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ABSTRACT

Objective To identify osteoarthritis (OA) progression modulating pathways in articular cartilage and 

their respective regulatory epigenetic and genetic determinants in end stage disease.

Methods Transcriptional activity of CpGs (t-CpGs) was assessed using gene expression and DNA 

methylation data of respectively 33 and 31 pairs of preserved and lesioned articular cartilage. Disease 

responsive t-CpGs were identified by means of differential methylation between preserved and 

lesioned cartilage. Transcriptionally relevant genetic determinants were addressed by means of 

proximal SNPs near the OA responsive t-CpGs. Statistical analyses were corrected for age, sex, joint 

and technical covariates. A random effect was included to correct for possible correlations between 

paired samples.

Results Of the 9838 transcribed genes in articular cartilage, 2324 correlated with the methylation 

status of 3748 t-CpGs, both negative (N=1741) and positive (N=2007) correlations were observed. 

Hypomethylation and hypermethylation (FDR<0.05, |Δβ|>0.05) were observed for 62 and 25 t-CpGs, 

respectively, covering 70 unique genes. Enrichment for developmental and ECM maintenance 

pathways indicated possible reactivation of endochondral ossification. Finally, we observed 31 and 

26 genes of which, respectively, methylation and expression was additionally affected by genetic 

variation.

Conclusion We identified tissue specific genes involved in OA disease progression, reflected by 

genetic and pathological epigenetic regulation of transcription, primarily at genes involved in 

development. Therefore, transcriptionally active SNPs near these genes may serve as putative sus-

ceptibility alleles. Our results comprise an important step in understanding the reported widespread 

epigenetic changes occurring in OA affected articular cartilage and subsequent development of 

future treatments targeting disease driving pathways.
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INTRODUCTION

Osteoarthritis (OA) is the most prevalent arthritic disease among the elderly (1) and is currently 

recognized as a disease of the whole joint. (2) A well described hallmark of OA is articular cartilage 

degradation. (3) The single cell type present in articular cartilage is the articular chondrocyte, which 

is a highly specialized, maturational arrested, non-proliferating cell. To ensure articular cartilage 

integrity throughout life it needs to adapt its behaviour in response to external signals, such as 

mechanical stress, ageing or micro-traumas. (4) To facilitate these adaptations, the chondrocyte 

requires phenotypic plasticity with proper dynamic control of gene expression to shift between active 

metabolic and maturational arrested states. In this respect, chondrocytes in OA affected cartilage 

were shown to have lost their maturational arrested state, regain growth-plate morphology and start 

to proliferate, while degrading and calcifying the articular cartilage matrix. (5;6) 

A likely candidate for maintaining the chondrocyte phenotype is through epigenetic control of gene 

expression, such as DNA methylation; a biochemical process which is utilized by cells to adapt to 

environmental challenges such as age or disease by dynamic control of gene expression. (7;8) In this 

respect, methylome wide studies of articular cartilage in OA have revealed numerous differentially 

methylated loci between healthy and diseased tissue, while only a small minority of these loci were 

subsequently studied in terms of gene expression differences. (9-12) Therefore, up to now it remains 

unclear to what extent the large number of differentially methylated CpGs in OA confer relevant 

gene expression changes in articular cartilage. Moreover, a growing body of literature describes 

how aberrant gene expression is influenced, in addition to DNA methylation, by genetic risk alleles 

in complex genetic diseases, a mechanism outlines previously in OA. (13-17) These reports imply the 

need for combining multiple levels of genome wide data to gain a more robust understanding of the 

transcriptional processes that occur with complex genetic diseases, such as OA.

In a previous study we have described functional DNA methylation differences between knee and 

hip articular cartilage, independent of OA pathophysiology. (10) Although the entire epigenomic 

profile of knee and hip articular cartilage is primarily defined by differentially methylated regions 

(DMRs) between the two joints, literature suggests highly gene specific DNA methylation changes in 

association with OA onset and progression. (9;11;12;14-17) Therefore, in the current study we set 

out to identify gene specific DNA methylation differences, independent of the joint, between pre-

served and lesioned cartilage in patients undergoing total joint replacement surgery due to primary 

end-stage OA. Moreover, we combined DNA methylation changes with a previously assessed gene 

expression dataset of overlapping samples (18) to assess OA related changes in the epigenetically 

regulated transcriptome. Finally, by integrating the results with genome wide single nucleotide poly-
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morphism (SNP) data, we aim to identify OA relevant, tissue specific genetic variants that influence 

gene expression in articular cartilage. The applied consecutive stepwise approach will provide novel 

OA susceptibility genes, as well as the respective transcriptional determinants. To our knowledge 

this is the first study comprehensively combining genetic, epigenomic and transcriptomic data to 

gain a functional understanding of joint independent DNA methylation changes in relation to OA 

pathophysiology.

