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Sjonnie Boonstraa,∗, Koen van der Blomb, Hèrm Hofmeyera,∗, Michael T. M. Emmerichb, Jos van Schijndela, Pieter de Wildec

aEindhoven University of Technology, The Netherlands
bLeiden Institute of Advanced Computer Science, Leiden University, The Netherlands

cPlymouth University, United Kingdom

Abstract

Multi-disciplinary optimisation of building spatial designs is characterised by large solution spaces. Here two approaches are
introduced, one being super-structured and the other super-structure free. Both are different in nature and perform differently
for large solution spaces and each requires its own representation of a building spatial design, which are also presented here. A
method to combine the two approaches is proposed, because the two are prospected to supplement each other. Accordingly a
toolbox is presented, which can evaluate the structural and thermal performances of a building spatial design to provide a user
with the means to define optimisation procedures. A demonstration of the toolbox is given where the toolbox has been used for
an elementary implementation of a simulation of co-evolutionary design processes. The optimisation approaches and the toolbox
that are presented in this paper will be used in future efforts for research into- and development of optimisation methods for multi-
disciplinary building spatial design optimisation.
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1. Introduction

Many engineers in the built environment experience optimi-
sation as a challenging task. This is because it is usually a time
consuming trial-and-error procedure, in which knowledge and
experience are first needed to create designs, that in turn need
to be assessed and possibly modified. Many research projects
involve the development of optimisation methods to create and
analyse designs to aid engineers. These developments concern
advanced optimisation methods, often specialised to small sub
problems (for a single discipline) in the design process. Such
a specialisation exists because building spatial design problems
are too large for a single design tool. Engineers are therefore
invaluable to the design process since their experience can re-
duce a design problem drastically. However, it cannot be ex-
pected that an individual engineer oversees the complete de-
sign problem, and thus complex relationships between the dis-
ciplines might go unnoticed, leading to suboptimal designs. For
this, multi-disciplinary building optimisation could be support-
ive, but it needs a method to handle the large design search
spaces involved. This paper aims at the development of such a
method by means of a toolbox that is presented here and asks
the question of how to represent design search spaces such that
optimisation methods find efficient solutions. This paper is an
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extension of [1], in addition to the contribution in [1] (a consid-
eration and proposition for building spatial design optimisation)
this paper discusses: a toolbox for building spatial design opti-
misation; and a toolbox demonstration.

Prior to reading this paper it is important to understand
the terminology concerning optimisation and data structures in
optimisation. Optimisation aims to minimise or maximise an
objective value by the variation of design variables, while at
the same time satisfying certain constraints. What is impor-
tant for optimisation is the representation of the design search
space, which is the selection of design variables that are used to
parametrise the solutions for the problem (design variables not
part of the selection are constant or depend on the representa-
tion itself). The representation affects the possibilities and per-
formance of the optimisation methods, e.g. a complex dynamic
data structure might be too difficult to handle by most types of
optimisation methods. In this paper, terminology will be used
as found for optimal process synthesis in chemical engineering,
where super-structure representations are distinguished from
super-structure free representations [2]. In a super-structure,
the design search space has a fixed number of design variables,
meaning all design alternatives are pre-encoded, which makes
for a static data structure. This enables the search for an opti-
mum in a systematic manner by using classical parameter-based
optimisation methods. Super-structure free optimisation uses a
design search space in which new design variables may origi-
nate or disappear, which can be seen as a dynamic data struc-
ture. Such a design search space allows for discovering unex-
pected new alternatives that were not pre-encoded. Typically,
super-structures allow for formulating optimisation problems
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in the language of mathematical programming (using equations
and inequalities). Free representations are formulated differ-
ently, for instance by describing initialisation procedures and
variation operators that form the design search space. The dif-
ference between super-structure versus super-structure free ap-
proaches is a recurrent theme in specific fields of optimisation
[2], whereas this topic has hardly been addressed for building
design.

The design search space used in this paper entails the lay-
out and dimensioning of building spaces, i.e. the building spa-
tial design. For this design search space, a super-structure and
a super-structure free approach have been developed and com-
pared. Moreover, a method to carry out transformations be-
tween the two representations will be discussed, which is en-
visioned to enable both approaches to efficiently cooperate on
a large design space. Finally a toolbox is presented, which is
created to develop and investigate different methods of building
spatial design optimisation.

2. Related work

In the literature, research on building optimisation can be
found that takes into account objectives concerning energy con-
sumption, as is carried out in [3, 4]; structural design in [5, 6, 7];
construction costs in [8]; and thermal building design [9, 10].
Also, optimisation is thoughtfully combined with Building In-
formation Modelling [11, 12, 13]. Different energy perfor-
mance criteria are combined in [14, 15].

A commonly used optimisation method is evolutionary op-
timisation, where design variables are stored in a so called
genome that can be modified by means of mutation and recom-
bination operators. Other optimisation methods are applied as
well, like gradient-based optimisation for topology optimisa-
tion in [16], or the analytical derivation of optimal truss layouts
in [17]. The use of optimisation methods for building perfor-
mance optimisation is however still not widespread and many
issues need to be solved. One difficulty is to allow for more
degrees of freedom in the optimisation. This is addressed in
this paper by defining design search space representations that
allow for variations of the (global) building spatial design.

The super-structure terminology finds its origins in the pro-
cess industry, where the optimal configurations of chemical en-
gineering plants are sought. For example, Jackson [18] de-
scribed the structure of flow configurations of chemical reactors
with a super-structure, although without explicitly mentioning
the term. Various recent works [19, 20, 21] use the terminology
for other engineering fields too. A super-structure prescribes
the possible design alternatives to be considered in optimisa-
tion, which results in a selection of alternatives. This limited
and fixed number of alternatives improves the chance of finding
the global optimum. A super-structure enables an optimisation
problem to be solved by mathematical programming, for which
standard solvers exist (e.g. [22]).

Super-structure free optimisation has been suggested to
overcome the limitations of super-structures for designing
chemical process configurations. Emmerich et al. [23] pro-
pose to use replacement, insertion, and deletion rules to modify

(mutate, recombine) designs in evolutionary algorithms. How-
ever, the development of these local modification operators re-
quires domain knowledge. Voll et al. [2] suggest a more general
framework that uses generic replacement rules in evolutionary
algorithms. A similar strategy is followed in [24], where it is
exemplified for the optimisation of decision diagrams. Other
examples of super-structure free design spaces include the work
found in [6, 25]. There are only a few optimisation methods that
can handle super-structure free representations, namely sim-
ulated annealing, evolutionary algorithms, and heuristic local
searches. Simulated annealing has been used in the design of
processes, e.g. in [26]. In the field of structural design, [27]
describes a super-structure free approach in the optimisation of
structural topologies. Moreover, in [28] simulations of a co-
evolutionary design process (these simulations can also be in-
terpreted as asymmetric subspace optimisation [29]) are used
to find a building spatial design for which a structural design
created by certain design rules shows minimal strain energy.

