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REPORT MATHEMATICAL INSTITUTE, LEIDEN UNIVERSITY

Abstract. This paper concerns the theoretical analysis of step-by-step methods for solving initial value
problems in ordinary and partial differential equations.

The main theorem of the paper answers a natural question arising in the linear stability analysis of such
methods. It guarantees a (strong) version of numerical stability – under a stepsize restriction related to the
stability region of the numerical method and to a circle condition on the differential equation.

The theorem settles also an open question related to the properties total-variation-diminishing, strong-
stability-preserving, monotonic and (total-variation-)bounded. Under a monotonicity condition on the for-
ward Euler method, the theorem specifies a stepsize condition guaranteeing boundedness for linear problems.

The main theorem is illustrated by applying it to linear multistep methods. For important classes of
these methods, conclusions are thus obtained which supplement earlier results in the literature.
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1 Introduction

We shall address various related questions arising in the numerical solution of initial value
problems. In Sections 1.1, 1.2 of this introduction, these questions will be formulated and
put in an historical context. In Section 1.3, we shall give an outline of the rest of the paper.

1.1 Numerical stability

Numerical stability, specifically of linear multistep methods

Below, we shall denote by V an arbitrary real or complex vectorspace V, with seminorm
||v|| for v ∈ V.1 Consider an initial value problem in V that can be written in the form

d
d t
U(t) = F (U(t)) (for t > 0), U(0) = u0,(1.1)

where F : V→ V and u0 ∈ V are given, whereas U(t) ∈ V is unknown for t > 0.
Current numerical methods for solving (1.1) generate, in a step-by step fashion, ap-

proximations un of U(t) at consecutive grid-points t = tn. An essential requisite of the
methods is numerical stability – in the sense that any (discretization- or rounding-)errors,
introduced at some stage of the computations, are propagated ”mildly”, in the subsequent
computations. For this kind of stability, it is essential that the difference ũn − un between

∗Mathemat. Inst., Leiden Univ., P.O. Box 9512, NL-2300-RA Leiden, Nederland. (spijker@math.leidenuniv.nl)
1This means: ||λ · v|| = |λ| · ||v|| and ||v + w|| ≤ ||v||+ ||w|| for all scalars λ and v, w ∈ V.

1



two approximations un and ũn, does not grow ”fast” (as n increases), cf. e.g. [8] (sections
II.3, III.4), [36] (section 4).

To be more specific, we consider the general linear multistep method (LMM) – see e.g. [2],
[7], [8]. The method, applied to problem (1.1), yields approximations un (for n ≥ k), with

un = a1un−1 + · · ·+ akun−k + ∆t [b0F (un) + · · ·+ bkF (un−k)] .(1.2)

Here ∆t > 0 denotes the stepsize, and un ≈ U(tn), with tn = n∆t; further, k ≥ 1 is a fixed
integer, and aj, bj are real coefficients specifying the LMM, with

k∑
j=1

aj = 1,
k∑
j=1

j aj =
k∑
j=0

bj.(1.3)

Special attention to stability of these methods was paid, in the literature, for the case
where the differential equation stands for a linear partial partial differential equation, or a
semi-discrete (method of lines) version thereof. Consider problem

d
d t
U(t) = LU(t) (for t > 0), U(0) = u0,(1.4)

where L : V→ V is a linear operator; in this case the LMM formula takes on the form

un = a1un−1 + · · ·+ akun−k + ∆t [b0L(un) + · · ·+ bkL(un−k)] .(1.5)

Because of linearity, the difference ũn − un between two sequences ũn and un, obtained via
the formula, satisfies still (1.5); for numerical stability, in this case, it is thus crucial to
have moderate bounds on ||uN || (for N ≥ k) as soon as (1.5) holds for k ≤ n ≤ N . In the
literature, such bounds were established, indeed, notably of the form

||uN || ≤ µNα · max
0≤j≤k−1

||uj|| (whenever un satisfies (1.5) for k ≤ n ≤ N).(1.6)

Here µ, α stand for non-negative constants that are of moderate size and independent of
N ≥ k (and of ∆t > 0). The case where α = 0, is of course preferred; it is related to the
form of stability occurring in the Lax equivalence theorem, cf. e.g. [29].

The stability region of linear multistep methods

Consider the LMM in the test situation V = C. Putting z = ∆t L, formula (1.5) (with
n ≥ k) now reduces to a scalar recurrence relation with characteristic polynomial

P (z, λ) = (1− b0z)λ
k − (a1 + b1z)λ

k−1 − · · · − (ak + bkz).

We will say that any polynomial (with complex coefficients) satisfies the root condition,
if its roots λ have a modulus |λ| ≤ 1, while roots with |λ| = 1, are simple. The well known
stability region of the LMM, denoted by S, can be defined as the set of all z ∈ C with
1− b0z 6= 0, for which P (z, λ) (as polynomial in the variable λ) satisfies the root condition.

The stability region is a standard tool for getting insight into the stability behaviour
of LMMs. But, the region is essentially defined in terms of the method’s behaviour when
applied to a very simple (scalar) test problem. Hence, in case of more general (non-scalar)
problems of type (1.4), the region S should be used carefully, to avoid stability conclusions
that are, in reality, false, cf. e.g. [4] (section 1.3), [6], [18] (section 4), [23], [27], [28], [35].

In order to arrive at correct conclusions, by using stability regions, basic assumptions
on the operator ∆t L should be made that are stronger than a mere premise about its
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eigenvalues, or spectrum. Such stronger assumptions, and corresponding estimates of type
(1.6), were dealt with in the literature, see e.g. [12], [22], [25], [26], [28].

We note that – due to linearity of L – the stability estimates in the last references are also
relevant to solving non-homogeneous equations d

d t
U(t) = LU(t) + f(t). Moreover, they are

relevant for cases to which classical Fourier transformations do not apply, e.g. when irregular
grids are involved or spectral methods are used; and they are not limited to seminorms
generated by (semi-)inner products, so that e.g. the maximum-norm is included.

The present paper will deal with stability estimates, relevant to cases mentioned in the
last paragraph, under the well known assumption that ∆t L satisfies a circle condition

||(∆t L+ γI) v|| ≤ γ ||v|| (for all v ∈ V).(1.7)

Here γ > 0, and I denotes the identity operator in V. Condition (1.7) was used earlier in
the analysis of numerical methods, cf. e.g. [7] (section IV.11), [17] (section 3), [18], [25], [35],
and the references therein. It implies in general that the eigenvalues of ∆t L are situated
within, or on, the circle in the complex plane with centre z = −γ and radius γ. But,
conversely, this property of the eigenvalues is in general not strong enough to imply (1.7).

For a restricted class of LMMs and under conditions which do not follow from the circle
condition, neat estimates of type (1.6) were derived, in the literature, with α = 0. But, as
far as the author knows, estimates with α = 0 and relevant to general LMMs under the
circle condition, are lacking in the literature. The question thus poses itself of whether this
gap in existing literature can be filled up. An analogous question poses itself for multistage
versions of LMMs. These questions will be addressed in the present paper; cf. Section 1.3.