MATERIALS AND METHODS

THE RAAK COHORT. 

Ethical approval was obtained from the medical ethics committee of the LUMC (P08.239) and 

informed consent was obtained from all participants. Participant details are listed in Supplementary 

Table S1. For sampling details see (10;14;18). 

METHYLATION DATA. 

Methylation data were obtained and processed as previously. (10) In short, DNA was isolated using 

the Promega Wizard Genomic DNA Purification kit according to the manufacturer’s protocol. Next, 

the DNA was bisulphite treated using the ZymoResearch EZ DNA Methylation kit. DNA methylation 

was assessed using Illumina Infinium HumanMethylation450 BeadChips. Samples were randomly 

dispersed, while sample pairs were assured to be on the same chip. Using the minfi and lumi R-pac-

kages the methylation dataset was filtered for probes that contained SNPs or mapped ambiguously 

to the genome and colour channels were separately quantile normalized. Validation and replication 

using the EpiTYPER platform were done so as previously reported, (14) primer sequences are listed 

in Supplementary Table S2.

EXPRESSION DATA. 

Normalized expression data from the RAAK study were processed and normalized as described pre-

viously (GSE57218). (18) RT-qPCR validation primers are listed in Supplementary Table S2

GENOTYPE DATA. 

Using Illumina HumanOmniExpressExome chips genome wide genotyping data was constructed 

for 216 samples from the RAAK study. SNPs with <95% call rate, Hardy-Weinberg equilibrium <10-4, 

minor allele frequency <0.01 or located on the sex chromosomes were removed prior to imputation 

together with Leiden Longevity Study data against the 1000 Genomes V3 March 2012 reference 

panel. (19) Next, SNPs that were homozygous in all the overlapping samples with the methylation 
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(N=23) and expression (N=24) datasets were removed prior to analyses, as were SNPs of which the 

imputation quality of 0.4 was not met. (20;21)

STATISTICAL ANALYSES. 

All statistical procedures were carried out in R-3.0.2. Analyses were corrected for technical covariates 

as well as sex, joint and age. To correct for putative correlations between preserved and OA affected 

AC from the same joint, a random effect for patient ID was included using the lme4 package. (22) 

Correction for multiple testing was performed using the bonferroni procedure per gene in the func-

tional methylation analysis as well as the genetic analysis, all other multiple testing corrections were 

performed using the Benjamini-Holm method. Methylation measurements are reported as β-values. 

(10;23) CpGs were considered differentially methylated when the mean paired difference was at 

least 0.05β, as smaller differences would be hard to address statistically and/or interpret biologically. 

Pathway enrichment was performed using the online annotation tools DAVID and STRING-DB. A full 

analysis summary scheme is shown in Figure 1.

  All cartilage expressed 
genes 

(13227 probes / 9838 genes) 

  Genes regulated by  
t-CpGs 

(3748 CpGs / 2324 genes) 

Expressioni ~ CpGi,j + Joint + Gender + Age + Chip + (1|ID) 

 OA sensitive t-CpGs 
(151 CpGs / 117 genes) 

CpGj~ TissueStatus + Joint + Gender + Age + Chip + (1|ID) 

    t-CpG methylation 
affected by SNPs 
(36 CpGs / 31 genes) 

    Gene expression affected 
by t-CpGs & SNPs 

(28 CpGs /26 genes) 

Expressioni~ CpGi,j + SNPi,k + (1|ID) CpGj~ SNPj,k + (1|ID) 

 Differentially expressed 
genes  

(87 CpGs / 70 genes) 

Expressioni~ TissueStatus + Joint + Gender + Age + Chip + (1|ID) 

Technical and biological 
replication of selected CpGs 

 

1) 

2) 

3) 

4) 5) 

6a) 6b) 

Figure 1. Overview of the applied analysis strategy.



86

Chapter 5

RESULTS

TRANSCRIPTIONALLY ACTIVE CPG DINUCLEOTIDES (T-CPGS) IN ARTICULAR CARTILAGE. 