3. Building optimisation representations

A building spatial design representation determines—to a
large extent—the design space of the building spatial design
problem. Designs can be constrained by how they are rep-
resented e.g. a representation that is restricted to orthogonal
shapes cannot represent curves in a building design. Optimisa-
tion efficiency and success is dependent on the solution space
(i.e. design space), therefore it is important to consider the used
representation for building design optimisation. In this section
two representations are suggested, the supercube representation
and the movable and sizeable representation, which are based
on the super-structured and the super-structure free approaches
respectively.

3.1. Super-structure based representation

Design search space. A supercube (SC) is introduced to de-
scribe a building spatial design B by means of a super-structure
design search space representation. A supercube consisting of
cells is described by four vectors: w, d, h, b. Equation 1 shows
the variables used. Here b describes the existence of the cell
with indices i, j and k in space `, where b`i, j,k with a value ”1”
means the cell i, j, k is active and describes a part of space `
while ”0” means the cell is inactive. A space ` can thus be
constructed out of the supercube cells that are activated for that
space. Finally, wi, d j and hk describe the continuous dimension-
ing of the supercube’s cells. The entire supercube is used to per-
form design modification, therefore the complete design space
is described by the vectors w, d, h and b. Figure 1 shows the su-
percube notation for an example building spatial design. Build-
ing spaces are indicated by normal lines (and coarsely dashed
hidden lines), whereas cells can be recognised by finely dotted
lines. Each cell in the figure has a number left the left front
corner that indicates the building space it belongs to.
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    b1{1, 0, 0, 0, 0, 0, 0, 0},

    b2{0, 0, 1, 0, 1, 0, 0, 0},

    b3{0, 1, 0, 0, 0, 0, 0, 0},

    b4{0, 0, 0, 1, 0, 1, 0, 0}

Figure 1: Supercube representation of a building spatial design, space 2 and 4 are described by two cells each, the two right cells are not used to describe a room

i ∈ {1, 2, ..., Nw} wi ∈ R
j ∈ {1, 2, ..., Nd} d j ∈ R
k ∈ {1, 2, ..., Nh} hk ∈ R

` ∈ {1, 2, ..., Nspaces} b`i, j,k =

1, if celli, j,k ∈ space`
0, otherwise

(1)

Constraints and design modification. Building spatial design
modification is performed by re-assigning cells to building
spaces through changes of the binary variables and by modi-
fying the dimensioning values of the supercube’s grid. Con-
straints are introduced to the design search space so the search
can focus on physically and technically feasible solutions. Con-
straints can be checked by algorithms or, when stated as equa-
tions, they can be part of the selection and generation of solu-
tions. Stating constraints as equations has the advantage that
their algebraic structure can be exploited by the employed op-
timisation algorithms. The supercube representation is suitable
for such algebraic expression of constraints, three constraints
are presented here to demonstrate this suitability. The expres-
sions enable the use of mathematical programming techniques
like mixed integer non-linear programming (MINLP) which
contribute to the efficiency of the optimisation. It should be
noted that there may be differences between constraint repre-
sentations and constraint implementations (not shown here).
For example only ”1”-values in binary variables are stored in
memory to avoid inefficient constraint checking by large zero
spaces in vector b.

Condition 1: Non Overlap Overlaps of building spaces
are not allowed since they are not practical and might cause er-
roneous results in subsequent design analysis. This needs to
be checked because every space is represented by a separate
bit-mask (enumerated by `) of all cells in the supercube, thus
non-overlap is not automatically prevented in the representa-
tion. Equation 2 achieves this by taking the sum of each cell
over all masks. As a result of the binary representation, only if
such a sum is smaller or equal to one, no overlap exists at that
position.

∀i, j,k

Nspaces∑
`=1

b`i, j,k ≤ 1 (2)

Condition 2: Cuboid Spaces are constrained to cuboid
shapes for practicality and to delimit the design space to a man-
ageable size. To check this condition by means of an equation,
first the supercube will be extended with a single layer of cells
all around, and these new cells will be set to have no relation to
any space (”0”), this extension is described by equation 3:

∀` :
∀i, j,k ∈ {0, ..., Nw + 1}

× {0, ..., Nd + 1}
× {0, ..., Nh + 1} :

i = 0 ∨ j = 0 ∨ k = 0 ∨ i = Nw + 1 ∨ j
= Nd + 1 ∨ k = Nh + 1⇒ b`i, j,k = 0

(3)

Then for each building space `, in each direction pairs of ad-
joining lines that run through the middles of the cells are imag-
ined (e.g. for the z-direction a pair would be a line through
all cells i1 = 2, j1 = 2 and a line through all cells i2 = 2,
j2 = 3). Moving along a pair of lines, b`i, j,k values are processed
as shown in equation 4 for the z-direction (as an example, of
course all directions should be studied). To obtain a cuboid
building space, if there is a change from zero to one in the bi-
nary string it should occur at the same position (k-value) for
both lines. Otherwise in the equation the sums as shown will
hold different values and the difference will be non-zero. The
same should hold for changes from one to zero, as seen in the
second part of the equation. Note that equation 4 allows for the
occurrence of multiple changes from one to zero and from zero
to one. In other words a space could be cuboid, however could
still have internal voids, e.g. a courtyard. Therefore condition
3 is introduced next.

Condition 3: Ortho-Convexity This condition enforces
spaces to have a connected, ortho-convex shape. Note that, like
condition 2, this also relies on the layer of ”zero” cells as de-
scribed by equation 3. With equation 5 the sum is taken of
the number of times a change occurs from cell values zero to
one in a building space for each direction. Any building space
where there are multiple changes from zero to one is not fully
connected and therefore invalidated. Note, that in conjunction
with condition 2 this ensures that building spaces have a fully
occupied cuboid shape.
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∀` :

∀i1, j1,i2, j2 :


 Nh∑

k=1

k
(
1 − b`i1, j1,k−1

)
b`i1, j1,k

 −
 Nh∑

k=1

k
(
1 − b`i2, j2,k−1

)
b`i2, j2,k



 Nh∑

k=1

b`i1, j1,k


 Nh∑

k=1

b`i2, j2,k

 = 0

∀i1, j1,i2, j2 :


 Nh∑

k=1

k
(
1 − b`i1, j1,k+1

)
b`i1, j1,k

 −
 Nh∑

k=1

k
(
1 − b`i2, j2,k+1

)
b`i2, j2,k



 Nh∑

k=1

b`i1, j1,k


 Nh∑

k=1

b`i2, j2,k

 = 0

(4)

∀` :

∀i, j :
∑Nh

k=0

(
1 − b`i, j,k

)
b`i, j,k+1 ≤ 1

∀i,k :
∑Nd

j=0

(
1 − b`i, j,k

)
b`i, j+1,k ≤ 1

∀ j,k :
∑Nw

i=0

(
1 − b`i, j,k

)
b`i+1, j,k ≤ 1

(5)

3.2. Super-structure free based representation

Design search space. A movable and sizeable (MS) represen-
tation for spaces is introduced for the super-structure free de-
sign space representation. For this, a building is described with
a vector s that lists all the spaces. This vector is described by
equation 6, in which si represents a space, C the coordinates of
the space origin and D the geometry of the space with w, d and
h the width in x-, depth in y-, and height in z-direction, respec-
tively. Figure 2 shows the building spatial design of figure 1 in
the movable and sizeable representation.

s =
{
s1, s2, ..., sNspaces

}
where si = [C, D]