1.2 Monotonicity and boundedness

Monotonicity

Questions related to those just mentioned, occur in the study of the special properties
total-variation-diminishing, strong-stability-preserving, monotonicity and (total-variation)
boundedness; cf. e.g. [5], [11], [14], [15], [32], [33], [37]. We shall shortly review some of
these properties, using the same notations and assumptions as above.2

The last publications start generally by assuming that, for a specific constant τ > 0,

||v0 + τ0F (v0)|| ≤ ||v0|| (for any τ0 with 0 < τ0 ≤ τ , and any v0 ∈ V).(1.8)

Under this assumption, the LMM (1.2) has been considered with stepsize ∆t restricted by

0 < ∆t ≤ γ · τ,(1.9)

where the coefficient γ > 0 only depends on the coefficients aj, bj of the LMM. Special
LMMs and corresponding γ were determined, such that (1.8), (1.9) imply (for all N ≥ k):

||uN || ≤ max
0≤j≤k−1

||uj|| (when uN is generated by the LMM from u0, . . . , uk−1).(1.10)

Property (1.10) is often referred to as monotonicity or strong stability ; it is of particular
importance in the numerical solution of initial value problems arising by semi-discretization
(method of lines) of time dependent partial differential equations. An important choice
for || · ||, occurring in that context, is the total variation seminorm ||v|| = ||v||TV =∑

i |v(i)− v(i−1)| (for vectors v with components v(i)). Processes that are monotonic with
regard to that seminorm, play a special role in the solution of hyperbolic conservation laws
and are called total-variation-diminishing (TVD), cf. e.g. [5], [9], [16], [21], [32], [33].

2Part of the listed papers involve convex functionals || · ||; for simplicity, we shall still assume || · || is a seminorm.
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Boundedness

For total-variation-diminishing processes there is trivially total-variation-boundedness in the
sense that a constant µ (independent of N ≥ k and of u0, . . . , uk−1) exists with

||uN ||TV ≤ µ · max
0≤j≤k−1

||uj||TV (when uN is generated by the LMM from u0, . . . , uk−1).

In the solution of hyperbolic conservation laws, this property is crucial for suitable conver-
gence properties when ∆t→ 0, see e.g. [21], [16]. This is one of the underlying reasons why
attention has been paid in the literature to the monotonicity property (1.10).

Unfortunately, for many important LMMs – including all Adams methods and backward
differentiation methods, with k > 1 – there exists no stepsize-coefficient γ > 0 such that
(1.8), (1.9) imply monotonicity in the sense of (1.10); see e.g. [14], [19], [38].

Accordingly, along with monotonicity, also directly the weaker boundedness property

||uN || ≤ µ · max
0≤j≤k−1

||uj|| (when uN is generated by the LMM from u0, . . . , uk−1)(1.11)

has been studied – where µ is possibly greater than 1 (but still independent of N ≥ k and of
u0, . . . , uk−1). Conditions on γ were given such that this boundedness property holds under
conditions (1.8), (1.9); see [13], [14], [15], [31].

Although monotonicity and boundedness were primarily considered with a view to solv-
ing non-linear hyperbolic problems, it is worthwhile to study these properties especially for
linear problems (1.4) as well – see e.g. [5] (chapter 4), [11] (section 3). In solving (1.4),
property (1.11) just amounts to (1.6) with α = 0; and assumption (1.8) then reduces to

||v0 + τ0 Lv0|| ≤ ||v0|| (for any τ0 with 0 < τ0 ≤ τ , and any v0 ∈ V).(1.12)

In the context of solving just problems of type (1.4), there are still important LMMs for
which no γ > 0 exists such that (1.12), (1.9) imply monotonicity, cf. [34] (p.283), [19], [20].
Moreover, the conditions on γ, given in the literature and relevant to (1.11), were obtained
in the context of general (nonlinear) problems (1.1), and they are far from simple.

The natural question thus arises of whether, just for problems of type (1.4), more simple
and less restrictive conditions on γ exist such that (1.12), (1.9) imply the boundedness
property (1.11). An analogous question poses itself for multistage versions of LMMs. In
the present paper, we shall also address these questions; cf. Section 1.3.

1.3 Outline of the rest of the paper

In Section 2, we shall first introduce a general class of multistage multistep methods which
encompasses LMMs and is relevant to problem (1.4). Next, our main result, Theorem 2.1,
will be formulated. It guarantees, for all methods of the general class, an extended version
of property (1.6) with α = 0, under a suitable circle condition on ∆t L. It specifies also
a stepsize-coefficient γ such that conditions (1.12), (1.9) imply an extended version of the
boundedness property (1.11) (with regard to (1.4)). The theorem is best possible in a
sense specified at the end of Section 2, and it settles essentially the questions (pertinent to
multistage versions of LMMs) raised at the end of Sections 1.1 and 1.2.

In Section 3, the general theory will be applied to LMMs. Theorem 3.1 resolves explicitly
the questions about LMMs raised at the end of Sections 1.1 and 1.2. Moreover, Corollary 3.3
gives a neat criterion for the existence of γ > 0, such that conditions (1.12), (1.9) imply the
boundedness property (1.11) (with regard to (1.4)). Next, for classes of important LMMs,
conclusions are obtained, via Corollary 3.3, supplementing earlier results in the literature.

In Section 4, we shall prove Theorem 2.1. Because conditions (1.12), (1.9) are connected
to (1.7), the proof comes down to proving a boundedness estimate under condition (1.7).
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2 Formulation of the main result of the paper

We shall study a generic numerical process, relevant to problem (1.4), using the notations
and assumptions of Section 1. The process consists in computing, for n ≥ 1, numerical
approximations wn1, wn2, . . . , wnk ∈ V satisfying

P1(∆t L)wn,1 = Q11(∆t L)wn−1,1 + Q12(∆t L)wn−1,2 + . . . + Q1k(∆t L)wn−1,k

...
...

...
...

Pk(∆t L)wn,k = Qk1(∆t L)wn−1,1 + Qk2(∆t L)wn−1,2 + . . . + Qkk(∆t L)wn−1,k

(2.1)

Here Pr and Qrs are polynomials specifying the process. The coefficients of the polynomials
are assumed to be real if V is a vector space over R, and complex otherwise. The vectors
wnr (1 ≤ r ≤ k) can be thought of as being related to the solution U(t) of (1.4) at t ≈ n∆t.

This process can be viewed as a generalization of the so-called rational k-step method,
dealt with e.g. in [26]. A concrete example is provided by general Runge-Kutta methods,
in which case k = 1, and wn,1 approximates U(t) for t = n∆t.

Another example is given by the LMM formula (1.5), which can be reformulated as a
process of form (2.1), with

P1(z) = 1− b0z, Q1s(z) = as + bsz (1 ≤ s ≤ k),
Pr(z) = 1, Qr,r−1(z) = 1, Qr,s(z) = 0 (2 ≤ r ≤ k, s 6= r − 1).