Recently, we have assessed the late stage transcriptomic profile of articular cartilage of patients who 

underwent total joint replacement surgery, due to primary OA (GSE57218, Supplementary Table 

S1). (18) For the 13277 probes (covering 9838 unique genes, Figure 1, step 1) that were expressed 

to detectable extent in articular cartilage, we set out to explore whether they associated with DNA 

methylation of proximal CpGs. To identify articular cartilage relevant CpGs in terms of transcripti-

onal association, DNA methylation data of CpGs within 10kb of annotated genes was correlated to 

respective gene expression data of 13 sample pairs (4 knees and 9 hips) of preserved and lesioned 

articular cartilage. After multiple testing correction for the number of CpGs for each individual gene, 

we observed 3748 CpGs that significantly correlated with proximal gene expression, covering a 

total of 2324 unique genes (24%, Supplementary Table S3, Figure 1, step 2), hereafter indicated as 

transcriptionally active CpGs (t-CpGs). Notably, both negative (e.g. SPINT2, CILP, BFSP1, TMEM140, 

Figure 2A-D) as well as positive correlations (e.g. COL1A2, THBS2, MSX1, RUNX3, Figure 2E-H) were 

observed for the, respectively, 1741 and 2007 t-CpGs.
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Figure 2. Examples of epigenetically regulated cartilage expressed genes by DNA methylation. Preserved and 
lesioned samples are respectively coloured blue and red, while knee and hip samples are respectively depicted 
as circles and triangles. In grey the 95% confidence intervals are plotted. (A-D) Examples of down regulated 
genes upon increased methylation. (E-H) Examples of genes of which expression is positively correlated to 
increased DNA methylation.
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OA ASSOCIATED DNA METHYLATION CHANGES AT T-CPGS. 

Next, we determined in a total of 31 sample pairs (17 knees and 14 hips) which of the detected 3748 

t-CpGs were sensitive to the ongoing OA disease process, as reflected by differential methylation 

between paired preserved and lesioned cartilage. In total we observed 5282 differentially methylated 

CpGs (FDR<0.05, |Δβ|>0.05, Figure 3A, Supplementary Table S4), of which 2188 and 3094 were 

respectively hyper- and hypomethylated. Among these OA associated CpGs 151 overlapped with 

the observed t-CpGs, covering a total of 117 unique genes (Figure 1, step 3). Hypermethylation was 

observed in 59 OA responsive t-CpGs, while hypomethylation was seen in 92 OA responsive t-CpGs 

covering respectively 46 and 75 genes. Among those are genes known to be involved in OA pathop-

hysiology (e.g. FOXA2, RUNX1, COL6A3 and CD44, Figure 3B-E), as well as multiple genes not earlier 

reported (e.g. UACA, DLX5, DYSF and IGFBP7, Figure 3F-I). Next, to focus solely on genes of which 

expression is involved in OA progression, we selected t-CpG regulated genes of which expression was 

additionally significantly different between preserved and lesioned tissue. As of such, we continued 

with 25 and 62 respectively hyper- and hypomethylated t-CpGs, covering 70 unique genes (Figure 1, 

step 4). Subsequent gene enrichment analysis revealed significant enrichment among the 70 genes 

for pathways earlier reported to be implicated in OA pathophysiology, such as ECM maintenance and 

developmental processes (Supplementary Table S5 and Supplementary Figure S1).
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Figure 3. (A) Volcano plot showing the cut-offs taken to identify all differentially methylated CpGs between 
preserved and lesioned cartilage, significant (FDR < 0.05) differentially methylated (|Δβ| > 0.05) CpGs are 
depicted as green dots. (B-E) Significant differential methylation between preserved and lesioned cartilage in 
known OA associated genes. (F-I) Significant differential methylation between preserved and lesioned cartilage 
in genes not earlier implicated in OA. Preserved samples are set to 0 and depicted in blue, while its paired 
lesioned sample is depicted in red. Knee and hip joints are respectively shown as circles and triangles.
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TECHNICAL VALIDATION AND BIOLOGICAL REPLICATION OF OA RESPONSIVE T-CPG DINU-

CLEOTIDES. 

Using the EpiTYPER® platform, a commonly used technique for measuring DNA methylation, (14) 

we set out to technically validate 8 CpGs in 17 pairs of preserved and lesioned samples. We found a 

high degree of similarity between the two techniques, reflected by large Pearson correlation coef-

ficients (mean r>0.85, Supplementary Figure S2, Figure 1, step 5). Next, we addressed the previously 

observed relation between the replicated CpGs and respective gene expression. Except for IGFBP7, 

we were able to validate the transcriptional involvement of all selected t-CpGs and/or disease associ-

ated dysregulation of the respective gene (Supplementary Figure S3). For biological validation, DNA 

methylation of the selected CpGs was measured in an additional 31 pairs of preserved and lesioned 

cartilage. All CpGs showed highly similar, significant DNA methylation changes as were seen in both 

the discovery and validation samples (Supplementary Figure S3). 