C =
[
x, y, z

]
D = [w, d, h]

(6)

Constraints and design modification. The definition of spaces
by location and dimensions allows an engineer to imagine the
spatial properties of the space, the engineer can therefore in-
tuitively define additional properties or modifications for that
space. This intuitivity does however not count for the build-
ing design itself, as relationships between spaces are defined
implicitly. The movable sizable (MS) representation is thus
most suitable for design modifications that operate on spaces
rather than the entire building design, given that such opera-
tions do not interfere with possible relations between spaces. In
the super-structure free approach, constraints are implicitly en-
forced by using design modifications that naturally follow the
constraints. Here, this is carried out via removal, scaling and di-
vision of spaces. As an example, a modification of the building
spatial design in figure 2 will be performed. Assume that after
(e.g. structural or building physics performance) analyses, it is
concluded that building space S 3 performs least well and thus
could better be removed as shown in equation 7. Accordingly,
the remaining spaces are scaled (equation 8) to restore the ini-
tial volume (V0) of the building design. To restore the number

of spaces, hereafter a (e.g. randomly selected) space is divided
(equation 9) into two new spaces, resulting in a new spatial de-
sign (equation 10). This process is further illustrated in figure
3 and has been used by [28] for real-world optimisation scenar-
ios.

s {s1, s2, s3, s4} → s {s1, s2, s4} (7)

s→ s · 3

√
V0

V
(8)

s1 {{x1, y1, z1} , {w1, d1, h1}}

→

s5

{
{x1, y1, z1} ,

{
1
2 w1, d1, h1

}}
s6

{{
x1 + 1

2 w1, y1, z1

}
,
{

1
2 w1, d1, h1

}} (9)

s {s2, s4, s5, s6} (10)

3.3. Discussion

So far two design space representations have been defined
for building spatial design optimisation: one suitable for the
super-structure approach and another for the super-structure
free approach. This subsection discusses the properties of the
two approaches on a conceptual level with reference to the two
presented representations. From the super-structure based rep-
resentation it becomes clear that its use requires expertise in
the fields of mathematics, optimisation, and the built environ-
ment. This requirement should not however exclude building
engineers from using this representation, because it can lead to
the optimal design with a high confidence level. Additionally it
can lead to new design insights when multiple solutions are as-
sessed, e.g. relationships between design variables may be dis-
covered. However, a design search space representation draws
a limit on which solutions can be considered by an optimisa-
tion algorithm. For the super-structure approach, this means
all solutions are pre-defined by the engineer who developed the
representation. This means that an optimum is only the best out
of the pre-defined solutions, and better solutions outside the de-
sign space representation will never be found. A larger design
search space could solve this issue, but will almost always lead
to a significant increase of computational time, and this without
a prior guarantee of better optima.
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Figure 2: Movable and sizeable representation of the building spatial design (first shown in figure 1)
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The super-structure free based approach to building optimi-
sation can be developed even when only expertise of the built
environment is available. Rules for modification of the consid-
ered design are then based on knowledge and experience in the
field. This approach can combine design variables in (math-
ematically) unexpected ways and may therefore lead to new
building designs that would otherwise not have been consid-
ered. It also provides a fast way to navigate a large design
search space, since it is not an exhaustive search of the en-
tire design search space. The approach rather is a selection of
other interesting parts of the design search space based on en-
gineering knowledge and experience. However, this dynamic
approach prevents the use of many classical search algorithms
(global and parameter based search) and instead heuristic rules
should be used to navigate the design space. Such heuristics
are prone to find local optima and cannot provide high levels of
confidence concerning these optima (although comparisons be-
tween heuristics and global searches sometimes result in match-
ing results). Compared to the super-structured approach, new
design insights are more difficult to find when using heuristics,
because fewer solutions are analysed and design evolution fol-
lows a path that is defined by the heuristics.

To consider large design search spaces, it can be concluded
that both approaches are eligible, although both have disadvan-
tages as well: The super-structure approach is too costly in
terms of computational effort and the super-structure free ap-
proach cannot provide the optimum with a high level of con-

fidence. Therefore it is proposed to combine both approaches.
Additionally, such a combination could enable the optimisation
to discover both surprising designs and new design insights.

The presented representations are—in combination with
the presented constraints—limited to only cuboid spaces. Re-
leasing the cuboid spaces constraint will allow more complex
spaces, which is desirable in real world design scenarios. This
is possible with both representations, although the SC represen-
tation would require a redefinition of some of the constraints
and the MS representation requires a space to be defined as a
collection of subspaces. This is however not implemented in
the toolbox to avoid the additional complexity in the toolbox
as it would distract from the focus of this research, namely to
research and develop optimisation methodologies.

In this paper each approach, super-structured and super-
structure free, is supplemented with one representation each.
It could be questioned if other representations are also suitable
or in some aspects even better for the proposed optimisation
approaches. The above mentioned limitations might then be
lifted. An extensive study into such alternative representations
could also lead to well argued choices for specific representa-
tions. Additional representations are however not considered
for this paper as the presented representations are sufficient
for the objectives of this research and are therefore considered
good. Moreover, an extensive study would distract from the
before mentioned focus of the research.
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3.4. Combination of super-structured and super-structure free
approaches

The combination of the approaches above is proposed by
alternately employing each approach during the optimisation
process for the same problem. This alternation requires mutual
transformation between the two representations. To enable this,
two algorithms have been developed which are presented in this
subsection.

Supercube to movable and sizeable. To transform a building
spatial design’s supercube representation into the movable and
sizeable representation, it is suggested here to first find the
smallest and largest indices i, j, k for the set of cells describing
each space ` as shown in equation 11. Space coordinates x, y, z
can then be found as shown in equation 12, with the notion
that if the smallest index equals 1, there is no term in the sum,
and the degenerated sum is evaluated as 0 (which is appropriate
here). The space dimensions are computed in a similar way us-
ing the minimum and maximum indices as shown in equation
13.

i`min = min({i | b`i, j,k}) i`max = max({i | b`i, j,k})
j`min = min({ j | b`i, j,k}) j`max = max({ j | b`i, j,k})
k`min = min({k | b`i, j,k}) k`max = max({k | b`i, j,k})

(11)

x` =

i`min−1∑
p=1

wp, y` =

j`min−1∑
q=1

dq, z` =

k`min−1∑
r=1

hr (12)

w` =

i`max∑
i=i`min

wi, d` =

j`max∑
j= j`min

d j, h` =

k`max∑
k=k`min

hk (13)

Movable and sizeable to supercube. A transformation from
movable and sizeable to supercube first requires three steps to
compute the supercube dimensions w, d, h. Step one—for each
space—the minimum and maximum coordinate values should
be found, i.e. for each space: {x, x + w}; {y, y + d}; {z, z + h}.
Step two, all these values are grouped into three lists (each for
either x, y or z values), duplicate values are removed, and then
each list is sorted in ascending order. Finally in the third step,
vectors w, d, h are computed from these lists. For example, w
is computed as wi = xi+1 − xi for every i ∈ [1, ..., n − 1] where n
is the number of values stored in the sorted list.
Regarding vector b, for each space ` and for each cell i, j, and
k the (derived) cell’s coordinates are compared with the coor-
dinates of the considered space. A cell is assigned to the con-
sidered space if the cell coordinates are completely within the
coordinates of the space, e.g. for the x-direction if: xspace ≤

xcell < xspace + wspace.

