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Abstract

We consider the estimation of the affine parameter and power-law exponent in
the preferential attachment model with random initial degrees. We derive the
likelihood, and show that the maximum likelihood estimator (MLE) is asymp-
totically normal and efficient. We also propose a quasi-maximum-likelihood
estimator (QMLE) to overcome the MLE’s dependence on the history of the
initial degrees. To demonstrate the power of our idea, we present numerical
simulations.
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1. Introduction and Notations

In the past decade random graphs have become well established for modelling
complex networks. The preferential attachment (PA) model, introduced in [1],
is popular in studies of social networks, the internet, collaboration networks,
and so on. The PA model is a dynamic model, in that it describes the evolution
of the network through the sequential addition of new nodes, and can explain
the so-called scale-free phenomenon. This is the observation that in various real
world networks the proportion pk of nodes of degree k follows a power law

pk ∝ k−τ ,
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for some power-law exponent τ . For example, Table 3.1 in [2] gives compre-
hensive lists of basic statistics for a number of well-known networks, where the
power-law exponent is estimated to be 2.4 for protein interactions and 2.5 for the
Internet. Another source [3] estimates the power-law exponent of the Internet
to be between 2.15 and 2.20.

The PA model is built upon the simple paradigm “the rich get richer” and
offers a possible scenario in which the Matthew effect (“to all those who have,
more will be given”) takes place ([4]). If the network is modelled as a graph, with
the vertices representing individuals and the degree of a vertex (the number of
edges) representing wealth, then this means that a new vertex is more likely to
connect to already well-connected vertices: vertices with higher degrees (“rich”)
inspire more incoming connections (“get richer”).

In the simplest type of PA model this is implemented as follows. We are given
a non-decreasing preferential attachment function f :N+ → R+. The network is
initialised at t = 1 as a graph consisting of two vertices with one edge between
them. Then the recursive attachment scheme begins (t = 2, 3, . . .). At time t
a new vertex is added to the graph and is connected to exactly one of the t
existing vertices, say i, with probability proportional to f(di), where di is the
degree of vertex i in the graph at time t− 1.

The proportionality, which entails normalizing by the sum of all transformed
degrees f(d), makes that an affine function f can be parametrized without loss
of generality by a single parameter δ, in the form f(k) = k+δ, where minimally
δ > −1. This special case has been well studied. In particular, it has been
established (see e.g. [5, 6]) that the empirical degree distribution (pk(t))∞k=1,
where pk(t) is the proportion of vertices of degree k in the tree at time t,
converges to a limiting degree distribution (pk)∞k=1 as t → ∞, which follows
a power law

pk ∝ k−(3+δ).

The Barabási–Albert model is the special case that δ = 0 and has pk = 4/(k(k+
1)(k + 2)).

If the limiting degree distribution (pk)∞k=1 follows a power law, say pk =
ckk
−(3+δ) with ck slowly varying in k, then log pk = log ck − (3 + δ) log k, where

log ck behaves like a constant when k is sufficiently large. This suggests that we
might estimate δ by performing a linear regression of the logarithm empirical
degree log pk(t) with respect to log k, with k sufficiently large. Then δ̂: = τ̂ −
3, for τ̂ the negative of the slope of the fitted line, should estimate δ. This
has been the method of choice in several applications of PA models; see for
example the famous paper [1]. However, this estimator does not work well.
One problem is that the equality log pk(n) = log ck − τ log k comes from an
asymptotic approximation based on Stirling’s formula, and it is unclear when
the asymptotics start to kick in. It is also unclear how to determine the quality
of this ad-hoc estimate, by a standard error or confidence interval, or to perform
inference.

In the present paper we remedy this by considering the maximum likelihood
estimator of δ. We show that this can be easily computed as the solution
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of an equation, prove its asymptotic normality and derive its standard error.
Furthermore, in a simulation study we show that it is quite accurate.

We do this in the following more general context of the PA model with ran-
dom initial degrees as considered in [7]. In this model the graph also grows by
sequentially adding vertices. However, instead of connecting a new vertex to a
single existing vertex, the vertex at time t comes with mt ≥ 1 edges to connect
it to the existing network. The connections are still made according to the basic
preferential attachment rule. The special case of this model with each mt equal
to a fixed number m ∈ N was well studied (see [6] for a discussion and more
references). For m = 1 this model reduces to the basic model considered in the
preceding paragraphs. However, for real life applications it is somewhat unnat-
ural and inflexible to assume that every vertex comes with the same number
of edges, let alone a single edge. In this paper, we allow m1,m2, . . . to be an
iid sequence of random variables, only restricted to have two finite moments.
From the point of view of social network modeling the resulting model can be
interpreted as follows. The initial degrees mt stress the difference of nodes at
their times of inclusion (“birth”), while the preferential attachment enforces the
discrimination against the less well-off individuals (or equivalently the positive
discrimination against the well-off individuals). Thus the PA network with ran-
dom initial degrees combines the effects of “rich-by-birth” and “rich-get-richer”.

Generally this model also gives networks with degree distributions of asymp-
totic power law type, but the exponent depends on both the attachment function
and the initial degree distribution. Suppose that the preferential attachment
function is f(k) = k + δ as before, and denote the mean of the initial degree
distribution by µ = Emt. Then [7] has shown that the limiting degree distri-
bution (pk) for the model follows asymptotically (as k →∞) a power law with
exponent min(3 + δ/µ, τm) if the random initial degree distribution follows a
power law with exponent τm and is equal to 3 + δ/µ if the latter distribution
decays faster than a power law (which is equivalent to setting τm =∞).

The estimation of a preferential attachment function f is of both theoretical
and practical interest. Despite the omnipresence of PA networks in modeling
real-world networks, the literature on statistical estimation of this model is
sparse. Sound understanding of the statistical properties of PA models will help
in evaluating the validity of the PA network model in real-world applications.

The paper [8] proposed an empirical estimator for each f(k) given a gen-
eral sub-linear preferential attachment function f . Although this estimator was
proved to be consistent as t → ∞, we may expect better estimators if we re-
strict attention to the domain of affine functions, whose estimation is equivalent
to estimating the single parameter δ. A restriction to affine functions is not
unnatural, as exactly the affine preferential attachment models correspond to
power-law behaviour. Therefore affine f matter most to the practitioners seek-
ing a natural explanation of power laws. The paper [9] solves some statistical
problems in the affine model, but focuses on the estimation of the individual
degree distribution, and does not directly consider estimating the key affine pa-
rameter δ. The present paper provides a ready-to-use solution for estimating
the affine parameter, and sound theoretical insight into the statistical modeling
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of PA networks.
The estimation problem of the affine parameter δ is not only interesting

in itself, but also important because of its direct connection to estimating the
power-law exponent. Although power laws are ubiquitous, as pointed out above,
estimating their components can be difficult ([10]). One must deal with two
types of asymptotics here: the limiting degree distribution when the number
of vertices goes to infinity and the limiting power-law behavior as the degree
goes to infinity in the limiting degree distribution. It is hard to determine when
these asymptotics kick in and hence are usable for an estimation procedure.
For instance, [10] proposed an estimator for the power-law exponent but the
estimator needs an estimate of the minimal degree where the power law starts
to hold and such an estimate typically requires careful empirical analysis. Fur-
thermore, power-law relations refer mostly to nodes of high degrees, of which
there are only few, resulting in high variance in estimation (and thus low credi-
bility). The maximum likelihood method automatically weighs the information
contained in the different degrees, and does so in an optimal way, as we show
below. Of course, a drawback is that it assumes that the PA mechanism is a
good fit to the empirical network.