THE INFLUENCE OF GENETIC FACTORS ON T-CPG METHYLATION AND EXPRESSION IN ARTI-

CULAR CARTILAGE. 

Finally, we investigated the stable regulatory genetic environment, as reflected by transcriptionally 

active SNPs in proximity of the 70 genes. Presence of such SNPs may causally affect cartilage homeo-

stasis of epigenetically controlled genes and confer potential OA susceptibility. The genotypes of all 

SNPs (dbSNP build 138) 10kb up- and downstream of the 70 genes were assessed in 23 sample pairs 

of the methylation dataset. Using multivariate analysis with methylation as dependant variable, we 

identified 36 OA responsive t-CpGs that are significantly affected by at least one SNP (Supplementary 

Table S6, Figure 1, step 6a), covering 31 unique genes. In parallel, using multivariate analysis with 

expression as dependent variable, we explored whether epigenetic regulation of the 70 genes was 

additionally affected by the alleles of proximal SNPs. As of such, we observed 26 genes of which 

expression was modulated by the local genetic background in conjunction with 28 t-CpGs (Supple-

mentary Table S7, Figure 1, step 6b). For the ESR, NAV2 and WLS, we observed t-CpGs and SNPs 

that modulated gene expression jointly. 

As example, three notable genes of which we have observed transcriptomic, epigenetic and genetic 

involvement in OA progression are VIT (Figure 4A-D), ROR2 (Figure 4E-H) and WLS (Figure 4I-M). All 

genes were differentially expressed between preserved and lesioned cartilage (Figure 4A, 4E, 4I), 

which was modulated by differential DNA methylation (Figure 4B, 4F, 4J), also reflected by signifi-

cant differential methylation at the respective t-CpGs (Figure 4C, 4G, 4K). Moreover, rs11884419 

and rs13292198 influenced gene expression and t-CpG methylation of ROR2 and VIT, respectively 

(Figure 4D, 3H). Additionally, rs12028757 jointly affected t-CpG methylation and WLS gene expres-

sion (Figure 4L-M). 
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Figure 4. Examples of cumulative evidence for putative causal involvement of VIT, ROR2 and WLS in OA patho-
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DISCUSSION

The here presented study encompasses the first comprehensive multi-level integration of genome 

wide data to gain a more accurate understanding of OA associated changes in the epigenetically regu-

lated transcriptome of articular chondrocytes. By stepwise integrating transcriptomic and epigenetic 

data in relation to cartilage OA severity, we identified 70 unique genes with OA responsive t-CpGs 

likely affecting expression in articular cartilage. Subsequent pathway analyses showed significant 

enrichment for genes that act within skeletal development. Moreover, we have shown that for 31 

and 26 OA cartilage relevant genes, respectively, methylation and expression is additionally affected 

by genetic variation proximal to these genes. 

Although the observed enrichment of OA responsive t-CpGs among genes within developmental 

pathways either marks disease advancement or an adaptation of the preserved cartilage to the 

adjacent lesioned tissue, our data shows that changes in epigenetically regulated control of develop-

mental genes and OA progression are markedly linked. This could indicate either specific, dynamic 

regulation of expression of the genes in these pathways by the challenged articular chondrocytes in 

an attempt to cope with end-stage OA, or alternatively, chondrocytes at end stage disease have lost 

their ability to epigenetically control expression of essential genes involved in skeletal development 

and consequently recuperate growth plate morphology and start cartilage debilitating expression, 

a well described hallmark of OA. The latter hypothesis is supported by the here observed difference 

of epigenetic control of skeletal development associated genes with OA, such as VIT, ROR2 and WLS. 

Markedly, in this respect, are also the results of comprehensive genome wide searches for genetic 

variants conferring risk for OA that have resulted in robust genome wide significant signals at genes 

implicated in these developmental pathways (24). 