Validation. The above algorithms have been validated in [1]
for overlaps in spaces, non-connected spaces, truncation er-
rors, alterations in space identification, and fragmented spaces.
Although errors due to truncations can occur and fragmented
spaces may change a building spatial design, it was found that
for the purposes of the toolbox the errors are insignificant and
that fragmented spaces will not occur in the presented work.

4. Building analysis toolbox

A toolbox to evaluate building spatial designs has been de-
veloped in the form of a C++-library. This library forms an
environment in which building spatial design optimisation can
be developed and researched. The toolbox currently contains
the following: structural design analysis, building physics anal-
ysis, spatial design representations and a visualisation of these.
Figure 4 shows the UML class diagram of the toolbox plus the
modules that a user should still define, the toolbox’s visuali-
sation is omitted for brevity. The diagram shows that a user
should define an optimisation method but also the so-called de-
sign grammars. These grammars generate domain specific in-
formation that is required to evaluate the objective functions in
that domain. A grammar will as such take a building spatial de-
sign as input to generate domain specific information based on
user defined design rules. The toolbox can be expanded to other
disciplines as well by introducing new grammars, for exam-
ple monetary or environmental costs could be included by im-
plementing design rules to compute a model to calculate these
costs for a building spatial design. This section first discusses
the building spatial design representations, then structural- and
building physics design analysis in the toolbox, and finally a
benchmark is presented.

4.1. Spatial design

The spatial design environment consists of three main parts,
namely the models for the MS-representation and the SC-
representation but also a conformal model. Here a conformal
model is the representation of a building design in which ge-
ometry entities like line segments, rectangles or cuboids do not
intersect with each other, but their vertices are allowed to coin-
cide. For example when two walls are connected by a T-joint
then the continuous wall is split into two rectangles at the inter-
secting wall, see figure 5. This and similar splitting procedures
are repeated in the conformation process until all intersections
between spaces, surfaces, and line segments are represented in
a model of smaller geometry entities. A conformal model is
useful because domain relevant relationships vary over building
edges, walls or spaces. For example, two walls with a T-joint
connection will in a finite element model only be structurally
connected if the nodes—at the joint—of both walls coincide.
The conformation procedure enables a structural grammar to
find such a joint so an appropriate design can be created ac-
cordingly.

Building representations. Both the SC- and MS-representation
have been implemented in separate classes, as illustrated in fig-
ure 6. Conversion in either direction between the SC- and MS
representations is implemented within those classes as well.

Conformation. The conformal building model class is elabo-
rated in figure 7, the subclasses that form the conformal model
class are grouped into geometry entities and building design en-
tities. Building design entities describe the topology of a build-
ing spatial design of the conformal model based on a spatial
design in the MS-representation (figure 4). Geometry entities
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describe a building spatial design in a geometry model such
that it is completely conformal. It is important to distinguish
between the two because domain specific properties can depend
on both geometric relations and building design relations. For
example when a wind load is acting on a building wall that is
described by multiple rectangles, then the rectangles are used
to generate structural slabs, but the wall’s surface information
is used to find the loads acting on these slabs. Geometry entities
and building design entities are realised with lower dimensional
entities and they are associated with the higher dimensional en-
tities within their typology (i.e. design or geometry), e.g. a
rectangle is realised with four line segments that on their turn
are realised with two vertices each and also an association from
that rectangle to one or more cuboids is made. Finally, rela-

tions between corresponding design and geometry entities are
stored, e.g. a surface is associated to the rectangles that describe
its conformal geometry and all surfaces that are described by a
specific rectangle are associated to that rectangle. Adding and
maintaining the mapping of figure 7 during the conformation of
a design prevents a later iterative search for relevant relation-
ships between geometry and building design entities.

Conformation can be started after a conformal model is ini-
tialised with all the building design entities, which can be de-
rived from a building spatial design in the MS-representation.
While initialised, each building design entity is provided with
one corresponding geometry entity and all relevant relation-
ships between those entities are mapped subsequently. Confor-
mation then starts with a search in the geometry model for in-
tersections between line segments and rectangles and other line
segments, a vertex is added to the geometry model if such an
intersection exists, see figure 8. Accordingly the cuboids, rect-
angles, and line segments in the geometry model are checked
with all the vertices in that model. When a vertex lies within
a cuboid, rectangle or line segment then immediately this ge-
ometry entity is split at the location of the vertex by a splitting
algorithm, see figure 8 for the example of a new vertex where
two line segments intersect. A splitting algorithm provides the
geometry model with new geometry entities and updates these
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entities with all the relational mappings that are held by their
parent (i.e. the entity that was split) and the parent’s associated
entities, the parent is then tagged for deletion. It should be noted
that a new geometry entity is only added to the geometry model
if it is geometrically unique within the model, if it is not then
the relational mapping of the matching entity is updated with
the mapping of the new entity. Splitting of geometry entities
invokes a recursion because new vertices can be created when
an entity is split. These new vertices are first checked with all
associated entities, which can be found by using the mapped
relationships of the parent entity. When new intersections are
found while splitting a geometry entity then these will first be
split, thereby a recursion of splitting algorithms is invoked in
the conformation process. Geometry entities that were tagged
for deletion during the conformation process are deleted after
all geometry entities have been checked for intersecting ver-
tices.

4.2. Structural design

The structural design of a building is here an assembly of
structural components, loads, and boundary conditions, e.g.
columns; beams; slabs; wind loads; floor loads; and the con-
straints that are imposed by a foundation. A structural design
of a building needs to be evaluated on structural safety by as-
sessing the strength, stiffness, and stability in the design. Such
an evaluation can for example be carried out analytically or by
means of the commonly used Finite Element Method (FEM).
The toolbox employs FEM, in which the structural components
of a design are modelled into smaller finite elements, nodal
loads, and nodal constraints. The structural stiffness of each
element is then derived for each node with respect to the posi-
tions of all other nodes in the element. The stiffness terms of
each element can then be assembled into a so-called global stiff-
ness matrix K, and together with the nodal loads vector f and

boundary conditions it is used to solve for the nodal displace-
ments vector u given the equilibrium condition in equation 14.

f = Ku (14)

The optimisation objectives, i.e. the structural responses,
can be calculated once vectors u and f and matrix K have
been computed. Responses that are traditionally used for struc-
tural design evaluation are strains, stresses, reaction forces or
the displacements themselves and recently—for optimisation
purposes—strain energies are used as well.