The main challenge in analyzing the maximum likelihood estimator of δ
is that the model is a non-stationary Markov chain, which continuously visits
new states, given by the growing network. This requires careful analysis, but
in the end we find that the quantities that are relevant for the estimation of δ
stabilize, as the network grows, leading to the result that the MLE for δ based on
observing the history of the network until time n tends to a normal distribution
of minimal variance when centered at the true δ and scaled by

√
n.

In practice it may well be that only a snapshot of the network at time n
is observed, and not its history through times t = 1, . . . , n. A discovery that
is surprising at first is that given fixed initial degrees mt = m this makes no
difference for the maximum likelihood procedure. It turns out that in this
case, which we refer to as the preferential attachment network with fixed initial
degrees, the snapshot at time n is statistically sufficient for the full history. As
a consequence the MLE based on the snapshot is asymptotically normal after
centering at δ and scaling by

√
n in this case.

On the other hand, random initial degrees mt significantly complicate esti-
mation when observing only a snapshot of the network. Performing maximum
likelihood would require either marginalizing the likelihood over all possible his-
tories or implementing an iterative approximation, e.g. of EM type. This seems
computationally daunting. We also do not present a full theoretical analysis. In
fact, we conjecture that if the initial-degree distribution were also unknown no
estimator for δ based only on the degrees in the network at time n can attain
a
√
n-rate of estimation, thus suggesting that the statistics change significantly.

On the positive side, we propose a “quasi maximum likelihood” estimator of δ
that requires to know the initial degree distribution but relies only on the final
snapshot. We show this estimator to attain a

√
n-rate and to be asymptotically

normal, with a somewhat larger variance than the MLE based on the complete
evolution of the network.
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The paper is organized as follows. In Section 2 we introduce basic notation
and derive the likelihood and the maximum likelihood estimator. In Section 3 we
prove the consistency of this estimator. In Section 4 we derive the main result
of the paper, which is the asymptotic normality of the maximum likelihood
estimator, by an application of the martingale central limit theorem. Section 6
gives a special case of the general results for fixed initial degrees. Section 7
defines the quasi-maximum-likelihood estimator δ̃n, which does not depend on
the history of the network, and establishes its asymptotics. Last but not the
least, we present simulations in Section 8 to illustrate the results.

2. Construction of the MLE

We start by introducing the affine preferential attachment model with ran-
dom initial degree distribution. Here we adapt the notation from [6, 7]. Let
(mt)t≥1 be an independent and identically distributed (iid) sequence of posi-
tive integer-valued random variables. The model produces a network sequence
{PAt(δ)}∞t=1, where for every t the network PAt(δ) has a set Vt = {v0, v1, . . . , vt}
of t + 1 vertices and

∑t
i=1mi edges. The first network PA1(δ) consists of two

vertices v0 and v1 with m1 edges between them. For t ≥ 2, given PAt−1(δ), a
new vertex vt is added with mt edges connecting vt to Vt−1, determined by the
intermediate updating preferential attachment rule. This updating rule means
that the edges are added sequentially using the preferential attachment rule.
Define PAt,0(δ) = PAt−1(δ) to be network after vt−1 has been fully integrated,
and let PAt,1(δ),PAt,2(δ), . . . ,PAt,mt

(δ) be intermediate networks, which add
vt and its mt edges sequentially to PAt,0(δ), as follows. For 1 ≤ i ≤ mt, the
network PAt,i(δ) is constructed from PAt,i−1(δ) by adding an (additional) edge
between vt and a randomly-selected vertex among {v0, v1, . . . , vt−1}. The prob-
ability that this is vertex vj is proportional to k + δ, if vj ∈ Vt−1 has degree k
in PAt,i−1(δ). Here δ > −1 is an unknown parameter. The random choice is
made through a multinomial trial on all the vertices in Vt−1. In other words,
the conditional probability that the i-th edge of vt connects it to vj is

P
(
vt,i → vj |PAt,i−1(δ)

)
=

Degt,i−1(vj) + δ∑
v∈Vt−1

(Degt,i−1(v) + δ)
, (1)

where Degt,i−1(v) is the degree of v in PAt,i−1(δ). After all mt edges have been
added to vt, the network is given by PAt,mt(δ) = PAt(δ) = PAt+1,0(δ).

We define Nk(t) to be the number of vertices of degree k in the network
PAt(δ) (counting also vt), and Nk(t, i − 1) to be the number of vertices of
degree k in the network PAt,i−1(δ), not counting vt (so belonging to Vt−1), for
1 ≤ i ≤ mt. By convention Nk(t, 0) = Nk(t− 1). We denote by Dt,i the degree
of the vertex that was chosen when constructing PAt,i(δ) from PAt,i−1(δ). So
we can say that the i-th edge chosen by the vertex vt possesses degree Dt,i. For
the evolution of the number of vertices of degree k, there are several scenarios.
For given natural numbers k and i ≤ mt:
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• If Dt,i /∈ {k, k − 1}, then the number of vertices of degree k remains
unchanged, i.e. Nk(t, i) = Nk(t, i− 1).

• If Dt,i = k − 1, then the vertex that was picked by the incoming vertex
gets one extra connection and there is one more vertex of degree k, i.e.
Nk(t, i) = Nk(t, i− 1) + 1.

• If Dt,i = k, then the vertex that was picked by the incoming vertex be-
comes a vertex of degree k + 1 and there is one fewer vertex of degree k,
i.e. Nk(t, i) = Nk(t, i− 1)− 1.

After the last update i = mt, the vertex vt is fully integrated in the network.
Since its degree is mt, we have Nk(t) = Nk(t,mt) + 1{k=mt}. This concludes
the time step t and the total number of vertices of the network becomes t+ 1.

These observations are summarised in the following equation for the degree
evolution:

Nk(t) = Nk(t− 1) +

mt∑
i=1

1{Dt,i=k−1} −
mt∑
i=1

1{Dt,i=k} + 1{k=mt}. (2)

The total number of edges in PAt(δ) is Mt: =
∑t
j=1mj . Clearly the maximal

degree in the network PAt(δ) is bounded by Mt, i.e. Nk(t) = 0 for any k > Mt.

Furthermore,
∑Mt

k=1Nk(t) = t+ 1 is the total number of vertices at time t.
The conditional probability of the incoming vertex choosing an existing ver-

tex of degree k to connect to is

P
(
Dt,i = k|PAt,i−1(δ), (mt)t≥1

)
=

(k + δ)Nk(t, i− 1)∑∞
j=1(j + δ)Nj(t, i− 1)

. (3)

The denominator in this expression counts the “total preference” of all the
vertices, and can be written as

St,i−1(δ) =

∞∑
j=1

(j + δ)Nj(t, i− 1) =
∑

v∈Vt−1

(Degt,i−1(v) + δ)

= tδ + 2Mt−1 + (i− 1).

Abbreviate the degree sequence at time t by Dt: = (Dt,1, . . . , Dt,mt). The condi-
tional likelihood of observing (Dt)

n
t=2 = (dt)

n
t=2 given the edge countsm1,m2, . . .

is

P((Dt)
n
t=2 = (dt)

n
t=2 | (mt)t≥1) =

n∏
t=2

mt∏
i=1

(dt,i + δ)Ndt,i(t, i− 1)

St,i−1(δ)
. (4)

We are interested in estimating δ and assume that the distribution of the edge
counts mt does not contain information on this parameter. If the edge counts
are observed, we can condition on them throughout, and treat the preceding as
the full likelihood of the observation (Dt)t≥2. In view of (1) the likelihood of
observing the full evolution of the network up to PAn(δ) is a function of (Dt)

n
t=2
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and hence the latter vector is statistically sufficient for this full evolution, given
the edge counts (mt). In the following we shall see that actually observing only
the “snapshot” of the network PAn(δ) at time n is already statistically sufficient
for δ, given the edge counts (mt).