(2.2)

In this case, we have wns = un+k−s ≈ U(t), with t = (n+ k − s)∆t.
We shall formulate conditions under which the numerical approximations wnr, generated

by the general process (2.1), satisfy

(2.3) max
1≤r≤k

||wN,r|| ≤ µ max
1≤r≤k

||w0,r|| (whenever (2.1) holds for 1 ≤ n ≤ N),

with µ independent of N ≥ 1 and of w0,1, . . . , w0,k ∈ V.
To formulate these conditions concisely, we give some definitions. We will say that a

matrix satisfies the root condition if its characteristic polynomial satisfies the root condition
(as defined in Section 1.1). By Φ(z) we will denote the k × k matrix

Φ(z) = (Φrs(z)) with Φrs(z) = Qrs(z)/Pr(z) (for 1 ≤ r ≤ k, 1 ≤ s ≤ k).

The stability region S, corresponding to the general process (2.1), is defined by

S = {z : z ∈ C, Pr(z) 6= 0 (for 1 ≤ r ≤ k), and Φ(z) satisfies the root condition}.

If (2.2) holds, then this set S equals the stability region of the LMM, defined in Section 1.1.
In the following theorem, constants γ0 will occur with

{z : z ∈ C with |z + γ0| ≤ γ0} ⊂ S.(2.4)

A value γ0 with this property (or the supremum of such values) is sometimes called stability
radius, cf. e.g. [17], [18], [35]. Along with (2.4), constants γ will occur with

0 < γ < γ0.(2.5)

This is our main theorem:

Theorem 2.1. Let polynomials Pr, Qrs and a constant γ > 0 be given. Assume that, for
some γ0, conditions (2.4) (2.5) are fulfilled. Then there is a constant µ which does not
depend on V, L, ∆t, N ≥ 1 or w0,1, . . . , w0,k, such that:
(I) The estimate (2.3) holds, whenever ∆t L satisfies the circle condition (1.7);
(II) The estimate (2.3) holds, whenever there is a τ > 0 such that, at the same time,
L and ∆t satisfy (1.12) and (1.9), respectively.

5



The above Statement (I) will be proved in Section 4. Statement (II) follows immediately
from Statement (I) and the close connection between condition (1.7) and conditions (1.12),
(1.9). This connection was observed by various authors, and is formulated explicitly below:

Lemma 2.2. Let L, ∆t > 0 and γ > 0 be given. Then the circle condition (1.7) is in force,
if and only if a value τ > 0 exists, for which both (1.12) and (1.9) are fulfilled.

To prove the lemma, note first that (1.12), (1.9) imply:
||(∆t L+ γI) v0|| = γ · ||(I + ∆t

γ
L) v0|| ≤ γ||v0||, i.e. (1.7).

Next, assuming (1.7), we define τ = ∆t/γ, so that (1.9) holds. If 0 < τ0 ≤ τ , then:
||v0 + τ0Lv0|| = || τ0

∆t
(∆t L + γ)v0 + (1 − γ τ0

∆t
)v0|| ≤ τ0

∆t
γ||v0‖| + (1 − γ τ0

∆t
)||v0|| = ||v0||,

i.e. (1.12). The lemma has thus been proved.

One may wonder whether Theorem 2.1 can be improved by replacing (2.5) with

0 < γ ≤ γ0.(2.6)

Such a replacement is not possible – the theorem is best possible in the following sense:

Remark 2.3. If condition (2.5) in Theorem 2.1 would be replaced by (2.6), then the theorem
would no longer be true.

This remark follows from a counterexample in [18], p. 75, which shows that, under the
assumptions γ = γ0 and (2.4), the estimate (2.3) is not always present (with µ independent
of V, L, ∆t, N ≥ 1 and w0,1, . . . , w0,k) when (1.7) holds.

For completeness, we note that Theorem 2.1 could be viewed as an extension of [18]
(theorem 6.2), where the case k = 1, V = Rs (with maximum norm || · ||∞) is considered.

3 Applications to linear multistep methods

Below, we consider LMMs and denote by S the stability region as defined in Section 1.1.
We make the usual assumption that, in additon to (1.3), the origin 0 belongs to S.

Applying Theorem 2.1, via (2.2), to k-step LMMs, we immediately obtain:

Theorem 3.1. Let a LMM and γ > 0 be given. Assume there is a γ0 with (2.4), (2.5).
Then µ exists (independent of V, L, ∆t, N ≥ 1 and w0,1, . . . , w0,k) such that:
(I) Estimate (1.6) holds, with α = 0, whenever ∆t L satisfies the circle condition (1.7).
(II) When applying the LMM to initial value problem (1.4), boundedness is present in the
sense of (1.11), whenever (1.12) holds and 0 < ∆t ≤ γ τ .

With an eye to the role played by γ in this Statement (II), a value γ > 0 will be called a
stepsize-coefficient for linear boundedness of a LMM, if a constant µ exists (independent of
V, L, ∆t, N ≥ 1 and w0,1, . . . , w0,k) such that: (1.11) holds whenever the LMM is applied
to any problem (1.4) under conditions (1.12), (1.9). Clearly, by Theorem 3.1, conditions
(2.4), (2.5) imply that γ is such a stepsize-coefficient.

In the present context, the so-called growth parameters of the LMM, cf. e.g. [10], are

useful. To specify them, we put ρ(ζ) = ζk−
∑k−1

j=0 ak−jζ
j, σ(ζ) =

∑k
j=0 bk−jζ

j, and denote
the roots of ρ(ζ) with modulus equal to 1, by η1, . . . , ηq. We choose the numbering such
that η1 = 1, which is possible by (1.3). The growth parameters λ1, . . . , λq, are defined by

λj =
σ(ηj)

ηj · ρ′(ηj)
,(3.1)

so that λ1 = 1, by (1.3). By expanding the roots ζ ≈ ηj of P (ζ) = ρ(ζ)− z σ(ζ) (for z ≈ 0)
in powers of z, cf. e.g. [3] (chapter 1, theorem 4.5), the following lemma can be proved:
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Lemma 3.2. There exists a value γ0 > 0 with property (2.4), if and only if all growth
parameters λj are real and non-negative.3

Combining Theorem 3.1 and this lemma, we arrive at:

Corollary 3.3.
(I) For any LMM, there exists a stepsize-coefficient γ for linear boundedness, if and only
if all growth parameters λj of the method are real and non-negative.
(II) If ζ = 1 is the only root with modulus one of the polynomial ρ(ζ), then there exists a
stepsize-coefficient for linear boundedness.

