique which is useful for various Scanning Probe Micro-

scopes. The article following from this spin-off side project is

included as Ch. 7.
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2 Spin - resonator equilibrium dynamics

We calculate the change of the properties of a resonator, when cou-

pled to a semiclassical spin by means of the magnetic field. Starting

with the Lagrangian of the complete system, we provide an ana-

lytical expression for the linear response function for the motion in

the case of a mechanical resonator and the current for the case of

an electromagnetic resonator, thereby considering the influence of

the resonator on the spin and vice versa. This analysis shows that

the resonance frequency and effective dissipation factor can change

significantly due to the relaxation times of the spin. We first derive

this for a system consisting of a spin and mechanical resonator and

thereafter apply the same calculations to an electromagnetic res-

onator. Moreover, the applicability of the method is generalized to a

resonator coupled to two-level systems and more, providing a key to

understand some of the problems of two-level systems in quantum

devices.

Resonators and spins are ubiquitous in physics, espe-

cially in quantum technology, where they can be considered

as the basic building blocks, as they can collect, store and

process energy and information.1,2 The validity of this in-

formation is, however, of limited duration as these building

blocks leak practically always to the environment, which on

its own can be seen as a bath of resonators and spins.3,4 If

in particular we focus on the situation where a resonator is

coupled to a certain spin, then the spin’s interaction with the

environment naturally causes, besides a shift of resonance
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frequency, an extra dissipation channel for the resonator. De-

spite this simple qualitative explanation and many experi-

mental5,6,7 and theoretical efforts,8,9,10,11 an applicable full

picture that quantitatively describes the response of a res-

onator coupled to a spin and their environments is still lack-

ing. Here we derive classically the linear response function

of the non-conservative system consisting of a resonator and

a semiclassical spin. We show that the quality factor and

resonance frequency of the resonator can be significantly in-

fluenced due to the relaxation times of the spin.

We start with a Lagrangian description, that includes the de-

grees of freedom of the resonator and the spin, to find the

coupled equations of motion (EOMs) that describe the res-

onator displacement and the spin magnetic moment, find-

ing that this magnetic moment depends on the path the res-

onator takes. This is fundamentally different from conven-

tional magnetic force microscopy (MFM),12 where one as-

sumes a fixed polarization of the spins, like in magnetized

samples. Even in magnetic resonance force microscopy

(MRFM), which is usually focused on paramagnetic spins,

it is generally assumed that the spin is not, or at least not sig-

nificantly, influenced by the resonator.13,14,15 We will show

that this influence actually opens the dissipation channel and

that the resonance frequency shift is more subtle than gener-

ally assumed.

Furthermore, we find in our analytical results that the inter-

action amplitude as function of temperature is a curve that

for certain conditions shows an optimum, see Sec. 2.3, sim-

ilar to the curves found in experiments where the tails have

heuristically been fitted with power laws.5,6 Parts of the anal-

ysis we present here have been used by den Haan et al.16 to

explain the experimental results obtained by approaching a

native oxide layer on silicon with an ultra-sensitive MRFM

probe. The equations derived in this paper were found to

closely resemble the measured shift in resonance frequency
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Figure 2.1: Schematic represen-
tation of spin µ interacting with
two types of resonators. a)
The mechanical resonator with
spring constant k and displace-
ment q(t) of the magnet. The
dashed line shows the position
axis that is used in Fig. 2.2. b)
The electromagnetic resonator
as a lumped element device.
The current I(t) through the in-
ductor L changes the magnetic
field at the position of spin µ.
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and reduced quality factor as function of temperature and

resonator - spin surface distance.

Although we start calculating the susceptibility of the more

intuitive mechanical resonator, we will as well derive ex-

plicitly the (additional) impedance for electromagnetic res-

onators (see Fig. 2.1b versus 2.1a, and Sec. 2.4), thereby mak-

ing the results suitable for direct use by other fields in physics.

Moreover, we will show the applicability of the theory to the

case of the resonator coupled to two-level systems (2LSs) and

higher level quantum systems.

Finding an accurate description of the interaction of the build-

ing blocks of quantum devices with the environment can be

seen as a widespread and major research area since not be-

ing able to understand, control and minimize the interaction

is a major bottleneck in: the field of quantum computing,11,7

detector fabrication in astronomy,17,18 MRFM and high reso-

lution MRI19,20 and the development of optomechanical-like

hybrid quantum devices.21,22

2.1 Basic principles

The configuration of our theoretical analysis is given in

Fig. 2.1a. A semiclassical spin, with magnetic moment µ,

is located at laboratory position rs and feels a magnetic field

B(rs, t) that is produced by a magnet. The magnet is attached

to a mechanical resonator that has spring constant k and (ef-

fective) mass m. The origin of the laboratory frame is chosen

to be the equilibrium position of the magnet’s center. The

displacement of the magnet from this equilibrium position is

denoted by q(t). See Fig. 2.1. The Lagrangian for this system

is given by

L =
1
2

mq̇2 − 1
2

kq2 + µ · B(q) + IS. (2.1)
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IS stands for an expression with the internal spin degrees of

freedom that needs to be included to derive the spin EOM.

A more detailed account is left in App. 2.7. The resonator-

spin system does not live in an isolated world. Therefore we

include dissipation and decay to the environment into the

EOMs. The first differential equation, derived with respect to

the resonator displacement, includes the Raleigh dissipation

−γq̇ of the resonator. This results in

mq̈ + γq̇ + kq− µ · ∂

∂q
B = Fext(t), (2.2)

where the last term, Fext(t), is an external force that is exerted

on the resonator.

Starting with the Lagrangian, which contains the degrees of

freedom for the resonator and the spin, leads to the force

interaction term −µ · ∂
∂q B. This is the same as −µ · ∇B‖q, be-

cause of the vanishing curl of the magnetic field in free space.

Here ∇B‖q is the gradient of the magnetic field component

in the direction of the movement of the resonator. In MRFM

−µ · ∇B‖q is often derived from calculating the force-field

from the gradient of the potential energy ∇ (µ · B), assuming

that µ does not depend on the position of the resonator.23

However, as µ follows the classical path, we will show by

solving the spin EOM that µ is influenced by the resonator

and it is therefore a priori not at all obvious that ∂
∂q µ = 0 as

long as the spin degrees of freedom are not defined.

The other set of differential equations can be found by de-

riving the EOM with respect to the spin degrees of freedom.

Since the spin interacts with the environment, we can expect

an effectively decaying amplitude that is often described by

T1 and T2; the time constants associated with the decay of the

semiclassical magnetic moment longitudinal and perpendic-

ular to the magnetic field, respectively.24 If one assumes that

the system consists of an ensemble of paramagnetic spins, in-

stead of one, the average magnetic moment per spin decays
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to a certain equilibrium vector µ∞, according to the master

equation.25 However, if a single spin over time has on av-

erage the same behavior as the average of an ensemble at

a certain moment, i.e. the spin satisfies ergodicity, then we

can combine the ensemble’s master equation and the single

spin EOM to find a differential equation that describes the

average behavior of the single semiclassical spin. This is the

Bloch equation:

µ̇ = γsµ× B + T−1 (µ∞ − µ) . (2.3)

Here γs is the gyromagnetic ratio and T−1 ≡ 1
T2

(
1− B̂B̂T)+

1
T1

B̂B̂T , where the hat denotes the unit-vector in the direction

of the specified vector.

The spin equilibrium magnetic moment µ∞(t) is the vector

to which the spin magnetic moment would decay to if given

the time. As the resonator moves, the magnetic field changes,

and so does µ∞. We will assume that the environment of

the spin is a heat bath, connected to the spin by means of

the relaxation times.25 However, does the spin’s equivalent

spin ensemble have a well defined temperature? As derived

in the original paper of Bloembergen et al.,26 the differential

equation describing the population difference n for particles

in a two-level system is

dn
dt

= −2Wn +
n0 − n

T1
, (2.4)

where W is the probability rate that the particle changes en-

ergy level due to an applied field and n0 is the population

difference between the energy levels when the ensemble has

the temperature of the heat bath. In other words −2Wn is

proportional to the incoming energy and n0−n
T1

is the connec-

tion to the heat bath. This results in

n∞ =
n0

1 + 2WT1
, (2.5)

where n∞ is the steady state solution. Thus when 2WT1 � 1

the spin ensemble, and hence our semiclassical spin, is con-
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nected well enough to the heat bath to assume that our spin

has a well defined temperature. For spin- 1
2 this condition

yields26

πγ2
s
∣∣B′∣∣2 q2T1g (ω)� 1, (2.6)

where B′ = ∂
∂q B

∣∣∣
r=rs

and g (ω) the spin’s normalized absorp-

tion line that is usually described by a Lorentzian or Gaussian

that peaks around the Larmor frequency. This makes this

condition hard to satisfy when the resonator has a resonance

frequency around the Larmor frequency, and one should min-

imize the resonator’s movement q. When this condition is

not met, the spin saturates and the temperature increases or

might be undefined.25 However, for example in MRFM, me-

chanical resonators tend to have resonance frequencies much

lower than the Larmor frequency for spins close to the res-

onator27 and very small gradients at a distant, thereby mak-

ing it much easier to satisfy the condition.

Assuming the condition is satisfied we can now derive µ∞

from the canonical ensemble and find for spin- 1
2

µ∞ = µs tanh (βµs |B|) B̂, (2.7)

where β ≡ 1
kBT is the inverse temperature and µs ≡ Sh̄γs is

the magnitude of the non-averaged spin magnetic moment

with spin number S = 1
2 . This result can easily be gener-

alized for other spin numbers as is done in App. 2.8. For

simplicity we will stick to the formula for spin- 1
2 particles

here.

2.2 Susceptibility

To find the resonance frequency and quality factor of the

resonator, we will need to calculate the interaction term up

to linear order in q. Higher order terms will give rise to

nonlinear effects. Interaction terms with even powers in q

are usually experimentally uninteresting since they will pro-
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Figure 2.2: This graph shows
the single spin contribution to
the spring constant as func-
tion of a position axis paral-
lel to the direction of resonator
movement, as visualized by the
dashed line in figure 2.1a. In the
simulation we attached a mag-
netic dipole (with magnetic mo-
ment of 19 pAm2 in the direc-
tion of q) on a mechanical res-
onator. The resonator is con-
nected, by means of the mag-
netic field, to an electron spin
at a temperature of 300 mK.
The distance between the cen-
ter of the dipole and x = 0 is
2.5 µm. To demonstrate the spa-
tial behavior of the κ-terms we
avoided imaginary terms by set-
ting T1 = 0 in κ2 and T2 = 0 in
κ3. The solid line shows the sum
of these κ-terms.

duce even multiples of the fundamental resonance frequency.

These multiples are not measured or can easily be filtered.

Uneven powers of q can, however, lead to disturbing nonlin-

ear effects like Duffing.28 One can lower the amplitude of

q to suppress higher order terms and therefore the nonlin-

ear effects, but in experiments this is usually limited by the

signal-to-noise ratio.

The zeroth order term does not contribute to the dynamics of

the system, however it does give rise to a constant deflection

of the resonator. This can be solved by shifting the origin

of the laboratory frame by the amount of the deflection; this

causes, however, a (usually small) change of the coordinates

of the spin. We will provide an estimate of the deflection in

App. 2.9 and leave it further out of account.

To find the interaction term −µ · ∂B
∂q up to first order in q, we

need to solve Eq. 2.3 and find the constant and q-dependent

parts. By substituting q → λq we use perturbation theory to

find

−µ · ∂B
∂q

= µ0 · B′ + λ
(
µ1 · B′ − qµ0 · B′′

)
+O

(
λ2
)

, (2.8)

where B′ = ∂
∂q B

∣∣∣
r=rs

was defined previously, and B′′ =

∂2

∂q2 B
∣∣∣
r=rs

. Here µ is perturbed into a q-independent part µ0

and a linear term µ1. The higher order terms O
(
λ2) can be

omitted, as well as the first term on the right hand side that

only gives rise to the constant deflection.

At first we are mostly interested in solutions that do not de-

cay over time and do not depend on initial conditions be-

cause then the linear response function can conveniently be

given in the Fourier domain which makes it easy to compare

with experiments. The Fourier Transform F{ } of the linear

response function, or simply susceptibility χ (ω) ≡ q̃(ω)
F{Fext} ,

can be calculated from Eq. 2.2

χ (ω) =
1

k−mω2 + iγω + κ
, (2.9)
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where κ = κ1 + κ2 + κ3, with κ1 ≡ −µ0 · B′′ and κ2 + κ3 ≡
F{µ1·B′}

q̃(ω)
. Appendices 2.9 and 2.10 present the calculation of

the κ-terms, which turn out to be:

κ1 = −µs tanh (βµsB0)
∣∣∣B′′‖B̂0

∣∣∣ , (2.10)

κ2 (ω) = − µs

B0

βµsB0

cosh2 (βµsB0)

∣∣∣B′‖B̂0

∣∣∣2 1
1 + iωT1

, (2.11)

κ3 (ω) = − µs

B0
tanh (βµsB0)

∣∣∣B′⊥B̂0

∣∣∣2 ·1−
2 T2

T1
− (ωT2)

2 + iωT2

(
1 + 2 T2

T1

)
(1 + iωT2)

2 + (ωsT2)
2

 , (2.12)

where B0 ≡ B (q = 0) and the notation v‖B̂0
and v⊥B̂0

is used

to indicate the part of v parallel and perpendicular to B̂0 re-

spectively for any vector v. κ2 and κ3 are derived from µ1‖B̂0

and µ1⊥B̂0
respectively.

If we compare this result with the conventional approach that

neglects the effect of the resonator on the spin, we see that in

that approach we have only the term κ1.29 However, κ1 is real

and therefore it cannot describe the extra dissipation channel

that has been seen in experiments.30 The derivation which

has been done here does include the linear effect of the res-

onator on the spin and vice versa. This produces two extra

terms in the linear response function that are partly imagi-

nary. Each of the κ-terms is shown separately in Fig. 2.2 as a

function of the spin position. This position axis is indicated

in Fig. 2.1 by the dashed line. Which effect these terms have

in practice, where usually more than one spin is present, will

be shown in the next section.

2.3 Spin bath - resonator coupling

We assume that all spins in the system act individually and

do not influence each other, except through the relaxation

times. We can then sum over the κ-terms for each spin to find
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Figure 2.3: Calculated fre-
quency shift and added dis-
sipation of a mechanical res-
onator due to dangling bonds
on a silicon surface, equivalent
to the setup of den Haan et
al.16. a) Impression of a Nd-
FeB magnet (with magnetic mo-
ment 19 pAm2 in the direction
of q) attached to an ultrasoft sil-
icon cantilever with spring con-
stant k = 70 µN/m, together
leading to a natural frequency
of ω0

2π = 3 kHz. The center of
the magnet is positioned at a
distance of 2.2 µm to the silicon
sample. The surface of the sam-
ple has a native oxide contain-
ing 0.14 electron spins/nm2 that
are visualized by the red balls
(not to scale). The graphs b)
and c) show the resonance fre-
quency shift and the damping
of the cantilever. The results are
shown for various T1, showing
a maximal opening of the ad-
ditional dissipation channel for
T1 = 1/ω0.

the susceptibility of the resonator connected to a whole en-

semble of spins, i.e. κ = ∑s κ1(rs)+ κ2(rs)+ κ3(rs). Moreover,

if the spins in the sample have an average nearest neighbor

distance smaller than the typical spatial scale of the applied

magnetic field, we can see the sample as a spin continuum

and hence, instead of summing, integrate over the sample

with spin density ρ(r).

If we calculate the result for a volume with constant spin

density, it is found in App. 2.11 by partial integration of the
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volume in the direction of the movement of the resonator that

κ(ω) =ρβµ2
s C

(ωT1)
2 + iωT1

1 + (ωT1)2 +

boundary term +O
(

1
(ω2

s −ω2) T2
2

)
, (2.13)

with

C =
∫
V

d3r

∣∣∣B′||B̂0

∣∣∣2
cosh2 (βµsB0)

. (2.14)

The boundary term vanishes when the volume boundaries

in the q-direction are large. The O
(

1
(ω2

s−ω2)T2
2

)
can be ne-

glected for resonance frequencies away from the Larmor fre-

quency and for T2 � 1
ωs

.

From κ we can calculate the frequency and Q-factor shifts as

seen in experiments by den Haan et al.16. For Q0 ≡
√

km
γ �

1√
2

the susceptibility has a maximum around the natural fre-

quency ω0 ≡
√

k
m . Then, as long as the influence of the

spin leads only to a small correction of the susceptibility, i.e.

κ � k, the relative frequency shift is given by

∆ω

ω0
≈ 1

2
Re (κ(ω0))

k
. (2.15)

The imaginary part of κ causes the change in Q-factor. The

new Q-factor is given by

1
Q
≈ 1

Q 0
+

Im (κ(ω0))

k
. (2.16)

In Fig. 2.3 we show an example of an experiment with a

magnet attached to an ultrasoft cantilever, which is posi-

tioned above a silicon sample. The native oxide contains elec-

tron spins that interact with the resonating magnet. The fre-

quency shift and quality factor depend differently on T1. In

this simulation we have set T2 to zero only after we checked

that the O term in Eq. 2.13 can indeed be neglected: setting

T2 = T1 gives an additional frequency shift of about 1 nHz

and a five orders of magnitude lower shift in Q-factor com-

pared to the results shown in Fig. 2.3c.
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Figure 2.4: Simulation of fre-
quency shift and added dissipa-
tion of an electromagnetic res-
onator due to dangling bonds
at the sample’s surface. a) Im-
pression of an RLC-circuit with
10 GHz natural frequency and
0.25 nH inductance that con-
sists of a 50 µm × 50 µm
square which is positioned 50
nm above a surface with 0.14
electron spins/nm2 b,c) Calcu-
lated results for a static exter-
nal magnetic field of 0.1 T that
is oriented out of plane (solid
curve) and in plane (dashed
curve). For this simulation we
assumed T2 = 0.01 µs.
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2.4 Spin - electromagnetic resonator

In this section we calculate the complex impedance com-

ing from a spin interacting with an electromagnetic resonator.

The derivation is very similar to the mechanical resonator

and hence we will largely copy the results. We will assume

that the system can be described by a lumped element model,

which is a valid approximation when the typical size of the

system is much smaller than the wavelength. The results

might be generalized to work for other resonators by using

the distributed element model.31,1 However, this can become

rather complicated depending on if it is necessary to calculate

the interaction between resonator and spin using the retarded

time (Jefimenko’s equations). Moreover, it could be that the
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interaction depends on the current density rather than the

current, all of which is outside the scope of this paper. We

conveniently describe a series RLC circuit, see Fig. 2.1b.

As there is a direct analogy with the mechanical resonator,

it is straightforward to write down the complete Lagrangian

and derive the EOM. From this we calculate something simi-

lar to the susceptibility, but more commonly used in electro-

magnetism, the impedance Z(ω) ≡ V(ω)
Ĩ(ω)

.

The electromagnetic analog of the displacement q is the charge

Qe. However, instead of writing down Qe and ‘momentum

variable’ Q̇e, we prefer to work with the current I ≡ Q̇e. The

‘position variable’ Qe then becomes
∫

dtI. This results in the

RLC-resonator’s EOM as

Lİ + RI +
1
C

∫
dtI +

d
dt

(
µ · ∂

∂I
B
)
= V(t). (2.17)

The resulting interaction term is slightly different compared

to that of the mechanical resonator. The zeroth order term

vanishes conveniently due to the time derivative, leading to

the impedance interaction term z(ω) = −iω
F{−µ· ∂

∂I B}
Ĩ(ω)

. The

spin’s EOM does not change, apart from change of variable

q → I. This results in an extra impedance z = z1 + z2 + z3,

equivalent to the κ-terms, where

z1 = iωµs tanh (βµsB0)
∣∣∣B′′‖B̂0

∣∣∣ , (2.18)

z2 = iω
µs

B0

βµsB0

cosh2 (βµsB0)

∣∣∣B′‖B̂0

∣∣∣2 1
1 + iωT1

, (2.19)

z3 = iω
µs

B0
tanh (βµsB0)

∣∣∣B′⊥B̂0

∣∣∣2 ·1−
2 T2

T1
− (ωT2)

2 + iωT2

(
1 + 2 T2

T1

)
(1 + iωT2)

2 + (ωsT2)
2

 . (2.20)

The resonators complex impedance then becomes

Z(ω) = iωL + R +
1

iωC
+ z. (2.21)

It is much harder to simplify the z-terms as done in Sec. 2.3

when partially integrating over a whole sample because I
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is, unlike q, not a Cartesian direction. However, one thing

simplifies the z term reasonably: the law of Biot-Savart shows

a linear dependence on I implying that z1 vanishes. Note

that it is very well possible that the frequencies of interest

are comparable to 1
T2

or ωs. In this case one should calculate

the whole term. Moreover one should be careful with the

implied condition of Eq. 2.6, i.e. πγ2
s |B′|

2 I2T1g (ω) � 1

when probing the resonator.

In Fig. 2.4 we provide an example of an electromagnetic RLC-

circuit fabricated on top of a silicon sample with a native

oxide. The electron spins inside the native oxide couple to the

inductor changing the resonators resonance frequency and

Q-factor.

2.5 Resonator coupling to other systems

So far we have done nothing more than rigorous math to

calculate the susceptibility of a system were the physical pro-

cess is precisely known. However, the physical nature of the

interaction between a resonator and a general two-level sys-

tems (2LSs) can be different from the simple magnetic field

interaction and will often even be unknown. This subject

has been studied in glassy systems long before it found its

application in quantum technology.32 Mohanty et al.33 con-

nected dissipation coming from 2LSs to intrinsic frequency

and quality factor changes in mechanical resonators. The

calculated relaxation rate of phonons coupled to 2LSs based

on Fermi‚s golden rule is, however, assuming Markovian dy-

namics. Incorporating the time dependent dynamics of the

spin, as we did, lead to different results in which the dissipa-

tion depends on the history of the spin as can be seen from

the T1 and T2 dependency.

Meanwhile the field of glassy dynamics revived when it was

found in experiments that the electric permittivity and loss
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factor of a nonmagnetic glass do actually depend on the mag-

netic field.34 It was only until recently, around the same time

as this paper appeared on a preprint server, that Jug et al.35

provided an intuitive and elegant explanation based on a B-

field dependent density of states and heat capacity. Indeed,

expanding the average energy term, as we did in App. 2.8,

leads to the heat capacity which resulted in κ2 ∝ z2 ∝ x
cosh2(x)

with x the Zeeman energy − temperature ratio. These sim-

ilar results in combination with the results obtained in this

paper imply two things: First the B does not have to be the

physical magnetic field. It is always possible to rewrite the

two state Hamiltonian to

H = E0 +
ε

2B0
σ ·
(

B0 − qB′ + q2B′′ + . . .
)

, (2.22)

where B can be any field that splits the energy levels, lead-

ing to an energy difference ε when q = 0. Here E0 is an

uninteresting energy-offset and σ is a vector containing the

Pauli matrices. The interaction strength is determined by
∂
∂q B, hence it is important that B depend on q, which is the

generalized coordinate of the mechanical resonator, or gener-

alized velocity of the electromagnetic resonator. Because the

expectation values of the Pauli matrices σ are described by

the Bloch equations, the derivations in this paper apply to

any resonator-2LS system. Just substitute µs → ε
2B0

into the

κ and z terms.

Secondly, this result can be easily generalized to a system

with 2S + 1 energy levels (with S an integer or half integer)

by expanding the Brillouin function from App. 2.8 and sub-

stituting

tanh (βµsB0)→ (2S + 1) coth
(
(S + 1

2 )βε
)
− coth

(
1
2 βε

)
(2.23)

βµsB0

cosh2 (βµsB0)
→

− 1
2 (2S + 1)2βε

sinh2
(
(S + 1

2 )βε
) +

1
2 βε

sinh2
(

1
2 βε

) (2.24)
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into the κ and z-terms. This 2S + 1-state quantum system

must be isomorphic to a spin-S particle and hence meet two

conditions: 1) the energy levels are equally spaced and 2)

transitions are only possible to adjacent energy levels.

The general formalism presented in this section can thus be

made very practical again by substituting the actual physical

field responsible for the dynamics into B and finding the en-

ergy gap ε. This way, we hope the formalism can be of use

in many systems.

2.6 Discussion and conclusions

We have calculated the linear response function of a me-

chanical and electromagnetic resonator coupled to a spin.

The linear response function of the resonator shows extra

terms that result in a shift of the resonance frequency and

a drop of the Q-factor of the resonator, compared to the

bare resonator characteristics. Moreover, we have general-

ized these results to the coupling with an energy level sys-

tem with an arbitrary amount of equally spaced energy lev-

els. In practice this means that despite having nonmagnetic

samples and frequencies that are not even close to the Lar-

mor frequency, one encounters dissipation of the resonator

due to the inhomogeneous field it creates. Eventually this

might not be a surprise since the resonator alters the heat ca-

pacity of the spin’s equivalent spin ensemble. Although this

is closely related to the magnetic loss enhancement in non-

magnetic glassy systems,35 we did not find any description in

literature that provides a quantitative and detailed account of

how this influences the linear response of the resonator, de-

spite the many reported and unexplained results.5,6,7 The re-

sults presented here have been experimentally verified16 and

have been used to calculate the frequency shift in a simple,

yet powerful, saturation measurement protocol.36 The region
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between infinitesimal excitation of the spins as we did and

full saturation is, however, still unexplored and we anticipate

that the calculation in this paper is a good starting point in a

follow-up research where an additional radio-frequent field

and the incoming energy, see Eq. 2.4, are incorporated. In

contrast to this paper where we used the steady state solu-

tion of µ1, it might also be important to consider the transient

solutions.

We have chosen to do the calculations completely in the

(semi)classical regime as we are especially interested in the

expectation value of spin and resonator. Moreover this leads

to an intuitive description and fairly simple calculations. The

classical treatment has it limitations though: Berman et al.23

have raised the point that, if the cantilever position is con-

stantly measured, there is an influence on the spin because of

the projections that are constantly occurring in the act of mea-

suring. This might introduce random quantum jumps which,

when they are not time averaged over timescales longer than

T1, are not taken into account in our description. Further-

more, when pulses are applied, for example in spin reso-

nance techniques, a precise time evolution of the system is

needed. Moreover, sending hard pulses might violate the

condition for the temperature and linear response of the spin

that we have encountered in Sec. 2.1. In this case one might

move to a calculation involving the spin-operators. The the-

ory presented here would still give a fair indication about the

enhancement of dissipation, which is of importance in the

field of hybrid quantum systems that are pushing the limit

of macroscopic superpositions.22,37
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Appendices following: Dissipation and resonance frequency shift of a resonator
magnetically coupled to a semiclassical spin

2.7 Resonator - semiclassical spin Lagrangian

The semiclassical magnetic moment µ can be seen as a vector with an azimuth

φ and a polar angle θ, where the poles of the spherical coordinate system (θ = 0◦

and 180◦) lie on the axis parallel to the magnetic field. θ and φ̇ can be seen as the

two degrees of freedom that a spin has. Then the Lagrangian L = µ · B(q) + Sh̄φ̇ cos θ

reveals the Bloch equations for a spin-S particle, but then without decay and for mag-

netic moment instead of magnetization. The last term of the Lagrangian describes the

internal dynamics of the spin. Substituting this into the full Lagrangian in Eq. 2.1, we

find

L =
1
2

mq̇2 − 1
2

kq2 + µ · B(q) + Sh̄φ̇ cos θ. (2.25)

2.8 Equilibrium magnetic moment

By definition of the equilibrium vector we can state that −µ∞ · B = 〈E〉, where 〈E〉
is the equivalent ensemble average for the energy, or for a single spin the averaged

energy over all the points in time with equal q. The limited energy levels make it

easy to calculate the average energy: For spin-S there are 2S + 1 energy levels with

energies Ek = −kgsµs |B| with k = −S,−S + 1, . . . , S. Using the relation between

internal energy and the canonical partition function, this results in

µ∞ = µs

(
(2S + 1) coth

(
(2S + 1) βµs |B|

)
− coth

(
βµs |B|

))
B̂ (2.26)

S= 1
2= µs tanh (βµs |B|) B̂. (2.27)

This result is also known as the Brillouin function for the Zeeman energy. The imposed

direction B̂ follows from Curie’s law. The result might be different when the spin
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has (strong) interaction with its neighbors and when this leads to anisotropic effects,

although some of these effects might be included in the q independent part of B.

2.9 Zeroth order solution

If the magnetic field generated by the oscillating magnet is given by B(r) in the

magnet’s rest frame, then in the laboratory frame the magnetic field is B(r − λq).