In the current study, we present genetic and epigenetic loci that are functionally relevant for OA 

responsive t-CpGs and cartilage expressed genes and should ideally now be followed up as candi-

date genes in large genome wide association (GWA) datasets to investigate whether these variants 

indeed confer a relatively large number of small effects that are responsible for the missing herita-

bility observed in OA. We have observed a relatively small number of differentially expressed genes 

that are regulated by t-CpGs and/or SNPs. Although this could be due to statistical power and/or 

small effect sizes, it unquestionably highlights the importance of combining epigenome data, or 

gene specific epigenetic data for that matter, with other types of molecular data, to gain a robust 

understanding of and to biologically interpret the observed differences. Furthermore of note, we did 

neither observe established genetic OA susceptibility nor OA related epigenetic loci, which implies 

that our transcriptional, tissue relevant approach offers additional, compelling knowledge about 
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genes involved in mature articular cartilage homeostasis and late OA when compared to traditional 

GWA approaches. Even more so, the epigenetic and transcriptional effects of OA susceptibility genes 

such as GDF5 (15) and DIO2 (14) are relatively subtle, whereas we have aimed to select genes with 

larger effects in late OA. Also, we have possibly missed out on long distance or trans acting t-CpGs or 

SNPs, as a result of our applied 10kb cut-off. While we do not disregard the possible impact of long 

distance, transcriptional relevant loci, the measure of effect will likely be inversely correlated with 

the genomic distance. In order to study these effects accurately, larger sample sizes than our own 

would be required. Considering the earlier observed gene specific transcriptionally relevant and OA 

associated differentially methylated CpGs, we were unfortunately unable to address these as the 

applied methylation array lacks the density and subsequently does not measure these.

The VIT, ROR2 and WLS genes are notable examples for which we here present functional epigenetic, 

genetic and transcriptional (Figure 3) differences depending on the late pathophysiological state of 

articular cartilage (25;26). VIT is a relatively under studied gene in both cartilage biology and osteo-

arthritis. Nonetheless, proteomic analysis of mouse hip cartilage revealed involvement in cartilage 

development (27). More specifically, vitrin, the protein product of the VIT gene, contains a Von Wil-

lebrand factor A domain, and is subsequently involved in ECM integrin signalling (28). Expression of 

ROR2 drives chondrocyte expansion (29) and is known to be involved in regulating the TNFRSF11B/

TNFSF11 protein (commonly referred to as OPG/RANK) ratio in articular chondrocytes, (30) a well 

described disrupted pathway in OA. (31) Down regulation of ROR2 inhibits the chondrocytes regene-

rative capacities, while disruption of the OPG/RANKL ratio has been shown to induce calcification and 

bone formation. (29;31;32) Another major player in joint development and cartilage biology is the 

Wnt pathway (33-36), in which ROR2 (37;38) and WLS (39;40) as well as a number of OA susceptibility 

genes are situated (34;41;42). While the role of Wnt signalling is evident in cartilage development 

and OA, WLS is specifically involved in the endochondral ossification process (39). 

While OA related differences in methylation in articular cartilage have also been reported by others 

(9;11;12) , our results imply that changes in epigenetic control only lead to expression differences at 

a limited number of genes. More specifically, at genes involved in either maintaining the chondrocyte 

phenotype or adversely pursuing the endochondral ossification lineage. Moreover, the detected 

local SNPs that affected either methylation or gene expression in articular cartilage of epigenetically 

controlled genes may inherently affect proper cartilage homeostasis and potentially affect OA suscep-

tibility. In this regard, we observed SNPs that influenced DNA methylation at t-CpGs, while no direct 

relation between the respective genotypes and gene expression was observed. Likely, a large number 

of factors obscure the direct regulatory mechanism between the local genetic background, t-CpG 

methylation and gene expression. Of note, these mechanisms likely arbitrate differential expression 
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among the genes in which we did observe differential t-CpG methylation but no difference in expres-

sion. SNPs and t-CpGs that appear to solely affect t-CpG methylation or expression respectively, are 

still of relevance, however, the transcriptional effects of these variants should be addressed in larger 

consortia. Further mechanistic studies, such as longitudinal measurements in animal experiments 

or actively perturbing the relevant genes in cell systems, are required to accurately address the 

hypothesis. 

In conclusion, we have here shown that OA related epigenetic differences need to be integrated with 

other sources of molecular data, such as genomic and transcriptomic, to enhance our understanding 

of the pathophysiological processes of OA. Furthermore, by integration of multiple layers of genome 

wide data we have identified genes, such as VIT, ROR2 and WLS, which are likely modulating OA 

pathophysiology and possibly reflect the loss of the chondrocyte’s maturational arrested state. Alt-

hough targeting DNA methylation seems unlikely to stand at the basis for developing treatments, it 

serves to deepen our understanding of the complex transcriptomic changes in OA affected articular 

cartilage. 
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