Proof.
(I) If all λj are real and non-negative, the conclusion follows from Lemma 3.2 and

Theorem 3.1 (e.g. with γ = γ0/2). Conversely, if γ is a stepsize-coefficient for linear
boundedness, then boundedness must be present for the special case where V = C and
∆t L = −γ+γ·θ, with θ ∈ C and |θ| ≤ 1. This means 1−b0 (−γ+γ θ) 6= 0 and the polynomial
ρ(ζ)− (−γ+γ ·θ)σ(ζ) satisfies the root condition. Hence {z : z ∈ C with |z+γ| ≤ γ} ⊂ S.
Applying Lemma 3.2 with γ0 = γ > 0, it follows that all λj are real and non-negative.

(II) Part (II) follows from Part (I), because λ1 = 1 > 0 �

Part (II) of this corollary is relevant to all Adams-Bashforth (A-B) and Adams-Moulton
(A-M) methods; as well as (for 1 ≤ k ≤ 6) to backward differentiation (BD) methods and
extrapolated versions (EBD) thereof: for all of these methods, a stepsize-coefficient exists
for linear boundedness. On the other hand, for the Milne-Simpson (M-S) and Nyström (N)
methods, Part (I) of Corollary 3.3 can be applied with k ≥ 2 and λ2 < 0: within neither
of these classes, a stepsize-coefficient for linear boundedness exists. All of these conclusions
are given in Line 1 (indicated with Linear Boundedness) of Table 1.4

Definitions analogous to the above definition of a stepsize-coefficient for linear bounded-
ness, can be given with regard to case (1.4, 1.12, 1.10), case (1.1, 1.8, 1.11) and case (1.1,
1.8, 1.10), so that in total four kinds of stepsize-coefficient are worth considering. We have
included results for all of these stepsize-coefficients in the table, allowing a neat comparison
with earlier results, in the literature, about monotonicity/boundedness. The entries in Lines
2 and 4 ( Linear Monotonicity and General Monotonicity) refer to monotonicity property
(1.10), in case of (1.4) and (1.1), respectively; the indicated ranges of k follow e.g. from
[19], [34] (p.283). The entries in Line 3 (General Boundedness) refer to boundedness prop-
erty (1.11) in solving the general problem (1.1) – the given ranges for k are taken from [38].

A-B A-M BD EBD M-S N
1. Linear Boundedness all k ≥ 1 all k ≥ 1 1 ≤ k ≤ 6 1 ≤ k ≤ 6 none none
2. Linear Monotonicity k = 1 k = 1 k = 1 k = 1 none none
3. General Boundedness 1 ≤ k ≤ 8 1 ≤ k ≤ 3 1 ≤ k ≤ 6 1 ≤ k ≤ 5 none none
4. General Monotonicity k = 1 k = 1 k = 1 k = 1 none none

Table 1. Values of k, with stepsize-coefficient γ for: linear boundedness (1.4, 1.12, 1.11), linear mono-

tonicity (1.4, 1.12, 1.10), general boundedness (1.1, 1.8, 1.11) and general monotonicity (1.1, 1.8, 1.10).

3This condition on the growth parameters reduces to positivity of all λj , under the assumption (made e.g. in [3],
[38]) that ρ(ζ) and σ(ζ) have no common root.

4For definitions and details of the six classes of LMMs considered, one may consult e.g. [8], [10], [16], [38].
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4 Proof of Statement I in Theorem 2.1

4.1 Part 1 of the proof

Throughout Section 4, we make, unless stated otherwise, the assumptions (2.4, 2.5).
For ζ ∈ Ck, with components ζ1, . . . , ζk, we shall use the maximum norm defined by

|ζ| = max {|ζr| : 1 ≤ r ≤ k}. The matrix norm for k × k matrices A, induced by this
norm in Ck, will be denoted by |A| = max {|Aζ|/|ζ| : ζ ∈ Ck, ζ 6= 0}. For w ∈ Vk, with
components w1, . . . , wk ∈ V, we shall use the seminorm defined by

||w|| = max {||wr|| : 1 ≤ r ≤ k}.
Let A be a k×k matrix, with real entries if V is a vector space over the real numbers, and

complex entries otherwise. For linear operators X : V → V, we shall denote by A⊗X the
operator mapping u ∈ Vk with components u` (for 1 ≤ ` ≤ k), into v ∈ Vk with components

vi =
∑k

`=1 ai`Xu` (for 1 ≤ i ≤ k). Below it will be used that

||(A⊗ Y j)w|| ≤ |A| ||w|| (for all w ∈ Vk and j = 0, 1, 2, . . . ),
if ||Y v|| ≤ ||v|| (for all v ∈ V).

(4.1)

Because of (2.5, 2.4), there is a value σ > 0 such that

Pr(z) 6= 0 for 1 ≤ r ≤ k and all z ∈ C with |z + γ| ≤ (1 + σ)γ.(4.2)

The functions Φrs(z) = Qrs(z)

Pr(z)
are thus holomorphic for z ∈ C with |z + γ| ≤ (1 + σ)γ, and

Φ(−γ + γy)n =
∞∑
j=0

yj Cnj (for |y| ≤ 1 + σ), with Cnj =
γj

j!

{ dj

dzj
[
Φ(z)n

]}
z=−γ

.

In dealing with (2.1), we shall use the following operator Z and (column) vectors wn ∈ Vk:

Z = ∆t L , and wn ∈ Vk with components wn1, . . . wnk.(4.3)

Clearly, the circle condition (1.7) is equivalent to

||(Z + γI) v|| ≤ γ ||v|| (for all v ∈ V).

The last inequality implies that Z = −γ I + γ Y, with ||Y v|| ≤ ||v|| (for all v ∈ V).
Therefore, if (2.1) holds (for 1 ≤ n ≤ N) under assumption (1.7), it is tempting to write

wN = Φ(Z)Nw0 = Φ(−γI + γ Y )Nw0 =
{∑∞

j=0CNj ⊗ Y j
}
w0, and to conclude, via (4.1),

(4.4) ||wN || ≤
( ∞∑
j=0

|CNj|
)
||w0|| (if (2.1) holds for 1 ≤ n ≤ N , and (1.7) is in force) .

This reasoning is clearly not complete; e.g. the definition of Φ(Z) and the invertibility of
the operators Pr(Z) has not been touched upon. But, conclusion (4.4) is correct; we have

Lemma 4.1. Property (4.4) is present.

Part 1 of the proof of Lemma 4.1.
For y ∈ C, we define

Fr(y) = Pr(−γ + γ y), Gr,s(y) = Qr,s(−γ + γ y),

and

F (y) =

 F1(y) O O

O
. . . O

O O Fk(y)

 , G(y) =

 G11(y) . . . G1k(y)
...

. . .
...

Gk1(y) . . . Gkk(y)

 .
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For linear operators Y (from V to V), we define operators Fr(Y ), Grs(Y ) (from V to V) and
operators F (Y ), G(Y ) (from Vk to Vk) in an analogous fashion. Furthermore, we consider
the formal Taylor series of Φ(−γI + γY )n, when truncated after m+ 1 terms, i.e.