Around the spin position rs the magnetic field is

B = B0 − qB′ +
1
2

q2B′′ + . . . . (2.28)

Here B0 ≡ B(rs), B′ ≡ ∂B
∂q

∣∣∣
r=rs

and B′′ ≡ ∂2B
∂2q

∣∣∣
r=rs

.

Next we substitute q → λq and expand µ∞ for spin- 1
2 up to first order in λ and omit

higher order terms

µ∞ = µs tanh (βµsB0) B̂0 − q

(
tanh (βµsB0) P⊥ +

βµsB0

cosh2 (βµsB0)
P‖

)
B′

B0
, (2.29)

where P‖ and P⊥ are projections parallel and perpendicular to the B0 field respectively,

i.e. P‖ ≡ B̂0B̂T
0 and P⊥ ≡ 1− B̂0B̂T

0 . We also set q → λq into Eqs. 2.3 and 2.28 and set

λ→ 0 to get the differential equation to solve for µ0:

µ̇0 =

(
γsB0× −

1
T2

P⊥ −
1
T2

P‖

)
µ0 +

µs

T1
tanh (βµsB0) B̂0, (2.30)

where the × subscript denotes an antisymmetric matrix such that A×v ≡ v× A for

any vector v and A.

Let M(s) ≡
∫ ∞

0 e−stµ(t)dt be the Laplace transform of the magnetic moment and

apply the necessary linear algebra to get

M0(s) =


(

s + 1
T2

)
P⊥ + ωs B̂0×(

s + 1
T2

)2
+ ω2

s

+
P‖

s + 1
T1

(1
s

µs

T1
tanh (βµsB0) B̂0 + µ(0)

)
, (2.31)

with ωs ≡ γsB0. The inverse Laplace transform yields the general solution for µ0 in
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the time-domain:

µ0(t) = µs

(
1−e−t/T1

)
tanh (βµsB0) B̂0+e−t/T2 cos(ωst) −e−t/T2 sin(ωst) 0

e−t/T2 sin(ωst) e−t/T2 cos(ωst) 0

0 0 e−t/T1

 µ(0). (2.32)

To retrieve some intuition for the results we choose to present the last term as a matrix

which is given in a non-rotating Cartesian basis with ẑ = B̂0.

To estimate the static displacement we use µ0(∞), which is of course the same as

µ∞(q = 0), to find the change of equilibrium position

q→ q− µ0 · B′
k + δk

≈ q− µs

k
tanh (βµsB0) B̂0 · B′, (2.33)

where in the last step we neglected δk, the effective extra stiffness coming from the

terms linear in q.

2.10 First order solution

As argued in the main text, we can ignore the terms that decay or depend on ini-

tial conditions. As a consequence we can take µ0 = µs tanh (βµsB0) B̂0. This leads

immediately to one of the interaction terms. Taking F {−qµ0 · B′′} = κ1q̃(ω) with

q̃(ω) = F{q(t)} we arrive at

κ1 = −µs

∣∣∣B′′‖B̂0

∣∣∣ tanh (βµsB0) , (2.34)

where
∣∣∣B′′‖B̂0

∣∣∣ = B′′ · B̂0.

Next, we need to find µ1. Again this is done by substituting q → λq and extracting

the terms that are linear in λ only. We find
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µ̇1 =

(
γsB0× −

1
T2

P⊥ −
1
T2

P‖

)
µ1

+ q(t)
((

1
T2
− 1

T1

)
C− γsB′×

)
µ0

− q(t)
µs

B0T1

(
tanh (βµsB0) P⊥ +

βµsB0

cosh2 (βµsB0)

)
B̂′, (2.35)

where C ≡ 1
B0

(
B̂0B′T P⊥ + P⊥B′B̂T

0
)
.

The first line is the same as in Eq. 2.30 and therefore leads to the same matrix as in

Eq. 2.31 using the same non-rotating Cartesian basis with z = B̂0. This leads to

M1(s)=


(

s + 1
T2

)
P⊥ + ωs B̂0×(

s + 1
T2

)2
+ ω2

s

+
P‖

s + 1
T1

 ·
(

tanh (βµsB0)

((
1
T2
− 2

T1

)
P⊥B′ −ωsB̂0 × B′

)
− βµsB0

cosh2 (βµsB0)
P‖B

′
)

µs

B0T1
Q(s),

(2.36)

with M1(s) and Q(s) being the Laplace transform of µ1(t) and q(t) respectively.

M1, and thus µ1, can be easily split in a part that is parallel and perpendicular to B̂0.

It follows from Eq. 2.8 that we need specifically the product µ1 · B′ for the interaction

term. So let us write F {µ1 · B′} = q̃(ω) (κ2 + κ3) where κ2 and κ3 come from the

parallel and perpendicular parts of µ1 respectively. Finally we move to the Fourier

domain, which is possible since all poles lie in the Re(s) < 0 regime. This leads to

κ2 = − µs

B0

∣∣∣B′‖B̂0

∣∣∣2 βµsB0

cosh2 (βµsB0)

1
1 + iωT1

, (2.37)

where
∣∣∣B′‖B̂0

∣∣∣2 = B′T P‖B′.
For κ3 we find

κ3 = − µs

B0

∣∣∣B′⊥B̂0

∣∣∣2 tanh (βµsB0)

1−
2 T2

T1
− (ωT2)

2 + iωT2

(
1 + 2 T2

T1

)
(1 + iωT2)

2 + (ωsT2)
2

 , (2.38)
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where
∣∣∣B′⊥B̂0

∣∣∣2 = B′T P⊥B′.

2.11 Spin bath integral

We want to integrate the κ-terms over a volume of spins that has a constant spin

density ρ. Before we start, we split the volume in a component perpendicular (Vq⊥ )

and along (Vq‖ ) the resonator movement, such that we can write the integration as

κ = ρ
∫
Vq⊥

dq⊥
∫
Vq‖

dq (κ1 + κ2 + κ3) . (2.39)

Using the identities

∂

∂q
tanh (βµsB)

∣∣∣∣
r=rs

=
βµs

cosh2 (βµsB0)

∣∣∣B′‖B̂0

∣∣∣ , and (2.40)

∂

∂q

(
B̂ · ∂

∂q
B
)∣∣∣∣

r=rs

=
∣∣∣B′′‖B̂0

∣∣∣+ 1
B0

∣∣∣B′⊥B̂0

∣∣∣2 , (2.41)

we find by partial integration∫
Vq‖

dq κ2(T1 = 0) = −µs tanh (βµsB) |B′‖B̂0
|
∣∣∣
∂Vq‖
−
∫
Vq‖

dq (κ1 + κ3(T2 = 0)) . (2.42)

Using this result and the expressions for κ2 and κ3 (Eq. 2.37 and 2.38), we can write

the total integral

κ =ρβµ2
s
(ωT1)

2 + iωT1

1 + (ωT1)2

∫
Vq⊥

dq⊥
∫
Vq‖

dq

∣∣∣B′||B̂0

∣∣∣2
cosh2 (βµsB0)

+ ρµs

2 T2
T1
− (ωT2)

2 + iωT2

(
1 + 2 T2

T1

)
(1 + iωT2)

2 + (ωsT2)
2

∫
Vq⊥

dq⊥
∫
Vq‖

dq tanh (βµsB0)
1
B0

∣∣∣B′⊥B̂0

∣∣∣2
− ρ

∫
Vq⊥

dq⊥ µs tanh (βµsB) |B′‖B̂0
|
∣∣∣
∂Vq‖

. (2.43)
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3 Spin-mediated dissipation and frequency shifts
of a cantilever at milliKelvin temperatures

We measure the dissipation and frequency shift of a magnetically
coupled cantilever in the vicinity of a silicon chip, down to 25 mK.
The dissipation and frequency shift originates from the interaction
with the unpaired electrons, associated with the dangling bonds in
the native oxide layer of the silicon, which form a two dimensional
system of electron spins. We approach the sample with a 3.43 µm-
diameter magnetic particle attached to an ultrasoft cantilever, and
measure the frequency shift and quality factor as a function of tem-
perature and the distance. Using a recent theoretical analysis of
the dynamics of a system consisting of a spin and a magnetic res-
onator,* we are able to fit the data and extract the relaxation time
T1 = 0.39± 0.08 ms and spin density σ = 0.14± 0.01 spins per
nm2. Our analysis shows that at temperatures ≤ 500 mK magnetic
dissipation is an important source of non-contact friction.

Understanding the dissipation and frequency shifts in mag-

netic force experiments is crucial for the development of mag-

netic imaging techniques, e.g. Magnetic Resonance Force

Microscopy (MRFM). The sensitivity of such techniques de-

pends on the friction of the cantilevers, which therefore has

increased the interest in high-quality cantilevers with qual-

ity factors exceeding a million.1 However, the quality factor

reduces due to non-contact friction with the scanned sam-

ple which is explained by dielectric fluctuations.2 Far from

the surface, magnetic dissipation from paramagnetic spins or

nanomagnets on the cantilever have been observed to have a
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Figure 3.1: (a) Scanning Elec-
tron Microscope image of the
magnetic particle after it is
glued to the cantilever. (b) Opti-
cal microscope image of the de-
tection chip. The cantilever is
positioned above the center of
the pickup coil (•). The pickup
coil is used for SQUID based de-
tection of the cantilever’s mo-
tion. The vertical wire (dot-
ted arrow) and the copper sam-
ple (?) are used in other exper-
iments. (c) Sketch of the setup.
The height is measured from the
bottom of the magnetic parti-
cle, which has a diameter of 3.43

µm. (d) The coupling with the
pickup coil as function of the x-
position of the cantilever. The
red solid line is the calculated
flux change in a square loop
due to a magnetic dipole µ on
a moving resonator. The maxi-
mum (scaled to 1) of the curve is
at the center of the pick-up coil,
which can be determined with
µm precision.
3 Stipe et al. 2001a
4 Harris et al. 2003

5 Rugar et al. 1990

large effect on the friction.3,4 Our report quantitatively an-

alyzes the magnetic dissipation of a cantilever in the vicin-

ity of a silicon chip, showing that this is the most significant

non-contact friction at low temperatures for a magnet on can-

tilever geometry.

Magnetic Force Microscopy (MFM) measures the forces re-

sulting from stray fields of a sample that is being scanned.

The coupling of the tip with the magnetic field manifests it-

self as a shift in the resonance frequency of the cantilever

and as additional dissipation which reduces its quality fac-

tor Q. For magnetic moments that do not change due to the

magnetic tip itself, the frequency shifts are well understood.

However, a more complicated model is required when the

spins in the sample are paramagnetic, because the motion

of the tip changes the direction of their magnetic moments.5

In this paper, we show frequency shifts and dissipation re-

sulting from the dangling electron bonds at the surface of a

silicon substrate. We are able to extract the relaxation time T1

of the electron spins, without using electron spin resonance

techniques. Furthermore, we use our analysis to calculate the
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maximum possible dissipation for a state-of-the-art MRFM

setup and diamond cantilever. We show that magnetic dissi-

pation can cause a drop in quality factor, thereby decreasing

the sensitivity of an MRFM experiment. We calculate that this

dissipation is suppressed when using large external magnetic

fields at low temperatures.

3.1 Theory

In our experiment, a magnet attached to a cantilever

(Fig. 3.1a) couples via its magnetic field B(r) to magnetic mo-

ments µ originating from localized electron spins with near-

negligible interactions. The coupling with a single spin can

be associated with a stiffness ks, which results in a shift ∆ f
of the natural resonance frequency f0 of the cantilever, ac-

cording to ∆ f = 1
2

ks
k0

f0, with k0 the natural stiffness of the

cantilever.

Commonly, the analysis of magnetic interaction6 begins with

the interaction energy E = −µ · B(r). And one calculates the

force and stiffness acting on the cantilever by taking the first

and second derivative with respect to x, the direction of the

fundamental mode of the cantilever. Assuming that µ is fixed

by a large external field, one obtains in this approach a stiff-

ness in the form of ks = µ · ∂2B(r)
∂x2 . A recent detailed analysis

by De Voogd et al.,7* which starts with the Lagrangian of the

full system, taking into account the spin’s dynamics as well

as the influence of the mechanical resonator on the spin, sug-

gests that the commonly employed model is not the correct

approach for paramagnetic spins. For paramagnetic spins,

the relaxation and the exact dynamics of the spin in the can-

tilever’s magnetic field determine the frequency shifts and

dissipation. In the case of a two-dimensional system of para-

magnetic spins, uniformly distributed over an infinite sur-

face, the frequency shift ∆ f and shift in the inverse quality
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Figure 3.2: Frequency sweeps
of the cantilever at a temper-
ature of 70 mK. When mov-
ing towards the sample, the res-
onance frequency fr increases,
while Q decreases due to an in-
creasing coupling with the sur-
face electron spins. We extract
fr and Q by fitting the data to a
Lorentzian (red solid line).

factor ∆ 1
Q can be written as:

∆ f
f0

=
1
2

C · (2π f0T1)
2

1 + (2π f0T1)
2 , (3.1)

∆
1
Q

= C · 2π f0T1

1 + (2π f0T1)
2 , (3.2)

C =
σµ2

k0kBT

x

S

(
B̂(r) · ∂B(r)

∂x

)2

cosh2 ( µB(r)
kBT )

dr. (3.3)

Where T is the temperature, kB is the Boltzmann constant and

T1 is the spin’s longitudinal relaxation time. The integral is

performed over the infinite surface assuming a constant spin

density σ. We have assumed ∆ f � f0, Q � 1, and that the

inverse of the transverse relaxation time T−1
2 is much smaller

than the Larmor frequency, which is already the case when

T2 is larger than 1 µs.

3.2 Experimental details

In this experiment, we detect the dangling bonds that are

present on the surface of a silicon substrate of the detec-

tion chip using MFM down to 25 mK. We use a commercial
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cryogen-free dilution refrigerator, in which we implemented

several vibration isolation measures.8 We are able to coarse

approach towards the sample in three dimensions, with a

range of 1 mm in x, y and z. For this we employ three ‘Piezo-

Knobs’9 while reading out the position using three capacitive

sensors.

The cantilever is a silicon micro-machined IBM-type with

length, width and thickness of 145 µm, 5 µm and 100 nm,

respectively.10,11 The magnetic particle is a spherical parti-

cle from a commercial neodymium-alloy powder.12 We used

platinum electron beam induced deposition using an in-house

developed nanomanipulator13 in a Scanning Electron Micro-

scope (SEM) to attach the small magnetic particle on the free

end of the cantilever and measured the diameter to be 3.43

µm (Fig. 3.1a). Subsequently, we magnetized the magnet in

the x-direction at room temperature in a field of 5 T.

The readout of the cantilever’s motion is based on a Su-

perconducting Quantum Interference Device (SQUID) which

enables low temperature experiments.14 Where in conven-

tional MFM setups a laser is used to readout the motion,

our method is based on the motion of the magnetic particle

in the vicinity of a small superconducting ‘pickup’ coil, giv-

ing a flux change whenever the cantilever moves (Fig. 3.1c).

This signal is transformed by an on-chip transformer, which

matches the pickup coil inductance to the high SQUID input

inductance. The measured flux noise in the complete setup

is less than 4 µΦ0/
√

Hz, where Φ0 is the flux quantum.

The substrate is high resistivity (> 1 kΩcm) (100)-oriented

n-type (phosphorus doped) silicon. The substrate is cleaned

with acetone and DI water, which leaves an interface of sil-

icon with its native oxide. To create the superconducting

structures on the chip, NbTiN is grown on the silicon sub-

strate with a thickness of roughly 300 nm. Patterning is done

using standard nano-lithographic techniques and reactive ion

etching in a SF6/O2 plasma. For future MRFM experiments,

we added a wire for radio-frequency currents and a 300 nm

thick copper layer capped with gold. The copper is connected
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Figure 3.3: Resonance fre-
quency fr and quality factor Q
versus temperature for different
heights of the cantilever with re-
spect to the sample. For the
quality factor, the error bars in-
dicate the 95% confidence in-
tervals of the Lorentzian fit.
For the frequencies the aver-
age error was 0.01 Hz, which is
smaller than the point size, ex-
cept for one data point. The
solid lines are fits to the data
with the spin density σ, spin re-
laxation time T1 and frequency
offset f0 as fitting parameters.
fr and Q are simultaneously fit-
ted for each height. The results
of the fit can be found in table
3.1. The dashed line is the fre-
quency shift calculated with the
commonly used expression ks =

pµ · d2 B
dx2 , with p = tanh

(
µB(r)
kB T

)
and with σ ten times smaller
than we find in our analysis.

via golden wire bonds to the sample holder, which itself is

connected via a silver welded wire to the mixing chamber,

ensuring good thermalization of the sample. Figure 3.1b

shows an optical microscope image of the obtained struc-

ture. We drive the cantilever using a small piezo element

glued to the cantilever holder. We sweep the drive frequency

using a function generator around the resonance frequency

fr while measuring the SQUID’s response using a Lock-In

amplifier. We fitted the square of the SQUID’s signal with a

Lorentzian curve in order to extract fr and Q. The amplitude

of the Lorentzian is determined by the coupling between the

magnet and the pickup coil, which is proportional to the en-

ergy coupling, and can be used to determine the position of
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the cantilever by scanning the cantilever in the xy-plane, see

Fig. 3.1d.

For the experiment presented in this paper, we posi-

tioned the cantilever above the center of the pickup coil, to

minimize possible repulsive forces from the superconduct-

ing wires. By gently decreasing the height of the cantilever

until the signal is completely lost, we determine the relative

height of the magnetic particle with respect to the surface.

The sample holder is placed on a finestage, machined out

of aluminum, which can be moved in all spatial directions

by actuating laminated piezoelectric extension stacks. Using

this, we can now have good control of the height up to the

full range of the finestage of 2.3 µm.15

We swept the drive frequency at a drive amplitude small

enough to avoid non-linear responses of the cantilever’s mo-

tion, while measuring the SQUID signal. We measured with

a sampling time of 2 s every 0.02 Hz. Fitting the data with

a Lorentzian, we obtain fr and Q = fr
FWHM . At each height,

the temperature was varied from the lowest achievable tem-

perature ≈ 25 mK, up to 500 mK. Above 500 mK, the alu-

minum shielding of the experiment starts to become non-

superconducting. An example of the data with the Lorentzian

fits at all used heights at 70 mK is shown in Fig. 3.2.

Height (µm) spin density (nm−2) Relaxation time (ms)

0.08 0.142 0.42

0.19 0.137 0.52

0.38 0.140 0.48

0.57 0.142 0.42

0.77 0.136 0.38

1.15 0.130 0.32

1.72 0.133 0.28

2.30 0.168 0.33

mean: 0.14± 0.01 0.39± 0.08

Table 3.1: Obtained values for
the spin density σ and relax-
ation time T1 for every height z
above the sample. See Fig. 3.3
for the individual fits figure.
The bottom row shows the aver-
age value and the standard de-
viation.
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3.3 Results and discussion

The results of our measurements described above are

shown in Fig. 3.3 together with the fits according to Eqs. 3.1

and 3.2. At every height z and temperature T we calculate

the value for C according to Eq. 3.3. The quality factor far

from the surface Q0 = 2.8 · 104. The stiffness k0 = 7.0 · 10−5

Nm−1 of the cantilever is calculated using k0 = me f f (2π f0)
2

with f0 = 3.0 kHz and me f f = 2.0 · 10−13 kg. The effective

mass me f f is calculated using the geometry of the cantilever

and the magnetic particle. The magnetic particle is taken as

a spherical dipole with magnetic moment m. According to

the model, the temperature at which the resonance frequency

close to the sample has a maximum, is independent of σ and

T1, but is dependent on the absolute value of m and the dis-

tance to the sample. We find m = 1.9 · 10−11 JT−1. From

this we find an effective saturation magnetization of 1.15 T

for a sphere that is fully magnetic. Alternatively we can as-

sume µ0Msat = 1.3 T and an outer layer of 200 nm which

is magnetically dead. The magnetic moment of the dangling

bonds16 is equal to the Bohr magneton µ = 9.274 · 10−24JT−1.

The solid lines in Fig. 3.3 are fits to the data according to

Eqs. 3.1 and 3.2 with σ, T1 and f0 as the only fitting param-

eters. All fitting parameters are separately fitted for each

height, for both the frequency data and the quality factor

data. f0 is a temperature independent parameter different for

each height, which we attribute to an unknown mechanism,

since the coupling to the SQUID is too small of an effect at

these distances and has a height dependence with opposite

sign to the one observed. The results of the fits for T1 and σ

can be found in table 3.1. We left σ as fitting parameter for

each height, to verify the correctness of our analysis, since

this number should be the same for each height. We see that

T1 slightly increases when the magnetic particle approached

the surface, as is also observed for bulk spins in electron spin

resonance experiments.17 T1 could depend on temperature,
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but by taking the ratio of Eq. 3.1 with Eq. 3.2 we extract T1 for

each measurement, and we find that T1 is constant with tem-

perature to within 20%. The average values of all individual

fits are σ = 0.14± 0.01 spins per nm2 and T1 = 0.39± 0.08

ms. The found value for σ is similar to values measured us-

ing Electron Paramagnetic Resonance.16,18

The dashed line in figure 3.3 is the frequency shift calcu-

lated with the commonly used expression ks = pµ · d2B
dx2 , with

p = tanh
(

µB(r)
kBT

)
. Important is that for this curve, the spin

density is ten times smaller than we find with our analysis.

The deviation of the data from the fit for low temperatures

and small values for z can be understood by considering that

we do not have only spins at the surface. Electron spins in-

side the bulk will cause deviations to the fits, already when

the density is in the order of 104 spins per µm3 which is

less than 1 ppm of the silicon atoms. Considering the nu-

clear spins, the 4.7% natural abundance of the 29Si isotope

can only account for less than 1 percent deviation.

Note that in electron spin resonance studies with our MRFM

setup, a value for T1 in the order of seconds was reported.19

With our new analysis we believe that it is possible that the

reported long lived frequency shifts could be caused by nu-

clei polarized by interactions with these electron spins, and

that these electron spins were actually much shorter lived, as

is reported20 for nitroxide-doped perdeuterated polystyrene

films. Our analysis suggests that the spin mediated dissipa-

tion is the main mechanism leading to a significant reduction

in the quality factor of the cantilever. Previous work at higher

temperatures2 reports dielectric fluctuations as the main non-

contact dissipation mechanism. We do not see any evidence

in our measurements for this. Possibly, the use of a laser

in the setup to read out the cantilever causes extra charge

fluctuations. Furthermore, we work at lower temperatures,

where the large spin polarization enhances the magnetic dis-

sipation and possibly reduce fluctuating charges.

We calculated the magnetic dissipation for a magnetic imag-
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Calculated quality factors (·106)

T = 10 mK T = 300 mK T = 4.2 K

Bext = 0 T 0.49 0.20 0.98

Bext = 0.1 T 1.50 0.19 0.91

Bext = 6 T 1.50 1.50 1.17

Table 3.2: Calculated quality
factor Q for three different tem-
peratures and external magnetic
fields assuming magnetic dissi-
pation as the only source for
non-contact friction. Calcula-
tions are based on a state-of-
the art MRFM apparatus with a
‘sample on cantilever’ geometry
and a cantilever with an internal
quality factor Q0 = 1.5 · 106.

21 Degen et al. 2009a

22 Rosskopf et al. 2014

ing experiments at higher temperature and a different tip-

sample geometry. The results can be found in Tab. 3.2. We

used the experimental parameters for a state-of-the-art

MRFM.21 In this apparatus, the bare non-magnetic cantilever

is centered approximately 50 nm above a magnetic particle

on the substrate, which is assumed for simplicity to be a

spherical particle with a radius of 100 nm. This setup is

equivalent to a magnetic dipole attached to the cantilever it-

self approaching a surface with the shape of the cantilever.

The magnetic dipole and external field are oriented in the

z-direction while the fundamental mode of the cantilever is

in the x-direction. For the cantilever, we used the param-

eters of a recently developed diamond cantilever1 which is

shown to have at low temperatures an intrinsic quality factor

Q0 = 1.5 · 106, resonance frequency f0 = 32 kHz and stiffness

k0 = 6.7 · 10−2 Nm−1. A spin density σ = 0.14 nm−2 is used,

which is found in this report to be the density for the silicon

surface, but it is also close to the typical values found for dia-

mond surfaces.22 Only spins at the very end of the cantilever

are considered since this surface contributes most to the dis-

sipation, which is 0.66 µm thick and 12 µm wide. Although

Eq. 3.1 cannot be used since we do not have a uniform infi-

nite surface anymore, according to the original expressions7

one can continue to use Eq. 3.2 for the dissipation replacing

the integral in Eq. 3.3 over the end of the cantilever. The re-

laxation time is chosen such that the dissipation is maximum:

T1 = (2π f0)
−1 = 5.0 µs. The values in Tab. 3.2 show that the

magnetic dissipation could be an important source of non-

contact friction. Furthermore we see that applying external

fields can reduce the magnetic dissipation. Considering these
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calculations we believe that the magnetic dissipation we find

at low temperatures can be avoided with the correct choice

for the substrate and the use of large external magnetic fields.

3.4 Conclusions

To summarize, we have shown how the dissipation and

frequency shift mediated by spins in magnetic force exper-

iments can be fully understood. The new analysis suggest

that in order to achieve higher sensitivity in magnetic imag-

ing techniques, one should not only focus on improving the

intrinsic losses of the micro-mechanical cantilever, but also

on the reduction of electron spins in the sample. Further-

more we have shown how the spin’s relaxation time can be

extracted without the use of resonance techniques. For sili-

con substrates with native oxides, we find a relaxation time

of T1 = 0.39± 0.08 ms and a spin density of σ = 0.14± 0.01

per nm2. The understanding of the spin mediated dissipation

is important to further improve the mechanical resonators in

magnetic imaging experiments.
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1 The element six CVD diamond
handbook, Element Six Technolo-
gies 2015

2 Cardellino et al. 2014

3 See Ch. 6 for an explanation of
the technical aspects.

4 MRFM on diamond

Diamond is well known for its extreme properties. For ex-

ample, it is the hardest known natural material, and at room

temperature it can even have a higher thermal conductivity

than that of copper. Synthetic single crystalline diamond that

is grown by a Chemical Vapor Deposition (CVD) process can

be extremely clean, offering < 0.05 ppb of impurity levels.1

Most of these impurities are nitrogen atoms, sometimes ac-

companied by an atom vacancy (NV-center). The abundance

of the impurities and the ratio of NV-centers to nitrogen im-

purities can be tuned by nitrogen implementation techniques

and/or annealing.2 Before applying these techniques, we ex-

pect an NV-center to nitrogen impurity ratio of 10−3.1

To have a coherent interaction between the MRFM-

tip and an NV-center, one should have an exceptional setup

that satisfies many constraints. We have combined the ideas

and experiences that we collected since we started MRFM

experiments in 2008 into a new setup.3 In this chapter we

describe the first experiment with this setup where we test

the interaction of our cantilever’s magnetic tip with the dia-

mond sample. The experiment has two scientific goals: 1) to

measure the resonance frequency shift and extra dissipation

coming from the nitrogen impurities in the bulk and influ-

ence of the spins in the dirt on top of the diamond, and 2) to

measure the nitrogen impurities by doing ESR using various

MRFM protocols. The holy grail is to optimize the experi-

ment in such a way that eventually a single NV-center can be
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4 This is the subject of Ch. 5.used to create an entanglement with a mechanical resonator.4

Here we show that the diamond provides a significant dissi-

pation path for the mechanical resonator. In fact, we show

that the dissipation cannot only be ascribed to impurities in

the bulk, but also the spins on the diamond surface have a

large influence - probably even larger than the bulk spins.

The technical challenges faced in this experiment are

numerous and a detailed explanation about our current so-

lutions is given in Ch. 6. The experiment described in this

chapter will show us the new challenges to be taken. A spe-

cial feature in the design is the unmatched superconduct-

ing microwave line over the diamond that should be able to

transmit ∼ 10 mA currents up to a frequency of 5 GHz. The

question this experiment should answer is whether the radio

frequent (RF) magnetic field that is generated by these cur-

rents is strong enough to invert the targeted spins while not

heating up the spin bath. Although unwanted heating seems

to play a role in saturation experiments, the fields should

be strong enough to do coherent spin manipulations such as

adiabatic inversions, even though the bulk of our sample only

has only 1 electron spin per (24 nm)3. A more precise deter-

mination is left for successive experiments. In Secs. 4.1, 4.4

and 4.5 we provide analyses for the expected signals and we

show that our current setup should be able to measure these.

With the theoretical and experimental ingredients available,

future experiments are very promising.

4.1 Defects in diamond

Defects in diamond can be found in the lattice structure,

such as vacancies, interstitial defects or dislocations, or from

the abundance of impurities; i.e. atoms that are not 12C.