Element formulations. Three different element formulations
have been implemented for structural design analysis in the
toolbox: one for trusses, one for beams and one for flat shell
elements. The element stiffness matrix of the truss elements
is derived for an element with two nodes, each having three
degrees of freedom (ux, uy, uz; with u for displacement) as is
presented in [30]. The beam elements use an element stiffness
matrix that has been derived for a two node element with each
six degrees of freedom (ux, uy, uz, rx, ry, rz; with r for rotation).
The element formulation—as presented in [31]—accounts for
axial forces, bending and torsional moments, and shear forces
in two directions. Finally the formulation for a flat shell ele-
ment is derived for a four node shell element with six degrees
of freedom per node (ux, uy, uz, rx, ry, rz). The formulation is a
combination of a derivation for in-plane-behaviour as presented
in [30] and out-of-plane behaviour [32] for which 2 × 2 numer-
ical integration (Gaussian quadrature) is used to represent the
displacement fields in the elements. Also a drilling stiffness is
added to the stiffness matrix, its terms are equal to the mean
of all terms in the element stiffness matrix in which the in- and
out-of-plane behaviour are already determined. A flat shell el-
ement using this formulation will offer resistance to in-plane
normal forces, in- and out-of-plane shear forces, and torsional,
drilling and bending moments.

Meshing. Meshing is the process of generating a number of fi-
nite elements, nodal loads and nodal constraints that together
make up the structural components in a structural design. As
such each structural component is meshed into a given num-
ber of elements or into a given size of elements. The toolbox
currently supports a meshing method based on a given number
of elements, in which all structural components in a structural
design model are meshed into an equal number of elements in
each of their dimensions. This meshing method requires one in-
put variable for meshing, i.e. n for the number of equally sized
divisions along each side of an element. The method meshes
one dimensional components into a number of elements equal
to n and two dimensional components into a grid of n × n ele-
ments. Where the grids of the two and three dimensional com-
ponents are formed by connecting the dividing points on op-
posite sides to each other. This method is a simple meshing
approach but still results in qualitatively good meshes as long
as the meshed components stay orthogonal and as long as as-
pect ratios of component shapes do not become too large (i.e. >
5:1).
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Elements, nodes, nodal loads and nodal constraints can be
added to the FE-model once a component has been meshed.
Elements and nodes are initialised using the meshed points and
the properties that are stored for a component. Constraints on
a component are simply applied to all nodes that were meshed
for that component. Finally loads are also applied to all meshed
nodes, however their magnitude should be determined. This
is carried out by splitting each element using the midpoints of
line edges and quadrilaterals as shown in figure 9, the division
temporarily creates new line segments or areas that are used to
determine the magnitude of a load on a node in the element.
Loads from different elements that share a common node are
summed for that node.

Assembly and solving. A number of steps have to be com-
pleted before the assembly of the FE-model into the form of
equation 14 can start. Beginning with the initialisation of the
nodes, where nodes are first checked for duplicity before they
are added to the model. Elements are initialised thereafter, this
process includes the following steps: associating nodes to the
element; ordering of the associated nodes (the order of which
is inherent to the derivation of the element formulation); updat-
ing which degrees of freedom (DOF’s) are active in the FEM-
model; and finally determining the value of the stiffness terms
in the element stiffness matrix. After all the elements in a com-
ponent have been initialised, then also the loads and constraints
that act on it will be added to the nodes to which they have been
meshed. Assembly of the FE-model can begin after all nodes,
elements, loads and constraints have been initialised, and starts
with indexing all DOF’s in the system by iterating over each
element’s nodal freedom signature. Accordingly each term in
each element stiffness matrix can be transformed into triplet
form using the global DOF-indices, the complete global stiff-
ness matrix K is as such defined in sparse form by a collection
of triplets. Accordingly the load vector f is computed by ini-
tialising a null vector to the size of the number of DOF’s, each
load in each node is iterated and added to the load vector using
the global indices of the nodal DOF’s. Constraints are handled
as follows, global stiffness terms that depend on a constrained
DOF are replaced with 1.0 if they are on the diagonal (to pre-

vent singular systems) and with 0.0 in any other case, terms in
the load vector that act in a constrained DOF are replaced with
0.0.

The toolbox uses the Eigen C++ template library [33] for
all linear algebra in the finite element analysis, which provides
vector templates, matrix templates, solvers and other linear al-
gebra related algorithms. As such the stiffness matrix and the
load vector have been assembled into instances of classes from
the Eigen library and accordingly the system can be solved by
using one of the solvers in the library.

Topology Optimisation. Another function that has been added
to the structural design package is topology optimisation [16].
Topology optimisation aims to minimise an objective—e.g.
strain energy—in an FE-model by varying element densities be-
tween 0 and 100% while the total available material volume is
constrained to a fraction of the total volume of elements. This
method leads to structural topologies within an FE-model, fig-
ure 10, which are then to be interpreted as a new structural
design by either a designer or computer algorithm. Topology
optimisation will be used in the toolbox to verify simulations
of co-evolutionary design [28] in section 4.4. Also within the
framework of this paper, it has been used to fine tune struc-
tural designs that were generated by an iterative design gram-
mar, which builds a structural design part by part based on con-
current assessments of the structural performance [34].

4.3. Building physics

Building physics is a broad research field, it includes studies
in e.g. acoustic-, moisture-, insolation-, or thermal behaviour of
a building. Building physics analysis in the toolbox is currently
limited to an evaluation of thermal building behaviour. Sev-
eral different methods can be used to simulate this behaviour,
for example the Finite Element Method (FEM), Computational
Fluid Dynamics (CFD) or Resistor-Capacitor-networks (RC-
networks). Each of these methods are particularly suitable for
different levels of detail, however the simulation time and com-
plexity of the method also increase with a higher level of de-
tail. The RC-network approach is used in the toolbox for two
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reasons, firstly only a low level of detail is required, this is pre-
ferred because all information in the building physics model is
generated by a design grammar thus more detail would also im-
ply that a more sophisticated grammar is required. Secondly it
is fast and thus it can be used to evaluate many designs in a rela-
tively small amount of time, which is relevant for some optimi-
sation methods. In [36] it is investigated how different simula-
tion methods can work together by inversely modelling (i.e. fit-
ting a model to data) the building thermal design to results from
a more complex and detailed model or from real world data. It
is concluded that the simple surogate model could still simu-
late the same results when comparing it with the base model.
An RC-network of a building can itself also have different lev-
els of detail, for example phenomena like ventilation or solar
irradiation add extra detail to the network. In [37] it is investi-
gated how different levels of detail in an RC-network influence
the simulation results. It was concluded that the most simpli-
fied RC-network models still simulate results that are close to
real world thermal behaviour of buildings. It should be noted
that the aforementioned research uses inverse modelling to de-
fine the parameters in the RC-networks, as such a direct mod-
elling approach may not yield realistic values. However it can
be concluded from the mentioned research that RC-networks
do simulate realistic behaviour. These notions are important
when real world problems are modelled, but for the building
physics designs in the toolbox—that are derived from only a
spatial design—a model is not expected to yield realistic quan-

titative values, but they are expected to yield realistic qualitative
behaviour.

The terminology for RC-networks is borrowed from elec-
trical engineering, where voltages and currents are simulated in
a network of resistors and capacitors. Electrical components
i.e. resistors and capacitors form a network in which each com-
ponent describes a relationship that can be expressed in differ-
ential form. Thermal building properties can be mapped in a
similar fashion, where a resistor is now modelled by the ther-
mal conduction properties- and a capacitor by the heat capacity
of the constructions and spaces in the building, see table 1. A
system of first order ordinary differential equations (ODE’s) can
be assembled from the relations that each of the components in
the network describe. The system of ODE’s can then be used
to simulate the dynamic problem that is described by the RC-
network by solving the system over a specified simulation time,
e.g. by an Eulerian method.