Define N>k(t) to be the number of vertices in PAt(δ) of degree (strictly)

bigger than k, i.e. N>k(t) =
∑Mt

j=k+1Nj(t). As first observed in [8], we have the
following lemma. (In [8] the l.h.s. of (5) is called N→k(t).)

Lemma 1. The number of vertices with degree strictly bigger than k is equal to
the number of times a vertex of degree k was chosen by the incoming vertices
until and including time n plus the number of vertices with initial degrees strictly
bigger than k. In other words, if R>k(n) = 2 · 1{m1>k} +

∑n
t=2 1{mt>k}, then

n∑
t=2

mt∑
i=1

1{Dt,i=k} = N>k(n)−R>k(n). (5)

We introduce the shorthand D(n) = (Dt)
n
t=2, and from (4) have the log-

likelihood function

ln(δ|D(n)) =

n∑
t=2

mt∑
i=1

[
logNDt,i

(t, i− 1) + log(Dt,i + δ)− logSt,i−1(δ)
]

=

n∑
t=2

mt∑
i=1

logNDt,i(t, i− 1) +

∞∑
k=1

log(k + δ)(N>k(n)−R>k(n))

−
n∑
t=2

mt∑
i=1

logSt,i−1(δ).

where the second equality comes from applying Lemma 1 and the fact that

n∑
t=2

mt∑
i=1

log(Dt,i + δ) =

∞∑
k=1

[
log(k + δ)

n∑
t=2

mt∑
i=1

1{Dt,i=k}

]
.

It follows that the likelihood factorises in a part not involving δ and a part
involving δ and the variables N>k(n), given the edge counts (mt). Thus by
the factorization theorem (see [11], Corollary 2.6.1) the vector

(
N>k(n)

)
k≥1 is

statistically sufficient for δ, given (mt). This vector is completely determined
by the network at time n. In particular, observing the network only at time n
is sufficient for δ relative to observing its evolution up to and including time n.

For inference on δ we can drop the first term of the log likelihood, which does
not depend on δ, and normalise the remaining part by n + 1 (note that there
are n + 1 vertices in the network at time n). We take the parameter space for
δ to be [−a, b], for given numbers −1 < −a < b <∞. The maximum likelihood

estimator (MLE) of δ is then given by δ̂n = argmaxδ∈[−a,b] ιn(δ), for

ιn(δ) =

∞∑
k=1

log(k + δ)
N>k(n)−R>k(n)

n+ 1
− 1

n+ 1

n∑
t=2

mt∑
i=1

logSt,i−1(δ). (6)
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Provided that the maximum is taken in the interior of the parameter set, the
MLE is a solution of the likelihood equation ι′n(δ) = 0. This derivative is given
by

ι′n(δ) =

∞∑
k=1

1

k + δ

N>k(n)−R>k(n)

n+ 1
− 1

n+ 1

n∑
t=2

mt∑
i=1

t

St,i−1(δ)
. (7)

3. Consistency

The empirical degree distribution in PAn(δ) is defined as

pk(n) =
Nk(n)

n+ 1
.

In [7] it is shown that this distribution tends to a limit as n→∞. Let (rk)k≥1

be the probability distribution of the initial degree (and the number of edges
added in every step), i.e.

rk = P(m1 = k), k ≥ 1. (8)

Assume that this distribution has finite mean µ ≥ 1 and finite second moment
µ(2), and write the shorthand θ = 2+δ/µ. Then the limiting degree distribution
(pk)k≥1 satisfies the recurrence relation

pk =
k − 1 + δ

θ
pk−1 −

k + δ

θ
pk + rk, k ≥ 1. (9)

Starting from the initial value p0 = 0, we can solve the recurrence relation by

pk =
θ

k + δ + θ

k−1∑
i=0

rk−i

i∏
j=1

k − j + δ

k − j + δ + θ
, k ≥ 1, (10)

where the empty product is defined to be 1, should it arise. Because
∑
k≥1 pk =∑

k≥1 rk = 1, in view of the recurrence relation (9), the probabilities (pk)k≥1

define a proper probability distribution.
We list two results on the limiting degree distribution of the preferential

attachment model with random initial degrees. See [7] for proofs.

Proposition 1. If the initial degrees (mt)
∞
t=1 have finite moment of order 1 + ε

for some ε > 0, then there exists a constant γ ∈ (0, 1/2) such that

lim
n→∞

P
(

max
k≥1
|pk(n)− pk| ≥ n−γ

)
= 0,

where (pk)∞k=1 is defined as in (10).

In the case that the initial degree is degenerate, i.e. rm = 1 for some integer
m ≥ 1, the rate of convergence in this result can be improved, and the limiting
degree distribution takes a simpler form, as follows.
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Proposition 2. If rm = 1 for some integer m ≥ 1, then there exists a constant
C > 0 such that

lim
n→∞

P
(

max
k≥1
|pk(n)− pk| ≥ C

√
log n/n

)
= 0,

where (pk)∞k=1 is defined as follows:

pk =

{
0, if k < m,
θΓ(k+δ)Γ(m+δ+θ)

Γ(m+δ)Γ(k+1+δ+θ) , if k ≥ m.
(11)

Furthermore, if m = 1, so that r1 = 1, then the empirical degree pk(n) converges
also almost surely to pk, as n→∞, for every k.

Next we give a lemma that will be essential to our analysis later. For a
summable sequence (ak)k≥1, write a>k =

∑
j>k aj .

Lemma 2. The following recurrence relation holds, with θ = 2 + δ/µ,

p>k =
k + δ

θ
pk + r>k. (12)

Proof. We simply sum up terms of (9) and cancel repeated terms.

From now on we shall put a superscript (0) to stress that we consider limiting
distributions under the true value δ0 of the parameter. In view of Proposition 1,

N>k(n)/(n + 1) is asymptotic to p
(0)
>k, while by the Law of Large Numbers

R>k(n)/(n+1) tends to r>k. Furthermore, for fixed i the sequence St,i−1(δ)/t =
δ+2m̄t−1+(i−1)/t is asymptotic to δ+2µ, again by the Law of Large Numbers.
Therefore, we expect the criterion ι′n(δ) given in (7) to be asymptotic to

ι′(δ) =

∞∑
k=1

p
(0)
>k − r>k
k + δ

− 1

2 + δ/µ
. (13)

Consequently, we expect that the MLE δ̂n will be asymptotic to the solution of
the equation ι′(δ) = 0. Because of (12),

ι′(δ0) =

∞∑
k=1

p
(0)
>k − r>k
k + δ0

− 1

2 + δ0/µ
= 0.

Thus the true parameter is indeed a solution to this equation. The following
lemmas show that this solution is unique.

Define

qk =
p>k − r>k

µ
=

(k + δ)pk
2µ+ δ

. (14)
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Lemma 3. For any nonnegative sequence (vk)∞k=1 that is strictly decreasing with
respect to k and any δ1 > δ2, we have, for qk(δ) given in (14) (where pk = pk(δ)
as well),

∞∑
k=1

qk(δ1)vk >

∞∑
k=1

qk(δ2)vk.