Many of the defects feature optical transitions and can there-

fore be studied by photoluminescence. In this chapter we

are only interested in systems that interact with the mag-
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Figure 4.1: The typical 10 GHz
ESR spectrum of a type Ia dia-
mond. The P2 lines are absent
in the case of Ib diamonds. Fig-
ure reprinted from Wyk et al. 1997.
10 Smith et al. 1959

netic field, regardless of their optical properties. Loubser and

van Wyk5 provided an overview of electron spin resonance

(ESR) in diamond describing many defects involving nitro-

gen impurities. Neutral nitrogen atoms have one more elec-

tron than the carbon atoms they replace. The extra electron(s)

are shared with adjacent atoms and they can form a spin sys-

tem which is different from a free electron spin. However,

the g-factors of the defects described in this chapter ranges

only from 2.002− 2.009, close enough to the electron g-factor

for us to assume we are dealing with simple electron spins.

These spins can, however, be distorted due to the hyperfine

structure which we will explore in more detail.

Given our sample,6 and what has been reported in literature,5,7

we can assume that the P1 and the P2 defects will have the

largest contribution to the total tip-sample interaction con-

sidering their abundance and strong magnetic moment.

A P1 defect consists of a single nitrogen that shares its elec-

tron with a neighboring carbon atom, featuring a simple spin-
1
2 system. Due to the Jahn-Teller effect, which breaks the Td

symmetry to C3v, the electron is shared predominantly with

only one of the four neighboring carbon atoms. It is likely

that the nitrogen is 14N,8 which has a spin-1 nucleus. The

hyperfine interaction between the atom and nucleus causes a

splitting of each e−-spin energy level into three levels which

leads to the ESR spectrum as shown in Fig. 4.1. However, the

hyperfine coupling is not purely isotropic. In our experiment

we do not know the precise direction of the magnetic field at

the P1 center’s position, so we assume the directional dipo-

lar coupling to be an unknown deviation from the isotropic

term. This leads to a splitting of 92.2± 10.8 MHz. An acci-

dental9 neighboring 13C atom with spin- 1
2 can split the levels

even more. The level spacing depends strongly on the pre-

cise position of 13C. As the abundance of 13C atoms is low,

we neglect this effect for now.

P2 centers have a more difficult structure as the system exist

of three nitrogen atoms surrounding a vacancy. Although the

P2 center was one of the first to be found in EPR-experiments,10
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Figure 4.2: The dependence of
the line width of the ESR lines
of P1 centers in diamonds on
the concentration of P1 and P2
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reprinted from Wyk et al. 1997.
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it was only after a correlation between optical N3 centers and

P2 was found, that it became clear that a vacancy is part of

the system.11 The free electron is most of the time between

the vacancy and the single adjacent carbon atom. This leads

to a much smaller hyperfine splitting compared to the P1

center. On the other hand, the electron couples to three 14N

nuclei which causes a splitting of each electron spin state

into 54 levels. Due to the close spacing of these levels we

will treat the system as a free electron spin with a large line-

broadening. Based on Fig. 4.1, we approximate the lineshape

to be a Gaussian with 17 MHz standard deviation.

The relaxation times of these P1 and P2 centers have

been measured last century at various temperatures, mag-

netic fields, for different samples with changing spin densi-

ties, and with different techniques.12,13 These numbers do

not always coincide. Let us start by noting that at room tem-

perature the relaxation times for P1 and P2 are approximately

the same, in fact (for homogeneous fields) the T1 and T2 times

are found to be 2 ms12 and 3 µs14 respectively. Moreover,

the T2 time does not seem to change much as long as the

spin density is < 10 ppm, see Fig. 4.2. Similar values are

measured for P1 defects in a later experiment. Takahashi

et al.15 did see a more or less constant T2 time when they

lowered the temperature until the thermal energy became

smaller than the energy splitting. The last situation leads

to much larger T2 times; there are indications that for low

enough temperatures the T2 converges to 250 µs.15 This ef-

fects happens upon complete polarization of the e−-spin en-

semble, indicating that the limiting factor for higher temper-

ature is the flipflop rate. On the one hand, in our experiment

this rate is suppressed due to the magnetic field gradients,

while on the other hand it is enhanced by the movement of

the cantilever, thereby opening new ways of spin diffusion.2

Spin diffusion, which in crystals is determined by the flipflop

rate, is in MRFM effectively a form of longitudinal relaxation

as the magnetization can simply diffuse out of the detection



mrfm on diamond 59

16 Namely, spins at a certain dis-
tance from each other may have
a completely different Larmor
frequency and therefore do not
interact.

0 10 20 30 40 50

radial distance from spin (nm)

0

0.1

P
 (

1
/n

m
)

0.1 ppm

1 ppm

Figure 4.3: Nearest neighbor
distance distribution for differ-
ent spin concentrations in dia-
mond.
17 Abragam and Hebel 1961

18 Vugmeister 1978

19 Budakian et al. 2004

volume. At low temperatures and homogeneous fields the

T1 time was enhanced to a value in the order of 1− 100 s for

temperatures well below 2 K.15 Let us take a closer look at

the flipflop rate to see if the MRFM experiment changes the

T1 and T2 significantly.

Let us assume that these flipflops are mostly between a spin

and it’s nearest neighbor (NN). The distance distribution to

this uniform randomly distributed nearest neighbor is, for

three dimensions, given by the probability density

P (NN at distance r) = 4πρr2e−
4
3 πρr3

, (4.1)

where ρ is the spin density and r the distance between nearest

neighbor spins, see also Fig. 4.3. This distribution is a mea-

sure of the distance over which the flipflops occur. A possible

suppression of the flipflop rate due to magnetic field gradi-

ents16 should be viewed in perspective of these distances.

The probability that two neighboring spins exchange mag-

netization is proportional to the overlapping of their line-

shapes,17,18 and is given by19

Φg(r) =

∫
g(ω)g(ω− γsr · ∇B)dω∫

g2(ω)dω
, (4.2)

where g(ω) is the normalized lineshape of the spin with-

out taking flipflops into account. This expression is a rough

estimation of the van Vleck’s formula without taking into

account the coupling, the relative orientation of the B-field

and the temperature dependent polarization. The expression

above is just enough to determine an average suppression of

the flipflop rate for a given field gradient.

Comparing the typical interaction length scales, see Fig. 4.3,

to our magnet with a diameter of 2.99 µm, we can assume

that the spin sees a spatially constant magnetic field gradient

G. This simplifies r · ∇B = r cos(φ)G, where we introduced

the polar angle φ chosen such that the poles are along the

direction of the gradient. So, when φ = π
2 , there is no sup-

pression (Φg = 1) while we have an r-dependent suppression

otherwise. If we take for example the lineshape of P1 centers,
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Lorentzian with each FWHM

1
3 µs , and gP2 a Gaussian with a
standard deviation of 17 MHz.
21 Laraoui et al. 2012

see Fig. 4.5, we find a flipflop probability as shown in Fig. 4.6.

Because the flipflop rate in the homogeneous field is,

under our assumptions, proportional to
∫

R3d3r P (NN at dis-

tance r), the average flipflop suppression per spin in the in-

homogeneous field is given by

〈Φ〉 =
∫

R3d3r P (NN at distance r)Φg(r)∫
R3d3r P (NN at distance r)

, (4.3)

where 〈Φ〉 = 0 means complete suppression. We calculated

this factor for spins beneath our MRFM-tip,20 see Fig. 4.4a.

The same can be done for P2 centers that we estimate to have

a Gaussian lineshape with a standard deviation of about 17

MHz, see dashed lines in Fig. 4.5. Also for P2 centers below

the MRFM-tip we show the average suppression in Fig. 4.4a.

The flipflop rate of the P1 spins in the sample is thus

suppressed to less than 2% of the original flipflop rate at dis-

tances less than 1 µm below the MRFM-tip. The spin-spin

relaxation time can be expressed as

1
T2

= Γflipflop + Γres, (4.4)

where Γres is a residual relaxation rate that is expected to

come from C13 atoms and estimated to be 1
250 µs .15,21 Γflipflop

is the flipflop rate which is also temperature dependent. Com-

bining our spin suppression with the temperature dependency,15
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22 Such as OSCAR protocols, see
Sec. 4.5
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Figure 4.6: Φg calculated for a
P1-center within a field of 100
mT and a magnetic field gradi-
ent of 1 T/µm (blue curve) and
0.1 T/µm (red curve). As a ref-
erence we plotted the average
nearest neighbor distance distri-
bution for 0.1 ppm P1 concen-
tration.
23 SC Plate CVD, <100>, PL from
Element Six
24 Second polish: scaife polish-
ing from Stone Perfect

we find
1
T2

= 〈Φ〉 A(
1 + e

h̄γs B
kBT

)(
1 + e−

h̄γs B
kBT

) + Γres, (4.5)

where A is a constant of 4
(

1
3 µs −

1
250 µs

)
≈ 1.3 1

µs . Substitut-

ing the results of 〈Φ〉 (Fig. 4.4a), we find the T2 time beneath

our cantilever as shown in Fig. 4.4b. Considering that our

cantilever has a half period of 1
2·2750 Hz ≈ 181 µs, we find that

the T2 time of the P1 spins is larger than the half cantilever

period when the distance to the magnet surface is smaller

than 0.4 µm when at 100 mK, and even 1.2 µm at 25 mK. This

is important, because some spin manipulating pulses that we

will apply22 should coherently manipulate the electron spin

for a half period.

4.2 Methods

In our experiments we have used a commercially available

diamond sample of 2.6× 2.6× 0.3 mm3 size and < 1 ppm ni-

trogen and < 0.05 ppm boron concentrations.23 One surface

is polished twice to an Ra < 5 nm.24 Cleaning the diamond

subsequently in acetone, 2-propanol, fuming nitric acid and

hydrofluoric acid makes sure we start the fabrication pro-

cess with a clean surface and without oxides. We fabricated

a Niobium Titanium Nitride (NbTiN) microwave line and a

pick-up loop on top of the surface. After fabrication, the

sample was exposed to atmospheric conditions for several

months. Before mounting the sample it was ultrasonically

cleaned in acetone, and thereafter in 2-propanol to remove

organics and dust. In future experiments one might again

clean the sample with hydrofluoric acid to remove possible

oxygen contaminants, since oxygen compounds can contain

dangling bonds and thus free electron spins, as we showed

in Ch. 3.

The microscope for this experiment consists of a three di-

http://www.stoneperfect.nl/
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Figure 4.7: The coupling be-
tween the MRFM-tip and pick-
up loop depends on the relative
position. a) A microscope photo
of the fabricated structures on
diamond. b) Calculated sig-
nal intensity in color (arbitrary
units) as function of the height
between bottom MRFM-tip and
sample surface, and as function
of the position axis X1 as de-
picted in a). For visibility rea-
sons, the signal is cutoff at 100
(yellow). c,d) The measured sig-
nal intensity as function of re-
spectively position axis X1 and
h, as denoted in b). When the
cantilever passes the lines of the
pick-up loop, the Lock-In mea-
sured response rotates 180◦. If
this phase change is taken into
account one gets the dashed line
in c). The zero crossing of the
data taken along X2 tells the
precise position of the cantilever
with respect to the pick-up loop.
25 CPSHR stage from Janssen
Precision Engineering. More
info in Sec. 6.5
26 Spring constant cantilever is
k = 48.6 µN/m and the ball
shaped magnet has a diameter
of 2.99 µm, see Sec. 6.2

27 C6M116 from Magnicon

28 Wijts 2013

mensional positioning system25 that should work down to

millikelvin temperatures. The MRFM-chip, with a very soft

silicon cantilever and a NdFeB magnet,26 is mounted at the

stage such that it can probe the sample. The diamond sam-

ple is glued with silver paint to a gold-plated copper sample

holder. The holder is cooled via a silver strip that is thermally

connected to the mixing chamber of a dilution refrigerator. A

thermometer is mounted at the sample holder and a heater

halfway the silver strip, such that the sample holder can be

homogeneously heated to any temperature between 10 mK

and 1 K.

The movement of the mrfm-tip is detected by measuring

the magnetic flux change within a pick-up loop fabricated on

top of the diamond. The amount of flux change that is picked

up depends strongly on the position of the tip, see Fig. 4.7.

The flux is transferred to a two-stage SQUID,27 see for more

details Sec. 6.3.

The conversion factor C from the movement of the cantilever

to the SQUID output voltages can be determined in several

ways.28 We determine C by measuring the thermal noise.

The surface under the curve of the thermal spectral density

SV should follow the equipartition theorem, i.e.∫
SVd f = C2

∫
Sq(2π f )d f = C2 kBT

k
, (4.6)

where Sq is the spectral density as defined in Ch. 1, f is the
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Figure 4.9: Movement detec-
tion noise floor around the can-
tilever’s resonance frequency
from the same data as Figs. 4.8
and 4.10.
29 Due to the currents through
the shunt resistors in a DC-
SQUID, one can, as a rule of
thumb, expect a saturation of
the SQUID noise below 300 mK.

frequency, T the temperature and k the spring constant. Of

course, for this method the thermal motion of the resonator

should exceed the detection noise floor. The spectral density

is fitted with a Lorentzian plus an offset to account for the

detection noise. The fitting parameters automatically yield

the surface under the curve. Doing this at relatively high

temperatures (> 100 mK) we may expect that the mode tem-

perature is thermalized with the temperature of the environ-

ment. Once C is calculated at a certain position it may be

used to check if the mode is also thermalized at tempera-

tures below 100 mK, see Fig. 4.8.

With the conversion factor, one can calculate the detection

noise floor as is done in Fig. 4.9 which shows 10 to 100 pm√
Hz

.

Surprisingly, the noise floor depends on T even at low tem-

peratures, indicating that the detection noise is not limited by

the SQUID.29 Based on the bare SQUID characteristics one

could expect a noise floor of at least an order of magnitude

less.

It should be noted that for the data as shown in Figs. 4.8 and

4.9, the noise floor is suboptimal as it depends on the position

of the tip, however the position of the tip was chosen based

on other factors. In the future, optimizing the detection noise

and the position of the cantilever could push the noisefloor

(far) below 1 pm√
Hz

.

One of the design criteria was to design the mechani-

cal loop from the cantilever holder to the sample as stiff as

possible, see also Sec. 6.5. Avoiding the mechanical reso-

nances or moving them to (much) higher frequencies than

the cantilever frequency prevents interference with the can-

tilever mode and thus with the force signal. Unfortunately,

resonances outside the mechanical loop can also interfere as

these modes accumulate to an interfering signal, such as can

be seen in Fig. 4.8 as a deviation of the noise temperature

from the bath temperature. The peak at 0.7 K for a tip-

sample distance of 20 can be ascribed to the temperature de-
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30 e.g. modes in mass spring
systems that act as tuning forks
for some frequencies
31 e.g. resonating wirebonds at-
tached to the sample
32 e.g. turbo pumps(coherent) or
the hammering from the pulse-
tube cooler (not coherent at high
frequencies)

33 Vinante et al. 2012

34 Unlike the repulsion due the
Meissner effect of the supercon-
ducting line itself, such as Wi-
jts 2013 calculated, we believe
our superconducting lines are
so small that the largest effect
will be due to some trapped flux
inside the loop.

pendent frequency shift that shifts the resonator’s resonance

frequency over an external resonance peak. The mechanical

mode can interfere via pressure waves (sound),30 or via elec-

tromagnetic effects.31 The disturbing signal can also come

from noise sources.32 All of these signals can increase the

stored energy in the cantilever motion. If the noise source is

coherent, the excess motion can be compensated using feed-

back schemes employing for example Kalman filters. When

the noise source is not coherent (including thermal noise) one

can simply feed the signal phase-rotated back into the de-

vice.33 The maximum suppression of the motion is restricted

by the detection noise floor.

In this first experiment, however, we practically shifted the

resonance frequency to an area where the spectrum was clear

of other resonances and where the mode temperature would

follow the environment temperature well. The resonance fre-

quency can be shifted due to the repulsion of some trapped

flux inside the pick-up loop.34

4.3 Equilibrium dynamics

We approached the sample and measured the cantilevers

response at different heights for various temperatures. With

this data we can verify if the theory as described in Ch. 2

also applies to the spins in our diamond sample, just like we

tested this on silicon in Ch. 3. The temperature and position-

dependent shifts in resonance frequency and changes in the

Q-factor can tell the densities of spins with T1-times compa-

rable to or larger than the resonator period.

After determining the tip-height by softly touching the sam-

ple, we started a temperature sequence at a tip-sample dis-

tance (height) of 3.4 µm. Each subsequent measurement we

moved closer to the sample and also moved in lateral posi-

tion until the resonator is in a clean spectral area. This was to

prevent that external excitations excite the resonator. Due to

the tilt of the sample, we introduced here some uncertainty in
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Figure 4.10: Data (circles) and
theory (lines). a) Shows the shift
in resonance frequency and
b) how the Q-factor changes
over temperature, for different
heights. For the curves (solid
lines) we used the ’simultane-
ous’ values from Tab. 4.1. The
dashed lines show the contribu-
tion from the bulk spins inside
the diamond only.
35 The last measurements were
closest to the surface, and thus
for these it is most important to
have a correct value. The last
four measurements (0.02− 0.92)
were also laterally close to each
other (within 0.4 µm distance).

the height. As a reference, we measured the height after the

measurement series again and found a difference of 200 nm

over a lateral distance of about 3 µm and used this value.35

The results were obtained at seven heights between 3.4 µm

and 20 nm, and 14 temperatures logarithmically spaced be-

tween 25 and 800 mK.

For the free electron spins in the bulk of the diamond

(P1 and P2 centers) we expect to have a large relaxation time

T1 � 1
ω0

, as explained in Sec. 4.1. Hence the theoretical func-

tion for the shifts due to the bulk spins become

∆ fbulk =
f0

2k
ρ Cbulk,

∆
1
Q bulk

= 0,

with Cbulk =
µ2

e
kBT

∫
Vbulk

d3r

∣∣∣B′||B̂0

∣∣∣2
cosh2

(
µeB0
kBT

) , (4.7)

where f0 ≡ ω0
2π is the resonance frequency before the shift, ρ

the bulk spin density, µe the free electron magneton.

However, we noticed that the Q-factor decreases significantly

from > 30 000 at a large distance to about 2500 at 20 nm and

71 mK. The decrease is less than what was obtained on silicon

in Ch. 3, but still a clear sign that spins must be present with a

T1 similar to 1
ω0

. Therefore we include a surface spin density
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36 The fitting of the functions
separately is a very robust pro-
cedure and largely independent
of the starting point.
37 We first fitted ρ (and the sur-
face spins) at 20 nm height, and
used this ρ as an initial value
for minimizing the simultane-
ous fitting error over all traces.

38 This produces the same re-
sults as when we left f0 as a fit-
ting parameter, however, calcu-
lating f0 separately seems more
robust.
39 According to our interpreta-
tion, the diamond has fewer
surface spins than found on
SiO, resulting in a higher Q in
Fig. 4.10 than in Fig. 3.3.
40 Kuehn et al. 2006

in our analysis. The additional shifts due to the surface spins

are given by

∆ fsurface =
f0

2k
σ Csurface

(ω0T1)
2

1 + (ω0T1)
2 ,

∆
1
Q surface

=
1
k

σ Csurface
ω0T1

1 + (ω0T1)
2 ,

with Csurface =
µ2

e
kBT

∫
Vsurface

d2r

∣∣∣B′||B̂0

∣∣∣2
cosh2

(
µeB0
kBT

) , (4.8)

where σ is the surface spin density.

The functions ∆ fbulk and ∆ fsurface are not completely in-

dependent, which makes it hard to fit them simultaneously.36

Therefore we fixed ρ,37 and fitted σ and the T1 of the surface

spins over the temperature traces, for the each height. Next,

we modified ρ until the average fitting error was minimized.

The results are given in table 4.1, as well as the other system

parameters. As we had to move the resonator laterally to shift

height (µm) ρ (ppm) σ (spins/nm2) T1 surface spins (ms) f0 (Hz)

simultaneous 0.40 0.059 0.85 —
0.02 0.4 0.058 0.99 2624

0.27 (0.4) 0.066 0.83 2618

0.61 (0.4) 0.058 0.53 2613

0.92 (0.4) 0.043 0.31 2606

1.5 (0.4) — — 2541

2.4 (0.4) — — 2629

3.4 (0.4) — — 2684

parameters k (µN/m) � magnet (µm) µ0 M (T) µs (J/T)

48.6 2.99 1.3 9.27·10−24

Table 4.1: The fitting values for
each trace. Note that ρ was
only fitted to all traces simulta-
neously. For heights > 1 µm the
fitting procedure did not work.
Note that f0 is separately calcu-
lated from the data.
The second table shows the
known system parameters; see
also Sec. 6.2.

the resonance frequency to cleaner spectral areas, f0 changes

per height. We calculated f0 by extrapolating the measured

frequency shift data to higher temperatures.38

The fitting did not work for heights 1.5 to 3.4 µm, presum-

ably due to the low amount of spins,39 making other long

range effects more significant: pure diamond is insulating

at any temperature which could lead to charging effects and

therefore larger electrostatic interactions40 compared to the
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41 Myers et al. 2014 found a sur-
face spin density of 0.04 spins

nm2

which is relatively close to our
0.06.
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Figure 4.11: Some resonance
slices indicated by their free
electron spin Larmor frequency
in MHz. The distance between
sample (at zero height) and the
surface of the tip is 0.5 µm. Here
z points out of plane of the sam-
ple, and x in the direction of the
magnetization.
42 Note that for T1 = O

(
1

ω0

)
we

can use the equilibrium dynam-
ics to measure T1.

experiment on silicon.

Next, we choose one initial value for ρ, σ and T1 for all data,

and changed these values to minimize the squared error over

all traces simultaneously. The results, as shown in Tab. 4.1,

turn out to be independent of the initial values if they are

chosen within an order of magnitude difference of the indi-

vidual fit values. The data and the theoretical lines with the

simultaneous fit values are shown in Fig. 4.10.

We have measured the equilibrium interaction from the

MRFM-tip with the spins in the bulk and at the diamond

surface. We have found the diamond bulk spin density to be

0.4 ppm, the surface spin density 0.06 spins
nm2 , and a T1 time

of the surface spins of a bit less than a millisecond. We can

conclude that the surface spin density on diamond is much

lower than on silicon, as expected.41 Combining this with the

knowledge that the sample has been exposed to air for about

a year, we anticipate that by cleaning and/or passivating the

surface thoroughly, the surface spin density can be reduced

to non-disturbing values. What remains is the frequency shift

due to the bulk spins only as shown by the dashed lines in

Fig. 4.10a. The effect from the bulk spins on the Q-factor

should be very small because of the very long T1 times.

4.4 Spin resonance I: saturation

Saturation is a fairly simple protocol that works in MRFM

for samples with spins that have a T1 time much larger than

the cantilever period.42 Referring to Sec. 2.1, we know that

when the saturation condition Eq. 2.6 does not apply for suf-

ficiently long times, i.e. πγ2
e B1T1g(ω) � 1, the spins will

loose their net magnetization. Here γe is the gyromagnetic

ratio, and B1 is the amplitude of an oscillating magnetic field

with frequency ω. If we apply this B1-field externally, by

means of the RF-wire, we can excite a specific resonance slice.

The only requirement is that B1 is strong enough and the
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43 Wagenaar 2017

Figure 4.12: Resonance slice
indicating which spins give
positive or negative frequency
shifts. Here, the magnetic field
strength is 100 mT, the height is
0.5 µm and T1 is taken to be in-
finite.

Figure 4.13: Screenshot of ex-
periment to test pulse power.
The sample holder is kept at
constant temperature (PV) by a
PID controller when we apply
an RF-pulse. The difference be-
tween the heater power (MV)
before and during the pulse
should be the power the pulse
induces.
44 The source produces about
−40 dB leakage, so when the
amplitude before the output is
set to 10 dBm, but the modula-
tion such that no power should
come out, the output still trans-
mits −30 dBm.

pulse long enough. The precise duration and strength, as

well as the magnetic field gradient, will determine the reso-

nance slice thickness, as explained in detail by Wagenaar.43

For now we will assume a constant slice thickness.

Fig. 4.11 shows some of the resonance slices when the tip is

positioned at a height of 0.5 µm. This is the distance at which

we tried the experiment as described in this section and the

next.

Within the resonance slice, not all spins contribute equally

to the frequency shift of the cantilever; in fact, some spins

produce opposite frequency shifts, see Fig. 4.12. Given an

RF-frequency, a temperature, a T1 and a T2 time, and the

other standard system parameters, we can integrate over the

surface of the resonance slice to retrieve the total frequency

shift per slice thickness. To get the frequency shift for P1 and

P2 centers, we convolve this curve with their lineshapes. The

results are shown in Fig. 4.14a.

There are two major problems we encountered when

we tried to apply this protocol. The first is the signal strength;

due to the low density of spins the signal is just below the

fluctuations in the measured frequency of the force sensor

which are higher than we wanted due to the excess SQUID

noise, see Sec. 4.2. This is something that could be solved for

a future experiment. Further, we noticed that the RF-source

produces large RF-leakage, such that it can still heat up the

spin bath.44 Finally, applying RF-pulses with frequencies

higher than 5 GHz can give comparable frequency shifts as

RF-frequencies at for example 4 GHz, which does not agree

with Fig. 4.14a. This could be the result of other spin-like

level systems at the surface of the diamond that respond to

higher frequencies, but it could also be a simpler reason: the

direct heating of RF-current or field. We have found that the

dissipated power of a pulse in the sample is 0.9 µW/mA, see

Fig. 4.13. Although the sample’s temperature is kept within

a few mK from the setpoint value, the question is if the pulse
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a) b) Figure 4.14: Calculated signals
for magnetic resonance proto-
cols for a MRFM-tip at a height
of 500 nm above our diamond
sample. a) Shows the fre-
quency shift per resonance slice
of 10 nm thickness after apply-
ing a saturation pulse (making
the spin-temperature infinite lo-
cally). The results are shown
for a free electron spin; in this
graph the results for P1 or P2

deviate less than 1% from the
free electron spin. b) The sig-
nals obtained with the protocols
as described in Sec. 4.5 are pro-

portional to
∣∣∣B′‖B̂0

∣∣∣ integrated
over a resonance slice surface.
Here we show the value of this
integral for different resonance
slices.

45 Slichter 1990

46 Such as combinations of π/2
and π-pulses that are used to
measure spin echoes.

doesn’t also drive the local spin temperature outside the res-

onance slice much higher.

4.5 Spin resonance II: spin coherence

In this section we describe two measurements which di-

rectly measure the force from the spins on the cantilever. The

two methods in this section are distinguished by the way the

spin manipulates the cantilever; the first measures the extra

induced movement when the resonator is only thermally ex-

cited, while the second measures a frequency shift when it is

driven in a Phase-Locked Loop (PLL).

The spin-manipulating protocols for both measurements are

based on the principle of adiabatic spin inversion,45 which is

necessary due to the inhomogeneous B1-field. Unlike partial-

Rabi-cycle sequences,46 an Adiabatic Rapid Passage (ARP)

flips the spin, independent of the precise B1-field strength as

long as it satisfies the following conditions:

1
T2
� d

dt
tanh

 B1(t)

B0(t)− ωRF(t)
γe

� γeB1, (4.9)

i.e. a pulse must be designed such that it sweeps through

the resonant condition at a rate faster than the T2 dephasing

rate, but slower than the Rabi frequency that is set by the

amplitude of the pulse.

For the first measurement (the force measurement) we use
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47 Stipe et al. 2001b

48 Thus the pulse frequency is
not equal to ω0 (but 2ω0) and
therefore there should be little
crosstalk between RF-pulse and
cantilever.
49 Similar to the derivation of
Eqs. 1.5-1.6. See also Peddib-
hotla 2013

50 Here energy means signal
squared.

ARP in which both the amplitude B1 and the frequency ωRF

of the B1-field are changed. For the second measurement,

which we will call the frequency shift measurement, we use

OScillating Cantilever-driven Adiabatic Reversals (OSCAR)

where ωRF is kept constant while the motion of the magnetic

tip causes the spins to be swept through resonance.47

For the force measurement, the cantilever is only very

sensitive to the Fourier components of the spin force around

the cantilever’s resonance frequency. More precisely, given

the MRFM tip’s susceptibility χ, the measured voltage is

Vsignal (ω) ∝ q̃ (ω) = χ(ω)F̃ (ω) , (4.10)

where F̃ is the Fourier transform of

F (t) = 〈µ〉ARP · B′sgn (cos (ωSt)) , (4.11)

≈ π

4
µARP

∣∣∣B′‖B̂0

∣∣∣ cos (ωSt) . (4.12)

Here µARP is the net magnetization and ωS the frequency

of the spin rotating 360◦. As a spin will flip 180◦ during a

single ARP, two pulses are needed to return the longitudinal

magnetization to equilibrium position.48 In the last step we

have taken the Fourier components around ω0, which is valid

when we choose ωS ∼ ω0. For the total signal we integrate

over the resonance slice and find49

q (t) =
∫
Vres.slice

ρ µARP

∣∣∣B′‖B̂0

∣∣∣ dV ×

1
k

(
2

ω0 −ωS
ω0

cos (ωSt) + Q sin (ωSt)
)

, (4.13)

where ρ is the bulk spin density. Thus when we choose

the pulse sequence such that the spin force follows a ref-

erence sinusoid with ωS = ω0, then all spin signal will be

in the quadrature component (Y) of the measurement sig-

nal, while the in-phase component (X) only contains ther-

mal motion. Before the sequence, the X and Y components

contain on average the same amount of thermal energy (i.e.