Table 1: RC-network components, the relations describing heat flux Φq, and
the units for temparature T ; heat resistance R; heat capacitance C; time t; and
heat irradiation S

Component Relation Units

R

T
1

T
2 Φq = T2−T1

R

T [K]
R [K/W]

C
T Φq = C · dT

dt

C [J/K]
T [K]
t [s]

S T
Φq = S S [W]

A building thermal RC-network is here modelled by first
defining at which points in a building spatial design the tem-
perature is of interest for the user or computer algorithm. A
network is then created by connecting these temperature states
(points) to other temperature states based on their geometric re-
lations. Each connection enables a heat flux from one temper-
ature state to another and should be defined with one or more
resistances against this flux, i.e. the resistors. The resistance
is computed from the heat conduction properties of all material
that resists a heat flux between two temperature states, e.g. the
insulation or construction in a wall. Capacitors are defined by
the heat capacitance of a specific amount of material that is lo-
cated around a temperature node, e.g. material in a wall or the
air inside a space. Different building spatial detail levels can be
modelled using this methodology e.g. a single building wall but
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also a complete building, see figure 11.

System of temperature states. A building physics model in the
toolbox is structured in a system of temperature state objects,
see figure 12 for the UML class diagram. Here temperature
states are specified into two child classes: one to resemble
dependent and the other to resemble independent temperature
states. Dependent temperature states (e.g. walls, floors and
spaces) are simulated, whereas independent temperature states
are input (such as weather data) and thus non dependent on the
modelled system. Each dependent state is defined with a ca-
pacitance, and each association between states is defined with
a resistance. The system of state objects can then be translated
into a system of ordinary first order differential equations as
expressed in equation 15, where x are the dependent states, u
are the independent states, and A and B describe the system of
resistors and capacitors. Additionally, for implementation pur-
poses, two different dependent states—namely building con-
structions and building spaces—are characterised in the tool-
box.

ẋ = A · x + B · u (15)

Building constructions are here (parts of) walls and floors
that consist out of one or more layers of material that each have
a certain thickness and are represented by one temperature point
in the RC-model. In the toolbox a construction is implemented
as an aggregation of layers that each consist of a material. The
resistance of a construction is not constant over its cross section.
Therefore a location within the construction should be selected
at which a lumped value for resistances and capacitances is to
be determined, see figure 13. In the toolbox this point is by de-
fault selected at half the thickness of the modelled construction.
A construction’s resistance [K/W] from that point to its adja-
cent temperature states is calculated according to equation 16,
where A is the wall’s surface in [m2], j denotes each contribut-
ing layer, ` thickness in [m], and λ a heat conduction coefficient
in [W/(K·m)]. The capacitance of a wall Cw [J/K] is calculated
as the sum of the capacitances of each material k in the build-
ing construction. This can be obtained following equation 17,
where Ck is the specific heat capacity in [J/(kg·K)], and ρ the
density in [kg/m3] of each material. The location of the tem-
perature state over the surface can be left undefined, under the
assumption that the capacitances and resistances of a modelled
construction are constant over its surface and that boundary ef-
fects are not taken into account.

R =

∑
j=1

` j

λ j

 /A (16)

C =

∑
k=1

Ck · ρk · `k

 · A (17)

Spaces are a special type of dependent temperature state in
an RC-network model, because they are strongly influenced by

heating, cooling, occupation, and ventilation. Currently heat-
ing, cooling and ventilation are accounted for in the simulation
program, but thermal loads of e.g. people and equipment are
not accounted for. This is to avoid an over-complication in the
design grammar for a building physics design, since these loads
would require design information such as room function, occu-
pation, and time profiles. Currently only the number of Air
Changes per Hour (ACH) and the total available heating and
cooling power in spaces have been defined in a constant time
profile.

The capacitance Cs of a space i is calculated with equa-
tion 18, where Cair is the specific heat of air in [J/(K·kg)] (set
to 1000 J/(K·kg)), ρair the density of air in [kg/m3] (set to 1.2
kg/m3) and V the volume of the space in [m3]. The factor 3 in
the equation is an arbitrary number that takes into account any
additional capacitance in the space, e.g. furniture. The resis-
tance from a space to a construction is set to 0.14 K/W which
is an empirical value for an air layer of approximately 10 mm.

Cs,i = V · ρair ·Cair · 3 (18)

Ventilation of a space is modelled as a loss of heat via a re-
sistance to the weather profile, this is based on an air mass flow
between the space and outside. The heat flux due to ventila-
tion Φq,vent in [J/s] (i.e. Watt) in equation 19 is first expressed
based on the air mass flow and subsequently also equated to
the heat loss as modelled by a resistance Rvent in [K/W]. Solv-
ing the equation for the resistance yields equation 20 in which
the flow of mass ṁ in [kg/s] can be substituted by equation 21
to yield equation 22. Here T is the temperature in [K], R the
resistance that models the heat loss due to ventilation with air
of another temperature state [K/W] and ACH is the ventilation
rate in number of air changes per hour.

Φq,vent = ṁ ·Cair · (T2 − T1) =
T2 − T1

Rvent
(19)

Rvent =
1

ṁ ·Cair,
(20)

ṁ = ρair · V ·
ACH
3600

(21)

Rvent =

(
Cair · ρair · V ·

ACH
3600

)−1

(22)

Heating and cooling of spaces is modelled as a direct flux to
the capacitance of the space’s temperature state. A temperature
control switches these fluxes on or off whenever the temperature
in a space rises or falls below a set temperature point. This tem-
perature control should be a gradual process, to prevent an over-
reaction when a set temperature point was exceeded by only a
small amount. This is achieved with a P-switch, that expresses
the flux as a tri-linear function in which the simulated heating
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power is dependent on the temperature of a state. Equation 23
and figure 14 illustrate the function of such a P-switch for heat-
ing, here Tset is the temperature set point, Tvar is the length of
the temperature range over which the heating (Qheat) or cool-
ing power is variable (set to 10 ◦C), and Qmax is the maximum
amount of power.

Qheat =


Qmax for T < Tset − Tvar

Qmax ·
Tset−T

Tset−Tvar
for Tset − Tvar ≤ T < Tset

0 for T ≥ Tset

(23)

Independent state objects resemble external influences to
the model, e.g. weather and soil. Information regarding these
states should be provided in the form of a time profile of tem-
peratures or irradiations by the user of the toolbox. Time pro-
files can be arbitrary design values or real world measurements.
Currently the toolbox can only use air temperature for simula-
tions, data like solar irradiation is not considered.

Assembly and simulation. The assembly of the model starts by
initialising temperature states for all spaces to the system. Ac-
cordingly the temperature states of building constructions are
initialised to the system, this process also handles the associa-
tion with neighbouring states. On initialisation, dependent and
independent temperature states are indexed with respect to their
positions in state vectors x and u. The state matrices A and B
can be initialised once all temperature states have been added
to the system. Once the RC-network is assembled into a sys-
tem of ODE’s in the form of equation 15 it is solved for every
consecutive time step in the simulation. After each time step
the values of the independent temperature states are updated. A
C++ library that offers generic implementations of algorithms
for numerical solving of ordinary differential equations is em-
ployed to solve the system, which is the odeint library [38] that
is part of an overarching library: Boost [39].