Tn(Y ) =
m∑
j=0

Cnj ⊗ Y j;

for the sake of readability, we suppress in our notation the dependence of Tn(Y ) on m.
Assume (2.1) holds (for 1 ≤ n ≤ N), and condition (1.7) is in force. The corresponding

vectors wn ∈ Vk, see (4.3), then satisfy

F (Y )wn = G(Y )wn−1 (for 1 ≤ n ≤ N), with

Y = 1
γ
(Z + γ I), ||Y v|| ≤ ||v|| (for all v ∈ V).

We define auxilary vectors u[m]
n ∈ Vk by

u
[m]
0 = w0, u[m]

n = Tn(Y )w0 (for 1 ≤ n ≤ N).

One easily sees that

wn − u[m]
n = T1(Y )

(
wn−1 − u[m]

n−1

)
+ a[m]

n + b[m]
n (for 1 ≤ n ≤ N),(4.5)

where a[m]
n = {T1(Y )Tn−1(Y )− Tn(Y )}w0 =

{ ∑
i+j>m, 1≤i≤m, 1≤j≤m

C1,iCn−1,j ⊗ Y i+j

}
w0,

and F (Y ) b[m]
n = c[m]

n , with c[m]
n = {G(Y ) − F (Y )T1(Y )}wn−1.

Because the functions Φ(−γ + γy)n =
∑∞

j=0 y
j Cnj are holomorphic for y ∈ C with

|y| ≤ 1 + σ, it follows from Cauchy’s inequalities for the coefficients of Taylor series, that
there are constants αn, βn with: |Cnj| ≤ αn(βn)j and 0 < βn < 1 (for n ≥ 1, j ≥ 0). In
view of (4.1), constants µn and θn < 1 (independent of m) thus exist with

||T1(Y )w|| ≤ µ0 ||w|| (for all w ∈ Vk), ||a[m]
n || ≤ µn (θn)m ||w0|| (for 1 ≤ n ≤ N).(4.6)

To analyse the size of ||c[m]
n ||, we consider Tn(y) =

∑m
j=0 y

jCnj and note that

G(y)−F (y)T1(y) =
∑`

p=0 y
pAmp, (for all y ∈ C), with integer ` = `m and k×k matrices Amp.

Around y = 0, we have G(y)−F (y)T1(y) = F (y)[Φ(−γ+γy)−T1(y)] = F (y)
∑∞

j=m+1 y
j C1,j.

Hence, there is a constant ν (independent of m ≥ 1) such that for all y ∈ C

G(y)− F (y)T1(y) =
`m∑
p=0

ypAmp with Amp = 0 (for p ≤ m) and all |Amp| ≤ ν(β1)p.

Because analogously G(Y )− F (Y )T1(Y ) =
∑`m

p=0Amp ⊗ Y p, property (4.1) yields

||c[m]
n || =

∣∣∣∣∣
∣∣∣∣∣
{

`m∑
p=0

Amp ⊗ Y p

}
wn−1

∣∣∣∣∣
∣∣∣∣∣ ≤

`m∑
p=m+1

|Amp| · ||wn−1|| ≤ ν(β1)m+1

1−β1
||wn−1||.(4.7)

Below, in part 2 of our proof of the lemma, we shall show that there is a constant α,
only depending on the polynomials F1, . . . , Fk, such that

||w|| ≤ α ||F (Y )w|| (for all w ∈ Vk).(4.8)
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From (4.5, 4.6) it follows that

||wN − u[m]
N || ≤ (1 + µ0 + · · ·+ µN−1

0 ) · max
1≤n≤N

(||a[m]
n ||+ ||b[m]

n ||).(4.9)

Because of (4.6, 4.7, 4.8), the right-hand member of (4.9) tends to zero, when m→∞ (as
long as N ≥ 1 and w0, . . . , wN−1 ∈ Vk are fixed). Hence,

lim
m→∞

||wN − u[m]
N || = 0.

We have ||wN || −
∑∞

j=0 |CNj| · ||w0|| ≤ ||wN || −
∑m

j=0 |CNj| · ||w0||, so that

||wN || −
∞∑
j=0

|CNj| · ||w0|| ≤ ||wN || −
∣∣∣∣∣
∣∣∣∣∣
m∑
j=0

CNj ⊗ Y j · w0

∣∣∣∣∣
∣∣∣∣∣ = ||wN || − ||u[m]

N || ≤ ||wN − u
[m]
N ||.

By letting m→∞, we arrive at the desired upper bound for ||wN ||.

Part 2 of the proof of Lemma 4.1.
It remains to prove (4.8); this wil be done by showing below that

β ||w|| ≤ ||F (Y )w|| (for all w ∈ Vk), with β = min
1≤r≤k

γr σ
dr > 0.(4.10)

Here σ is as in (4.2), whereas dr denotes the degree of the polynomial Fr(y), and γr denotes
the modulus of its leading coefficient.

First suppose V is a vector space over the complex numbers.
For v ∈ V and 1 ≤ r ≤ k, we can write ||Fr(Y )v|| = γr||

∏dr
j=1(crjI − Y ) v||, where crj

are the (complex) zeros of the polynomial Fr. We have ||(crjI − Y )u|| ≥ ||crj u|| − ||Y u|| =
|crj| · ||u|| − ||Y u|| ≥ (|crj| − 1) · ||u|| (for any u ∈ V). Here (|crj| − 1) > σ > 0, because
Fr(y) = Pr(−γ + γ y) 6= 0 (for |y| ≤ 1 + σ), see (4.2). It follows that

||Fr(Y )v|| ≥ γrσdr ||v|| (for 1 ≤ r ≤ k and all v ∈ V),(4.11)

which can be seen to imply (4.10).
Next suppose V is a vector space over the real numbers.
If all zeros of all polynomials Fr are real, we can argue as above and obtain again (4.11),

yielding (4.10). On the other hand, in case a function Fr(y) has non-real zeros, these must
occur in pairs (c, c∗) of the form

c = [cos(θ) + i sin(θ)] %, c∗ = [cos(θ)− i sin(θ)] %,

with % > 1+σ. Such a polynomial Fr(y) then contains a factor of the form (c−y)(c∗−y) =
%2 − 2% cos(θ)y + y2, which is a polynomial with real coefficients. We put

H(y) = %2 − 2% cos(θ)y + y2,

and shall prove below that

||H(Y )u|| ≥ (%− 1)2||u|| (for all u ∈ V).(4.12)

This inequality yields ||H(Y )u|| ≥ σ2||u||, and makes it possible to prove again (4.11)
(by a reasoning analogous to the one in the complex case); and this leads again to (4.10).
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To prove (4.12), we introduce operators E,E∗ from V2 to V2; for given u, v ∈ V, we put

E

(
u

v

)
=

(
cos θ · u− sin θ · v
sin θ · u+ cos θ · v

)
, E∗

(
u

v

)
=

(
cos θ · u+ sin θ · v
− sin θ · u+ cos θ · v

)
.

Next, to any linear operator X : V→ V, we adjoin an operator X from V2 to V2 by

X

(
u

v

)
=

(
Xu

Xv

)
.