〈Y2〉 = 〈X2〉).50 Therefore, during the pulse sequence, the

pure spin signal is
√
〈Y2〉 − 〈X2〉.



mrfm on diamond 71

2742 2746 2750 2754 2758

frequency (Hz)

a
.u

.
MRFM tip resonse

thermalized spin signal

statistical spin signal

0 1 2 3 4 5 6

Larmor frequency (GHz)

10-1

100

101

102

103

104

105

106

s
p

in
s
 p

e
r 

re
s
o

n
a

n
c
e

 s
lic

e 500 kHz sweep
10 nm
1 nm
0.1 nm

0 1 2 3 4 5 6

Larmor frequency (GHz)

0

0.2

0.4

0.6

0.8

1
30 mK
100 mK

0 1 2 3 4 5 6

Larmor frequency (GHz)

0

50

100

150

200

250

0 1 2 3 4 5 6

Larmor frequency (GHz)

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

M
R

F
M

 t
ip

 a
m

p
lit

u
d

e
 (

p
m

) Thermalized

0 1 2 3 4 5 6

Larmor frequency (GHz)

0

5

10

15

20

25

a
v
e

ra
g

e
 M

R
F

M
 t
ip

 a
m

p
lit

u
d

e
  
(p

m
R

M
S
) Statistical

μ
A

R
P

 t
h

e
rm

a
l/μ

s

T
2
(μ

s)

30 mK
100 mK

30 mK
100 mK

30 mK
100 mK

a) b)

c)

e)

d)

f )

Figure 4.15: Theoretical expectations of the ARP experiment outcome. a) Spectral densities of the signals of
thermally and statistically polarized spins compared to the linear response of the MRFM-tip. ωS is set to 2749.9
while ω0 is 2750. b) Number of spins in a resonance slice of fixed thickness, and a resonance slice where
the width is determined by the frequency sweep range of the ARP pulse (500 kHz FWHM in the first ARP
experiments). c) Net magnetization of thermalized spins as function of the resonance slice’s Larmor frequency.
d) Estimated T2 time which is calculated as described in Sec. 4.1. e) The expected MRFM amplitude if the spin
inversion autocorrelation time is longer than the duration of a single experiment e.g. the thermally polarized
regime. f) Expected RMS averaged amplitude of the MRFM tip if the magnetization is statistically determined.
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51 Mamin et al. 2003

52 Norris et al. 1991

53 Hajduk et al. 1993

54 Another way to see this is that
for series shorter than Q

f0
the

spectral leakage of the spin sig-
nal is wider than the resonator’s
resonance peak, so the spin sig-
nal is not optimally transduced.

55 Upon finishing this thesis con-
secutive experiments are per-
formed that might have better
conditions.

The advantage of measuring the energy X2 and Y2 rather
than X and Y is that the sign of initial magnetization does
not matter. Therefore, this method still works if the initial
magnetization is not determined by thermalization but by
statistical polarization. This statistical magnetization can be
the dominant term for the net magnetization in small ensem-
bles at temperatures kBT > µsB0.51 So, although we will
try to stay in the thermalized regime, statistical polarization
might help us out if the spin temperature becomes too high.

So far, we assumed that both conditions of Eq. 4.9 are sat-
isfied. In our experiment, however, we use ARP pulses of
length ∼ 1

2 f0
≈ 180 µs. Comparing this with the T2 values

in Fig. 4.4b, we notice that our ARP protocol with pulses
this long, and at 100 mK, should only work within about
0.5 µm distance from the tip. More precisely, for spins at res-
onance, the net magnetization after an ARP pulse is |µa f ter| =

|µbe f oree−
K
T2 |,52 where K is a pulse shape dependent param-

eter and proportional to the single pulse duration.53 The

success rate, or fidelity, of one spin inversion is thus e−
K
T2 .

However, we apply a series of these inversion pulses. A typ-
ical sequence length is Q

f0
≈ 1 s. Longer sequences would

not be beneficial as the resonator cannot collect more spin
signal due to the cantilever’s relaxation time (and because
of reasons explained below). On the other hand, shorter se-
quences do not use the full capacity of the resonator.54 In
our case, this means we have to apply a series of about 6000
spin inversion pulses. To ensure that a significant amount of
net magnetization will create a spin signal during the pulse
sequence, a single spin inversion fidelity should be about
0.9999. This means that to measure the pure spin signal
curve of Fig. 4.14b, the pulse dependent parameter K must
be smaller than 10−4T2 for all spins in the resonance slices
that we want to measure.
During our first ARP experiments,55 it is not likely that we
satisfied this condition. In fact, based on similar pulse shapes53

we estimate K to be as large as 30 µs, while 250 µs > T2 >

3 µs as explained in Sec. 4.1. This means that soon after the
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56 With average magnetization
amplitude we mean the root
mean squared (RMS) magneti-
zation. We naturally measure
the RMS magnetization if we
take the mean of the measured
X2 and Y2 signal (and take the
square root afterwards).

pulse sequence is started, the average thermal net magneti-
zation is reduced to insignificant values. However, statisti-
cal polarization helps us out as the average magnetization
amplitude56 due to statistical polarization would be about
µARP ∝

√
Nµs, where N is the number of spins inside the

resonance slice. The slice thickness can be set by the fre-
quency sweep range of the pulse with a lower limit set by
the resonator’s RMS displacement. In our case this limit is
on the order of 0.1 nm due to thermal excitations, but can in-
crease during the pulse due to the force of the spins driving
the resonator. See Fig. 4.15b for a comparison of the number
of spins per resonance slice when the thickness is fixed or set
by a frequency sweep of 500 kHz.
When spin inversions are imperfect, not only does the am-
plitude of the spin signal change, also the force becomes dis-
tributed over a frequency range due to the limited autocorre-
lation time. As the fidelity of a single spin inversion is e−K/T2

and the spin is flipped with frequency 2 ωS
2π , the net mag-

netization averages out as 〈µARP(0) µARP(t)〉 ∝ e−t/τ with
τ ≡ πT2

ωSK the autocorrelation time, and where we assumed
T1 � τ. The autocorrelation time tells us that the spin signal
has a frequency width of 1/τ and also that if it is larger than
the ARP sequence duration, we are in the thermal magneti-
zation regime. While if τ is much smaller than the sequence
duration, we are in the statistical polarization regime.
Next, we calculate the autocorrelation of the single-spin force
of Eq. 4.12 by substituting the average autocorrelation of a
single spin into µARP that we have found to be µ2

s e−t/τ for
t > 0. We can use the Wiener-Khinchin theorem to find the
force power spectral density (averaged for a single spin) to
be

SF(ω) =
(π

4
µs

∣∣∣B′‖B̂0

∣∣∣)2
τ

1 + iωτ

1 + (ωSτ)2 − (ωτ)2 + 2iωτ

(4.14)

≈ 0.4 τ
(

µs

∣∣∣B′‖B̂0

∣∣∣)2
for ω ≈ ωS. (4.15)

We only need the value of the force around the resonance
peak of the transducer (the MRFM-tip). The force signal is
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spectrally widespread compared to the MRFM-tip if τ � Q
ωS

and therefore can be approximated linearly, see Fig. 4.15a.
The approximation is valid up to a factor of

√
2 depending

on the precise value of τ, which should be accurate enough
for our heuristic approach.
The derivation of the power spectrum of the MRFM-tip move-
ment is similar to Eqs. 1.7-1.11, and leads to

Sq(ω) ≈1.4
T2

K
Q
k2

∫
Vres.slice

ρ
(

µs

∣∣∣B′‖B̂0

∣∣∣)2
dV ×

ω0
2πQ

(ω0 −ω)2 +
(

ω0
2Q

)2 . (4.16)

Note that in contrast to Eq. 1.11 the phase is still well defined
φ(ω) = atan2

(
−ω0ωS

Q , ω2
0 −ω2

S

)
with respect to the phase of

the spin force. For the total spin signal of the resonance slice
we have to integrate over the power spectrum. The last line
of Eq. 4.16 integrates to unity, leaving us with the first line
only.
To conclude the differences between the statistical and ther-
mally polarized experiments, we find that the regime is de-
termined by the autocorrelation time of the net magnetiza-
tion τ = πT2

ωSK during the ARP experiment. If τ is longer than
the ARP experiment duration, which wisely would be cho-
sen of the order Q

ω0
, then we are in the thermally polarized

regime and Eq. 4.13 applies. Then the signal is proportional
to the number of spins N in the resonance slice (Fig. 4.15b),
to the gradient of B0 in the direction of the movement of
the resonator (Fig. 4.14b), and to the thermal polarization
(Fig. 4.15c), which ultimately leads to Fig. 4.15e. The statis-
tical regime applies when τ � Q

ω0
and Eq. 4.16 applies. The

final signal, the square root of the power spectrum of Eq. 4.16

integrated over frequency, is proportional to
√

N (square root
of Fig. 4.15b), the RMS of gradient of B0 in the direction of
the movement of the resonator, and the square root of the T2

time (square root of Fig. 4.15d) which leads to Fig. 4.15f.

Our first ARP experiments were carried out at a height
of 500 nm and a distance of 27 µm from the RF-wire. We
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a) b) Figure 4.16: The first ARP ex-
periments. a) The equipoten-
tial lines of constant B1-field
in kHz (red) and, as reference,
some resonance slices with con-
stant Larmor frequency in MHz
(gray). b) The measured spin-
force signal in black, and the av-
erage in-phase signal in red. If
the ARP experiment was done
in the thermal regime, red is the
thermal motion/

√
2 plus the

spectral leakage due to the finite
pulse sequence duration.

57 This can be used to opti-
mize the ARP pulse shape and
thereby lower the parameter K
by one or two orders of magni-
tude.

Figure 4.17: Screenshot of live
data capturing during iOSCAR
protocol. a) SQUID signal in
time-domain, showing the can-
tilever movement. b) PLL fre-
quency tracking in time do-
main. The sudden interrupt
of the RF-signal messes up the
PLL for a short while. c) PLL
frequency in frequency domain.
The spin signal is in the small
peak at finterrupt/2.

applied ARP pulses of 0.63 mA through the RF-wire creating
γeB1 ≈ 66 kHz at the position of the resonance slices, see
Fig 4.16d. This B1 is high enough to satisfy the last condition
of Eq. 4.9 for all resonance slices.
For most Larmor frequencies we find that 〈Y2〉 = 〈X2〉; ex-
cept for two data points: 4.5 and 4.7 GHz have a signifi-
cant signal inside the quadrature part. Reasons for these two
points to appear could be: that we are suddenly in the ther-
mal regime due to the higher field and field gradient (rather
wishful thinking), that the spins from the surface add to the
spin signal (not likely due to small T2 of surface spins), res-
onances in the RF-wire (the peak is too broad for a single
resonance in a superconducting circuit), heating of the sys-
tem (not clear why only at this frequency), or that the RF
leaks into the SQUID device and creates nonlinearities. Re-
cent experiments that are outside the scope of this thesis tend
to support the last hypothesis. The other data points (black
points in Fig. 4.16b) are too far below the thermal signal (red
signal) to show any significant spin signal.
As this analysis was only performed after the experiment, a
closer determination of the spin signal with ARP is left for
consecutive experiments. The RF-current lines can handle
several mA, providing enough freedom to shorten the ARP
pulses57 and reveal more of the theoretical curve of Fig. 4.15e
or f. Also phase measurements can be optimized by doing
the quadrature measurements faster than τ and using the
MRFM-tip’s frequency-phase relation to suppress the influ-
ence of the thermal motion.
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58 Lee et al. 2012

59 Rugar et al. 2004

60 Cardellino et al. 2014

61 With respect to the cantilever
period.

62 Vinante et al. 2011a
63 Usenko et al. 2011

64 Wijts 2013

During the OSCAR protocol the cantilever is driven
with several nanometers amplitude to use the gradient of the
magnet to invert the spin each time the magnet ’passes by’,
causing the spin to lock, or antilock to the cantilever mo-
tion.58 Turning the RF off for half a period should switch the
locked spins to antilock and vice versa, and thereby the res-
onance frequency changes as there is usually an imbalance
between the amount of locked vs antilocked spins. Doing
this regularly and measuring the periodic change of the res-
onance frequency is called iOSCAR.59 The RF can also be
pulsed (piOSCAR)60 to narrow the resonance slice, which in
a follow-up experiment might also be done in view of the
short T2 time. Let us for now stick with iOSCAR. The fre-
quency shift due to a single spin is given by58

δ f ≈ 2 f0

πkA
µeq

∣∣∣B′‖B̂0

∣∣∣ , (4.17)

where A is the resonator’s amplitude. Of course, this δ f
has to be integrated over all the spins inside the resonance
slice. When the interrupting frequency is finterrupt, the mag-
netization changes with finterrupt/2, and the amplitude of the
frequency shift at finterrupt/2 gives δ f , see Fig. 4.17. Theoret-
ically, this δ f should follow the curve as given in Fig. 4.14b.
However, for now the data as retrieved in Fig. 4.17, was too
noisy to be useful. It is likely that one has to go to very
short61 piOSCAR pulses, to invert the spins within T2.

4.6 Conclusions and outlook

Compared to preceding experiments,62,63 we have made
notable progress in sending large RF-currents, fast temper-
ature monitoring and controlling, and we solved the prob-
lem of very large frequency shifts.64 However, the MRFM-
experiment on diamond has also shown several points that
need to be fixed or optimized such as the SQUID excess
noise, RF-leakage that heats up the spin bath, and the vi-
brations and resonances that drive the resonator. The first
two can be easily solved, but the latter needs a much better
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65 More on this in Sec. 6.5
vibration isolation, and probably a new MRFM-design.65

The experiment so far has been successful in obtaining spin
density information of the bulk and the surface spins on di-
amond. Furthermore, we have calculated the influence from
the limited T2 relaxation time in ARP experiments. We sug-
gest that for future experiments pulse shapes are used that
ensure that the spin inversions take place with much higher
fidelity.
To conclude the analysis of our resonance experiments we
might say that an important factor is the quality of the spin
lock which determines the bandwidth over which the spin
signal is spread out. The quality of the spin lock is to a large
degree determined by the duration of a single spin inversion
which determines the K parameter. The duration is limited
by the strength of the B1 field. Furthermore the quality of
the spin lock can be deteriorated by possible disturbances of
spins in the vicinity. In the single spin experiment of Rugar
et al. 2004 an excellent spin lock of longer than 1 second was
achieved with a B1 field of 0.3 mT. In their sample of quartz,
the spins were generated by gamma ray irradiation with an
estimated spin density of 1013 − 1014 cm−3, or an average
spin-spin distance of around 300 nm. This is significantly
farther apart than the 20 nm separating the nitrogen spins in
our diamond.
In the experiment of Cardellino et al. 2014 the spins im-
planted as a wire in diamond were studied. At 6 ppm or 1018

cm−3 (rather than our 0.4 ppm) these spins were significantly
closer to each other (5− 10 nm) than in our experiment, how-
ever, in the iOSCAR protocol used, they could lock the spins
to the cantilever motions for more than 20 ms, even though
the flip-flop time was 0.2 ms.
In our experiment we are able to generate B1 fields larger
than 0.1 mT at 1 micron distance from our superconducting
RF wire. We believe that we can generate spin locks for at
least 20 ms. This would mean the spin signal will be spread
out over a bandwidth of well below 50 Hz and therefore a
single spin could become detectable in a single shot experi-
ment.
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quote Rabi 1970

5 Gravitational decoherence of NV-
resonator systems

"Science itself is badly in need of integration and unification. The

tendency is more and more the other way... Only the graduate stu-

dent, poor beast of burden that he is, can be expected to know a

little of each. As the number of physicists increases, each specialty

becomes more self-sustaining and self-contained. Such Balkaniza-

tion carries physics, and, indeed, every science further away from

natural philosophy, which, intellectually, is the meaning and goal

of science."

As described in Ch. 1, the goal of the proposal that led

to this thesis is clear; an experiment that verifies or falsifies

gravitational collapse models would have major implications

for the physicist’s perceived worldview. Besides that an ex-

periment like this would enlighten the almost century-old

discussion about the correct interpretation of quantum me-

chanics, it could also point towards the right way to unify the

theories of gravity and quantum mechanics. As Rabi states

in the quote above, science needs unification but tends to dis-

perse into different fields, branches, and subbranches.

To design such an experiment we need to work the other

way around and collect the expertise of many branches to

overcome technical and theoretical challenges. As Rabi also

mentioned, a PhD-student can be expected to extract the in-

formation of all the necessary fields, albeit that he or she

might have too little time to design a well defined exper-
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1 Diósi 1989

2 Penrose 1996

3 Bassi et al. 2013

4 Vinante et al. 2016

5 Wezel and Oosterkamp 2012

iment. Therefore this chapter is different from the others:

instead of trying to draw firm conclusions we end most sec-

tions with an emphasized question, which is meant to guide

successive research.

In the first three sections we will discuss the effect of the

possible gravitational collapse effect onto the MRFM-resona-

tor. The first section will review the original gravitational

collapse theory as founded by Diósi and Penrose.1,2 Next,

we will suggest a modification predicting that the bound-

aries between quantum and classical mechanics occur for

much smaller masses. The third section will review the pro-

posed3,4 effect of heating due to spontaneous collapse of the

wave function.

The last two sections focuses on the experiment as suggested

by Van Wezel and Oosterkamp 2012,5 in which a well con-

trolled spin should entangle with a massive resonator, hence

creating a massive superposition. Sec. 5.4 will point out the

relevant quantum mechanical interactions in this experiment

that need to be understood very well to be able to measure a

deviation from conventional quantum mechanics. Moreover,

the quantum interactions are needed to push the system out

of the safe regime of quantum mechanics. Finally, in Sec. 5.5

we describe the possibilities to concretely construct the ex-

periment.

As this is the last scientific chapter regarding the main sub-

ject of this thesis, we will make up the balance in Sec. 5.6 and

also look ahead in this last section.

5.1 Gravitational collapse

In the Copenhagen interpretation of quantum me-

chanics, if one measures an observable of a quantum state,

the classical measurement apparatus lets the wave function

collapse. This means that the quantum state is reduced to an
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6 In the case of a perfect position
measurement, which we will be
interested in, the wave function
collapses to a delta function.

7 Penrose 2014

8 Oosterkamp and Zaanen 2013

9 Rademaker et al. 2014

10 Carroll 2003, Sec. 4.1

11 The far away observer and the
local experiment do not move
(significantly) with respect to
each other, so special relativistic
effects can be neglected.

eigenvalue of the observable.6 It is, however, not clear what

a classical apparatus precisely does or what classical even

means. If the large amount of degrees of freedom in this

apparatus are entangled with the measured state, does that

mean that for each possibility there is another reality? Or

does the state collapse, i.e. it chooses one reality? In the next

section we will discuss that the first interpretation is not falsi-

fiable, while collapse mechanisms lead to non-unitary quan-

tum mechanics.

The qualitative solution suggested by Diósi,1 Penrose,7

and many others,3,8,9 is that the concept of gravity induces

non-unitary behavior, which then leads to spontaneous col-

lapse. Note that we work at non-relativistic speeds and in

an almost flat spacetime. In other words, our physics con-

sists of non-relativistic quantum mechanics and a weak grav-

itational field, albeit we will investigate what might happen

when the gravitational field is generated by a mass in su-

perposition. This conservative field can be described by the

gradient of the gravitational potential Φ(r). For weak fields,

the potential can be written as a first order perturbation to

the flat spacetime.10 Hence the local elapsed time interval dτ

(proper time) becomes

dτ =

(
1 +

Φ(r)
c2 + ...

)
dt, (5.1)

where c is the speed of light and dt the time interval of an in-

finitely far away observer (coordinate time).11 As Φ is always

negative at finite distance of a massive object, the proper time

is always slower than the coordinate time.

The gravitational potential is related to the mass distribution

by Poisson’s equation, which in integral form can be written

as

Φ(r) = −G
∫

R3
d3r′

ρ(r′)
|r− r′| , (5.2)

where G is the gravitational constant.
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Figure 5.1: A massive ball is
brought into a superposition
of states at positions x1 and
x2. This leads to a superposi-
tion of the gravitational poten-
tials Φ1(x) and Φ2(x). Is the
probe particle at position xp in
a superposition of spacetimes or
does it experience a superposi-
tion of time evolutions? Fig-
ure reprinted from Rademaker et al.
2014.

The mass density ρ is trapped inside the gravitational poten-

tial as it costs works to remove each bit of mass. The total

work to move each infinitesimal part from its current posi-

tion to infinity is, up to a minus sign, the so called binding

energy, Eb, which is given by

Eb =
1
2

∫
R3

d3r Φ(r)ρ(r)

= −G
2

∫
R3

d3r
∫

R3
d3r′

ρ(r)ρ(r′)
|r− r′| . (5.3)

To see what parameters need to be optimized for measur-

ing a gravitationally induced collapse of the quantum state,

we need to ask ourselves how gravity sees the mass of the

wave function. In quantum mechanics a particle is assigned

a mass, but it does not tell how this mass is distributed over

space. In other words, for choosing the right experiment we

should know how the gravitational potential Φ(r) and a wave

function Ψ(r) are connected. However, here we encounter the

100 year old conundrum of the unfeasible unification of the-

ory of gravity and quantum mechanics. As there is no answer

known to how the gravitational potential is formed around a

quantum state, let us revisit some possibilities. To stay close

to our MRFM-experiment, we will evaluate the possibilities

on a massive ball that is in a Schrödinger cat state as shown
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Figure 5.2: Numerical calcula-
tion of the Penrose collapse time
for a magnet in a position cat
state with a separation of ∆x be-
tween the two states of which
the total wave function is a su-
perposition. The ball is of di-
ameter 3 µm, similar to the size
of the magnet as used in our
MRFM experiment. For ∆x val-
ues larger than ∼ 3 µm the two
states do not overlap anymore.
The line starts to flatten due
to the trade-off of larger sep-
aration between the two states
and weaker gravitational field
that is generated by one state
around the other. The shown
points at small ∆x that deviate
from the straight line asymp-
tote are due to numerical errors
because of the large difference
in scale between object size and
∆x. Around these points the
straight line is merely a guide to
the eye.

in Fig. 5.1. Hence, we could write the quantum state as

|Ψ〉 = 1√
2
(|1〉+ |2〉) , (5.4)

where |1〉 and |2〉 correspond to the states with the center

of mass of the ball at positions x1 and x2 respectively. If we

assume that gravity does not know about ’mass distributions

of quantum states’, but rather is constructed for each possible

outcome, we end up with two gravitational fields: Φ1 and Φ2

respectively.

It was argued by Penrose,2 that an uncertainty in the gravita-

tional binding energy occurs when the mass distribution is in

a superposition. The lifetime that is associated with this state

due to this uncertainty is guessed by dimensional analysis to

be

lifetime =
h̄
|E∆|

. (5.5)

The uncertainty energy E∆ is some energy measure that can

be related to the gravitational binding energy difference be-

tween the two possible outcomes of a two-state superposition

E∆ = −4πG
∫

R3
d3r

∫
R3

d3r′
(ρ1(r)− ρ2(r)) (ρ1(r′)− ρ2(r′))

|r− r′| ,

(5.6)

where ρ1(r) and ρ2(r) are the mass densities that correspond

with Φ1 and Φ2 respectively. A similar quantity was sug-

gested by Diósi1 a few years earlier. In Fig. 5.2 we plotted h̄
E∆

for our NdFeB magnetic particle of 1.5 µm radius as a func-

tion of superposition distance ∆x. The ∆x values shown here

are way too large to be feasible, and the lifetimes far too long

to be measured with current techniques. If this is the macro-

scopic boundary of quantum mechanics, why is it so incredible hard

to get the MRFM-tip into a quantum superposition even on mil-

lisecond timescales? An often-heard answer argues that this

is due to the coupling to environmental degrees of freedom

which makes it difficult to prove superposition in an interfer-

ence experiment. However, this does not explain the single



84 mrfm and the spin bath

12 The environmental decoher-
ence can explain the diagonal-
ization of the density opera-
tor, however it does not ex-
plain why the remaining diag-
onal values are probabilities, i.e.
why we have only one outcome
per measurement.

This section is based on
and continues on: Rade-
maker, L et al. Probing
the Instability of a Quan-
tum Superposition of Time
Dilations. arXiv:1410.2303

[quant-ph] (2014).

outcome of measurements of quantum states.12 In the next

section we will argue that the rate might be much faster than

in Eq. 5.6 as not only the mass from the object itself counts

but also all other masses that feel the gravitational potentials

from the massive quantum object.

5.2 Probing the instability of a quantum superposition of
time dilations

So far we have looked at the massive object in superpo-

sition itself. However, it also changes the spacetime at the

position of other objects. Compared to Diósi’s and Penrose’s

ideas, including the surrounding mass is of vital importance.

We demonstrate in this section on what typical timescales

ordinary quantum mechanics might fail when not only the

gravitational self energy of the object in superposition itself,

but also the surrounding mass is taken into account. For

calculating the time evolution of objects near a mass in su-

perposition in the quantum domain, we should have a valid

theory of quantum gravity. However, such a theory does not

yet exist. Therefore, in order to find the typical timescale on

which the quantum world becomes classical, we follow the

reasoning from Oosterkamp and Zaanen 2013
16 where, based

on a gedankenexperiment, they argue at which timescale the

gravitational time dilation might force a collapse of the wave-

function, which turns out to be similar to the Diósi-Penrose

interpretation. In contrast to that paper, we will include the

effect of all surrounding mass.

Consider a probe particle at position xp as shown in Fig. 5.1.

Later on we will assume that the surrounding mass exists

of many noninteracting probe particles. If the probe parti-

cle is subject to a time-independent Hamiltonian, its time-
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13 The total Hamiltonian
(without gravity) of two non-
interaction states can be written
as a sum of two commuting
parts Ĥ = ĤM + Ĥp. In
flat space, the total quan-
tum state would simply
be |Ψ〉 = |ΨM〉

∣∣Ψp
〉

=

e−iĤt/h̄ |ΨM(0)〉
∣∣Ψp(0)

〉
, where

we omitted the direct-product
sign for simplicity.

14 Isham 1993

15 A.k.a. a many worlds formal-
ism.

dependent wave function can be written as∣∣Ψp(t)
〉
= e−iĤτ/h̄ ∣∣Ψp(0)

〉
. (5.7)

Here Ĥ is the Hamiltonian (without gravity) and τ is the

proper time from Eq. 5.1 which is equal to t in flat space.

But spacetime is not flat and the neighboring massive object

causes the probe particle’s time to run slower. The problem

is that a cat state of the massive object causes the proper time

to be in superposition as well.

Let us consider the total quantum state of the probe particle∣∣Ψp
〉

and that of the massive object in superposition |ΨM〉
(with |ΨM(0)〉 = 1√

2
(|1〉+ |2〉)), where we assume that

∣∣Ψp
〉
,

|1〉, and |2〉 are eigenstates of the position operator. When the

particles do not interact13 the total quantum state is

|Ψ(t)〉 = 1√
2

e−iĤMτM/h̄
(
|1〉 e

−iĤpt
(

1+
Φ1(xp)

c2

)
/h̄
+ (5.8)

|2〉 e
−iĤpt

(
1+

Φ2(xp)
c2

)
/h̄
) ∣∣Ψp(0)

〉
.

Note that the gravitational field acts on the probe particle’s

state as an operator with eigenvalues Φ1(xp) and Φ2(xp) for

the position eigenstates. In fact, we also could have quan-

tized the gravitational potential and included this into a new

Hamiltonian Ĥwith Φ̂ = Ĥ(1 + Φ̂
c2 ). For the result of Eq. 5.8

we neglected the fact that Ĥ and Φ̂ do not commute, as this

only gives errors on the order of
(

G
c2

)2
.