Proof. We first show that
∑
k≥1 qk = 1. By manipulating the recurrence relation

(9), we find

∞∑
k=1

qk =
1

2µ+ δ

∑
k=1

(k + δ)pk =
1

2µ+ δ

( ∞∑
k=1

kpk + δ
)

=
1

2µ+ δ

( ∞∑
k=1

k
(k − 1 + δ

2 + δ/µ
pk−1 −

k + δ

2 + δ/µ
pk + rk

)
+ δ

)

=
1

2µ+ δ

( ∞∑
k=1

krk +

∞∑
k=1

k + δ

2 + δ/µ
pk + δ

)

=
1

2µ+ δ

(
µ+ µ

∞∑
k=1

qk + δ
)
.

The only solution to this equation for
∑
k qk has

∑
k qk = 1.

By the recurrence formula (12) and (9), we have qk = (k+δ)pk/(2µ+δ), and
qk+1 = (k+ 1 + δ)(qk + rk+1/µ)/(k+ 1 + δ+ 2 + δ/µ). Therefore the derivative
uk(δ) = d

dδ qk(δ) satisfies

uk+1(δ) =
2− (k + 1)/µ

(k + 1 + δ + 2 + δ/µ)2
(qk(δ) + rk+1/µ) +

k + 1 + δ

k + 1 + δ + 2 + δ/µ
uk(δ).

The initial value of this sequence is positive, since

u1(δ) =
d

dδ
q1(δ) =

2µ− 1

µ2(1 + δ + 2 + δ/µ)2
r1 > 0.

From the recursion it follows that uk+1(δ) remains positive at least as long as
k + 1 ≤ 2µ. For k + 1 > 2µ the first term of the recursion is negative, while
the second term has the sign of uk(δ). From the fact that

∑
k qk(δ) = 1 for

every δ, it follows that
∑
k uk(δ) = 0, and hence uk(δ) cannot remain positive

indefinitely. If K(δ) + 1 is the first k for which uk(δ) < 0, then it must be that
K(δ) + 1 > 2µ, which implies that uk(δ) < 0 for every k > K(δ) + 1 as well.
Since vk is decreasing it follows that∑

k

vkuk(δ) >
∑

k≤K(δ)

vK(δ)uk(δ) +
∑

k>K(δ)

vK(δ)uk(δ) = vK(δ)0 = 0.

Integrating this over the interval [δ2, δ1] gives the assertion.
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Lemma 4. The function δ 7→ ι′(δ) possesses a unique zero at δ = δ0. It is
positive for δ < δ0 and negative if δ > δ0.

Proof. Following the definition (13) of ι′ it was seen that δ0 is a zero. Fix some
δ 6= δ0. Since 1 =

∑
k pk(δ) and qk(δ) = (k + δ)pk(δ)/(2µ + δ), we can rewrite

ι′(δ) as

ι′(δ) =

∞∑
k=1

µq
(0)
k

k + δ
− 1

2 + δ/µ

=

∞∑
k=1

µq
(0)
k

k + δ
−
∞∑
k=1

(k + δ)pk(δ)

(k + δ)(2 + δ/µ)

=
∞∑
k=1

µq
(0)
k

k + δ
−
∞∑
k=1

µqk(δ)

k + δ
.

Applying Lemma 3 with vk = 1/(k+ δ), we see that ι′(δ) > 0 when δ < δ0, and
ι′(δ) < 0 when δ > δ0.

The proof of consistency of the MLE will be based on uniform convergence
of ι′n to ι′, together with the uniqueness of the zero of ι′. For the convergence,
and also for the proof of asymptotic normality, we need the following lemma.

Lemma 5 (Cesàro convergence for random variables). Let (Xt)t∈N be a sequence
of random variables, (at)t∈N a sequence of numbers, X and a a random variable
and number, and let Xt and at be the average of the first t variables or numbers,
respectively.

i). If Xt
a.s.−−→ X, then Xt

a.s.−−→ X.

ii). If Xt
L1−−→ X, or equivalently Xt

P−→ X and (Xt)t∈N is uniformly integrable,

then Xt
L1−−→ X.

iii). If Xt
L1−−→ X and at → a and |a|t = O(1), then (aX)t

L1−−→ aX.

Proof. Statement (i) is the usual Cesàro convergence, applied to almost every
of the deterministic sequences Xt(ω) obtained for elements ω of the underlying
probability space.

Statement (ii) is the special case of (iii) with at = 1, for every t.
To prove statement (iii) we decompose

|(aX)t − aX| =
∣∣∣1
t

t∑
i=1

aiXi −
1

t

t∑
i=1

aiX +
1

t

t∑
i=1

aiX − aX
∣∣∣

≤ 1

t

K∑
i=1

∣∣ai(Xi −X)
∣∣+

1

t

t∑
i=K+1

∣∣ai(Xi −X)
∣∣+ |X||at − a|.

Take the expectation across to bound the expected value of the left side by

K

t
max

1≤i≤K
|ai|max

t
E|Xt −X|+ |a|t max

K<i≤t
E|Xi −X|+ |at − a|E|X|.

11



Because E|Xi − X| → 0 as i → ∞, for any ε > 0, there exists K such that
supi>K E|Xi −X| < ε. Then the second term is bounded above by a constant

times ε, by the assumption on |a|t. For fixed K the first and third terms tend to
zero as t→∞. Thus the limsup as t→∞ of the whole expression is bounded
by a multiple of ε, for every ε > 0.

Lemma 6. The derivative ι′n of the log-likelihood function converges uniformly
to the limiting criterion ι′, i.e. as n→∞ for every ε > 0,

sup
δ>−1+ε

|ι′n − ι′|(δ)
P−→ 0.

Proof. For r>k(n) = R>k(n)/(n+ 1), the difference ι′n(δ)− ι′(δ) can be decom-
posed as

∞∑
k=1

p>k(n)− p(0)
>k

k + δ
+

∞∑
k=1

r>k(n)− r>k
k + δ

− 1

n+ 1

n∑
t=2

mt∑
i=1

t

St,i−1(δ)
+

µ

2µ+ δ
.

(15)
We deal with the first two terms and the difference of the last two terms sepa-
rately.

As kN>k(n) ≤ 2Mn, where Mn =
∑n
t=1mt is the total number of edges in

PAn(δ), we have p>k(n) ≤ 2mn/k, for every k. Hence, for δ ≥ −η: = −1 + ε,

∞∑
k=1

|p>k(n)− p(0)
>k|

k + δ
≤
∑
k≤K

|p>k(n)− p(0)
>k|

k − η
+
∑
k>K

2mn

k(k − η)
+
∑
k>K

p
(0)
>k

k − η
.

Since mn → µ almost surely, by the Law of Large Numbers, the second term
on the right side can be made arbitrarily small by choice of K. The same is

true for the third term as p
(0)
k follows a power law with exponent bigger than

2. For any fixed K the first term converges in probability to 0 as n → ∞, by
Proposition 1. Thus the full expression tends to zero.

The variable r>k(n)−r>k can be written in the form 2(1{m1>k}−r>k)/(n+
1) +

∑n
t=2(1{mt>k} − r>k)/(n + 1). This is a weighted sum of independent

centered Bernoulli variables with success probability r>k. Its first absolute
moment can be bounded by its standard deviation and is bounded by a multiple
of the root of r>k(1−r>k)/(n+1). It follows that the supremum over δ > −η =
−1 + ε of the absolute value of the second term has expected value bounded
above by a multiple of

1√
n+ 1

∞∑
k=1

√
r>k(1− r>k)

k − η
.