4.4. Toolbox benchmark

Building spatial design optimisation has been carried out
in [28] by means of simulations of co-evolutionary design pro-
cesses to minimise the strain energy in the structural design.
The toolbox presented here has successfully been benchmarked
with one of the simulations that were performed in that paper,
see figure 15. The used structural design grammar creates—for
each space—four flat shell components for the walls of a space
and one flat shell component at the top of a space. Each flat
shell component in the structural design is assigned a thickness
of 150 mm and material properties that resemble concrete, i.e. a
Young’s modulus of 30000 N/mm2 and a Poission’s ratio of 0.3.
A live load case of 1.8 kN/m2 in negative z-direction is applied
to each horizontally aligned flat shell component. Additionally
four wind load cases (in +x, +y,−x,−y directions) are applied
to each vertically aligned flat shell that does not have a space at
both sides of the flat shell. Each wind load case consists of three
different types, i.e. pressure (1.0 kN/m2), suction (0.8 kN/m2)
and shear (0.4 kN/m2), which are applied to a flat shell corre-
sponding to the wind direction and the direction of the normal
of the flat shell on the side where no space is present. Con-
straints are applied to each of the bottom corners of spaces that
are located at the bottom of the building spatial design. Each
structural component is then meshed into 10 by 10 elements,
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completing the structural design grammar. The optimisation
procedure is carried out by first performing topology optimisa-
tion on the structural design, which results in an optimal density
for each structural finite element. Element densities are clus-
tered into eight clusters using the k-means algorithm and sub-
sequently the elements in the four lowest clusters are deleted.
The number of deleted elements is then used as a measure for
the performance of each space and each space is then sorted
with respect to the number of deleted elements. Accordingly
half of the spaces with the highest number of deleted elements
is removed from the building spatial design and additionally
any remaining spaces that have an equal amount of deleted el-
ements as one of the removed spaces are also removed. Finally
all remaining spaces are split and subsequently scaled in x- and
y-dimensions by a factor of

√
2 to bring the design back to its

original number of spaces and volume, although it should be
noted that spaces and thus volume may be lost in the previous
step. This procedure is performed iteratively until a stopping
criterion has been reached, which is here set to the third itera-
tion.

It should be noted that some differences between text and
code were found in [28]. Firstly in the distribution of live load-
ing it is described that loads are a half at the edges and a quarter
at the corners of flat shell components, however this is only
the case when these loads are located somewhere on the sur-
face of the bounding box of the complete building spatial de-
sign. Secondly, clustering of element densities is not performed

after clusters are initiated. Also, for topology optimisation it
should be noted that element volume sensitivities with respect
to changes in element density are not considered in the compu-
tation of the gradient and that the volume constraint is imple-
mented as a constraint that keeps the average density over all
elements constant. Finally the magnitude of the live loading is
given as 1.8 kN/m2, while it is actually simulated as 7.2 kN/m2.
These differences were temporarily implemented in the toolbox
presented here to successfully benchmark it to that used in [28].
To evaluate program efficiency both the code as used in [28]
and the toolbox that is presented in this paper have been used
to simulate the problem of figure 15 on an HP Z440 worksta-
tion (Intel Xeon E5-1650 v3 @3.5 GHz, 16 GB RAM @1600
MHz), simulation times were around 22 hour for the code used
in [28] and 33 minutes for the toolbox presented here.

5. Toolbox demonstration

This section presents some early work in the development
of simulations of co-evolutionary design processes, of which
those presented here are algorithms that remove and add spaces
based on space performances, see figure 16. The presented
work shows the promise of simulations of co-evolutionary de-
sign processes over a super-structured approach, but it also
shows the challenges that should still be overcome. Only super-
structure free optimisation is demonstrated here, application
of the toolbox in super-structured optimisation can be found
in [40, 41, 42, 43], in which the supercube representation is
used with a multi-disciplinary evolutionary optimisation algo-
rithm to optimise for structural performance and building sur-
face area.

Simulation of co-evolutionary design processes. The simula-
tion of a co-evolutionary design process is here elaborated as a
process of design modifications that are based on design perfor-
mances, this with the goal to improve the performances of the
design at hand, see figure 16. Design modification is the pro-
cess of removing and adding spaces at locations where it would
be appropriate with respect to a design’s performance. Before
modification all performances are stored in matrix F which is
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Figure 15: Successful benchmark of the toolbox with a reference case that is presented in [28]

indexed by space i and discipline j. F is normalised into ma-
trix P using equation 24, where min j and max j are respectively
the minimum and maximum terms in the jth column. For each
space i and each discipline j the normalised space performances
are stored. For single disciplinary modification all spaces are
sorted in a list in ascending order of normalised space perfor-
mance. Multi-disciplinary modification would require to first
evaluate the normalised space performances of each discipline
per space and express this evaluation into one normalised space
performance before such a list can be computed. The top half
of the spaces in the ordered list of spaces is then removed from
the design, and to ensure a symmetric design also any remain-
ing spaces that have the same normalised space performance
as the last removed space are removed. Accordingly all spaces
are split in half along their longest horizontal dimensions, or
if both are equally long then they are split in half along the x-
direction. Note that if more than half of the spaces are removed,
then this method leads to a loss of spaces, which is allowed for
the demonstration. Finally the horizontal dimensions in the de-
sign are scaled with a factor of

√
2 to bring the design back to its

original volume (assuming that no spaces were lost). One cy-
cle of the simulation of co-evolutionary design processes is then
completed, a stopping criterion terminates the process, which is
in this demonstration met after two cycles have been completed.

Pi, j =
Fi, j − min j

max j − min j
(24)

It should be noted that the process described above is not
an explicitly directed search for better performances. As such it
can also not be defined as a global or local search. Also no hard
constraints to guarantee valid designs are defined. However
knowledge and experience can be used to define design mod-
ifications such that better and valid designs can be found, e.g.
[28] shows how well this can work. Moreover, using different
design modifications together can improve the chance to find
better performing designs. Although this is an interesting topic,
it is not elaborated here for brevity and it is not the purpose of
the demonstration to address this topic. Moreover it should be
noted that the demonstration entails only single disciplines. A
multi-disciplinary search would introduce multiple new chal-
lenges to this paper, multiple disciplines have—for clarity and
brevity—not been considered in the demonstration.