So what we actually have done is quantizing gravity. How-

ever, this leads to a whole set of problems as explained in a

review by Isham 1993.14

Of course, we could assume that for all positions of the mas-

sive quantum object in superposition we have a completely

disjointed spacetime.15 Assuming the superposition started

at t = 0, the phase factor of the probe particle’s wave function

evolves in each spacetime differently. In this section we note

that besides the probe particle, all surrounding matter contin-

ues in these spacetimes as well, including the measurement
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16 Oosterkamp and Zaanen 2013

17 Rademaker et al. 2014

apparatus and the observer. When a measurement is per-

formed, the outcome depends on the spacetime the observer

is in. Since all possible outcomes fully exist, it is not clear

what the probability distribution |Ψ(x)|2 physically means,

other than some Bayesian probability for how much the ob-

server continues to a certain ’world’. Also, this many worlds

formalism is a non-falsifiable theory because ultimately we

would consider a system consisting of a quantum system to-

gether with its measurement apparatus. The two possible

outcomes of a measurement would then remain evermore in

separate parts of the Hilbert space.

Note that the problems that arises due to the quantization

are connected to the problematic straightforward unification

of gravity and quantum theory, while the non-falsifiability

of the many worlds interpretation touches the measurement

problem in quantum mechanics. And so, although Eq. 5.8

is the most straightforward construction of the time evolu-

tion of the quantum state from a quantum mechanical and

general relativity point of view, the problems above speak

against it. However, we know that quantum mechanics works

very well on small time scales. So instead of abandoning

Eq. 5.8 we continue with this naive solution and try to esti-

mate on what typical timescale things go awry. Oosterkamp

and Zaanen 2013
16 followed the same approach, but they fo-

cused on the proper time of the massive object itself; the τM

term in Eq. 5.8. They argued, based on the possible truly

classical nature of the gravitational field (spacetime) that the

phase difference between the two states of the massive object

gives a measure of the collapse time. Doing so they found an

expression very similar to Penrose’s and Diósi’s.

In our case, we do not consider the phases of the states of

the massive object explicitly, but rather the states of the sur-

rounding mass, starting with a single probe particle. Apply-

ing the same arguments16,17 we find that quantum mechan-

ics becomes ill-defined when the phase difference between
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18 Remember that
∣∣Ψp

〉
is not an

eigenstate of the Hamiltonian.
However, the difference in en-
ergy between various states is
small compared to the domi-
nant term and we can neglect
these differences.
19 This is the absolute energy, as
explained in Oosterkamp and
Zaanen 2013.
20 It can be expected that for
normal down-to-earth systems,
the mass is the dominant term
for the energy eigenstates used,
thus making the assumption
that

∣∣Ψp(0)
〉

is an eigenstate of
the Hamiltonian redundant.

the probe particle’s state in either of the two spacetimes is

±π, i.e.

Et
h̄c2

(
Φ1(xp)−Φ2(xp)

)
= ±π, (5.9)

where E is approximately18 the energy of the state. To eval-

uate Eq. 5.9 for our experiment, we must know the energy.19

Gravity is not so selective on the type of energy, so we use

the by far dominant term to the particle’s energy which is

E = mpc2, with mp the probe particle’s mass.20 It follows

that the time it takes for the state of the collapse equals

τp =
πh̄

mp
∣∣Φ1(xp)−Φ2(xp)

∣∣ . (5.10)

Note that although we derived τp as a typical measure of the

lifetime of the probe particle, it actually also limits the life-

time of the superposition of the heavy quantum object that

generates the two spacetimes.17 Thus in the case of multiple

probe particles, we sum over the probe masses in the ap-

propriate positions. If the superposition starts at t = 0, the

spacetime can only be in superposition within a radius of cτp

as the fabric of space can only change at the speed of light.

This leads to a self-consistent equation which, when written

as a continuous sum over the environment (probe particles),

is given by

τp =
πh̄∫

|r|≤cτp
d3rρp(r) |Φ1(r)−Φ2(r)|

. (5.11)

This typical measure of the gravitational induced decoher-

ence time is calculated for our MRFM-tip where we took the

earth as the environment. The obtained values for τp, shown

in Fig. 5.3, are extraordinarily small compared to the values

of Sec. 5.1. For example, for the same size of massive object,

we now find a value of 4 µs for a superposition width of the

size of the zero point motion. Note that any quantum state

has a quantum uncertainty of at least this size. This brings us

to the question if there is not already an experiment done that shows

signatures of the collapse time τp. Certainly if the topic of the
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Figure 5.3: The typical measure
of instability time τp for dif-
ferent distance to earth. The
values are found by solving
τp − πh̄∫

|r|≤cτp d3rρp(r)|Φ1(r)−Φ2(r)|
=

0 in MATLAB. The calculation is
done for tip diameters of 3 µm,
300 nm, and 100 nm of NdFeB.
The width of the superposition
was set to the zero point motion
of a typical MRFM-cantilever
xzp f ≈ 141 fm.

21 For example, instead of sum-
ming over the probe particle’s
phases of Eq. 5.9, one might also
take the root mean square of
these phases. This would lead
to a slower collapse time.

22 Diósi 2015

23 Diósi 2014

24 In principle into the qubit-
resonator system, but since the
resonator has much higher heat
capacity, the energy stored in
the spin-part is insignificant.
The heat-energy flow from the
resonator to the environment
through the spin is already in-
cluded by means of the effective
Q-factor.

next section is valid and taken into account, it is likely that

signatures of the collapse time are already measured. Hence

it could also be that Eq. 5.11 is falsified already. However,

keep in mind that the generalization of Eq. 5.10 to Eq. 5.11 is

based on the assumption that we can simply integrate over

the probe particles mass distribution, which might not be

valid.21

5.3 Mode heating due to spontaneous wave function col-
lapse

Once the wave function collapses, naturally the kinetic en-

ergy of the system increases.3,22,23 Roughly speaking, this is

because the collapsed state will on average have a higher en-

ergy than the energy expectation value of the original state

and it will release this energy as heat into the resonator when

the system evolves in time.24 The resonator can loose its heat-

energy to the environment only if there is a temperature dif-

ference, similar to what is described in Sec. 1.4.
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25 This comes from Eq. 16 in

Diósi 2015: ∆T ∼ h̄ω2
G

2kB
τ, where

τ = Q
ω0

is the cantilever time

constant and ωG ∼ 1
τp

, the in-
verse of the collapse time.

26 Usenko et al. 2011

27 Which they attribute to black
body radiation from a 4K ther-
mal shield that heat up the force
sensor.

Diósi 2015 calculated the temperature raise for the Diósi-

Penrose model type of spontaneous wave function collapse

∆T ∼ h̄Q
kBω0τ2

p
,25 assuming that kBT � h̄ω0. For the largest

magnet from Fig. 5.3, and our standard resonator values of

Q ∼ 104 and ω0
2π = 3 kHz, we find ∆T ∼ 10−2 K which is

larger than the offset measured by Vinante et al. 2016
4, but

similar to the saturation temperature in both the Vinante and

our experiments.26

The heating effect does not only apply to a resonator in the

quantum regime, but provides a lower boundary for the tem-

perature of any resonator, also in the classical regime. In

Sec. 4.2 we found a saturation of the mode temperature

around 50 mK that we ascribed to vibrations or other noise

sources. Usenko et al. 2011 found a saturation at similar tem-

peratures.27

That Vinante et al. 2012 reached lower temperatures by do-

ing active feedback does not contradict the above numbers

as the active feedback signal does not tell if the heat input

comes from the temperature difference between the heat bath

and the environment, from vibrations in the system, or from

spontaneous collapse.

The relevant question for our experiment is whether this intrin-

sic heating might prevent the cooling of the system towards the

ground state. If yes, then we are very close to observing the

effects of spontaneous wave function collapse. If in the pro-

posed experiment we find that there is no significant intrinsic

heating, this would either disprove the assumption on which

the heating is based, or ask for modifications or exclusion

of some spontaneous collapse models (not only the modified

Diósi-Penrose model from Sec. 5.2).4

We can conclude that the masses and oscillation periods

of the conventional MRFM-tips fall precisely in the regime

where, following the model of Sec. 5.2, the transition occurs

from the quantum to the macroscopic world. This chap-
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28 Note that xyz is a local basis
for the qubit and is not related
to the commonly chosen basis
in MRFM-experiments such as
in Fig. 3.1 or 4.12.

ter will elaborate on the construction of an experiment to

test this and other spontaneous collapse models. It must be

noted, however, that the theory of Secs. 5.1-5.3 is based on

various assumptions and generalizations that are not straight-

forward. There are many other routes possible in which grav-

itation might induce an uncertainty into the quantum state.3

What we really need in this field is an experiment.

5.4 Quantum description of spin - resonator system

So far we have checked how the spin-resonator system could

be pushed over the boundaries of quantum mechanics. How-

ever, we should also know how the experiment would be

described in a purely quantum formalism. Firstly because

we need quantum mechanics to push the system towards

the quantum/classical boundaries, and secondly because we

need to have a reference for our results once the experiment

passes the boundaries.

The Hamiltonian of the coupled resonator - spin system

is given by

H =
1

2m
p2 +

1
2

kq2 + ωsB(q) · S, (5.12)

where p and q are the resonators canonical momentum and

position variable respectively, m the mass of the resonator, k

the spring constant, ωs the Larmor frequency, and S the ori-

entation of the spin.

The magnetic field B can be expanded to first order in q.

Higher orders can be omitted if the spin is positioned such

that ∂2B
∂q2 � 2B′

qZPF
, where B′ ≡ ∂B

∂q , qZPF ≡
√

h̄
2mω0

the ground

state energy motion (zero point fluctuation in position), and

ω0 =
√

k
m the cantilever’s natural frequency. The magnetic

field can be expanded as B ≈ B0ẑ + qB′ where we have cho-

sen a Cartesian basis with ẑ = B(q=0)
B0

.28 Quantizing the



gravitational decoherence of nv-resonator systems 91

29 The two level system, or two
state quantum system, might
still be part of a bigger (non-
degenerate) system.

Hamiltonian leads to

Ĥ =h̄ω0

(
â† â +

1
2

)
+ ωsŜz +(

â† + â
) (

g∗⊥Ŝ+ + g⊥Ŝ− + g‖Ŝz

)
, (5.13)

where â† ≡ 1
2qZPF

(
q̂− i

mω0
p̂
)

and â the creation and annihi-

lation operators respectively. Furthermore, g‖ ≡ −γsqZPFB′z,

and g⊥ ≡ −γsqZPF

(
B′x + iB′y

)
. Ŝx, Ŝy and Ŝz are the spin

operators and Ŝ± = Ŝx ± iŜy the spin raising and lowering

operators.

Up to now, the Hamiltonian is general enough for any spin

number. For simplicity let us focus on a two level system

(2LS).29 Taking the ground state as zero energy, we can write

Ŝz = h̄σ̂†σ̂, Ŝ+ = h̄σ̂†, and Ŝ− = h̄σ̂, and omit the 1
2 in the

Hamiltonian.

Particularly interesting is the situation where the system is

driven with a coherent external radio-frequent magnetic field

with frequency ωd and amplitude B1. Because B1 � B0, we

can neglect the direct effect on the longitudinal magnetiza-

tion. For convenience let us choose y such that B1y = 0, and

use Ω1 ≡ γsB1x /2. Hence, the Hamiltonian becomes

Ĥ = Ĥ0 + Ĥ1⊥ + Ĥ1‖ + Ĥdrive, with (5.14)

Ĥ0/h̄ ≡ ω0 â† â + ωsσ̂†σ̂

Ĥ1⊥/h̄ ≡
(

â† + â
) (

g∗⊥σ̂† + g⊥σ̂
)

Ĥ1‖/h̄ ≡ g‖
(

â† + â
)

σ̂†σ̂

Ĥdrive/h̄ ≡ 2Ω1 cos (ωdt)
(

σ̂† + σ̂
)

.

Going to the rotating frame to make the Hamiltonian above

time-independent shows that interesting physics comes up

depending on frequency ωd. This is either due to the inter-

action term Ĥ1⊥ or Ĥ1‖, but not for the same values of ωd.

Therefore we review two situations: the first with Hamilto-

nian Ĥ⊥ ≡ Ĥ0 + Ĥ1⊥ and the second with Ĥ‖ ≡ Ĥ0 + Ĥ1‖ +

Ĥdrive.
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30 Braak 2011

The Hamiltonian H⊥ is particularly interesting for spon-

taneous interaction between the spin and resonator, thus with-

out the external field turned on:

Ĥ⊥ = ω0 â† â + (ωs −ωd) σ̂†σ̂ +
(

â† + â
) (

g∗⊥σ̂† + g⊥σ̂
)

.

(5.15)

Although this is one of the simplest Hamiltonians of interact-

ing quantum systems, achieving an analytical solution for the

Schrödinger equation is not easily feasible due to the fact that

there is no conserved quantity other than the energy. If one

takes the rotating wave approximation, the system would re-

duce to the Jaynes-Cumming model which has a continuous

U(1) symmetry. However, this approximation is only valid

if |ωs −ω0| � |ωs + ω0| and g � ω0. The first is definitely

not a valid assumption in our system where ωs is in the GHz

regime, and ω0 only several kHz. Moreover, it is question-

able whether g� ω0 as we will show in the next section that

g can be hundreds of Hz.

Braak30 showed that the system can actually be solved. Al-

though a bit different from the Jaynes-Cummings ladder state

solution, level crossing of various states can still occur, en-

abling the transition from higher to lower phonon number

states (and vice versa). It can be guessed that the typical

transition rate is g‖. Making the transition rate asymmetric

by pulling the qubit into its ground state would cool (or heat)

the resonator. Braak30 showed, however, that level crossings

only occur when the external transition rate is a multiple of

ω0/2. This method is different from what is used in optome-

chanics and not fully explored in the regime where ω0 � ωs.

A thorough theoretical analysis is needed to fully explore the pos-

sibilities that the system described with this Hamiltonian might

reveal.

The Hamiltonian Ĥ‖ can be made time-independent when

the wave function |Ψ〉 → eiωd σ̂† σ̂t |Ψ〉. Then according to the
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31 Aspelmeyer et al. 2014

32 There are only two values, 0
and 1, for spin- 1

2 .

33 See Aspelmeyer et al. 2014,
Sec. X.F.

34 Marquardt et al. 2007

35 Braginsky et al. 1995

36 Marshall et al. 2003

37 Gardiner and Zoller 2004

Schrödinger equation, the effective Hamiltonian is

Ĥ‖=ω0 â† â + (ωs−ωd) σ̂†σ̂ + g‖
(

â†+ â
)

σ̂†σ̂ + Ω1

(
σ̂†+σ̂

)
,

(5.16)

where we neglected the fast oscillating terms e±2ωdt. This

Hamiltonian is very similar to the Hamiltonian for optome-

chanics,31 with the only difference that the photons from

the laser (bosons) are replaced with a spin state (fermion).

The main difference here is that σ̂†σ̂ is finite,32 meaning that

when the system is continuously driven, the 2LS oscillates

between its states. Compared to optomechanics, we are in

a special regime, the single photon regime. The otherwise

nonlinear behavior33 does not happen, because for a 2LS(
σ̂†σ̂

)2
= σ̂†σ̂. What remains is a resonance frequency shift

for the spin by |g|2 /ω0. Note that when ωd = ωs − ω0 the

first two terms of Ĥ‖ are degenerate, meaning that the in-

teraction term will let the state oscillate between a quantum

state with n phonons and the spin in the ground state, and a

state with n− 1 phonons and the spin in the excited state.

Many proposals to explore the quantum regime with me-

chanical devices require cooling of the resonator to(wards)

the ground state.34,35,36 It is easier to do statistics on quan-

tum measurement outcomes once the probability amplitudes

are not convoluted with the thermal spectrum. Moreover,

harmonic oscillators with a lower number of phonons exhibit

a lower rate of decoherence.37 As explained by Aspelmeyer,31

the average phonon number n̄ changes according to

dn̄
dt

= (n̄ + 1)
(

A+ + A+
th
)
− n̄

(
A− + A−th

)
, (5.17)

where A± are the rates per phonon for upward (higher num-

ber of phonons) and downward transitions. The thermal

transition rates are given by A+
th = nth

ω0
Q and A−th = (nth +

1)ω0
Q .31 When the interaction term in the Hamiltonian is not

relevant, the average number of phonons reaches an equilib-

rium value n̄ = nth ≈ kBT
h̄ω0

with T the temperature of the
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38 S is the spin’s lineshape:
a normalized distribution with
units of 1/frequency and cen-
tered at ωs, or ωs− g2

0/ω0 when
taking the whole Hamiltonian
into account. For spin- 1

2 the
function is normalized. For a
spin without interactions, S is a
Lorentzian function with a full
width at half maximum of 1

T2
.

39 Tayebi and Zelevinsky 2016

surrounding heat bath.

The A± transition rates can be calculated using Fermi’s golden

rule and following Ref. 31

A± = 2πh̄g2
‖S (ωd ±ω0) (5.18)

where S (ωd ±ω0) is the spectral density of the spin.38 The

transition rates are clearly different as ωd = ωs − ω0, how-

ever, the precise imbalance between the transition rates de-

pends on the width of the distribution S.

As a point of concern: it is questionable if the results obtained

from optomechanics are valid in our case. Namely, we are not nec-

essarily in the weak coupling regime. On the other hand the po-

laron description as used in the strong coupling regime31 might

need a closer look to check if the same measurement protocols can

be applied as in optomechanics. Note that Ĥ‖ is similar to the

Holzstein Hamiltonian which can be transformed into Ĥ⊥,39

leaving us with the same questions as before. However, if we

can manipulate the qubit in other ways, we can simply hack

the transition rates by continuously pushing the qubit into a

chosen state using these alternative ways, such that sponta-

neous transitions can only occur into the required direction.

For now let us assume everything works as in optomechan-

ics.

By setting dn̄
dt = 0 and assuming 1

T2
� ω0, we find the equi-

librium phonon number

n̄ =
A+ + A+

th
A− + A−th − A+ − A+

th

=
nth

C0 + 1
, with

C0 =
4g2
‖T2Q

ω0
. (5.19)

If the cooperativity C0 is larger than nth, the system can be

cooled to between the ground state and the first excited state.

Therefore it is often more useful to work with

C ≡ C0

nth
=

4h̄g2
‖T2Q

kBT
(5.20)
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Figure 5.4: Energy level struc-
ture of an NV−-center. The
ms = 0 states from the 3 A
and 3E states are separated by
a 637 nm-photon energy. If
the states are excited with green
light there is a probability that
the system decays back to the
same ms value in the 3 A state
(eventually via the grey side-
bands), however for the ms =
±1 states there is a significant
probability that it decays to the
1 A state which is not ms pre-
serving. From there it falls back
to ms = 0. Applying the green
pulse long enough will always
bring the system to the ms = 0
state.
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Figure 5.5: Energy of the ms
states in the optical ground state
3 A. The three level spin system
has a zero field splitting of 2.87
GHz.
40 From now on just NV-centers,
or NVs.

which is an important figure of merit in optomechanical sys-

tems and other quantum hybrid systems. If we compare

this boson-fermion system with a standard optomechanical

setup, the cooperativity cannot be enhanced by adding more

photons in the cavity as there are only two spin states. How-

ever, if the coupling is strong enough such that C > 1, it is

easier to bring the mechanical resonator into a cat state as the

quantum nature of the single qubit, in contrast to the many

photons, is not averaged out.

Now that the relevant interactions are on the table,

we can focus on how to construct an experiment that uses

these interactions to go beyond quantum mechanics.

5.5 The experiment blueprint

The proposed experiment involves the coupling between

a heavy harmonic oscillator and an controllable quantum ob-

ject. As argued in Ch. 1, the best suited objects with long co-

herence times are defects in diamonds that consists of nitro-

gen, an adjacent vacancy and an extra electron. These NV−-

centers40 have a particular energy level scheme that allows

for precise control of the three level spin-state. The system

can always be driven into the spin ground state by applying

a laser pulse, see Fig. 5.4 for a graphical explanation. De-

pending on the follow-up research on Sec. 5.4, this feature

is helpful to make the transition rates asymmetric. Further-

more, the released light is valuable as it gives information

about whether the system was in the ms = 0 or ms = ±1

state.

The spin state can also be controlled by magnetic resonance.

Due to the zero-field splitting that the NV-center features,

see Fig. 5.5, an atypical spin-state energy splitting results as

the ms = 0 state has a lower energy than the ms ± 1 states.

Luckily the ms ± 1 states have a different transition energy,
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Figure 5.6: Sketch of the pro-
posed experiment. The dia-
mond that contains the NV-
center is shaped as a cone or
pyramid with 45◦ angles for
maximal light reflection. At
the same time there is plenty
of space for the MRFM-tip,
thereby enabling an interme-
diate coupling g⊥ or g‖ of or-
der ω0 between MRFM-tip and
sample.

so we can address the transitions individually by exciting the

ms = 0 state with the right frequency. Because of this, and

because we can always initialize the spin in the ms = 0 state,

we can treat the NV-center as two superimposed 2LSs.

There are two practical realizations of how we can couple

the NV-center and the resonator: 1) the magnet on the res-

onator and the NV below, or 2) the NV on the tip and the

magnet below. In both cases the magnet or NV-center cannot

be positioned beside the resonating cantilever, but only be-

low, otherwise the soft cantilever would snap to contact.

The first realization, the magnet-on-tip method, is the one

used in Chs. 3 and 4. The advantage is that the magnet is

not only useful for the coupling between resonator and spin,

but its motion can also be detected by SQUID-readout.41 Re-

member that measuring the motion of the resonator with a

laser is not an option as inevitable absorption of the light will

raise the temperature of the resonator. For controlling the

NV, however, we do need laser light in the experiment. The

pulses are typically 1 µs or less with 0.1− 10 mW laser power.

If we apply one pulse per cantilever oscillation, the induced
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Figure 5.7: Shown are the
magnetic field gradients that
are relevant for the interaction
strength. The magnet is magne-
tized in q-direction (top figure)
and in height direction (bottom
figure). In red the gradient
component in direction of the
magnetic field is shown, and in
black the component perpendic-
ular to the magnetic field. Both
contour lines are given for 0.2
T/µm. The perpendicular com-
ponent does not depend on the
direction of magnetization (but
it does depend on the direc-
tion of q). The position of the
qubit would ideally be chosen
inside the area enclosed by the
black and red line, and the mag-
net. Therefore a magnetization
in the height direction seems to
be more suitable.
41 Usenko et al. 2011

42 Robledo et al. 2010

43 Manson and Harrison 2005

44 The refractive index of dia-
mond is 2.42.

power into the experiment is in the order of µW. The laser

power can be reduced by using on-resonance laser pulses

(637 nm), which reduces the needed power by three orders

of magnitude.42 The drawback of this method is the possi-

ble bleaching of the NV−-center to the useless NV0-center.43

The laser power that hits the resonator can also be lowered

by using a reflector between the spin and the magnet. A mir-

ror is, however, not an option as a dielectric mirror would

be too thick and a metal one will give rise to eddy currents.

Luckily due to the high refractive index of diamond44 we can

construct a corner reflector as shown in Fig. 5.6. There is no

need to use reflective coatings or other mirrors providing that

the incoming beam is parallel enough. The critical angle for

total internal reflection for the diamond-vacuum interface is

24.4◦. The incoming angle of the beam shouldn’t divert more

than 20.6◦ from the ideal 45◦ to both interfaces. An advan-

tage of having a parallel beam is that the laser beam’s mode

is not distorted, which leads to a higher collection efficiency

of photons into the fiber and thus less heating.

There are more reasons why a pyramid-shaped diamond fea-

ture would be better than a simple flat surface: the coupling

between the NV-center and the resonator is very small when

the magnet is right above the NV-center, but it is maximal

when it is positioned a bit off-center as shown in Fig. 5.6.

Due to the pyramid shape the magnet can come closer to the

NV-center without touching the surface. A risk of this partic-

ular shape is that the cantilever might be pulled towards the

pyramid because of electrostatic or Van der Waals forces.

On the other hand, however, due to the reduced amount

of diamond bulk and surface in the neighborhood of the

MRFM-tip, it interacts less with the unwanted two level fluc-

tuators on the surface which leads to less dissipation, see

Chs. 2-4.

For a NdFeB magnet of 3 µm diameter, such as typically
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45 Static here means varying
slower such that the wavelength
is much longer than the typical
size of the system.

46 Okazaki et al. 2013

47 Fu et al. 2008

48 Patel et al. 2016

used in Chs. 2-4, we can easily achieve magnetic field gra-

dients of 0.2 T/µm if the qubit is well positioned as shown

in Fig. 5.7. With the ultrasoft silicon cantilevers that have a

spring constant of 50 µN/m and an electron spin, the inter-

action strength g0 is about 0.8 kHz. Together with a Q of

104 and an T2 of 1 ms, we find a single phonon cooperativity

C ≈ 250.

Due to the softness of the cantilever, the zero point motion is

141 fm which is relatively large compared to other optome-

chanical experiments.31 However, note that the temperature

corresponding to the ground state energy is extremely low

with a value of only 72 nK.

The other realization with the NV on the tip of the res-

onator has several advantages and challenges. One of the

main problems is the readout of the resonator. Since the de-

tection of the motion cannot be done optically due to exces-

sive heating, then practically it should be done with either the

static electrical field or magnetic field.45 It is advantageous

to not have a magnet on the tip of the resonator to make the

hybrid quantum system insensitive to stray magnetic fields

that are difficult to avoid. It is much easier to shield the

system from an electrical field. Detecting the static electrical

field, like a SQUID did for the magnetic field, can be done

with single electron transistors or similar devices exploiting

the Coulomb blockade.46 A problem with this method is

the relatively high dissipation of these devices compared to

SQUIDs.

Another problem would be the need of a laser interacting

with the NV-center. The coupling could be done by putting

the diamond containing NV particle close to an optical waveg-

uide and let it interact with the evanescent field.47 Although

it still seems subject to heating, keep in mind that also in the

magnet-on-tip situation the magnet is so close to the pyramid

that it also can couple to the evanescent field.48 The question
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49 Nichol et al. 2012

Figure 5.8: Sketch of structures
that are needed on the detec-
tion chip for a NV-on-tip re-
alization. The optical waveg-
uide for wavelengths of ∼637
nm are needed to control and
probe the NV-center. The gen-
erators for the magnetic field
can magnetize the NV-center by
a DC-current that is flowing
through them, and flip the spin
if the current is radio frequent.
The voltage of the shielded lines
would change if the cantilever-
tip has a high voltage with re-
spect to the shielding, and the
tip oscillates. The position read-
out is then performed by sens-
ing the electric field that these
lines generate using single elec-
tron tunneling devices that con-
sist of quantum dots that are
tuned very sensitively to the
electrical field.

is whether the heating due to optical modes on the magnet’s surface

in the magnet-on-tip situation isn’t worse for heating than the op-

tical electrical field heating up the diamond in the diamond-on-tip

situation.

Beside the insensitivity of this method to stray magnetic fields,

a big advantage of this realization is that the magnetic field

does not have to be generated by a magnetic particle, but can

be controlled using thin crossed electrical lines for generating

the magnetic field in the wanted strength and direction.49

5.6 Roadmap and outlook

The proposed realizations are promising candidates for

experiments that might explore the macroscopic boundaries

to quantum mechanics when it comes to large mass, large

displacement. The protocols to bring the system in a cat state

depend on the precise realization. Moreover, the detection

methods applied will decide the best way to do the quantum

statistics and check whether the system is in the quantum

regime, or whether it is collapsed/decohered to a classical

state. The collapse/decoherence time as function of the su-

perposition separation, the mass of the cantilever tip, and

the distance to earth are the holy grails of these experiments.

It is, however, not straightforward to measure such a curve

and indirect measurement methods might be needed to ob-

tain the same information. For example, the measurement

of spontaneous heating as explained in Sec. 5.3 would pro-

vide a simple, although not unambiguous, measurement of

the collapse time.

Nevertheless, the first steps on the route to these measure-

ments are straightforward. The exploration and optimization

of the control and detection methods while and after build-

ing the experiment of Fig. 5.6 or Fig. 5.8 would be the first

priority. Before the NVs and the resonator are combined in
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placement detection is opti-
mized during the work done for
this thesis. See also Ch. 6.

51 Poggio and Degen 2010

52 Cardellino et al. 2014

53 Vinante et al. 2012

one setup, one can already optimize the detection method

of the tip displacement50 and the control of the NV-center.

After combining the NV-center part with the mechanical res-

onator part, the NV can be used as magnetometer to mea-

sure the magnetic field profile which can be used to posi-

tion the NV close to the magnet. Measurements of this type

are already done by Kolkowitz et al. 2012. Moreover they

could detect the resonator’s displacement and thermal spec-

trum exploiting NV-centers. This demands superb control of

the NV-centers without disturbing the resonator. The upside

is that this experiment can be started at room temperature

which means a much faster iteration process to optimize the

experiment.

Naturally, the next step would be to measure a single NV-

center doing MRFM improving on the measurements of Ch. 4.