Since r>k ≤ k−1µ, by Markov’s inequality, the series converges easily, and the
expression tends to zero as n→∞.

12



With slight abuse of notation write mn =
∑n
t=1mt/(n+ 1). The third term

can be decomposed as

− 1

n+ 1

n∑
t=2

mt∑
i=1

[ 1

St,i−1(δ)/t
− 1

δ + 2mt−1

]
− 1

n+ 1

n∑
t=2

[ mt

δ + 2mt−1
− mt

2µ+ δ

]
−
[ 1

n+ 1

n∑
t=2

mt

2µ+ δ
− µ

2µ+ δ

]
= − 1

n+ 1

n∑
t=2

mt∑
i=1

(i− 1)/t

(δ + 2mt−1 + (i− 1)/t)(δ + 2mt−1)

− 1

n+ 1

n∑
t=2

mt(2µ− 2mt−1)

(δ + 2mt−1)(2µ+ δ)
− mn − µ

2µ+ δ
.

The supremum over δ > −η of the absolute value of this expression is bounded
above by

1

n+ 1

n∑
t=2

m2
t/t

(2mt−1 − η)2
+

1

n+ 1

n∑
t=2

mt2|µ−mt−1|
(2mt−1 − η)(2µ− η)

+
|mn − µ|
2µ− η

.

The third term tends to zero almost surely by the Law of Large Numbers.
In the first term we have that the variables Xt: = t−1/(2mt−1 − η)2 converge
almost surely to 0 as t → ∞, while the averages of the variables at: = m2

t

tend to µ(2) almost surely, again by the Law of Large Numbers. Applying
Lemma 5 to the sequences of numbers Xt(ω) and at(ω) obtained by selecting
ω from the underlying probability space so that both convergences are valid,
we see that the first term tends to zero, for such ω, and hence almost surely.
The second term tends to zero by the same argument, now with the choice
Xt: = 2|µ−mt−1|/

(
(2mt−1 − η)(2µ− η)

)
.

Combining the preceding Lemma 4 and Lemma 6 gives the following theo-
rem.

Theorem 1. The MLE δ̂n is consistent: δ̂n → δ0, in probability under δ0, for
every δ0 ∈ (−a, b).

Proof. Because ι′ is continuous on [−a, b] and vanishes only at δ0, we have that
infδ∈[−a,b]:|δ−δ0|>ε |ι′(δ)| > 0, for every ε. More precisely, by Lemma 4 it is
bounded away from zero in the positive direction for δ < δ0 − ε and in the
negative direction if δ > δ0 + ε. Since ι′n tends uniformly to ι′, by Lemma 6,
the same is true for ιn, with probability tending to one. This shows that the
maximum of ιn must be contained in [δ0 − ε, δ0 + ε], with probability tending
to one.

4. Asymptotic Normality

We shall apply the following martingale central limit theorem (see Corol-
lary 3.1 in [12] or Theorem XIII.1.1 in [13]) to study the asymptotic normality
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of the MLE. The triangular array version with kn →∞ given here is equivalent
to the theorem in the latter reference (stated for kn = n), as remarked preceding
its statement on page 171.

Proposition 3. Suppose that for every n ∈ N and kn →∞ the random variables
Xn,1, . . . , Xn,kn are a martingale difference sequence relative to an arbitrary

filtration Fn,1 ⊂ Fn,2 ⊂ · · · ⊂ Fn,kn . If
∑kn
i=1 E[X2

n,i|Fn,i−1]
P−→ v for a positive

constant v, and
kn∑
i=1

E[X2
n,i1{|Xn,i|>ε}|Fn,i−1]

P−→ 0,

for every ε > 0, then
∑kn
i=1Xn,i  N(0, v).

Lemma 7. Given almost every sequence (mt)
∞
t=1we have, under δ0,

√
n
(
ι′n(δ0)− ι′(δ0)

)
 N(0, ν0), (16)

where ι′(δ0) = 0 and

ν0 =

∞∑
k=1

µq
(0)
k

(k + δ0)2
− µ

(2µ+ δ0)2
.

Proof. Throughout the proof we condition on (mt)
∞
t=1, without letting this show

up in the notation.
We can write

ι′n(δ0) =
1

n+ 1

n∑
t=2

mt∑
i=1

Yt,i,

for

Yt,i =
1

Dt,i + δ0
− t

St,i−1(δ0)
=

1

Dt,i + δ0
− 1

δ0 + 2mt−1 + (i− 1)/t
.

As to be expected from the fact that they are score functions, the variables
Y2,1, Y2,2, . . . , Y2,m2

, Y3,1, . . . , Y3,m3
, Y4,1 . . . are martingale differences relative to

the filtration F2,1 ⊂ F2,2 ⊂ · · · ⊂ F2,m2 ⊂ F3,1 ⊂ · · · ⊂ F3,m3 ⊂ F4,1 ⊂ · · ·
obtained by letting Ft,i correspond to observing the evolution of the PA graph
up to PAt,i(δ). Indeed, in view of (3),

E[Yt,i|Ft,i−1] =

∞∑
k=1

1

k + δ0

Nk(t, i− 1)(k + δ0)

St,i−1(δ0)
− t

St,i−1(δ0)
= 0,

since
∑
kNk(t, i − 1) = t is the number of vertices in the graph at time t, for

every i (not counting vt). (Set Ft,0 = Ft−1,mt−1 .)
We now apply Proposition 3 to the triangular array of martingale differences

X2,1, . . . , X2,m2
, . . . , Xn,mn

, for n = 1, 2, . . ., and Xt,i = Yt,i/
√
n+ 1. The n-

th row possesses Mn =
∑n
t=2mt → ∞ variables. Since the variables Yt,i are
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uniformly bounded by 2/(1 + δ0), the Lindeberg condition, in the display of
Proposition 3, is trivially satisfied. We need to show that

1

n+ 1

n∑
t=2

mt∑
i=1

E[Y 2
t,i|Ft,i−1]

P−→ ν0.

In view of (3),

E[Y 2
t,i|Ft,i−1] = E

[ 1

(Dt,i + δ0)2
|Ft,i−1

]
−
( t

St,i−1(δ0)

)2

=

∞∑
k=1

1

(k + δ0)2

Nk(t, i− 1)(k + δ0)

St,i−1(δ0)
−
( t

St,i−1(δ0)

)2

.

Since i edges are added when constructing PAt,i(δ) from PAt,0(δ), the number
of nodes of degree k cannot change by more than i ≤ mt. Therefore, for every
t,

max
1≤i≤mt

∣∣∣Nk(t, i− 1)

t
− Nk(t, 0)

t

∣∣∣ ≤ mt

t
.

Since mt has finite second moment, we have
∑
t P(mt > tε) < ∞, for every

ε > 0, and hence mt/t → 0, almost surely, as t → ∞. We combine this with

the preceding display and Proposition 1 to see that Nk(t, i − 1)/t → p
(0)
k in

probability, as t→∞, for every fixed k, uniformly in 1 ≤ i ≤ mt. As a function
of k, the numbers Nk(t, i− 1)/t are a probability distribution on N, and hence∑
k |Nk(t, i−1)/t−p(0)

k | → 0, by Scheffe’s theorem, uniformly in 1 ≤ i ≤ mt. In
particular, the Nk(t, i − 1)/t are uniformly integrable (summable), whence by
the dominated convergence theorem also, uniformly in 1 ≤ i ≤ mt, as t→∞,∑

k

∣∣∣Nk(t, i− 1)/t

k + δ0
−

p
(0)
k

k + δ0

∣∣∣ P−→ 0.