It follows that
H(Y ) =

(
%E − Y

) (
%E∗ − Y

)
.

In analogy to an idea due to A.E.Taylor, cf. [24], we introduce for w ∈ V2, with compo-
nents u, v ∈ V, respectively, the special seminorm

||w||T = sup
−∞<t<∞

|| cos(t)u+ sin(t) v||.

With this seminorm, we have

||Ew||T = ||w||T , ||E∗w||T = ||w||T , ||Y w||T ≤ ||w||T (for all w ∈ V2).

Hence, ||H(Y )w||T = ||
(
%E − Y

) (
%E∗ − Y

)
w||T ≥ (%−1)||

(
%E∗ − Y

)
w||T ≥ (%−1)2||w||T .

An application of the resulting inequality ||H(Y )w||T ≥ (% − 1)2||w||T , to the vector
w =

(
u
0

)
, yields (4.12). This completes the proof of Lemma 4.1. �

In view of this lemma, to prove Theorem 2.1, it is enough to show that a finite µ exists,
not depending on n, with

∞∑
j=0

|Cnj| ≤ µ (for n ≥ 1).(4.13)

Clearly, Cnj = 1
2πi

fl
|y|=1

y−j−1 Φ(−γ+γy)ndy = 1
2π

´ π
−π e−ijt Φ(−γ+γ e−it)ndt. Defining

F (t) = Φ(−γ + γ e−it),

we thus have

Cnj =
1

2π

ˆ π

−π
e−ijt F (t)ndt.

Below, in Section 4.2, we shall split the powers F (t)n into a sum

F (t)n = F [0]
n (t) + F [1]

n (t) + . . . F [s]
n (t),(4.14)

where each function F [`]
n (t) has a more simple structure than F (t)n. Next, in Sections 4.3,

4.4, we shall prove for the matrices

C
[`]
nj =

1

2π

ˆ π

−π
e−ijt F [`]

n (t)dt,(4.15)

that finite constants M`, not depending on n, exist with
∞∑
j=0

|C [`]
nj| ≤M` (for n ≥ 1).(4.16)

These bounds will complete the proof, because they imply that
∑∞

j=0 |Cnj| ≤∑∞
j=0(|C [0]

nj |+ · · ·+ |C
[s]
nj |) ≤ µ (for n ≥ 1), with µ = M0 +M1 + · · ·+Ms.
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4.2 Part 2 of the proof: defining the functions F [0]
n (t), . . . , F [s]

n (t)

We will denote the spectrum of any matrix A in Ck×k by sp[A], and its spectral radius by
spr[A]. Furthermore, an eigenvalue of A will be said to have multiplicity m, if it is a root
of the characteristic polynomial with multiplicity m.

The following lemma will be used repeatedly:

Lemma 4.2.
Assume |z∗ + γ0| ≤ γ0, and λ∗ is an eigenvalue of Φ(z∗) with multiplicity m. Let

δ > 0, ε > 0. Then the following holds:
(I) There are δ∗ ∈ (0, δ), ε∗ ∈ (0, ε), such that for each z with |z−z∗| < ε∗, there are precisely
m eigenvalues λ of Φ(z) with |λ− λ∗| < δ∗; each eigenvalue being counted according to its
multiplicity.

Assume, in addition to the above, that |λ∗| = 1. Then Statements (IIa)–(IId) hold:
(IIa) There are δ∗ ∈ (0, δ), ε∗ ∈ (0, ε) and αj such that, for each z with |z − z∗| < ε∗,
� the power series 1 + α1(z − z∗) + α2(z − z∗)2 + . . . converges;
� there is precisely one (simple) eigenvalue λ of Φ(z) with |λ− λ∗| < δ∗;
� the last mentioned eigenvalue equals λ = λ∗[1 + α1(z − z∗) + α2(z − z∗)2 + . . . ].
(IIb) If, in statement (IIa), all αj = 0, then λ∗ ∈ sp[Φ(z)] for all z with |z + γ0| ≤ γ0.
(IIc) If |z∗ + γ| ≤ γ, z∗ 6= 0, then, in statement (IIa), we have all αj = 0.
(IId) Let z∗ = 0. If statement (IIa) holds with not all αj = 0, then α1 is real and positive.

Proof.
(I) Define P (z, λ) = det[Φ(z) − λI] and f(λ) = P (z∗, λ). For δ∗ ∈ (0, δ) small enough,

the disk {λ : |λ − λ∗| ≤ δ∗} contains no other zeros of f(λ) than the (m-fold) zero
λ = λ∗. Therefore, Statement (I), follows e.g. by applying Rouché’s theorem, with function
g(λ) = P (z, λ) satisfying

|g(λ)− f(λ)| < |f(λ)| for |λ− λ∗| = δ∗ and |z − z∗| ≤ ε∗,

where ε∗ ∈ (0, ε) is sufficiently small ; cf. e.g [30], p.242.
(IIa) The assertion in Statement (IIa), not dealing with the power series, follows from

Statement (I) (withm = 1). Furthermore, with P (z, λ) as defined above, we have P (z∗, λ∗) =
0, ∂

∂λ
P (z∗, λ∗) 6= 0. Therefore, the assertions about the power series follow from the expan-

sion theorem as given e.g. in [1], p.17.
(IIb) Because P (z, λ∗) = 0 for all z in a neighbourhood of z∗, we must have P (z, λ∗) = 0

for all z with |z + γ0| ≤ γ0.
(IIc) Suppose there would be an αj 6= 0. We can choose an open neighbourhood of z∗

lying in the stability region S.
By the open mapping theorem of complex analysis, the intersection of the latter neigh-

bourhood and the open disk {z : |z−z∗| < ε∗} (with ε∗ as in Statement (IIa)), is mapped by
the function φ(z) = λ∗[1+α1(z−z∗)+α2(z−z∗)2 + . . . ] onto an open neighbourhood of λ∗.
This would imply that there are points z in S with spr[Φ(z)] > 1, which is a contradiction.

(IId) Part 1. Let z∗ = 0, and δ∗, ε∗, αj as in (IIa), with not all αj = 0. We claim that
α1 6= 0. Suppose, to the contrary, that αm is the first coefficient with αm 6= 0, and m ≥ 2.

Let 0 < η < 1
2
. For a radius r > 0, to be specified below, we consider the curve

Γ : t −→ z = r exp(i t), for (1
2

+ η)π ≤ t ≤ (3
2
− η)π.

We denote the corresponding range by |Γ| = {z : z = r exp(i t), (1
2

+ η)π ≤ t ≤ (3
2
− η)π}.

There is an r0 > 0 such that, for all r ∈ (0, r0],

|Γ| is contained in the stability region S.
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The function φ(z) = λ∗[1 + α1 z + α2 z
2 + . . . ] satisfies

φ(z) = λ∗ [1 + αm(1 +O(z))zm] (for z → 0).