Measuring a single electron spin can be done in the footsteps

of the methods from Rugar et al. 2004. However, nowadays

more advanced protocols are available which accelerates the

measurements.51,52 Moreover, using the feature that the NV-

center can be very precisely controlled, the extensive averag-

ing of measurement data that was necessary in 2004 will be

minimal or can even be avoided.

If everything works, we approach rapidly the most in-

teresting regime. At this point it is straightforward to test

the methods of active feedback cooling.53 More challenging

are the different ways to do sideband cooling, as explained

in Sec. 5.4, especially if spontaneous heating spoils the pure

quantum interactions. At this point detailed simulations of

expected signals are needed to recognize the signatures of

the various mechanisms that come into play. Even more so if

one tries to generate cat states. However, whatever comes out

of these experiments may be interesting for various branches

in physics. We can conclude that we are on the doorstep

of exciting times; technologically for creating macroscopic
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quantum systems, theoretically for testing the boundaries of

quantum mechanics and finding experimental directions for

unifications of fundamental theories, and, hopefully, an un-

equivocal interpretation of quantum mechanics that amends

our worldview in a consistent matter.





1 Using typical parameters from
our experiments: T ∼ 100 mK,
k = 50 µN/m, ω

2π = 2750 Hz,
and Q = 10 000.

2 A consistent analogy should
remark that the mass of the
mosquito flickers on and off at
the resonance frequency.

3 Upon finishing this thesis
many of these things are still in
use, or used for other research.

6 Techniques and instrumentation

Researchers sometimes refer to MRFM as the ’crosstalk

microscope’ when the analysis of obtained signals drive them

crazy. The reason for this is on the one hand the supreme sen-

sitivity, and on the other hand the extreme technical criteria

and operational conditions for an MRFM apparatus. For ex-

ample: to show the required sensitivity, consider the thermal

force noise amplitude spectral density
√

SF =
√

4kBT k
ω Q

which is1 about 1.3 aN/
√

Hz. This is even lower when the

experiment cools to temperatures of 10 mK and the cantilever

reaches Q-factors exceeding 100 000, numbers that are actu-

ally reached in our setup, leading to an ultimate force noise of

about 0.1 aN/
√

Hz. A popular analogy illustrating this tiny

number is the gravitational force between a mosquito and a

human body at a distance of 365 m.2 Note however that, for

reasons explained in Ch. 2, the Q-factor can become much

lower close to the sample and that the vibrational noise can

prevent the mechanical mode from cooling to 10 mK. This ex-

emplifies the extreme conditions at which the MRFM should

operate and the as yet seemingly impossible and mutually

conflicting criteria the setup should meet.

This chapter gives a brief account of some of the things

that we conceived, designed, or further developed for the

research done in Chs. 3 and 4.3 For these experiments we

also used techniques that are reused or copied from previous

experiments without improving them significantly, such as
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Figure 6.1: In situ image of
the diamond sample with wire-
bonded RF-line (emphasized
with the solid arrow) and two
pick-up loops (to small to see).
The tiny bright beam beneath
the silicon chip is a projection of
the cantilever.

4 Usenko 2012

5 Wijts 2013

6 Haan 2016

vibration isolation. Therefore they are not described in this

chapter, but left in the theses of predecessors.4,5,6

In this chapter we will for didactic reasons start describing

the system at the heart of the experiment, and from there

working our way out.

6.1 Sample

It is the defects in diamond that we wanted to mea-

sure. The defects can be seen as small magnets (spins) that

interact with the magnetic tip of the cantilever which is sus-

pended just above the sample. The photo in Fig. 6.1 shows

the cantilever positioned above the diamond substrate just

before cooling down the experiment. When the spins rotate,

the magnetic tip starts to oscillate and vice versa. Another

way of rotating the spins is resonantly exciting them with

a fast oscillating magnetic field (RF-field). The needed fre-

quency depends on the magnetic field and the type of spin.

The ones that we are interested in need to be excited between

0.1 and 5 GHz considering our conditions, see for more in-

formation Secs. 4.4 and 4.5. In our experiment, the larger the

amplitude of the RF-field, the more accurate the response of

the spin. Conventional magnetic resonance experiments use

antennas to rotate the spins because antennas can accumu-

late the incoming RF-power and thus create large magnetic

fields. In our experiments this is not an option as antennas

are quite narrow banded and cannot easily be tuned to other
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8 Having the resonance slice
closer to the tip implies a higher
gradient which in turn implies
better sensitivity.

9 Besides dielectric losses, su-
perconductors still dissipate RF-
currents, presumably due to
moving of trapped flux quanta.
10 Wijts 2013

11 c is the speed of light.

12 Pozar 2011

frequencies when cooled down to temperatures of 10 mK. For

MRFM there are three reasonable options: 1) use an antenna

and apply an external magnetic field to tune the frequency

of the spins, 2) use an antenna and move the magnetic tip at

the end of the cantilever to get the spins into the resonance

slice, or 3) don’t use an antenna but fabricate a wideband mi-

crostripline on top of the sample and only work with spins

close to the line.

In our setup it is really difficult to apply an external field

because we read out the motion of the cantilever using a

SQUID, see Sec. 6.3, which is extremely sensitive to mag-

netic fields. We have tried this, but until now the SQUID

became unstable, or the SQUID’s noise-floor was dramati-

cally increased.7

The second option is very hard as one relies even more on

the reliability of nanopositioning. The actuation at ultralow

temperatures and its problems are described in Sec. 6.5. An-

other drawback is the trade-off between maximal depth of

the resonance slice into the sample and the sensitivity8 when

designing the antenna’s resonance frequency.

This leaves open the third option. For the microstrip line

we use superconducting wires as they have minimal dissi-

pation. The thickness and width of the wire is a trade-off

between heating9 and how close the magnetic tip can ap-

proach. Wijts10 has shown that superconducting wires cause

significant repulsion due to the Meissner effect.

Theoretically, the characteristic impedance of the microstrip,

or more general ’waveguide’, should be tuned as closely as

possible to the characteristic impedance of the RF-power sup-

ply lines in the setup which is 50 Ω. However, let us assume

a reasonable phase velocity of ∼ 1
2 c,11 then the wavelength

is 50 mm at a frequency of 3 GHz. If the length of the un-

matched part of the waveguide stays far below 50 mm, say

∼ 5 mm, then the transmitted wave is much larger than the

reflected part12 so we may assume that almost all RF-power

arriving at the sample will be transmitted and thus will cre-
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13 We tried this on silicon and
the result is promising, but we
need more testing. See also
Sec. 6.3

Figure 6.2: Optical microscope
photo of diamond sample. This
general single layer layout can
be used on any sample as the
pick-up loops are optimized
for any magnetization direction
and the added markers make
it possible to position another
layer or sample. a) Diamond
sample, b) simple pick-up loop,
c) pick-up loop with extra cor-
ner for a tip magnetized in
the y−direction, d) RF-line, e)
marker, f) bonding pad.
14 Marubu Fixogum
15 SPI supplies, crystalbond 509

#5110-AB
16 Poly(4-styrenesulfonic acid)
solution in water. This layer
makes a chrome etch unneces-
sary as PSSA can be removed
in water: the chemical chrome
etch leaves residues when
removing complete layers.
17 This is the base dose; proxim-
ity effect correction (PEC) calcu-
lates the best dose for each area
of the pattern.

ate an oscillating magnetic field in the sample.

The movement of the cantilever needs to be detected

as it encodes the information about the interacting spins.

Conventional MRFM uses laser interferometry which can heat

up the cantilever due to absorption and is limited in sensitiv-

ity due to the shot noise of a laser. Therefore we detect the

movement of the magnetic tip in a different way: we mea-

sure the flux difference that is generated by the tip in a small

superconducting pick-up loop. On our small diamond sam-

ples the fabrication is already difficult enough to fabricate a

good single layer structure, however in the future the design

of the pick-up loop could be much improved if we could go

to multi-layer fabrication.13 The general pattern as shown in

Fig. 6.2, can also be used on other samples and is optimized

for any of the three possible tip-magnetization directions.

The actual diamond sample is 2.6× 2.6× 0.3 mm3 which

is an inconveniently small size to handle. Therefore we glued

the diamond into the middle of a silicon carrier with either

rubber cement14 or wax.15 The wax was easier to use as it

becomes liquid at ∼ 60◦C, is very stiff at ambient tempera-

tures, and, the process is reversible. A piece of metal of the

same thickness as the sample is glued on all sides to prevent

the resist from piling up at the edge of the diamond.

We used the following recipe:

• Spincoat copolymer MMA EL11 (thickness∼ 610 nm) @4000

RPM, bake 80 s @150 ◦C.

• Spincoat PMMA A4 (thickness ∼ 190 nm) @4000 RPM,

bake 30 min. @120 ◦C in a vacuum oven.

• Spincoat PSSA16 @4000 RPM, bake 5 min. 90 ◦C in vac-

uum oven.

• Sputter 15 nm of chrome.

• Expose 1050 µC/cm2 17 @100 kV.
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18 MIBK is short for 4-methyl-
pentan-2-on, and IPA stands
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Figure 6.3: The superconduct-
ing lines are tested in a vac-
uum chamber inside a helium
dewar. a,b) The resistance as
function of temperature for the
pick-up loop a) and RF-wire b).
The steps can be ascribed do
to impurities in small lines of
the structure due to the resist
present during the NbTiN de-
position process. The effect is
larger in a) than b) since the
pick-up loop has smaller struc-
tures than the RF-wire. c) Mea-
surement of the critical current
of the RF-wire, determining the
maximal B1-field strength that
can be applied.
19 Chui et al. 2003

• Sample in water for ∼ 1 min, then intensively but gently

rinsing.

• (if necessary) When chrome is not completely removed do

a quick chemical chrome etch in CE no1.

• Develop 40s in MIBK 1:3 IPA18.

• Dissolve developer 60 s in IPA and dry gently with N2.

• (if necessary) Just before applying NbTiN, do very soft oxy-

gen plasma etch (100 W, 30 s) to enhance sticking.

• Sputter 250 nm NbTiN.

• From this part it becomes difficult to not drop the diamond as it

comes off the carrier! Lift-off: 15 min. in acetone, then while

(!) rinsing with acetone, move the diamond to a cleaner

beaker with acetone and leave it overnight.

• After one night, while rinsing with IPA, move the sample

to a beaker with IPA, do ultrasonic cleaning for few min-

utes, rinse with IPA, then rinse with water and dry with

N2.

Testing the sample was done in a helium dewar. A newly

designed helium dipstick made it possible to quickly cool the

sample under the expected superconducting temperature of

15 K. The sample holder is equipped with a heater and a

thermometer. Furthermore, each superconducting bonding

pad was wirebonded to two electrodes such that a four point

measurements could be conducted. The results are given in

Fig. 6.3.

6.2 Cantilever

An ultrasoft silicon cantilever
19 with dimensions 150
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20 Smaller NdFeB magnets tend
to loose their remanence field,
larger particles have lower field
gradients.

21 Wijts 2013

22 When we talk about SQUIDs,
we mean DC-SQUIDs.

23 Quantum Design 2001

µm long, 4 µm wide, 100 nm thick is clamped upon a HV-

compatible nanomanipulator that can work inside an elec-

tron microscope. On the other side of the manipulator we

sticked a carbon tape covered with NdFeB powder which

consists of nice spherical balls ranging from 1 µm to 100 µm

in diameter. After aiming for a particle of about 3 µm diam-

eter size,20 we glued a particle of 2.99 µm onto the cantilever

tip.

It is possible to measure the resonance frequency of the new

magnetic force sensor inside the electron microscope. The

spring constant can be obtained by measuring the resonance

frequency before and after attaching the magnet.21 The fi-

nal spring constant and frequency are named ksem and fsem

respectively. If due to environmental conditions inside the

cryostat the frequency changes to f0, the new spring constant

k0 can be calculated by

k0 =

√
f0

fsem
ksem. (6.1)

At cryogenic temperatures and no influence from the sample

we obtained f0 = 2748.5 Hz and k0 = 48.6 µN.

6.3 SQUID

To measure the flux generated by the moving magnet

on the MRFM-tip, we use a SQUID. This Josephson junction

based device only works at cryogenic temperatures as it uses

superconductivity principles.22 The typical flux noise floor is

about 1 µΦ0/
√

Hz ≈ 2 · 10−21 Wb/
√

Hz. The other two im-

portant parameters are the input inductance Lin and mutual

inductance M between the input coil and the SQUID loop as

shown in Fig. 6.4a. It is suggested23 that the Johnson noise

in the internal currents through the Josephson junctions is so

small that it can be ignored, meaning there is no backaction

from the SQUID unto the cantilever.
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Figure 6.4: Impedance matching
becomes inductance matching
for circuits without resistances
(due to superconductivity) and
capacitances (neglectable due to
low impedance circuits). L
stands for the self inductance of
the coils and M for the mutual
inductances. The flux comes
into the circuit via the small
Lpul , usually around 10 pH, and
needs to be transferred to the
SQUID via the relatively large
Lin, usually > 100 nH and <
10 µH.
24 For example: Lpar can come
from wirebonds, other wiring,
or even superconducting filters.
25 The value of M and Lin are de-
termined by the SQUID type.

The flux φin generated by the magnetic tip depends on the

movement of the cantilever and the pick-up loop geometry.

φin does not depend on the inductances and thus can be seen

as constant in this section. The current generated by φin does

depend on the total inductance Ltot of the loop, thus

φout

φin
=

M
Ltot

, (6.2)

where φout is the flux that is transferred to the SQUID. As

can be seen in Fig. 6.4, Ltot = Lin + Lpul + Lpar, where Lpul

is the inductance of the pick-up loop and Lpar the parasitic

inductance.24 Taking into account typical values of M and

Ltot, we only reach percentages of less than 1% of the flux φin

that is transferred to the SQUID φout.

This can be improved by using transformers to match the in-

ductances. The incoming versus outgoing flux ratio is given

by23

φout

φin
=

MM12

LprLse + M2
12

for Fig. 6.4b, and (6.3)

φout

φin
=

MM12M34

(LseLte + M2
34)Lpr + Lte M2

12
for Fig. 6.4c. (6.4)

It is now easy to calculate an optimal L1 and L2 given a cer-

tain coupling factor. For superconducting transformers we

believe we can achieve inductive coupling factors of ∼ 0.9.

This would make the maximal flux input ∼ 50% if we could

fabricate the transformers with the optimal values for L1 and

L2. However, in practice we were bound by the available

transformers whose L1 is too small and L2 too large. Hence

the flux coupling was 0.5 − 5%, depending on the SQUID

type used.25

A second transformer as shown in Fig. 6.4c could easily boost

the flux ratio to 10− 15%, or more if the transformer is made

on-chip, considering the absence of parasitic inductances in

the first loop. We fabricated an on-chip transformer on silicon

as a proof of principle that we can fabricate it at the desired

dimensions and without damaging the sample surface, see

Fig. 6.5. The double metal-layer fabrication has more advan-
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Figure 6.5: NbTiN structures
fabricated on silicon. The verti-
cal line is the RF-wire, separated
from the overlaying U-shaped
pick-up loops by 3 × 3 µm2

squares of SiN as can be seen
in the right-bottom inset. The
signal generated inside the pick-
up loop is up converted onto
higher impedances by means
of a gradiometric transformer.
The nontrivial connection in the
center of the transformers en-
ables fabrication of the device in
only two metal (NbTiN) layers
and one insulating spacer (SiN).
The lines inside the transformer
and the RF-line have a width of
1 µm and the pick-up loop has
a linewidth of 0.4 µm

tages such as minimization of the mutual inductance between

pick-up loop and RF-line. The improvement of the flux ratio

is expected to be about a factor of ten higher compared to the

current setup. Testing and implementing of this design is left

for successive research projects.

6.4 Anneal-o-tron

The wirebonds to the structures on the sample need to

be superconducting. Any resistance will decay the signal

and/or heat up the sample. For many experiments we used

aluminum wirebonds only, since we would run them solely

below 1 K. For some experiments, like testing the RF-line

currents, it is advantageous to use materials with a Tc higher

than liquid helium temperatures. The problems with Nio-

bium wirebonds are that the material is very stiff due to some

impurities, and it has a thick oxide layer. This problem can be

made easier by annealing the material for a short time close

to its melting temperature. Annealing too long will stiffen

the wire again; an anneal time of ∼ 5 min. seems to produce

the optimal softness.

We invented a system to do this annealing quickly. The

system can be mounted directly on top of a pump station.

This ’anneal-o-tron’ is a simple vacuum pipe with viewports
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Figure 6.6: top: anneal-o-tron,
middle: clamps holding a 25 µm
diameter wire, bottom: anneal-
ing of niobium wire.
26

7145W-M-0055-L-M-A, waffle
foot wedge from Small Precision
Tools

halfway. The main part of this system is the vacuum insert

consisting of three metal rods with two clamps each. The

clamps are very fine machined as they can tightly grab a

25 µm diameter wire without breaking it. The anneal-o-tron

can be pumped down to 10−5 mbar within 15 min. The an-

nealing itself takes about 5− 6 minutes. For the first wire one

might try to find the current at which the wire breaks, for us

around 0.2 A. A bit less current, ∼ 0.18 A, should produce a

good annealing temperature, see Fig. 6.6.

The bonding itself might still be hard because of the niobium

oxide layer. Considering the limited amount of wire, we po-

sition the wire with a tweezer and stamp it onto the bonding

pad with a waffle foot wedge26 using an ultrasonic wirebon-

der system. The waffle foot makes it possible to apply a lot

of force without breaking the wire and hence ultrasonically

welding through the oxide layer.

6.5 Nanopositioning

One of the hardest parts of an MRFM microscope is the ma-

neuvering of the tip with respect to the sample while the

experiment is cooled to temperatures below 1 K. A short de-

sign brief for such a positioning system considering only the

most important aspects includes:

1. (sub) nanometer positioning with at least 1 mm travel

range in all three dimensions,

2. reliable working at ultra low temperatures,

3. maximal dissipation < 1 µW,

4. stiffness of mechanical loop > 3 kHz,

5. nonmagnetic, heat conducting materials,

6. magnetic-field shielding outerbody,

7. absolute position readout with nanometer precision.
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27 Lead is superconducting be-
low 7.19 K.

28 Pure aluminum has a critical
temperature of 1.2 K, but alu-
minum often used for machin-
ing has a critical temperature
just below 1 K.

29 The piezowalker is further
discussed at the end of this sec-
tion.

Figure 6.7: Schematic of tripod
motor design. a) MRFM probe,
b) tower to convert rotation into
displacement, c) (dark grey tri-
angle) leaf spring to fix hori-
zontal position of tower base,
corners of leaf spring are fixed
to motor body, (not shown), d)
(light grey triangle) tower base
which is moved by spindles, e)
motor body, f) spindle, g) piezo
knob.

All practical solutions to the individual requirements, except

for the last one, are conflicting with at least one other require-

ment. For example, copper is a nonmagnetic, very well heat

conducting material and is a practical solution; meaning it is

relatively cheap and easy to machine. However, the material

is not stiff and very heavy, thereby decreasing the stiffness

of the mechanical loop. From a scientist’s viewpoint, a bet-

ter choice would be beryllium with the outerbody covered

with a layer of lead,27 which would, at least partially, satisfy

requirements 4− 6, however machining this is an engineer’s

death wish. In our last design we have chosen an aluminum

body with a thick gold layer to cool the motor body when

the aluminum is below its superconducting temperature.28

Some manufacturer parts are used as is and they are mainly

made of titanium and stainless steel. This is unfortunate as

titanium has a superconducting transition within the mea-

surement temperature range, and stainless steel is a little bit

magnetic and has poor heat conducting properties. These

compromises had to be taken in view of time constraints.

Due to requirements 3 and 6, motors that create large mag-

netic fields are not suitable. Considering the low tempera-

ture, low vibrational environment, we are naturally left with

piezoelectric driven motors. Piezos are not free of problems

either, however, as their thermal expansion differs from most

other materials and their travel range lowers by a factor five

when cooled below ∼ 80 K. This means that piezowalking

motors need extremely fine machining to overcome imperfec-

tion with respect to the reduced travel range.29 It is therefore

much simpler to use a stick-slip based design, although this

probably violates requirement 3. Commonly used piezostacks,

that have larger travelranges than single piezos, have low res-

onance frequencies and therefore it is best to find a design

where these piezos are not part of the mechanical loop.

A well established design and a trade-off between most

requirements is the tripod design as schematically shown in
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30 Cryo Linear Actuator, piezo
knobs, from Janssen Precision
Engineering

Figure 6.8: Cross section of
spindle and piezo knob.
31 Custom thermometer from
HDL

Fig. 6.7. The three parallel mounted linear motors move the

triangular base of the tower, thereby wiggling the tower with

the cantilever on top in three directions. The linear motors

are spindles which are driven by JPE’s piezo knobs30 that

move using the inertia of the heavy ring around the knob.

The piezos that hold the ring can create this inertia. The stick-

slip effect takes place between the spindles and nuts, and

between the tips of the spindles and the feet of the tower. The

knob itself is completely outside the mechanical loop of the

cantilever to the sample, see Fig.6.8. The power each motor

dissipates is about 1 mW, generated in a brief slip moment

in the piezos and also at the contact surface between spindle

and nut. To make the cooling faster than in earlier designs,

where most of the heat flow goes through the motor body, we

connected copper strips between the nuts and the cryostat’s

mixing chamber plate.

Other things we have done to cool the experiment effi-

ciently involves a flame annealed silver strip providing an ex-

cellent heat conductance from sample holder and cantilever

to the mixing chamber plate. The strip is isolated from other

parts of the experiment. A heater is mounted on the strip

which can heat the sample and cantilever homogeneously or

can be used to keep the temperature constant. The combi-

nation of minimal heat capacitance for the sample and can-

tilever holders and a fast thermometer31 mounted on the

sample holder makes heating the sample to any specific tem-

perature between 10 mK and 1 K a matter of seconds. Also

cooling to any temperature can be done well within a minute,

provided that the base temperature of the cryostat is at least

about 15 mK below the required temperature.

For the position readout with nanometer precision we

considered two options. The first option is interferometry.

Despite the subnanometer precision, there are two problems

with this technique: it can heat up the system and, more im-
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Figure 6.9: Capacitance sensors
for 3D-position readout drawn
in COMSOL. The three seg-
ments at the lower part (one of
which is red) are sequentially
activated by a 1 kHz voltage.
This can be measured with the
blue receiver plate due to the
mutual capacitance. The capac-
itance of each of the three seg-
ments to the blue plate deter-
mines the orientation of the up-
per part (which is the foot of the
tower, not drawn here). The tilt
of the upper part is much less in
reality.

portantly, it is difficult to measure absolute distances on the

micrometer to millimeter scale. We choose to use capacitance

readout. The advantages are that the readout itself does not

dissipate energy, the position readout is absolute, and it is rel-

atively easy to fabricate the sensors, such that you can make

them for every custom application. In fact, for conducting

probes one can even use the capacitance between probe and

sample as a measure for tip-sample distance. This is further

explored in Sec. 7.2, that also explains the details of the prin-

ciple of capacitance measurements.

We used the capacitance readout to determine the three di-

mensional position of the probe with respect to the sample.

The capacitor was designed as a three-segmented ring to

which a variational voltage is applied, see Fig. 6.9. The ori-

entation of the receiver ring, mounted at the bottom of the

tower, can be easily measured, and thereby the orientation of

the tower and thus the position of the probe. The parallel

plate capacitance is

C =
ε0a
d

, (6.5)

with ε0 the permitivity in vacuum, a approximately the sur-

face of the overlay of the capacitor plates and d the distance

between the capacitance plates. As to first order the effec-

tive surface of the capacitor plates does not change when the

spindles move to length L, and since L ∝ d, we can write a

general linear dependency
L1

L2

L3

 = A


1/C1

1/C2

1/C3

1

 , (6.6)

where A now is a 3× 4 matrix, with the first three columns

converting reciprocal capacitance to length and the last col-

umn is used to set an arbitrary origin in the L-basis. The

conversion from L-basis to a Cartesian basis for the probe’s

position can now be calculated. The only thing that is needed



techniques and instrumentation 115

Figure 6.10: Correction to
transferfunction of finestage
piezos compared to theoret-
ical piezo transferfunction,
measured when actuated in
Cartesian directions. Here we
have chosen z to be a linear
combination of all three piezo’s
(P1+P2+P3), x the difference
betweeen two piezo’s (P3-P1),
and y is proportional to a single
piezo (P2).

32 Independent meaning that
one point does not scale to an-
other by multiplication by a
scalar (plus offset for L).

33 JPE Precision Point 2013

34 For which we use an auto-
mated capacitance bridge:
AH2550 from Andeen-
Hagerling.
35 Depending on the orientation
of the tower. In test situations
the resolution was better, how-
ever capacitance measurements
are very sensitive to ground
loops and noise currents, in-
evitable in large set-ups.

to be done now is finding A. Each L is the height of a hyper-

plane above a three dimensional reciprocal capacitance plane.

Each row of A can then easily be calculated by fitting the hy-

perplane through a set of calibration points. For the jth row

of A, the coefficients can be calculated by


Aj1

Aj2

Aj3

Aj4

 =

∑n
i=1



(
1

C1i

)2 1
C1iC2i

1
C1iC3i

1
C1i

1
C1iC2i

(
1

C2i

)2 1
C2iC3i

1
C2i

1
C1iC3i

1
C2iC3i

(
1

C3i

)2 1
C3i

1
C1i

1
C2i

1
C3i

1





−1 ∑n
i=1



1
C1i Lji

1
C2i Lji

1
C3i Lji

1
Lji



 , (6.7)

where
(

1
C1i

, 1
C2i

, 1
C3i

, Lji

)
is one of n calibration points. There

should be more than 4 independent32 points for each j with

a spread much larger than any measurement errors. This

method automatically minimizes the summed square errors

of the data points with respect to the hyperplane in the L-

direction.33

Once A is known it is straightforward to measure the three

capacitances,34 to calculate L, and from there the tip position.

In full operational conditions, the absolute resolution was 10

to 100 nanometers for the tip position in the Cartesian basis.35

The resonances in the mechanical loop are determined by

the linear response of small piezo elements that are placed at

the end of the spindles. The linear response is derived from

an electrical impedance measurement. The result is shown in

Fig. 6.10. The largest resonance at 4.5 kHz is certainly higher

than the cantilever frequency of about 3 kHz, however small

peaks still appear around the cantilever frequency. This is
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36 Especially the absolute posi-
tion readout (point 7) is an im-
portant feature that also led
to understanding the tip-sample
capacitance in scanning probe
microscopes, as published as
Voogd et al. 2017a (Ch. 7).

what we also noticed when cooled to milliKelvin tempera-

tures: these small peaks can drive the cantilever if their reso-

nances overlap a bit. We can tune the cantilever’s frequency

a little bit by positioning it close to the superconducting RF-

line, and thereby move the cantilever’s frequency to cleaner

parts of the spectrum.

To conclude the current design, we review require-

ments 1− 7. We have satisfied points 1 and 7 well enough

for the experiments in Chs. 3, 4, and 7.36 The trade-offs in

the design led to only partially meeting requirements 3− 6

which was fine for now, but might need other solutions in the

near future. The most difficult requirement, however, turned

out to be 2: When the system is cooled down after thoroughly

cleaning the spindles, then the motor usually does work only

for the first hundred of microns of movement. Suddenly a

spindle can get stuck. This is something we have encoun-

tered in many designs and we have not been able to deter-

mine the exact problem. Despite changing geometries, ma-

terials, piezo knobs and lubricators; the reliability is still a

large issue.

Meanwhile we have gestated many piezowalker designs.

The piezowalker consists of a piezo construction that makes

a contact with the slider, shifts the slider, then retracts, re-

turns to its starting position, and comes into contact again

to set the next step. The design does not depend on fine-

tuning of forces to overcome friction forces like in stick-slip

mechanisms and is therefore radically different. Also, larger

forces might be applied that can solve reliability problems as

well as satisfy the other requirements generously. However,

this is only possible if the tolerances on the material prop-

erties are tight enough and the machining can be done with

sub micrometer precision, limited by the range of the piezos.