By the definition of St,i−1(δ0), we also have

max
1≤i≤mt

∣∣∣St,i−1(δ0)

t
− (δ + 2mt−1)

∣∣∣ ≤ 2mt

t
.

Therefore, by the Law of Large Numbers we obtain that St,i−1(δ0)/t→ (δ0+2µ),
almost surely, uniformly in 1 ≤ i ≤ mt.

Combining the preceding we see that, for almost every sequence (mt), as
t→∞,

1

mt

mt∑
i=1

∑
k

Nk(t, i− 1)

(k + δ0)St,i−1(δ0)

P−→
∑
k

p
(0)
k

(k + δ0)(δ0 + 2µ)
.

Next by Lemma 5, applied with Xt equal to the left side of the preceding display
(which is bounded and hence uniformly integrable) and at = mt, we see that,
for almost every sequence (mt),

1

n+ 1

n∑
t=2

mt∑
i=1

∞∑
k=1

Nk(t, i− 1)

(k + δ0)St,i−1(δ0)

P−→ µ
∑
k

p
(0)
k

(k + δ0)(δ0 + 2µ)
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By a similar, but simpler, argument we see that

1

n+ 1

n∑
t=2

mt∑
i=1

( t

St,i−1(δ0)

)2

→ µ

(δ0 + 2µ)2
.

Since p
(0)
k /(2µ+ δ0) = q

(0)
k /(k + δ0) by (14), the difference of the right sides of

the last two displays is ν0.

The following is the main result of the paper.

Theorem 2. If δ0 is interior to the parameter set, then the MLE δ̂N satisfies,
for ν0 given in Lemma 7,

√
n(δ̂n − δ0) N(0, ν−1

0 ). (17)

Proof. By Theorem 1 δ̂n tends to δ0, hence is with probability tending to one
interior to the parameter set, and must solve the likelihood equation ι′n(δ̂n) = 0.

By Taylor expansion there exists δ′n between δ0 and δ̂n such that

0 = ι′n(δ̂n) = ι′n(δ0) + ι′′n(δ′n)(δ̂n − δ0).

Using that ι′(δ0) = 0, we can reformulate the preceding display as

√
n(δ̂n − δ0)ι′′n(δ′n) = −

√
n
(
ι′n(δ0)− ι′(δ0)

)
.

The expression on the right is studied in Lemma 7, and seen to converge in
distribution to N(0, ν0).

The second derivative takes the form

ι′′n(δ) = −
∞∑
k=1

1

(k + δ)2

N>k(n)−R>k(n)

n+ 1
+

1

n+ 1

n∑
t=2

mt∑
i=1

t2

S2
t,i−1(δ)

.

By a similar argument as in the proof of Lemma 6 we see that this converges in
probability to the second derivative ι′′(δ), uniformly in δ in a neighbourhood of
δ0. Since δ′n → δ0 in probability and ι′′ is continuous, it follows that ι′′n(δ′n) →
ι′′(δ0). The latter limit is given by

ι′′(δ0) = −
∞∑
k=1

p
(0)
>k − r>k
(k + δ0)2

+
µ

(2µ+ δ0)2
= −ν0,

by (14). An application of Slutsky’s lemma concludes the proof.

It is shown in the preceding proof that the observed information −ι′′n(δ̂n)
is a consistent estimator of the inverse asymptotic variance ν0. Thus, for ξα
quantiles from the normal distribution,

δ̂n ± ξα/
√
−nι′′n(δ̂n)

is a confidence interval for δ.
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5. Local Asymptotic Normality and Efficiency

The maximum likelihood estimator is well known to be asymptotically effi-
cient, for instance in the sense of being locally asymptotic minimax, if the model
is locally asymptotically normal and the distributional limit is reached locally
uniformly in the parameter. See e.g. Chapters 7 and 8 in [14]. Local uniform

convergence of δ̂n can be proved by a slight strengthening of Theorem 2: con-
sider the behaviour under every sequence of parameters δ0 + h/

√
n, for h ∈ R,

instead of only under δ0.
Local asymptotic normality of the model entails a quadratic expansion of

the local log likelihood ratio, given by, for given h ∈ R,

log
ln(δ0 + h/

√
n|D(n))

ln(δ0|D(n))
.

In view of (6) this can be written in the form

(n+ 1)
[
ιn(δ0 + h/

√
n)− ιn(δ0)

]
=
n+ 1√
n
hι′n(δ0) +

1

2

n+ 1

n
h2ι′′n(δ′n),

for δ′n between δ0 and δ0 +h/
√
n. By Lemma 7 the first term on the right tends

under δ0 to h times a centered normal variable with variance ν0. The second
term on the right tends in probability to −h2ν0/2, by the same arguments as in
the proof of Theorem 2.

This establishes the local asymptotic normality for our experiment and hence
the efficiency of the MLE.

6. The Case of Fixed Initial Degree

If the distribution of the initial degrees mt is degenerate at some natural
number m, then m(n + 1) is the total number of edges in the network at time
n, and hence the number m can be considered known given the snapshot of the
network at time n. In this case the MLE δ̂n is the root of the simpler version
of (7), given by

ι′n(δ) =

∞∑
k=1

p>k(n)− 1k<m
k + δ

− 1

n+ 1

n∑
t=2

m∑
i=1

1

δ + 2m+ (i− 1)/t
. (18)

We have qk = (k + δ)pk/(2m+ δ), and the main theorem simplifies as follows.

Proposition 4. Suppose the initial degrees mt are fixed at some deterministic
value m ∈ N. If δ0 is interior to the parameter set, then the MLE δ̂n defined
above satisfies, √

n(δ̂n − δ0) N(0, ν−1
0 ), (19)

where ν0 is defined by

ν0 =

∞∑
k=1

mq
(0)
k

(k + δ0)2
− m

(2m+ δ0)2
.
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Equation (18) relies only on the information observable from the final snap-
shot of the network. Hence in the case of fixed initial degrees, as far as estimating
δ is concerned, only knowing the final snapshot is as informative as knowing the
historical evolution.

7. Quasi-maximum-likelihood Estimator

The solution δ̂n of the likelihood equation ι′n(δ) = 0 for ι′n given by (7)
depends on the sequence of initial degrees m1, . . . ,mn through the quantities
R>k(n) = 2 · 1{m1>k} +

∑n
t=2 1{mt>k} and St,i−1(δ)/t = δ+ 2

∑t−1
i=1 mi/t+ (i−

1)/t. However in many applications, knowing the entire evolutional history is
unrealistic, and the sequencem1, . . . ,mn may well be unobserved. In this section
we propose adaptations of the estimator that depend only on the snapshot of
the network at time n.

We first suppose that the distribution of the initial degrees is known; recall
that r>k = P(mt > k), µ = Emt, and µ(2) = Em2

t , where the second moment
is assumed finite. Bearing in mind that (7) is asymptotic to (13), we replace
R>k(n) in (7) by (n+ 1)r>k and the second term on the r.h.s. of (7) by 1/(2 +
δ/µ). We then define a quasi-maximum-likelihood estimator (QMLE) δ̃n as the
root of the function

ι̃′n(δ) =

∞∑
k=1

1

k + δ

(
N>k(n)

n+ 1
− r>k

)
− 1

2 + δ/µ
.