Hence, there is an r1 ∈ (0, ε∗) such that for all r ∈ (0, r1] and |z| = r we have:

φ(z) = λ∗ [1 + αm(1 + ψ(z))zm] with |ψ(z)| < 1,
∣∣arg[1 + ψ(z)]

∣∣ ≤ η π.
Denoting the increase of the argument of any function χ(z), when z runs through the

curve Γ, by [arg{χ(z)}]Γ, we thus have, for 0 < r ≤ r1:[
arg

{
φ(z)
λ∗
− 1
}]

Γ
= [arg{1 + ψ(z)}]Γ + [arg{zm}]Γ ≥ −2 ηπ +m (1− 2 η)π ≥ (2− 6 η)π.

We choose η with 0 < η < 1
6
, and consider related values r0, r1. We put r = min{r0, r1},

so that for the corresponding Γ we have:
[
arg

{
φ(z)
λ∗
− 1
}]

Γ
> π. There is thus a point

z0 ∈ |Γ| with Re
{
φ(z0)
λ∗
− 1
}
> 0, and

∣∣∣φ(z0)
λ∗

∣∣∣ ≥ ∣∣∣Re
{
φ(z0)
λ∗

} ∣∣∣ =
∣∣∣1 + Re

{
φ(z0)
λ∗
− 1
} ∣∣∣ > 1.

As z0 ∈ |Γ| ⊂ S and φ(z0) ∈ sp[Φ(z0)], we have
∣∣∣φ(z0)
λ∗

∣∣∣ ≤ 1, yielding a contradiction. Hence,

α1 6= 0.

(IId) Part 2. To prove α1 > 0, we consider z → 0 with |z + γ| ≤ γ. Because z ∈ S, we
have, with the same notation as above:

1 ≥
∣∣∣φ(z)
λ∗

∣∣∣ ≥ 1 + Re
{
φ(z)
λ∗
− 1
}

= 1 + Re
{
α1z(1 +O(z))

}
(for z → 0).

Therefore

Re{α1z} ≤ O(|z|2) (when z → 0, while |z + γ| ≤ γ).

Writing α1 = |α1|eiθ1 and z = |z|eiθ(z), there follows:

|α1| cos(θ1 + θ(z)) ≤ O(|z|) (when z → 0, while |z + γ| ≤ γ).(4.17)

We let z tend to zero (while |z + γ| ≤ γ) in three different manners, viz. such that
θ(z) ≡ π, and such that θ(z)→ π/2, as well as θ(z)→ −π/2. This leads, respectively, to

cos(θ1) ≥ 0, sin(θ1) ≥ 0, sin(θ1) ≤ 0.

Hence, cos(θ1) = 1, i.e. α1 > 0. �

Our definition of the function F implies that F (t) = Φ(z) with |z + γ| ≤ γ. Hence, in
view of Parts (IIc, IId) of Lemma 4.2, the eigenvalues λ∗ of F (t) with modulus |λ∗| = 1 fit
into two separate categories. The first category consists of the eigenvalues (of unit modulus)
of F (0) for which the coefficient α1 > 0. We denote these eigenvalues by

λ∗1, . . . , λ
∗
p.

The second category consists of the eigenvalues (of unit modulus) of F (t) for which all
coefficients αj = 0. We denote them by

λ∗p+1, . . . , λ
∗
p+q.

We choose δ0 > 0 so small that

all disks {λ : |λ− λ∗` | ≤ δ0} are disjoint (1 ≤ ` ≤ p+ q).(4.18)

From Lemma 4.2 (and a compactness argument), one arrives at
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Remark 4.3.
(I) There is a δ1 with 0 < δ1 ≤ δ0, such that:
for 0 ≤ |t| ≤ π, and p+ 1 ≤ ` ≤ p+ q, the only λ ∈ sp[F (t)] with |λ− λ∗` | ≤ δ1, equals λ∗` .
(II) For 0 < |t| ≤ π, all eigenvalues λ of F (t) that are different from λ∗p+1, . . . , λ

∗
p+q, have

modulus |λ| < 1.
(III) All eigenvalues λ of F (0) that are different from λ∗1, . . . , λ

∗
p, λ
∗
p+1, . . . , λ

∗
p+q, have a

modulus |λ| < 1.

We can conclude, from the Jordan canonical form of F (t), that, for 0 ≤ |t| ≤ π:

F (t) = P (t) +Q(t), with P (t)Q(t) = Q(t)P (t) = 0,

sp[P (t)] = sp[F (t)] \ {λ∗p+1, . . . , λ
∗
p+q}, sp[Q(t)] = {λ∗p+1, . . . , λ

∗
p+q},

Q(t) = Fp+1(t) + · · ·+ Fp+q(t), with F`(t)Fm(t) = 0 (for ` 6= m),

F`(t)
n = (λ∗`)

n−1F`(t) (for n ≥ 1 and p+ 1 ≤ ` ≤ p+ q).

A decomposition of P (t), analogous to the one just given for Q(t), can be obtained for
t ≈ 0, using Lemma 4.2, with z = −γ + γe−it ≈ 0. There are, for t → 0, exactly p simple
eigenvalues λ1(t), . . . , λp(t) of P (t) tending to λ∗1, . . . , λ

∗
p, respectively. The other eigenvalues

of P (t) have a modulus bounded away from one. It follows that there are ε, δ with

0 < δ < min{1, δ1}, 0 < ε < π/2,

and holomorphic functions λ`(t) (1 ≤ ` ≤ p), such that for |t| ≤ 2ε:

sp[P (t)] = Λ0(t) ∪ Λ1(t), where all λ ∈ Λ0(t) have a modulus |λ| < 1− δ;
Λ1(t) = {λ1(t), . . . , λp(t)}, where for 1 ≤ ` ≤ p :

|λ`(t)− λ∗` | < δ, |λ`(t)| < 1 (for t 6= 0) and λ`(t)→ λ∗` (for t→ 0).

Here δ1 is as specified in Remark 4.3, and the inequality |λ`(t)| < 1 is a consequence of the
second statement in that remark.

It follows, from the Jordan canonical form of P (t), that we can write, for |t| ≤ 2ε:

P (t) = F0(t) + F1(t) + · · ·+ Fp(t), with F`(t)Fm(t) = 0 (for ` 6= m),

spr[F0(t)] < 1− δ, F`(t)
n = λ`(t)

n−1F`(t) (for n ≥ 1 and 1 ≤ ` ≤ p).

In our splitting (4.14), we shall make use of ε, δ with the properties just mentioned, and
the integer s will be equal to s = p+ q. The function F [0]

n (t) will be related to eigenvalues
of F (t) having a modulus bounded away from one. For 1 ≤ ` ≤ p and t → 0, the F [`]

n (t)
will be related to λ`(t); and the remaining functions F [`]

n (t) to λ∗` .
We shall use a partition of unity on [−π, π], involving a real valued and twice continuously

differentiable function φ(t), satisfying

φ(t) = 0 (2ε ≤ |t| ≤ π), 0 ≤ φ(t) ≤ 1 (ε ≤ |t| ≤ 2ε), φ(t) = 1 (|t| ≤ ε).