The largest problem is the difference in thermal expansion of

materials and the reduction of the piezo’s travel range when
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37 Wagenaar 2017

38 Low frequency means wave-
lengths much longer than elec-
trical signal path.

going to low temperatures. In close collaboration with LSI

B.V., we developed an tested new designs. We made serious

progress as we tested the motors thoroughly in liquid helium

to measure the crimp, hysteresis, and reliability. Home made

capacitance sensor were used to determine the differences in

crimp between various parts with ∼ 50 nm precision. This

led to a promising new design, which hopefully will provide

a solution for low temperature MRFM and bring us a step

closer to a commercial MRFM.37

6.6 Cryostat wiring

The wiring in a multi-user cryostat is subject to mul-

tiple constraints: First of all, all wires together have a tight

upper bound on the heat conductance they might add be-

tween any two different temperature plates. The heat load

on the 3 K stage should remain below ∼ 1 W; while the heat

load onto the mixing chamber should be below ∼ 10 µW. A

wire with low heat conductance implies low electrical con-

ductance wires or superconducting wires. The latter is usu-

ally only practical between plates that have a temperature

lower than 4 K. The second constraint is the interference

of signals between experiments. Therefore, using twisted

pairs and never using the frame or shielding as return path

is mandatory for low frequency signals.38 Preferably every

twisted pair should be shielded for electrical fields, while the

twisting will minimize the magnetic field interferences. For

high frequencies we prefer semirigid cabling as they feature

minimal RF-leackage. At low temperatures (10 mK) the max-

imum frequency of thermal phonons and photons is about

200 MHz, while the RF-signal can be much higher in fre-

quency. So avoiding RF-leakage, which heats the experiment

due to electron-phonon coupling, and filtering the low fre-

quency wiring with filters is essential.



118 mrfm and the spin bath

39 The mixing chamber can
reach a temperature below 10
mK.

Figure 6.11: 3× 12 pins connec-
tor for use at low temperatures.
The left column of pins is con-
nected to the connector housing
to provide a connection for the
shielding of the plugged in ca-
bles.

# conductor insulator shielding use
1 phosphor-bronze PTFE & graphite CuNi braid RT to MC; sensitive signals with� 10 MHz and� 100 µA

2a copper PTFE CuNi braid RT to 4K; coarse signals with� 10 MHz and ∼ 1 mA
2b NbTi in CuNi PTFE CuNi braid 4K to MC; coarse signals with� 10 MHz and ∼ 1 mA
3a copper PTFE & graphite CuNi braid RT to 1K; SQUID signals with� 10 MHz and ∼ 1 mA
3b NbTi in CuNi PTFE & graphite CuNi braid 1K to MC; SQUID signals with� 10 MHz and ∼ 1 mA
4a Ag plated CuNi PTFE CuNi RT to 4K; RF signals, 0− 10 GHz
4b NbTi PTFE NbTi 4K to MC; RF signals, 0− 10 GHz
5a Cu - - RT to 50K; very high currents, max 100 A
5b High Tc - - 50K to 4K; very high currents, max 100 A
5c NbTi in CuNi - - 4K to 1K; very high currents, max 100 A

The wiring summarized in the table above suits the current

purposes of the multi-user cryostat very well. The wires 1− 3

are used in 24-wire assemblies with multipin connectors on

each end. To sum up, we used 6× 12 plus 4× 1 twisted pairs

of type 1, 5× 12 twisted pairs of type 2, three 8-wire cables

with types 1 and 3 for SQUID-control, 4 semirigids of type 4,

and one set of type 5, which leads to a total amount of about

300 shielded conductors going from room temperature (RT)

to the mixing chamber (MC).39

At low temperatures we use a custom made 3× 12 pins

female connector. Inside the connector each stroke of 3 pins

are separately shielded, and one of the three pins is con-

nected to the shielding. This way, the connector itself is a

small break-out box to which various cables can be plugged

in, see Fig. 6.11.

6.7 From cryostat to electronics

In a multi-user environment, colleagues will connect

electronics that possibly interferes with another experiments.

To minimize this interference while keeping all flexibility we

developed break-out boxes with thorough interference pro-

tection, see Fig. 6.12. Starting from the cryostat we used

a shielded cable with 12 shielded twisted pairs to connect

the cabling from the cryostat to the break-out box that is

mounted next to the the measurement electronics inside a 19"

inch rack. The bundle of twisted pairs inside the cable ends
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Figure 6.12: Breakout box as
manufactured by LSI B.V. a)
front panel with 6 × 4-pins
LEMO connectors. b) Inside
of the breakout box. The ca-
bling inside the RF-shielded box
have yet to be connected to the
EMI feedthrough filters. This
box has a frontpanel with 5× 4-
and 2 × 2-pins LEMO connec-
tors. The single BNC connector,
which is connected to the inside
shielding of the black cable, can
be used to measure noisy volt-
ages between cryostat and 19"
rack.

40 EMI Feedthrough Filters
1500pF from Tusonix

41 Such as 50 Hz plus multi-
ples, and switch-mode frequen-
cies that some instruments like
to broadcast.

inside an RF-closed box. The wires only come out through

pi-sections; a coaxial array of pi-filters40 that filter from ∼ 5

MHz and have a > 45 dB reduction from 100 MHz to at least

10 GHz. We have noticed that SQUIDs inside the cryostat

regularly unlock upon some event outside the cryostat when

cables of other nonSQUID equipment were connected to the

cryostat without this breakout box, while this problem was

solved with this breakout box. Note that this was the case

even though the SQUID cabling was not connected to the

breakout box.

Also, connecting commercial scientific instruments to wires

that are inductively or even only capacitively coupled to the

SQUID created large problems before, while this is now re-

duced to low frequency interferences only.41

6.8 Electronic infrastructure

But there is more that can be done to prevent unneces-

sary excess noise and interferences. The basic paradigm is:

remove all potential noise sources and provide a preferred

path for the remaining inevitable noise currents. How this

can be done is schematically shown in Fig. 6.13.
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Figure 6.13: Simplified
schematic of our set-up a) with-
out and b) with action taken
to prevent unnecessary noise.
Precaution 1 − 3 decouples the
most obvious noise sources
while 4, 5 makes the remaining
noise currents harmless. The
break-out box (6) guards the
input of the experiment in the
cryostat and is discussed in the
previous section.

42 Such as AC-coupling that
many instruments provide.

Note that the clean part (the experiment and scientific in-

struments) is referenced to a potential at a single point. It is

highly recommended to use the standard safety earth poten-

tial for safety reasons. Note that the precise potential does

not matter for noise prevention as long as the frequencies

of the reference potential, with respect to the surrounding

potentials, are low enough, i.e. the wavelength should be

much larger than the system size to avoid resonances due to

its self-capacitance or capacitance to surroundings. To avoid

such frequencies we placed a lossy coil between the reference

point and the system (inside the net filter), thereby compro-

mising < 10 µs peak voltage protection. It is not likely that

these short peaks will cause injuries, however, see note 43.

Nowadays even scientific electronics uses digital processors

and switch mode power supplies leading to signals at 50 Hz

and (mainly odd) multiples, switch-mode signals in the 10

kHz - 5 MHz regime, and digital noise in the very and ultra

high frequency regime (30− 3000 MHz). Of course, for many

applications we only need specific frequency bands, so every-

thing else can be filtered. In our case, this is automatically

done for all signals passing through the break-out box. Fil-

tering also other parts of the remaining frequency regime42

can prevent amplifiers from going into saturation. Moreover,
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Figure 6.14: Cryostat setup. a)
Three 19" instrument racks are
connected with glassfibers (b)
to the operator’s computers. c)
The platform is covered with
metal plates on top that are
welded to each other. The cryo-
stat and 19" racks are connected
to this big conductor with thick
copper leads and metal sup-
ports. d) The experiment(s)
hanging below the (open) cryo-
stat. e) A heavy concrete ’tem-
ple’ on which the cryostat is
hanging. The temple stands on
a different foundation than the
building to avoid acoustic inter-
ference.

43 Little did we know that
scientists can be so desperate
that they put effort in directly
connecting the experiment to
their computers, instead of us-
ing optical decoupling, and
thereby possibly grilling their
USB-controllers.

as a rule of thumb, it is usually best to pre-amplify signals

going into or attenuate signals coming out of commercial sci-

entific instruments such that they can make optimal use of

their dynamical range at their input and output.

To make sure that every user adapts to this way of work-

ing, we needed to construct it in such a way that it takes

effort to not work this way.43 Therefore we lifted all 19" racks

that contain measurement instruments to a higher floor, see

Fig. 6.14.
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7 Fast and reliable pre-approach for
scanning probe microscopes based
on tip-sample capacitance

Within the last three decades Scanning Probe Microscopy has been
developed to a powerful tool for measuring surfaces and their prop-
erties on an atomic scale such that users can be found nowadays
not only in academia but also in industry. This development is still
pushed further by researchers, who continuously exploit new possi-
bilities of this technique, as well as companies that focus mainly on
the usability. However, although imaging has become significantly
easier, the time required for a safe approach (without unwanted tip-
sample contact) can be very time consuming, especially if the micro-
scope is not equipped or suited for the observation of the tip-sample
distance with an additional optical microscope. Here we show that
the measurement of the absolute tip-sample capacitance provides an
ideal solution for a fast and reliable pre-approach. The absolute tip-
sample capacitance shows a generic behavior as a function of the
distance, even though we measured it on several completely differ-
ent setups. Insight into this behavior is gained via an analytical
and computational analysis, from which two additional advantages
arise: the capacitance measurement can be applied for observing,
analyzing, and fine-tuning of the approach motor, as well as for
the determination of the (effective) tip radius. The latter provides
important information about the sharpness of the measured tip and
can be used not only to characterize new (freshly etched) tips but
also for the determination of the degradation after a tip-sample con-
tact/crash.
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1 Eigler and Schweizer 1990

2 IBM Corp. 2013

3 Vettiger et al. 2000

4 Herbschleb et al. 2014

5 Kleinknecht et al. 1988

6 Lányi and Hruškovic 2004

7 Lee et al. 2006

8 Fumagalli et al. 2007

9 Usually people work with two
different automatic approach
routines:
(1) with a fully retracted tip, the
tip-sample distance is reduced
by one (or several) steps of the
coarse approach motor, before
a feedback checks whether the
tip-sample distance is within
tunneling range; if this is not
the case, the routine will be re-
peated,
(2) with a fully working feed-
back, the tip-sample distance is
reduced continuously, until a
tunneling current is detected.
Please note that the second
method is significantly faster,
but often leads to a (not recog-
nized) tip-sample contact when
using analog feedback con-
trollers. The reason for this is
the integrator in the feedback.
This integrator, usually realized
as a capacitor, is fully charged to
the power supply voltage (here
assumed to be positive) dur-
ing this process. As it inte-
grates the error signal, a re-
duction of this charge requires
a negative voltage of the er-
ror signal, which is delivered
only if the tip is closer to the
sample than the requested tun-
neling current set point. This
means that, although the tip is
already in tunneling conditions,
the capacitor is still between
zero and full positive voltage,
leading to a further approach.
Often this electronic circuit is
not fast enough to prevent a tip-
sample contact.

7.1 Introduction

Although Scanning Probe Microscopes (SPMs) have clearly

demonstrated their power and are used in many different

fields,1,2,3,4 their usability is still an issue. For example,

when comparing to an electron beam technique that can

quickly deliver an image of the surface, the user of an SPM

has to bring the tip into close vicinity to the sample (pre-

approach), thereby avoiding a resolution destroying tip-

sample contact (tip crash). This requires a careful approach

system, which can last even up to ∼ 100 minutes depending

on the microscope, especially if the microscope does not pro-

vide optical access.

Ideally, one would like to have a fast, robust, and general so-

lution for the approach metrology that can be used in any

type of SPM, independently of the design. In this paper

we demonstrate a straightforward solution for all SPMs that

work with a (semi)conductive tip and sample: the tip-sample

distance can accurately be measured via the tip-sample ca-

pacitance and this can be used for a quick and robust pre-

approach. We also demonstrate that this technique can be ap-

plied in tuning-fork based Atomic Force Microscopes (AFMs).

Please note that a special class of SPM, the Scanning Capaci-

tance Microscope (SCM), uses the capacitance variation even

for imaging and/or spectroscopy.5,6,7,8

For Scanning Tunneling Microscopes (STMs) with optical ac-

cess, the total approach duration is often decreased to ac-

ceptable times by using the distance between the tip and its

reflection in the sample during a manual pre-approach. In

this way the tip-sample distance can be safely decreased to

60 µm, before the user switches to any type of automatic ap-

proach.9

However, a fast and reliable manual pre-approach is not al-

ways possible, as design aspects of particular SPMs prevent

the implementation of optical access (and even cameras). Typ-

ical examples are low-temperature STMs, where a closed cryo-
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10 Song et al. 2010

11 Jäck et al. 2015

12 Donati et al. 2016

13 Schlegel et al. 2014

stat, or at least heat shields, are required.10,11,12 A solution

for these microscopes is the implementation of absolute po-

sition readouts, which is often realized by measuring the ca-

pacitance between two cylinders that move with respect to

each other. However, the position of the tip with respect to

the sample remains still unknown, especially after a sample

or tip exchange. As a result the (first) approach with a new

tip and/or sample usually takes a long time, as one uses the

automatic approach right from the beginning to surely pre-

vent a tip-sample contact.

Finally, there are microscopes which can neither implement

an optical access nor a capacitive (or any other) readout

system.4 For such systems, a pre-approach based on the tip-

sample capacitance, as described in this paper, clearly de-

creases the total approach time with about a factor of ten.

Faced with the problem that the exact surface position is un-

known up to mm after a cleaving process of the sample in

a cryogenic dipstick setup, Schlegel et al.13 found an ele-

gant solution for their pre-approach by measuring the sec-

ond derivative of the tip-sample capacitance during their ap-

proach. Their solution circumvents the determination of the

absolute capacitance, which is far from trivial, due to its ex-

tremely small value.

In this paper we set the next step and demonstrate that the

tip-sample distance can accurately be measured by determin-

ing the absolute tip-sample capacitance. This enables not only

the application of a quick and robust pre-approach, but de-

livers in addition a tool for an in situ tip-shape and sharpness

characterization as well as for measuring and fine-tuning the

performance of the coarse-approach motor. Finally, we also

demonstrate that this technique can be applied in tuning-fork

based Atomic Force Microscopes (AFMs).

We note here that our results combine partially well-estab-

lished knowledge of different fields: electronics, nanoscale

and tip-sample capacitance research, electronic tip-shape mod-

eling, scanning capacitance microscopy, and scanning tunnel-
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20 Lányi and Hruškovic 2003

ing microscopy. To comprehensively provide the necessary

background information, we review the most important as-

pects thereby giving credits to the different fields.

In the first section of the paper we present an overview

on how to accurately measure absolute capacitances in the

femtofarad (fF) and attofarad (aF) regime. We show that

there is no need for special electronics. Moreover, it will be-

come clear that, by default, all STMs are optimized for tip-

sample capacitance measurements. This insight can be al-

ready deduced from Fumagalli et al. 2006
14 which achieved

aF resolution (although not on an absolute scale).

In the second part, we describe measurements on various

STMs and one AFM ranging from homebuilt to commercially

available systems. To demonstrate the accuracy of this tech-

nique, we use a precise automated capacitance bridge. It is

remarkable that the same bridge has been used by Kurokawa

and Sakai 1998
15 to study the influence of the tip shape on

the tip-sample capacitance already in 1998. However, we also

show that less expensive solutions work as well, depending

on the specific information one would like to extract (e.g.

only the utilization as a pre-approach).

We will show that all measurements have a generic curve, if

one plots the capacitance versus the tip-sample distance: it

consists of a linear part for large distances and a steep in-

crease for small distances. Similar observations have been

obtained before.35,36,37,16,17 However, in addition, we show

that the absolute capacitance values are in the same order of

magnitude (hundreds of fF), although measured with differ-

ent tips and even on completely different microscopes!

In the last part we elaborate on the generic aspect of the tip-

sample capacitance versus distance curve to receive detailed

information on the tip geometry. As the tip-sample capaci-

tance determines the resolution in scanning capacitance mi-

croscopy, one can find experiments,39,37,36,18,35 analytic de-

scriptions39,36,19,38,45,44,35 and finite element models41,20 in

the literature dating back even to 1988
45. The growing com-
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plexity of the analytical description originates from the desire

to explain all measured curves with a general equation. How-

ever, the tip geometry is not known and has to be assumed.

Only Kurokawa and Sakai 1998
36 measured experimentally

their tip shapes with electron microscopy to combine this in-

formation further with their model. Building on the earlier

work we performed finite element as well as analytical calcu-

lations with the practical aim to entangle the parameters of

the geometric tip shape from the measured curves. We show

that it is possible to determine the tip radius and sharpness

in situ in the microscope, which provides an ideal tool for the

user to judge the quality of the tip e.g. after an undesired tip-
crash. The comparison of our finite element analysis results

shows good agreement with the ball model45 and its later re-

finement with a dihedral approximation.43 However, it also

becomes clear that the most simple model, the ball model of

Kleinknecht et al. 1988
45, fits the data best and is, therefore,

in practice the most effective one to use.

7.2 Subfemtofarad capacitance measurement principles

Using the tip-sample capacitance for the pre-approach re-

quires the capability to measure capacitances with a resolu-

tion smaller than one femtofarad. To demonstrate that the

capacitance between the tip and the sample delivers an accu-

rate, absolute measure for the tip-sample distance, we mea-

sured even with aF resolution. This has been achieved earlier

by Fumagalli et al. 2006,35 however, only on a relative scale.

Measuring capacitances within the femtofarad range is not

difficult, provided it is performed carefully. There is various

commercial electronics available that is suitable for measur-

ing in this capacitance range; usually higher-end electronics

allow more accurate and absolute measurements. As most

SPMs are not designed for high-frequency applications, we

limit ourselves to frequencies below 10 kHz.

It is crucial that the electronic connections leading to the ca-
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Figure 7.1: Working principles
of capacitance measurements:
a) Schematic of a capacitor with
stray capacitances. The low
impedance of the current mea-
surement causes the stray ca-
pacitances to be negligible. Ide-
ally, the shielding should be
connected to ground at one sin-
gle point in the setup, prefer-
ably shortly after the current
measurement. b) The resolu-
tion and accuracy can be en-
hanced by using a reference ca-
pacitor and a Lock-In. Match-
ing this reference with the un-
known capacitor results in a
vanishing current, which de-
scribes the principles of a capac-
itance bridge.

21 For example: RG58 coaxial ca-
ble has 82 pF/m.

pacitor are separately shielded, as one has to prevent the

measurement of so-called stray capacitances. For example, two

conductors that see each other have a stray capacitance which

leads to an extra capacitance added to the capacitance of in-

terest. Note that two signal wires close to each other easily

have capacitances of hundreds to thousands of femtofarads

per centimeter.21

The above explains why it is usually impossible to determine

the tip-sample capacitance with a hand-held multimeter: due

to stray capacitances, one measures values larger than a pi-

cofarad, although one expects (and we will show) that the

tip-sample capacitances are in the femtofarad regime. The

additional capacitance comes from the signal that goes via

the shieldings of the conductors, see Fig. 7.1a. The proper

and ideal solution is to apply an alternating-current (AC) sig-

nal to one side of the capacitance, and measure the capacitive

current with an amplifier that has a low input impedance on

the other side of the circuit. A current-to-voltage (IV) con-

verter is the most suited amplifier for this purpose. Please

note that a dedicated IV-preamplifier (PreAmp) is inherently

installed in every STM. This naturally makes an STM an ideal

tool for measuring the tip-sample capacitance. The low input

impedance of the PreAmp ensures that the potential differ-

ence between the input of the amplifier and the shielding is
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22 Lee et al. 2002

23 Pingree et al. 2005

minimal such that parasitic currents are minimized. The ad-

vantage of the PreAmp has also been noticed by Fumagalli

et al. 2006.35

When the signal from the IV-converter is compared to the

reference voltage (Vre f ) by using quadrature measurements

(Lock-In), the out-of-phase component (Y) gives a measure

for the capacitance:

C =
Y

2π f GVre f
. (7.1)

Here, G is the gain of the IV-converter and f the frequency

of the reference signal, assuming that the frequency, at which

the capacitance measurement is performed, is well below the

bandwidth of the IV-converter. This concept for measuring

the tip-sample capacitance has been applied by Lee et al.

2002,22 Pingree et al. 2005,23 and Fumagalli et al. 2006.35

The reproducibility of the above described measurement de-

pends on (possible) changes in the setup, like the (dis)ap-

pearance of ground loops. The application of a reference ca-

pacitor offers not only a solution for this inaccuracy, it even

enables the determination of absolute capacitance measure-

ments. The solution involves the incorporation of the refer-

ence capacitor into the electronic measurement circuit in such

a way that physical replugging of the cables is not necessary,

although the reference capacitor can be turned on and off. An

elegant way is applying the inverted reference voltage over

the reference capacitor, before it is added to the signal right

in front of the PreAmp, see Fig. 7.1b. In this way, the ref-

erence capacitance is subtracted from the capacitance to be

measured. If the reference capacitance exactly matches the

capacitance of interest, the output is zero. Even if the capac-

itance does not match exactly, it is possible to determine the

capacitance of interest from the measured (nonzero) signal

by precise knowledge of the reference capacitor. Choosing

the reference capacitor of the same order of magnitude as

the capacitor of interest, makes the output signal smaller and

the end result more accurate.
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24 AH2550 Ultra-Precision
Capacitance Bridge, Andeen-
Hagerlingh (2014)

25 GenRad 1615-A, General Ra-
dio Company (∼ 1970)

The previous paragraph describes the basic principles of a

low-frequency capacitance bridge with high accuracy. Most

of the measurements in this paper were performed with an

Andeen Hagerlingh capacitance bridge (AH2550),24 which

automatically switches reference capacitances, until the ref-

erence value is close to the capacitance of interest. The cali-

brated reference capacitors are kept at a constant temperature

inside an internal oven. This guarantees that the measured

capacitance values are of high accuracy and reproducibility.

Kurokawa and Sakai 1998
36 used a similar bridge to accu-

rately characterize the capacitance of their tips, of which they

measured the shape before with an electron microscope.

However, as dedicated capacitance bridges can be rather ex-

pensive, we will also present results measured with differ-

ent instruments. The General Radio capacitance bridge25 re-

quires time consuming, manual switching of the reference

capacitors. However, if one only wants to use this bridge for

a pre-approach, it is not necessary to zero the signal for each

step of the coarse-approach motor. Instead, the reference ca-

pacitance is set to a certain, desired threshold value. If the

tip-sample capacitance value passes the reference (i.e. the Y-

signal on the Lock-In passes zero or the phase rotates 180◦),

then one knows that the tip enters the range where the auto-

matic approach procedure should be turned on.

Finally, it is easily possible to determine the capacitance di-

rectly with dedicated STM electronics, which should be

known by researchers that use STMs in spectroscopy mode.

If, e.g. the tip is connected to ground via the PreAmp, one

can put an AC signal (e.g. 1 V and 10 kHz) on the sample

and determine the current through the tip. After the current

is converted to a voltage, a Lock-In can be used to determine

the out-of-phase component of the signal, from which the ca-

pacitance can be calculated using Eq. 7.1.

However, at all tip-sample distances that are larger than the

corresponding tunneling regime, the signal is dominated by

the current through the capacitance. Therefore, measuring

only the amplitude of the signal is enough to determine the
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28 Roobol et al. 2015
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capacitance (and no quadrature measurement, like Lock-In,

is needed). For example, just by applying the control elec-

tronics described by Rost et al.,26,27 it is possible to measure

∼ 10 aF when applying an AC signal of 1 V and 10 kHz to the

sample. This concept is applied by Schlegel et al. 2014,13 al-

though they did not work out the absolute capacitances and

focused only on the second derivative.

7.3 Results

To demonstrate the generality of our approach, we inves-

tigate various SPMs. We start with an STM that is equipped

with an absolute position readout such that one can directly

measure the tip-sample capacitance as a function of the dis-

tance. After that, we repeat our measurements on systems

without position readout and will show that the tip-sample

capacitance provides, in addition, an excellent way of deter-

mining the coarse-approach motor dynamics and reliability.

Furthermore, we will demonstrate the advantage of a fast

and safe pre-approach on an STM with a less reliable ap-

proach motor and will show that our method works as well

for a noncontact AFM28 that is equipped with a tuning fork.

We start with the JPE-STM: a custom Magnetic Resonance

Force Microscopy system (MRFM) that consists of a commer-

cially available stage from JPE29 with a home-built absolute
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30 More details about this
MRFM in Sec. 6.5. The stage
is used for measurements in
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current chapter it is equipped
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31 Joule-Thomson Low-
Temperature Scanning Probe
Microscope with Tyto head,
SPECS (2014)

capacitative position readout.30 Applying the AH2550 capac-

itance bridge, it is possible to measure the absolute position

with a precision below 100 nm. Figure 7.2 shows the capaci-

tance between tip (including tip holder) and the sample as a

function of the tip-sample distance. The curve in Fig. 7.2 can

be used as a calibration of the tip-sample distance by using

the capacitance. This calibration holds even after a sample

exchange, provided that the new sample has the same geom-

etry. After a tip change, however, the calibration is usually

lost. The influence of the tip with respect to the capacitance-

distance curve is explained in detail in Sec. 7.4.

As the luxury of an absolute position readout is not present

on most SPMs, a calibration like the one shown in Fig. 7.2

seems to be impossible. This is not fully true, as long as one is

not interested in the absolute tip-sample distance in standard
units. To demonstrate this, we performed a similar measure-

ment on a commercial JT-STM,31 of which the result is shown

in Fig. 7.3. Obviously, one still recognizes a relation between

capacitance and distance. However, the distance here is de-

fined in units of coarse-approach motor steps. Please note

that, although the retract curve falls exactly on the approach

curve, we applied 420 retract steps, but 497 approach ones.

Coarse-motor step sizes are usually not very well defined.

Therefore, the step size can only be defined as a statistical

average. The step size in slip-stick motors can be direction-

ally dependent due to some constant force pushing the slider

towards one or the other direction, like gravitational forces or

a spring. To account for such an asymmetry, we rescaled the

trace for retracting and approaching in Fig. 7.3 accordingly:

it is striking that the curves fall on top of each other quite ac-

curately. This fact together with the smoothness of the curve

(and its qualitatively similar shape as in Fig. 7.2) indicates

a reliable motor with linear behavior: the step size is con-

stant over the whole range, although it is different between

the approach and retract movement. We determined the step

size for retracting and approaching via the calibrated piezo
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Figure 7.3: Tip-sample capac-
itance measured on a JT-STM:
Without absolute height, the
distance is measured in units
of coarse approach motor steps.
As the retract curve overlaps ex-
actly with the approach curve
(after rescaling), this motor runs
reliably over the complete travel
range, although the average
step size is, due to anisotropic
forces, different for both direc-
tions. We retracted 420 steps,
while we needed 497 steps
for the approach. Zero cor-
responds to a tip-sample dis-
tance of 10 nm, which we mea-
sured with the calibrated scan
piezo. Using this piezo, we
also calibrated the step sizes
of the motor in the tunneling
regime: extrapolating this, 420

retract steps correspond to ap-
proximately 10 µm. We used a
commercially available PtIr tip
and a 120 nm thick Au film on
Si as a sample. The tempera-
ture during the experiment was
4.6 K.

32 USM1300S-3He, Unisoko
(2011)

tube, when the system was in tunneling regime. Assuming

that these values are representative for the whole measured

range, the total distance that the motor traveled was 10 µm.

Unfortunately the average step size of most coarse-ap-

proach motors is not only directionally dependent, but varies,

in addition, with the precise position of the motor. This is

due to imperfections of sliders and surfaces, wear, heavy use

at certain positions of the travel range, and other position-

dependent effects, like e.g. springs. This becomes clear from

an experiment we performed on a heavily used Unisoko-

STM,32 of which the results are shown in Fig. 7.4. To cancel

the asymmetry caused by gravity, we applied an analogous

directional rescaling as in Fig. 7.3. Here, however, the re-

tract and approach curves do not fall on top of each other.

Strikingly, two consecutive experiments (runs) do show re-

producibility indicating that the step size does not change

significantly in time for a position of the travel range, al-

though there is a huge variation for different positions. As an

example, two regions are clearly visible in the approach di-

rection. Our method enables not only the possibility to tune

the motor parameters until it moves with constant speed,

it even demonstrates the capability to use it for studying

coarse-approach motor dynamics in general.
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Figure 7.4: Tip-sample capaci-
tance measured on a Unisoko-
STM: In both runs, we retracted
5490 motor steps and needed
8300 steps to get back. The
starting point corresponds to
a tip-sample distance of about
10 nm. Note that this motor
runs reliably, as both runs fit al-
most perfectly on top of each
other. However, it is obvious
that the motor runs with dif-
ferent speeds on different posi-
tions of its travel range. Also di-
rectional asymmetry is present.
We used a commercially avail-
able PtIr tip and a Cu(100)
sample. These measurements
demonstrate that our method
can be applied to study the
motor performance and dynam-
ics in general. The tempera-
ture during the experiment was
1.5 K.

The most rewarding application of the tip-sample ca-

pacitance measurement is probably the implementation of it

for a fast, safe and reliable pre-approach without optical ac-

cess. Figure 7.5 shows the results for the ReactorSTM.4 The

rather unique coarse-approach mechanism in this STM is re-

alized via a sliding movement of the tip (with tip holder)

over two guiding rods at the inside of the scanning piezo

tube. Between movements, the tip is magnetically pulled

to the guiding rods. Due to this special design, this mo-

tor shows nonlinear, and sometimes unpredictable behavior,

which is also reflected in the curves of Fig. 7.5. The combi-

nation of this less reliable motor and the absence of optical

access, required often long pre-approach times to safely find

the tunneling regime.