It is easy to see ι̃′n is asymptotic to ι′. In fact

ι̃′n(δ)− ι′(δ) =

∞∑
k=1

p>k(n)− p(0)
>k

k + δ
,

which is the first term in (15). Hence ι̃′ also converges uniformly to ι′ and

consistency of δ̃n follows by similar (but simpler) arguments as for δ̂n. This
gives the following analogue of Theorem 1.

Proposition 5. The QMLE δ̃n is consistent, in probability under δ0 for every
δ0 ∈ (−a, b).

We similarly can prove the asymptotic normality of δ̃n. We first establish
the asymptotics of ι̃′n in the next proposition.

Proposition 6. Under δ0, we have

√
n(ι̃′n − ι′)(δ0) N(0, ν̃0 + ν0), (20)

where ν0 is given in Lemma 7, and ν̃0 is defined as the r.h.s. of (23), and
depends only on the distribution of the initial degree and δ0.

For the proof of the above proposition, we need the two following lemmas.
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Lemma 8. If X1, X2, . . . is a sequence of centered i.i.d. random variables with
unit variance, and g:R→ R is a measurable map with Eg(X1) = 0, E[g2(X1)] =
1 and E

[
X1g(X1)

]
= ρ, then as n→∞,( 1√

n

n∑
i=1

Xi,
1√
n

n∑
i=1

g(Xi)
)T
 N2

((
0
0

)
,
(

2 ρ
ρ 1

))
, (21)

1√
n

n∑
i=1

X
2

i
L1

−−→ 0, (22)

where Xi = (
∑i
j=1Xj)/i.

Proof. To prove (21) we first rewrite

1√
n

n∑
i=1

Xi =
1√
n

n∑
i=1

1

i

i∑
j=1

Xj =
1√
n

n∑
j=1

Xjwj,n,

where wj,n: =
∑n
i=j 1/i. We next apply the Lindeberg central limit theorem

(see Theorem 2.27 of [14]) to the vectors (wj,nXj , g(Xj)). Since log(n/j) ≤
wj,n ≤ log(n/(j−1)) the variance of the first coordinate and the covariance can
be calculated as

Var
( 1√

n

n∑
i=1

Xi

)
=

1

n

n∑
j=1

w2
j,n →

∫ 1

0

(log s)2 ds = Γ(3) = 2,

Cov
( 1√

n

n∑
i=1

Xi,
1√
n

n∑
i=1

g(Xi)
)

=
1

n

n∑
j=1

wj,nρ→ −ρ
∫ 1

0

log s ds = ρΓ(2) = ρ.

The variance of the second coordinate is one by assumption. To verify the
Lindeberg condition we write

1

n

n∑
j=1

E[X2
jw

2
j,n1{|Xj |wj,n/

√
n>ε}] .

1

n

n∑
j=1

w2
j,nE[X2

j 1{|Xj |>
√
nε/ logn}]

≤ E[X2
1 1{|X1|>

√
nε/ logn}]

1

n

n∑
j=1

w2
j,n.

The first inequality comes from that wj,n ≤ w1,n ≈ log n. As X1 possesses a
finite second moment, the right side tends to zero, as n → ∞. Then by the
Lindeberg central limit theorem, (21) holds.

Since E[Xi
2
] = VarXi = 1/i, the expectation of the left side of (22) is equal

to

1√
n
E
[ n∑
i=1

X
2

i

]
=

1√
n

n∑
i=1

1

i
� log n√

n
.

This clearly tends to zero as n→∞, proving (22).
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Lemma 9. Suppose that (Xn, Yn, Zn) are random vectors defined on a common
probability space such that Yn = gn(Zn) for measurable maps gn, and, as n→∞,

Xn|Zn  N(0, σ2), almost surely,

Yn  N(0, τ2).

Then Xn + Yn  N(0, σ2 + τ2).

Proof. For any two continuous, bounded functions f and g,

|E[f(Xn)g(Yn)]−
∫
fdΦσE[g(Yn)]| = |E[{E[f(Xn)|Zn]−

∫
fdΦσ}g(Yn)]|

≤ ‖g‖∞E
∣∣E[f(Xn)|Zn]−

∫
fdΦσ

∣∣→ 0,

by the dominated convergence theorem, since E[f(Xn)|Zn] →
∫
f dΦσ, almost

surely, by the Portmanteau lemma. Again by the Portmanteau lemma, we have
E[g(Yn)]→

∫
g dΦτ , and hence it becomes clear that

E[f(Xn)g(Yn)]→
∫
f dΦσ

∫
g dΦτ .

This implies that the vectors (Xn, Yn) converge in distribution to a vector of two
independent centered Gaussian variables with variances σ2 and τ2 (see Corol-
lary 1.4.5 in [15]). Next the assertion of the lemma follows by the continuous
mapping theorem.

Proof of Proposition 6. Decompose ι̃′n − ι′ as

√
n(ι̃′n − ι′)(δ0) =

√
n(ι̃′n − ι′n)(δ0) +

√
n(ι′n − ι′)(δ0).

The second term on the r.h.s. has been studied in Lemma 7, and tends condi-
tionally in distribution to a normal distribution with variance ν0 given (mt)

∞
t=1,

almost surely, while the first term depends only on (mt)
∞
t=1. In view of Lemma 9

it suffices to show that the first term tends in distribution to a centered normal
distribution with variance ν̃0.

We have

(ι̃′n − ι′n)(δ0) =

∞∑
k=1

r>k(n)− r>k
k + δ0

+
1

n+ 1

n∑
t=2

mt∑
i=1

t

St,i−1(δ0)
− 1

2 + δ0/µ

=
1

n+ 1

n∑
t=2

∞∑
k=1

1{mt>k} − r>k
k + δ0

+
1

n+ 1

n∑
t=2

mt − µ
δ0 + 2µ

+
2µ

n+ 1

n∑
t=2

µ−mt−1

(δ0 + 2µ)2
+An +Bn + Cn,

where

An =
2

n+ 1

∞∑
k=1

1{m1>k} − r>k
k + δ0

+
(n− 1

n+ 1
− 1
) 1

2 + δ0/µ
,
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Bn =
1

n+ 1

n∑
t=2

mt∑
i=1

(
t

St,i−1(δ0)
− t

St,0(δ0)

)
=

1

n+ 1

n∑
t=2

mt∑
i=1

t(i− 1)

St,i−1(δ0)St,0(δ0)

Cn =
2

n+ 1

n∑
t=2

(mt − µ)(µ−mt−1)

(δ0 + 2mt−1)(δ0 + 2µ)
+

4µ

n+ 1

n∑
t=2

(mt−1 − µ)2

(δ0 + 2µ)2(δ0 + 2mt−1)
.

Clearly
√
nAn → 0 in probability. Furthermore, since mt is independent from

mt−1 and mt ≥ 1, Bn is nonnegative with

E[Bn] ≤ 1

n+ 1
E
[ n∑
t=2

tm2
t

S2
t,0(δ0)

]
≤ µ(2)

(δ0 + 2)2(n+ 1)

n∑
t=2

1

t
.

log n

n
.

Hence
√
nBn → 0 in probability. The second term of

√
nCn tends to zero in

mean by (22). Finally, using that mt − µ has mean zero and is independent of
mt−1, we see that the terms of the first sum of Cn are uncorrelated, and hence
the second moment of the first term of Cn is bounded above by

4µ(2)

(n+ 1)2(δ0 + 2µ)2(δ0 + 2)2

n∑
t=2

E[(µ−mt−1)2] .
log n

n2
.