5.1. Structural building design

The objective is to minimise the strain energy of a building
spatial design (sometimes referred to as compliance), which is
measured here by determining the total sum of strain energy
that is acting in all structural design elements in the structural
design that has been created for the spatial design. The struc-
tural performance per building space is measured by the sum of
all strain energy acting in elements that are in or adjacent to a
space (note that one element’s strain energy might contribute to
more than one space). Here, contradictionary to the objective,
a low space compliance is considered bad performance and a
high space compliance is considered good performance. This
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Figure 16: Process diagram of the simulation of co-evolutionary design processes that is used for the toolbox demonstration

contradiction is common for compliance based optimisation, it
is also found in e.g. topology optimisation. For this simulation
a design grammar is defined by assigning a flat shell component
with a thickness of 150 mm, Youngs modulus of 30000 N/mm2

and a Poisson’s ratio of 0.3 to all rectangles in the conformal
building spatial design that belong to a surface. A live load
case is defined with loads of 5.0 kN/m2 in −z direction that are
added to each horizontal flat shell component and wind loads
are assigned to each surface in the conformal design that is not
related to more than one space. Four load cases are defined for
these wind loads, +x, +y,−x and − y, a wind load itself is di-
vided into three components, pressure 1.0 kN/m2, suction 0.8
kN/m2 and shear 0.4 kN/m2, which are each added to a surface
depending on its orientation and the wind direction. Finally the
design grammar applies line constraints to each edge at the bot-
tom of the building spatial design, the structural design is then
meshed using 10 divisions in each dimension and it is solved
using an LDLT solver [33].

Figure 17 shows the results after two cycles. After the first
cycle there is a clear improvement of the strain energy in the
structural design, however after the second cycle the strain en-
ergy is even higher than that of the initial design. The results
are somewhat similar as the benchmark in figure 15, where a
similar effect is observed. This shows that this approach is not
a directed search, however it also shows that significant im-
provements could be found after just one iteration. These quick
improvement steps suggest that a super-structure free approach
may influence optimisation times significantly when this insight
is used to limit a super-structured design search space to for ex-
ample a maximum of two stories. From a structural point of
view the results may be explained by the fact that flat buildings
are more optimal since tall buildings lead to an accumulation of
structural loads, whereas flat buildings transfer loads towards
the foundation in a shorter path.

5.2. Thermal building design

The objective is to minimise the heating and cooling energy
that is required to maintain the building between set tempera-
tures. This is measured by simulating the heating and cooling

energy demand in each space, the total energy demand is then
computed as the sum of heating and cooling energies over the
simulation time and over each space. To realise a thermal simu-
lation, the building physics grammar assigns one building con-
struction to each of the rectangles that belong to a surface in the
building spatial design that consists of a 150 mm thick layer of
concrete with a specific weight of 2400 kg/m3, a specific heat
capacity of 850 J/(K·kg) and a thermal conduction coefficient of
1.8 W/(K·m). Rectangles that belong to only one surface (i.e.
one adjacent space or external wall) are assigned an additional
layer to their construction, namely a layer of insulation of 150
mm thick with a specific weight of 60 kg/m3, a specific heat
capacity of 850 J/(K·kg) and a thermal conduction coefficient
of 0.04 W/(K·m). The temperature set point for heating is set at
20 ◦C and the set point for cooling at 25 ◦C, the total available
heating and cooling power in spaces is set to 100 W/m3. The
ventilation rate for each space in the design is one air change
per hour. Real world data that was measured in De Bilt in The
Netherlands by the Royal Netherlands Meteorological Institute
(KNMI) [44] is used for the temperature profile of the weather
and a constant temperature of 10 ◦C is used for the temperature
profile of the ground. The building physics model is built up as
follows, an object for a space is initialised for each space in the
building spatial design. Accordingly objects for walls or floors
are initialised for each rectangle that belongs to at least one sur-
face, where the type is determined depending on the rectangle’s
orientation. Instances of walls and floors are linked to instances
of spaces using the relational mappings of the conformal model.
If a wall or floor is linked to only one space, then also a link to
either the weather profile or the ground profile is added, de-
pending on orientation and location. The simulation runs from
the first of January 2014 until and including the last day of De-
cember 2014, i.e one year. Before the simulation period starts
first a warm up period of six days is simulated by backwards
traversing the first six days of both temperature profiles. The
simulation time is discretised into four time steps per hour, the
error controlled runge-kutta-dopri-5 algorithm [38] is used to
solve the system for each of those time steps using a value of
1e−6 for both the absolute and relative errors.
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Figure 17: Simulation of building structural design process, normalised space performances are determined according equation 24. The last iteration performs
worst, which can here be explained due to more surfaces being exposed to wind and floor loads compared to preceding iterations.

Figure 18 shows the results after two iterations. From these
results it can be observed that the used design modification can-
not find a better solution in the first two iterations, which sug-
gests that a different design modification should be used. From
a thermal point of view the spaces at a corner of a building spa-
tial design will be suboptimal since these have the most surface
through which heat is lost and looking at the results it can be
observed that those spaces are in fact removed. However in the
worst case when a corner space is removed this will introduce
three new corner spaces, as such it can indeed be concluded that
a different design modification should be used to find a ther-
mally optimal building spatial design. A more suitable design
modification would not only take into account the performance
of spaces, but could for example also take into account their
relative location in the building.

6. Conclusions and outlook

This paper has elaborated on different optimisation ap-
proaches for building spatial design and has presented a toolbox
to effectuate these approaches for further research. Conclusions
and outlooks that have been presented in this paper are summa-
rized below.

The difference between super-structured versus super-
structure free approaches is a recurrent theme in specific fields
of optimisation [2]. In this paper, for the super-structured ap-
proach, a supercube representation has been proposed, in which

a fixed number of cells can be switched on and off to gener-
ate different building spatial designs, while constraints ensure
practical designs, e.g. no overlap of spaces should occur. A
super-structure free approach has been developed by a movable
and sizeable representation, listing the building spaces with
their position and dimensions, and allowing these spaces to be
deleted, split, and resized, as such automatically following the
constraints.

Algorithms have been derived to transform the supercube
representation into the movable and sizeable representation and
vice versa. These algorithms have been verified in [1] for
successful operation when overlaps in spaces, non-connected
spaces, truncation errors, alterations in space identification, and
fragmented spaces occur.

A toolbox has been developed in which the presented spa-
tial design representations can be evaluated for their structural
and thermal behaviour. The toolbox enables users to develop
and write their own optimisation procedures and design gram-
mars. Also a benchmark has been presented in which the tool-
box has successfully simulated a problem that is presented in
other work.

The toolbox has been applied in [40, 41, 42], where also
evolutionary algorithms were employed to find optimal building
spatial design configurations. Moreover an elementary imple-
mentation of a simulation of co-evolutionary design processes
has been presented to demonstrate the use and versatility of the

16



63 .8 MWh

71 .0 MWh

66 .9 MWh

Heating and cooling 

energy

Space performanceBuilding physics 

design

Building spatial design

0.0 ≤ P
i,j
 < 0.2 0.2 ≤ P

i,j
 < 0.4 0.4 ≤ P

i,j
 < 0.6 0.6 ≤ P

i,j
 < 0.8 0.8 ≤ P

i,j
 ≤ 1.0

Space performance legend:

Figure 18: Simulation of building thermal design process, normalised space performances are determined according equation 24

toolbox and also to show the promises and the challenges of
this method.

In the near future, a multi-disciplinary design modification
will be developed based on simulations of co-evolutionary de-
sign processes. Subsequently an optimisation approach will be
developed where both representations are used alternately: The
super-structured approach will allow a dedicated optimisation
algorithm to find a global optimum [40, 42], whereas this so-
lution in a super-structure free approach can be used by the
developed design modification to explore more freely another
(possibly local) optimum. As such the design space is cycli-
cally both explored in-depth (via the super-structure) and glob-
ally (via the super-structure free representation). This method
is demonstrated in [43].
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