After a tip exchange, one first measures one (or several) re-

tract curves, which can also be done at ambient conditions if

that is more practical. From these curves one can choose

a threshold capacitance that one considers to be safe and

fast enough (close enough to the sample) for the quick pre-

approach. In a next step, one repeatedly runs the approach

motor until the threshold value is reached. This happens

within a few seconds. Then one switches to the automatic

safe (but slower) approach mode and counts the number of

steps that are needed to reach the tunneling regime. This pro-

cedure lasts only a few tens of seconds. The crosses in Fig. 7.5

indicate the chosen threshold capacitance versus the number
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Figure 7.5: Tip-sample capac-
itance measured on the Reac-
torSTM: The particular design
of the approach motor mecha-
nism makes this motor less reli-
able compared to the approach
motors of other STMs. The vari-
ation in the motor performance
can be seen from three differ-
ent retract curves. Still it is
possible to significantly shorten
the total approach time, as is
indicated by the crosses, all
of which represent an individ-
ual approach: based on earlier
measured retract curves (run 1

to 3), the user chooses a safe
threshold capacitance. The ap-
proach motor is continuously
operated without extra inter-
rupts until the chosen threshold
value is reached. This proce-
dure lasts only a few seconds,
after which one switches to the
automatic safe (but slower) ap-
proach mode and counts the
number of steps that are needed
to reach the tunneling regime.
This procedure lasts only a few
tens of seconds. The crosses in-
dicate the chosen threshold ca-
pacitance versus the number of
steps needed to reach the tun-
neling regime. To increase the
accuracy/statistics, one should
measure the capacitance once in
a while for a complete retract
curve. The data are obtained
for different PtIr tips on various
(metallic) samples.

33 similar to the qPlus sensor of
Giessibl et al. 2004

34 Nova NanoSEM 200, FEI

of steps needed to reach the tunneling regime. Applying this

way of approaching, the system could be regularly brought

into tunneling regime within only 10 minutes, while it took

usually 60 minutes and more before. Experience shows that

this method is insensitive to sample exchange as long as the

samples are of comparable geometry. We expect that a com-

plete approach (including the pre-approach) can be realized

in less than a minute, if one programs a dedicated routine for

the used control electronics and provided that the motor can

move fast enough.

In the final example, we show that the capacitive ap-

proach is more widely applicable than to STM only. To illus-

trate this, we performed a similar measurement using a non-

contact AFM equipped with a quartz tuning fork (QTF).33

Using Electron Beam Induced Deposition34 (EBID) a nano-

sized Pt/C tip was grown on the prong of the tuning fork

facing the sample. The length of the tip was ∼ 2.6 µm and its

diameter was ∼ 220 nm. The tip was first approached to the

surface by measuring the shift in resonance frequency after

every coarse approach step. After the approach, the QTF was

retracted in small steps and the capacitance between tip and

sample was measured. The results, plotted in Fig. 7.6, show

the same generic curve for the nano-sized tip as observed for

the macroscopic STM tips. If one uses a non-conducting tip,

one can still use the capacity between the sample and one
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35 Fumagalli et al. 2006
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electrode of the QTF for the pre-approach.

In the above examples we showed how the tip-sample ca-

pacitance provides valuable information about the tip-sam-

ple distance. Even when the capacitance cannot be related

to absolute length scales, it still provides information on the

motor performance. Depending on the reliability of the mo-

tor, the capacitances can be converted into distances in units

of motor steps. In any case a reference capacitance can be

chosen such that a fast and safe pre-approach can be realized

until this value is reached. This method significantly saves

time and minimizes the number of tip crash events. In ad-

dition, detailed motor characterization and optimization is

possible in this way.

7.4 Finite element analysis

The above presented tip-sample capacitance measurements

all show a rather similar curve with a linear behavior for

large distances and a steep rise for decreasingly shorter dis-

tances. Similar curves have been obtained before.35,36,37,38,39

Moreover, the absolute scale of the values is approximately

the same, with the capacitance changing by 5− 15 fF in the

last few tens of micrometers. The AFM is an exception to this

because the EBID grown tip is very short and the prong of
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Figure 7.7: Simple tip-model: a)
Schematic of the model (drawn
not to scale) of a tip with ra-
dius W and length L, connected
to a base plate with radius B.
The end of the tip is conical with
height H and truncated with a
ball with radius R. The small-
est distance between the tip (the
apex) and the relatively large
sample is noted d. In our finite
element simulations the diame-
ter of the tip wire (2W) is fixed
to 0.25 mm. To calculate the ca-
pacitance in the simulation, we
did set the tip to a potential of 1
V and the sample to 0 V. Panels
b) and c) show the equipotential
lines of the simulation for the
particular tip geometry at one
distance for the JPE-STM: r de-
notes the radial direction of the
geometry and z is the vertical
direction. The simulation was
performed with COMSOL.40

40 COMSOL Multiphysics®v.
5.2. COMSOL AB, Stockholm,
Sweden (2015)

41 Lee et al. 2006

42 Lányi and Hruškovic 2003

the quartz tuning fork forms a parallel-plate capacitor with

the sample surface. Still, the shape of the curve looks similar

and suggests a generic behavior which raises the question:

can we also understand the tip-sample capacitance curve as

function of tip-sample distance?

In order to address this question, we performed a Finite El-

ement Analysis (FEA)40 calculation and created a simple tip-

sample model taking into account cylindrical symmetry, see

Fig. 7.7a. Note that other FEA models have been discussed

before,41,42 however, none of them included the tip holder.

By simulating the electrical field, shown in Figs. 7.7b and c,

we can determine the capacitance. Finally, by using a para-

metric sweep for the distance d, which means successive re-

calculation of the model, we generate a capacitance-distance

curve. Furthermore, it is possible to determine the contribu-

tions of the tip holder (B), tip length (L), tip sharpness (H),

tip wire radius (W), and radius of the apex at the end of the

tip (R), as we will describe later in more detail.

To get an estimate for reasonable values of these parameters

we can include a lower boundary, which is simply given by a
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43 Hudlet et al. 1998

44 Law and Rieutord 2002

45 Kleinknecht et al. 1988

parallel-plate capacitor:

Cpar =
ε0 Apar

Lpar + d
(7.2)

Cpar causes the linear behavior for large tip-sample distances

of the total capacitance, see Fig. 7.8. This additional capac-

itance comes from the tip holder that forms, in good ap-

proximation, with the combination of the sample and sam-

ple holder a parallel-plate capacitor. Its capacitance can be

easily determined from the data far away from the sample:

A−1
par = ε0

∂
∂d C−1

∣∣∣
dmax

and thus Lpar = ε0 Apar/Cpar − dmax,

where dmax is the maximum tip-sample distance available in

the data. Cpar is drawn in blue in the graphs of Fig. 7.8 and

the corresponding parameters are provided in Tab. 7.1. The

remaining deviation for small distances comes from the tip

itself and can be described with Ctip. Note that L is the real

tip length and that Lpar is the tip length if one assumes the

whole capacitance curve could be explained by just one par-

allel plate at distance Lpar + d. In the following we discuss

how L as well as the other parameters W, R, H, B influence the

capacitance-distance curve. We will show that it is possible

to determine all these parameters such that we finally receive

fits that closely resemble the measured data, see Fig. 7.8.

Surprisingly, two branches of analytic descriptions for tip-

sample capacitances can be found in literature: the first and

older ones 45,36 describe Ctip with a sphere, whereas the newer

ones consider a cone with a sphere at the end.43,44,38 In honor

of the first description by Kleinknecht et al. 1988,45 we follow

JPE-stage JT-Specs STM
W 0.126 mm 0.126 mm
L 3.00 mm 3.00 mm
R 1.0 µm 10 µm
H 0.24 mm 0.30 mm
B 3.7 mm 4.7 mm
πB2 43 mm2 69 mm2

Apar 98 mm2 72 mm2

Lpar 3.3 mm 1.8 mm

Table 7.1: This table shows the
geometric values that are found
by matching the data from Figs.
7.2 and 7.3 to the simple model
as illustrated in Fig. 7.7.
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Figure 7.8: Comparison be-
tween measured, simulated,
and analytically calculated data
of the tip-sample capacitance:
The measurements are shown in
black: (a) for the JPE-STM and
(b) for the JT-STM. Our simu-
lations (red) closely fit the ex-
perimental values. The curve
in blue represents an analyti-
cal lower boundary based on a
parallel-plate approximation.

this most simplified model to fit and analyze our data. This

is fully justified, as we will show in a comparison in Sec. 7.5

that the other, more complicated models, do not deliver bet-

ter fits or insight.

Describing the very end of the tip with a half sphere, the

radius of this sphere, R, determines the distance-capacitance

curve for small distances (d < R). In turn it is possible to

derive the radius of the apex from the measured capacitance-

distance curves by using:45,36

Re f f =
−1

2πε0

dC
dln(d)

, (7.3)

For real small distances (d� R) Re f f converges to the real tip

radius R, which we can compare with the R in our simula-

tion that fits the measured data. At larger distances Cpar con-

tributes significantly to the slope of the capacitance-distance

curve and therefore Re f f is greater than R. This can be seen in

Fig. 7.9, in which we applied Eq. 7.3 to capacitance-distance

FEA data that we calculated for different tip radii R. One

sees that when d� R, Re f f indeed converges to the set value

R. For completeness, we also plotted the measured data of

the JPE-stage (Fig. 7.2) and the JT-STM (Fig. 7.3) in Fig. 7.9.

Although clearly different, both data sets fit the theory. The

reason for the difference between these two data sets could
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Figure 7.9: Effective tip ra-
dius, Re f f , versus tip-sample
distance. Using our simula-
tions, we varied the tip radius
R, see Fig. 7.7, which deter-
mines the radius of the apex
at the end of the tip. For
small tip-sample distances Re f f
converges to a constant value,
which represents the “real” tip
radius. This method provides
the possibility to determine the
end-of-tip radius (e.g. after a
tip crash) in situ, in the mi-
croscope. For comparison we
also plotted the JPE-STM as well
as the JT-STM data. Note that
the tip in the JT-STM had been
crashed before, whereas no tip
crash happened in the JPE-STM.
This can also be seen from the
data of the effective tip radii of
the two different microscopes.

46 Lányi 2005

be tip crashes as well as the different tip fabrication methods

(see above).

It becomes clear from this comparison that it is easily possi-

ble to determine the apex radius inside the setup, which pro-

vides a powerful tool to judge, e.g., if one needs to replace

the tip after a tip crash. If one wants to model a measured

tip, one should use the lowest measured value for Re f f .

Note that it is possible to determine the tip radius (and its

sharpness) without the knowledge of the cone height! This

finding stands in contrast to previous conclusions.46

Taking into account the above insight, we fitted the remain-

ing geometric parameters of the tips of the JPE- and the JT-

measurements. Table 7.1 shows the results. From these fits

we learned about their dependencies:

In the 1 to 100 micron tip-sample distance regime, L and B
contribute in the same manner: they act mainly as an off-

set to the capacitance curve. As the total tip length can be

rather accurately determined and is usually even similar for

different microscopes, the main difference often comes from

Cpar, which is due to the specific tip-holder design (described

by B). For the fit in Fig. 7.8 we did set L to a fixed, realis-

tic value of 3 mm and varied B as a fitting parameter. The

second fitting parameter is given by the cone height H that

describes the macroscopic sharpness at the tip end. In the
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large-distance regime (1 to 100 micron), this sharpness de-

termines mainly the general slope of the curve, such that

this parameter can be determined independently. The last

missing parameter is W, which is set by the used tip wire;

126 µm in our case. In conclusion, to receive the fits pre-

sented in Fig. 7.8, we determined first the real tip radius R
(see Fig. 7.9) and further needed only an optimization of the

geometric parameters B and H that determine the offset and

slope, respectively, for the large distance range.

As a remark, please note that the values in Tab. 7.1 are not

exactly representative for the geometry of the real tips and

tip-holders, especially as the geometry of real tip holders can

be complicated. However, it is striking that this simple model

generates two different curves that follow the capacitance-

distance curves of two completely different measured sys-

tems remarkably well, see Fig. 7.9.

Despite this fact, a careful comparison between the simulated

curve (red) and the measured data (black) in Fig. 7.8 reveals

too low capacitances of the fit for small distances. Speculat-

ing on the reason, we suspect that the extra capacitance in

the experimental data stems from the roughness (imperfec-

tions) of the surface of the sphere, like protrusions, that are

not included in the model. The additional charge buildup by

these protrusions is expected to be commonly found for cut

PtIr tips due to the tendency of this material to form micro-

tips under cutting. How the capacitance is influenced by the

surface roughness can be calculated.47,48,49 However, the re-

verse, how to calculate the roughness of the STM tip based on

the additional capacitances in the capacitance-distance curve,

remains an interesting open question that is beyond the scope

of this paper.

7.5 Analytical models

For the purpose of scanning capacitance microscopy, var-

ious analytical formulas have been developed that describe
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Figure 7.10: Comparison of two
analytical models: (a) the ball
model described by Eq. 7.4,
and (b) the dihedral model
described by Eq. 7.5. The
dashed lines represent the mod-
els, whereas the solid lines
show the FEA results. Every-
thing is calculated for different
tip radii that are represented by
different colors. For complete-
ness we also added the JPE and
JT data in black.

the (slope of the) capacitance as a function of tip-sample

distance.39,36,43,38,45,44,35 One of the earliest contributions45,36

state that the variation of the capacitance, ∂C/∂d, comes main-

ly from the ball-shaped apex (with radius R) in the regime

where d � R. For a ball approaching an infinite plane, this

variation is given by:45

∂Ctip

∂d
≈ −2πε0

R
d

(7.4)

Realizing that a real tip does consist of a combination of a ball

with a cone, a refined formula was derived a decade later by
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using a dihedral approximation.43 The result,

∂Ctip

∂d
≈− 2πε0

R
d

1
1 + d

R(1−sin θ)

+
1

ln2 tan (θ/2)
× (7.5)

ln
d + R(1− sin θ)

H + R(1− cot θ)
− 1 +

1 + 1
sin θ

1 + d
R(1−sin θ)

 ,

is less straightforward since it also involves the cone of the tip

that is described by its angle θ, i.e. tan θ = W/H, see Fig. 7.7.

Please note that only the first term in the square brackets

comes from the ball-shaped end of the tip. Moreover, fol-

lowing the derivation in Ref. 43 one realizes that Eq. 7.4 was

used as a boundary condition for deriving the first term in

Eq. 7.5. Since this term dominates at small distances, it is not

at all surprising that Eq. 7.5 breaks down to Eq. 7.4 in this

regime (d � R). Noticing that the tip radius influences the

total capacitance only for small distances, at which the radius

can be determined experimentally, the added value of Eq. 7.5

should be the description of the total capacitance for rather

large distances (d ≥ R). Equipped with the complete FEA tip

model, in which we easily can change the tip radii, we tested

both analytical descriptions against the FEA model.

Figure 7.10 shows the result, in which the solid colored lines

are for different radii obtained from the FEA calculations.

Our results nicely match those published by Lányi 2005
46,

who calculated the variation of the tip-sample capacitance

for a tip with R=100 nm. To evaluate the analytic theories, we

fitted (dashed lines) our results with the ball model (Eq. 7.4)

in Fig. 7.10a, and with the dihedral approximation model

(Eq. 7.5) in Fig. 7.10b. Comparing the fits one realizes three

important points: (1) As expected, there is little difference

for small distances (compare offset values at the y-axis); (2)

The ball model describes straight lines, whereas the dihedral-

approximation model curves “down” to lower values at a

distance d ∼ 1
10 R. (3) In contradiction, the FEA results curve

“up" for large distances.



144 mrfm and the spin bath

50 It was found by experiments
Law and Rieutord 2002 that
sometimes the model would
better be replaced by a hy-
perboloid model. However,
in our FEA simulations we
fixed the geometry to be ball-
shaped+cone and not hyper-
boloid.

From this we can conclude that the dihedral-approximation

model is not suited to describe the large-distance behavior.50

The reason for this is that the cone ends at a certain height

(see Fig. 7.7a) and that the tip should be described from this

point on with a straight wire that ends in a plate of a capaci-

tor (shield).

This means that fitting the cone angle directly from Eq. 7.5

is unreliable. As the ball radius is equally well derived from

Eq. 7.4, there is no advantage to continue using Eq. 7.5. There-

fore we used Eq. 7.4 to determine the radius of the ball-

shaped apex, see Sec. 7.4. Currently, if one needs to deter-

mine the cone angle, one should still create a realistic FEA

model.

7.6 Conclusion

We showed that it is possible to determine the absolute dis-

tance between a tip and a sample via the capacitance between

them. Although the capacitances are in the order of tenths to

hundreds of femtofarads, the tip-sample separations can be

measured reliably for both large scale as well as nanometer

distances. Measuring such low capacitances with high accu-

racy seems to be a difficult task. However, we showed that

the application of a low input impedance current-to-voltage

converter in combination with proper grounding and shield-

ing makes this task rather easy, as stray capacitances are elim-

inated in this way. Moreover, by applying an STM control

electronics it is possible to measure ∼10 aF (and even below).

We measured the tip-sample capacitance versus distance on

several different setups with different tips and samples and

found a generic curve with even similar absolute values. Our

analysis provides deeper insight and delivers additional ben-

efit for the user, as it is possible to extract the tip shape and

radius from these curves. We find, in contrast to earlier con-

clusions, that it is possible to determine the tip radius with-

out the knowledge of the height of the conical part of the
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tip. This is a powerful tool to determine the actual quality

of a tip, whether it is freshly etched or has experienced a

tip crash. We compared our FEA results with analytic the-

ories and found that the most simple model, the ball model

approximation,45 delivers the best fit and should, therefore,

be used in most cases. Probably the most important impact,

however, is the implementation of a fast and reliable pre-

approach for any type of SPM and especially for those that do

not provide optical access, thereby significantly reducing the

total approach time before imaging. Furthermore, it is pos-

sible to use the tip-sample capacitance as a characterization

tool of the motor performance of the SPM: motor fine tuning,

deterioration, and problem analysis can be performed in this

way. Finally, the determination of the absolute tip-sample

capacitance (including the tip holder) is crucial for a proper

system characterization when working in the GHz regime.51

The capacitance determines, in addition, the energy broaden-

ing of an STM when reaching the quantum limit at ultra-low

temperatures.52
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Samenvatting

De samenvatting is toegankelijk gemaakt voor een breed publiek. Hierom zijn sommige

zaken vereenvoudigd en zijn er geen bronvermeldingen opgenomen. De wetenschappelijk

geïnteresseerde lezer wordt verwezen naar de Engelstalige introductie in hoofdstuk 1.

Begin twintigste eeuw werden er twee vernieuwende natuurkundige theorieën

ontwikkeld die het wereldbeeld van de natuurkundige wetenschapper voorgoed ve-

randerden. De ene theorie is Einsteins geometrische beschrijving van de zwaartekracht

die de bewegingen van grote objecten nauwkeurig beschrijft. De andere theorie, de

kwantummechanica, beschrijft de natuur op heel kleine schaal. Al een eeuw lang

wordt geprobeerd deze twee theorieën te verenigen in één natuurkundig model.

Dit wordt voornamelijk geprobeerd door de kwantummechanica uit te breiden en

Einsteins theorie daar dan weer uit voort te laten komen. Dit is tot op heden niet

gelukt.

Volgens de kwantummechanica kan een deeltje of object op meerdere plekken

tegelijk zijn. Als we de positie van datgene meten, krijgen we echter maar één

uitkomst. De kwantummechanica beschrijft wel heel nauwkeurig de kans op die

uitkomst, maar niet precies welke uitkomst je daadwerkelijk gaat meten.

Het moet worden benadrukt dat voor de meting het object écht op meerdere plekken

tegelijk is. Echter, door een meting te doen begint het object na die meting weer
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vanaf een enkele positie. De meting, hoe voorzichtig ook gedaan, beïnvloedt fun-

damenteel het te bestuderen object. Maar waarom beïnvloedt het observeren van

een object de toestand van het object? Dit is het zogeheten meetprobleem.

Er zijn veel verschillende verklaringen bedacht, maar geen van alle is bewezen.

Sommige interpretaties kunnen waarschijnlijk niet bewezen worden. Welke van

deze interpretaties de juiste is, kan grote gevolgen hebben voor de wetenschap, om-

dat het onderwerp onder meer direct gelinkt is aan primordiale vraagstukken zoals:

Wat betekent kans wanneer je maar over één uniek evenement spreekt?, Is energie

misschien toch geen behouden grootheid?, Zijn er andere parallelle werelden?, en

Bestaat er eigenlijk wel zoiets als vrije wil?

De wetenschappers Diósi en Penrose lieten met relatief eenvoudige redenerin-

gen zien waar de kwantummechanica botst met Einsteins theorie en gebruikten

deze conclusies in het onderbouwen van een nieuwe interpretatie van de kwan-

tummechanica. Dus door het combineren van twee problemen konden Diósi en

Penrose aangeven onder welke omstandigheden één of beide natuurkundige mod-

ellen niet meer kloppen. Hét grote verschil met andere interpretaties is dat we deze

beweringen kunnen testen.

De afgelopen eeuw is er een wildgroei aan oplossingen ontstaan voor één of beide

problemen, maar geen van alle is eenvoudig en kloppend genoeg. Wat we nodig

hebben, is een test waarvan de uitkomst vele mogelijkheden uitsluit en, als het even

kan, aanwijzingen geeft die leiden naar de juiste oplossing. Een dergelijk experi-

ment is wat wij, en vele onderzoekgroepen met ons, proberen te verwezenlijken.

Experiment

Het principe van het experiment is heel eenvoudig: probeer een zo zwaar mo-

gelijk object zo lang mogelijk op meerdere plekken tegelijk te laten zijn. Wij hebben
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gekozen om een bestaande techniek te gebruiken en te verbeteren. Deze is de Mag-

netic Resonance Force Microscope (MRFM). Deze bestaat uit een klein magnetisch

balletje dat aan een heel gevoelig veertje (in de vorm van een duikplankje) hangt.

De elektronenmicroscoop-foto aan het begin van dit hoofdstuk is gemaakt net nadat

wij het balletje van 0.003 mm doorsnede aan het 0.15 mm lange duikplankje hebben

geplakt. De MRFM is door dit balletje zeer gevoelig voor magnetische velden, en

dat kunnen we goed gebruiken.

Het balletje wordt vervolgens in de buurt van het te bestuderen object geposition-

eerd. Sommige atomen zijn kleine magneetjes. Deze atoom-magneetjes, ook wel

spins genoemd, kunnen we laten draaien. De MRFM-tip kan vervolgens voelen

hoeveel en welke spins er draaien. Uit de trilling van de MRFM-tip kan dan weer

het object gereconstrueerd worden. De methode om de hoeveelheid spins op een

plek te meten door ze te laten draaien is vergelijkbaar met die van een MRI-scanner

zoals die wordt gebruikt in het ziekenhuis.

De MRFM kan worden gebruikt voor zowel materiaalkundig onderzoek als biolo-

gisch onderzoek. Het is een unieke techniek omdat het, zonder het te bestuderen

object kapot te maken, driedimensionale plaatjes kan maken van zowel eiwitten

(waarvan de werking voornamelijk bepaald wordt door de driedimensionale struc-

tuur) als nieuwe soorten materialen die hun vele technologische toepassingen nog

moeten vinden. De techniek staat echter nog in de kinderschoenen en er is nog

veel onderzoek nodig om de MRFM commercieel inzetbaar te krijgen. Door voor

het experiment - om een zwaar object op meerdere plekken te krijgen - te kiezen

voor het MRFM-tipje, creëren we een win-winsituatie: wij kunnen gebruik maken

van de al bestaande technieken en met ons onderzoek dragen wij weer bij aan de

verdere ontwikkeling van de MRFM.

Het plan, zoals uitgelegd in hoofdstuk 5, is als volgt: We brengen de MRFM-tip

naar een diamantje, dichtbij een plek waar we een enkel zeer speciaal atoommag-

neetje hebben ingebracht. Deze spin, aangeduid met NV−, kunnen we nauwkeurig
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Schets van het bedachte toekomstige experiment. In het diamant bevindt zich het
NV−-center. De speciale pyramide of kegelvorm zou opwarming van het MRFM-
tipje zoveel mogelijk voorkomen. Een uitgebreide uitleg staat in paragraaf 5.5.

manipuleren met een laser. Deze techniek wordt gebruikt in kwantummechanische

netwerken en is al ver ontwikkeld. Vervolgens laten wij de spin in twee richtingen

tegelijkertijd draaien. De vraag is dan hoe lang het MRFM-tipje tegelijkertijd in

twee richtingen zal bewegen.

Techniek

Het experiment is makkelijker beschreven dan gedaan, want de condities waarin

dit moet gebeuren zijn gecompliceerd. Doordat de MRFM-tip in contact is met

de door de temperatuur trillende atomen waaruit het experiment is opgebouwd,

moet het gehele experiment worden afgekoeld naar −273.14 graden Celsius, 0.01

graad boven het absolute nulpunt. Een lagere temperatuur zou het experiment nog
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minder verstoren, maar in hoofdstuk 5 laten we zien dat door gebruik te maken

van het experiment we vanaf deze temperatuur alle overige trillingen actief uit de

MRFM-tip kunnen ’pompen’.

Gebruikelijk wordt de beweging van een MRFM-tip uitgelezen met behulp van een

laser. Dit zou in dit experiment echter teveel opwarming geven en daarom meten

wij de beweging van de MRFM-tip door de stroom te meten die het bewegende

magnetische balletje opwekt in een supergeleidend elektrisch circuitje. Hoofdstuk 6

beschrijft onder andere het recept dat is gebruikt om de supergeleidende baantjes

van 0.0004 mm breed in dit circuit te produceren. Daarnaast worden in hoofdstuk 6

nog meer methodes en technologie beschreven die wij hebben ontwikkeld of ingezet

ten behoeve van dit experiment. Met name het positioneren van de tip, en het

uitlezen van de positie van de MRFM-tip in de kou, zonder licht of magneetvelden

te gebruiken, is een kritiek technisch onderwerp. Het nauwkeurig uitlezen van

de afstand tussen twee elektrisch geladen plaatjes blijkt niet alleen handig te zijn

voor het MRFM experiment, maar ook voor andere types microscopen die werken

met een tipje en die de afstand willen weten tussen het tipje en het sample, zoals

gedetailleerd beschreven is in het gepubliceerde artikel van hoofdstuk 7.

Wetenschappelijke bevindingen

Uit eerder onderzoek met MRFM bleek dat de gevoeligheid van de MRFM-

tip minder wordt naarmate het magneetje dichterbij het oppervlak van het sample

komt. Tot nog toe was er geen beschrijving die deze extra demping van beweging

kon verklaren. De grondige theoretische analyse in hoofdstuk 2 laat zien dat de

spins, waarvan we sommige willen meten, alle tezamen de MRFM-tip afremmen

en de trillingstijd veranderen. Deze theorie is geverifieerd door in een MRFM-

experiment de tip heel voorzichtig te laten naderen boven een stukje siliciumoxide,
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zoals beschreven in hoofdstuk 3. Het effect neemt toe wanneer de temperatuur

van het experiment afneemt. Tegenintuïtief is echter dat onder een bepaalde tem-

peratuur het effect weer minder wordt. De theorie beschrijft de resultaten van het

experiment nauwkeurig. De artikelen van beide hoofdstukken zijn gepubliceerd.

Dit effect nauwkeurig begrijpen is van groot belang voor het experiment omdat de

gevoeligheid van de MRFM-tip hoog moet zijn. We begrijpen hierdoor nu onder

andere beter hoe zuiver het diamant en hoe schoon het oppervlak ten minste moet

zijn. Tenslotte hebben wij een diamanten sample onder de MRFM gemonteerd. Met

de nu bekende theorie van hoofdstuk 2 hebben wij de zuiverheid van het diamant

(ongeveer 400 op de miljard atomen hoort niet in puur diamant thuis) en de opper-

vlakteverontreiniging (ongeveer 60 miljard spins per vierkante millimeter) kunnen

meten. Verder hebben wij de mogelijkheden verkend om MRI te doen op deze

atomen, onder deze omstandigheden. Daarmee vonden wij dat het magneetje nog

kleiner mag, of dat we de spins harder moeten laten draaien.

Wij kunnen concluderen dat de eerste stappen technisch, theoretisch en exper-

imenteel gezet zijn richting een experiment dat het natuurkundige wereldbeeld

drastisch kan veranderen.
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