Hence
√
nCn → 0 in probability as well.

It follows that
√
n(ι̃′n−ι′n)(δ0) has the same limit distribution as the sequence

n−1/2
∑n
t=2

[
g(mt)− 2µ(mt−1 − µ)/(δ0 + 2µ)2)

]
, for g defined by

g(m) =

∞∑
k=1

1{m>k} − r>k
k + δ0

+
m− µ
δ0 + 2µ

.

An application of Lemma 8 shows that this sequence is asymptotically normal
with mean zero and variance

ν̃0: = Var[g(mt)] +
8µ2 Var[mt]

(δ0 + 2µ)4
− 4µ

(δ0 + 2µ)2
E[g(mt)mt]. (23)

The proof of the proposition is complete.

It becomes immediate that a parallel of Theorem 2 holds for the QMLE.

Theorem 3. If δ0 is interior to the parameter set, then the QMLE δ̃n satisfies
√
n(δ̃n − δ0) N(0, (ν0 + ν̃0)/ν2

0). (24)

Proof. The second order derivative of ι̃n takes the form

ι̃′′n(δ) = −
∞∑
k=1

1

(k + δ)2

(
N>k(n)

n+ 1
− r>k

)
+

µ

(2µ+ δ)2
.

This is asymptotic to ι′′(δ), just as ι′′n(δ), uniformly in δ in a neighbourhood of
δ0, and the value at δ0 tends to −ν0, as n→∞. Therefore the result follows by
the same argument as in the proof of Theorem 2.
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The QMLE is only available if the distribution of the initial degrees is
known. The mean initial degree µ can always be estimated from the snap-
shot at time n by the total number of edges divided by the number of ver-
tices, i.e. by µ̂n =

∑
k kNk(n)/(2n). The QMLE could be adapted by replacing

mt−1 in the terms St,i−1(δ) by µ̂n. If the initial degree distribution would be
known to concentrate on two known values, its mean would fix the full distri-
bution (the two probabilities), and the QMLE could be made completely data-
dependent. One strategy would be to solve the quantities R>k(n) using the
equations

∑n
t=1 1mt=a +

∑n
t=1 1mt=b = n and a

∑n
t=1 1mt=a + b

∑n
t=1 1mt=b =∑

k kNk(n)/2, if a and b are the two possible values of mt. However, in general
the initial degree distribution appears to be confounded with the preferential
attachment model and lack of knowledge of the distribution may hamper esti-
mation of δ.

8. Simulation Study

In this section we demonstrate the power of the MLE by applying it in
the setting of the famous paper [1]. We show that the MLE provides a better
estimate for the power-law exponent than the ad-hoc estimator in this paper,
and conclude that it is more informative about the limiting degree distribution
than the empirical degree distribution. We also offer an explanation for this
somewhat counter-intuitive phenomenon.

8.1. On the shoulder of the giants

We present our simulation results to pay tribute to [1], who considered (only)
the so-called linear preferential attachment model, i.e. δ0 = 0 (or f(k) = k).
In this case the limiting degree distribution can be explicitly given as pk =
6/(k(k + 1)(k + 2)). Figure 2 of [1] presented a simulation of 150, 000 vertices
with fixed number of edges m = 5 and true parameter δ0 = 0. Fitting a
straight line to the log empirical degree against the log degree gave a slope 2.9,
which suggests a parameter δ equal to 2.9 − 3 = −0.1, different from the true
value δ0 = 0. Below we show that the MLE gives an estimate of δ with a much
smaller error, and show that the sample mean and variance of the MLE are close
to the asymptotic values obtained in Theorem 2. Since the most important
characteristic of the limiting degree distribution is its power-law exponent τ ,
which depends on δ through the relation τ = 3 + δ/m if we assume the fast
decay of rk and hence no influence on the power-law exponent from the initial
degree distribution, the MLE in turn also gives a better insight in the limiting
degree distribution.

As mentioned in Section 1 a practical problem of fitting a straight line to
the plot of the log empirical degree log pk(n) against log k, is that the variance
of the former blows up with increasing degree k. This makes a careful choice
of the cutoff mandatory, but difficult, as is illustrated in Figure 1, which is an
independent replicate of Figure 2(A) of [1]. Actually, in our simulations we
found it to be non-trivial to obtain the estimate 2.9 of the negative of the slope
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(as found in [1]). In contrast, the MLE implicitly weighs the information in the
various degrees, and automatically yields accurate estimates.

We studied the sampling distribution of the MLE by generating 3, 500 inde-
pendent replicates of the linear PA graph, and computing δ̂ for each replicate.
A histogram of the 3,500 maximum likelihood estimates δ̂ is plotted in Fig-
ure 2, and numerical summaries are given in Table 1. We compared these to the
asymptotic distribution given in Theorem 2, and a “best fitting” normal distri-
bution with mean and variance taken equal to the sample mean and variance
of the 3,500 replicates. Inspection of Figure 2 and Table 1 gives the following
observations.

• The MLE is very accurate. In 3,500 replicates the worst estimate deviated
about 0.06 from the truth δ0 = 0 (Table 1), better than the error 2.9−3 =
−0.1 obtained in [1].

• The bias of the MLE is estimated at about 0.00082 and the variance
at 0.00033 (Table 1, “Mean” and “Samp. Var”), showing that the bias
gives a negligible contribution to the mean square error, as predicted by
Theorem 2. The estimated variance is remarkably close to the asymptotic
variance predicted by Theorem 2 (given in the column “Pred. Var.” of
Table 1).

• From the relation τ = 3 + δ/m we obtain the sample bias and variance in
the estimates of the power-law exponent.

• The sampling distribution of δ̂n with n = 150, 000 and fixed m = 5 is
quite close to a normal distribution (Figure 2), although it appears slightly
skewed to the right.

• The normal law that fits best to the sampling distribution is very close to
the asymptotic normal distribution (red and blue curves in Figure 2).

Min. Median Mean Max. Samp. Var. Pred. Var.
-0.064580 0.0013350 0.0008268 0.064090 0.00033715 0.00033594

Table 1: Summary of 3,500 replicates of the MLE in the linear Preferential Attachment model
with m = 5 and n = 150, 000. “Pred. Var.” gives the variance as predicted by the asymptotic
distribution of the MLE.

8.2. The majority rules

As we pointed out in the previous section, the MLE offers more information
about the limiting degree distribution than the empirical degree distribution.
We offer a possible explanation why this happens. If we only utilize the empirical
degree distribution and try to fit a power-law, then essentially we must restrict
ourselves to nodes with high degrees, and neglect the absolute majority with
low degrees. However if the universal mechanism of preferential attachment is
responsible for the evolution of the whole network, then this mechanism is also
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Figure 1: Plot of log Empirical Degree pk(n) (vertical axis) versus log degree log k of in one
simulation of a Linear Preferential Attachment graph with m = 5 and n = 150, 000.
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Figure 2: Histogram of 3,500 replicates of the MLE in the Linear Preferential Attachment
model with m = 5 and n = 150, 000.
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responsible for the nodes with low degrees, whence nodes with low degrees also
provide information about the underlying mechanism. The MLE takes account
of all the nodes, and also weighs their relevance in an automated manner, and
uses more information than present in just nodes of high degrees. In this sense,
the majority (the nodes with low degrees) wins over the minority (the nodes
with high degrees) and thus “rules”.
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