Because of formal reasons, only, we define for 2ε < |t| ≤ π:

F0(t) = · · · = Fp(t) = 0, λ1(t) = · · · = λp(t) = 0.

For 0 ≤ |t| ≤ π, we have the decompositions

F (t)n =
(
1− φ(t)n

)
P (t)n + φ(t)nP (t)n +Q(t)n,

φ(t)nP (t)n = [φ(t)F0(t)]n + [φ(t)F1(t)]n + · · ·+ [φ(t)Fp(t)]
n,

Q(t)n = Fp+1(t)n + · · ·+ Fp+q(t)
n,
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so that the splitting (4.14) is in force with

F [0]
n (t) =

(
1− φ(t)n

)
P (t)n + [φ(t)F0(t)]n;(4.19)

F [`]
n (t) = [φ(t)F`(t)]

n (1 ≤ ` ≤ p); F [`]
n (t) = F`(t)

n (p+ 1 ≤ ` ≤ s = p+ q).(4.20)

Because the functions F [`]
n (t) are composed of the n-th powers of matrices P (t), φ(t)F`(t)

and F`(t), the subsequent remark is of importance; it will be used in the following sections.

Remark 4.4. The matrix-valued functions P (t), φ(t)F`(t) (for 0 ≤ ` ≤ p) and F`(t)
(for p + 1 ≤ ` ≤ p + q) are twice continuously differentiable on [−π, π]. Moreover, these
functions and their first derivatives assume at t = π the same values as at t = −π.

These properties follow from P (t) = F (t)−
(
Fp+1(t) + · · ·+ Fp+q(t)

)
(for 0 ≤ |t| ≤ π),

F`(t) =
1

2πi

ffi
|ζ−λ∗

`
|=δ

ζ [ζ − F (t)]−1dζ (for p+ 1 ≤ ` ≤ p+ q and 0 ≤ |t| ≤ π),

and the following representations, which are valid (only) for |t| ≤ 2ε:

F0(t) =
1

2πi

ffi
|ζ|=1−δ

ζ [ζ − F (t)]−1dζ, F`(t) =
1

2πi

ffi
|ζ−λ∗

`
|=δ

ζ [ζ − F (t)]−1dζ (1 ≤ ` ≤ p).

4.3 Part 3 of the proof: bounding
∑∞

j=0

∣∣C [`]
nj

∣∣ (` = 0, p + 1 ≤ ` ≤ p + q)

In bounding
∣∣C [0]

nj

∣∣ =
∣∣ 1

2π

´ π
−π e−ijt F [0]

n (t)dt
∣∣, we shall use the following lemma, involving a

function H(t) defined on a finite union T of bounded closed real intervals. The function
has values in the space Ck×k of k × k matrices, and it will be assumed that

spr[H(t)] < 1 for t ∈ T, and H(t) has a continuous second derivative on T .

Lemma 4.5. Under the above assumptions on H(t), there exist constants K and θ, with
0 < θ < 1, such that uniformly for all n ≥ 1 and t ∈ T :

∣∣H(t)n
∣∣ ≤ K θn,

∣∣∣∣ d

dt

{
H(t)n

}∣∣∣∣ ≤ K θn,

∣∣∣∣ d 2

dt2
{
H(t)n

}∣∣∣∣ ≤ K θn.

Proof.
By a compactness argument, there is an α ∈ (0, 1), independent of t, with spr[H(t)] < α

on whole of T . We choose β with α < β < 1, and represent H(t)n by the Dunford integral

H(t)n =
1

2πi

ffi
|ζ|=β

ζn[ζI −H(t)]−1dζ.

It follows that |H(t)n| ≤ 1
2π

fl
|ζ|=β |ζ

n|
∣∣[ζI −H(t)]−1

∣∣ |dζ|, so that K0 exists with

|H(t)n| ≤ K0 β
n+1 (for all n ≥ 1, t ∈ T ).

The derivative of H(t)n can be expressed as

(
H(t)n

)′
=

n∑
j=1

H(t)j−1H ′(t)H(t)n−j.
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Applying the last upper bound for |H(t)n|, it follows that there is a constant L1 with∣∣(H(t)n
)′∣∣ ≤ L1 nβ

n (for all n ≥ 1, t ∈ T ). Hence K1, θ1, with 0 < θ1 < 1, exist such that∣∣∣(H(t)n
)′∣∣∣ ≤ K1 θ

n
1 (for all n ≥ 1, t ∈ T ).

Differentiating the above expression for
(
H(t)n

)′
, we find(

H(t)n
)′′

= S1(t) + S2(t) + S3(t),

where S1(t) =
∑n

j=1

(
H(t)j−1

)′
H ′(t)H(t)n−j, S2(t) =

∑n
j=1H(t)j−1H ′′(t)H(t)n−j,

S1(t) =
∑n

j=1H(t)j−1H ′(t)
(
H(t)n−j

)′
. Hence, for some K2, θ2, with 0 < θ2 < 1,∣∣∣(H(t)n

)′′∣∣∣ ≤ K2 θ
n
2 (for all n ≥ 1, t ∈ T ).

The lemma has thus been proved with K = max{K0,K1,K2} and θ = max{β, θ1, θ2} �

Defining G(t) = F [0]
n (t), we see, in view of definition (4.19) and Remark 4.4, that

G(t) has a continuous second derivative on [−π, π],(4.21)

G(−π) = G(π), G′(−π) = G′(π).(4.22)

Therefore, by performing twice a partial integration, we get 1
2π

´ π
−π e−ijtG(t)dt =

−1
2π j2

´ π
−π e−ijtG′′(t)dt (for j ≥ 1). Hence,∣∣∣∣ 1

2π

ˆ π

−π
e−ijtG(t)dt

∣∣∣∣ ≤ Lj, L0 = max
t
|G(t)|, Lj =

1

j2
max
t
|G′′(t)| (for j ≥ 1).(4.23)

In order to bound |G(t)| and |G′′(t)|, we note that G(t) = A(t) +B(t), with

A(t) = P (t)n − [φ(t)P (t)]n and B(t) = [φ(t)F0(t)]n.

Clearly
A(t) = 0 (for |t| ≤ ε), B(t) = 0 (for 2ε ≤ |t| ≤ π).

In view of the material in Section 4.2, it follows that Lemma 4.5 can be applied with
H(t) = P (t) and H(t) = φ(t)P (t) on T = {t : ε ≤ |t| ≤ π}, as well as with H(t) = φ(t)F0(t)
on T = {t : |t| ≤ 2ε}. This leads, for some K, θ with 0 < θ < 1, to the bounds

A(p)(t)| ≤ 2K θn, |B(p)(t)| ≤ K θn (for |t| ≤ π and p = 0, 1, 2),

|G(t)| ≤ 3K θn, |G′′(t)| ≤ 3K θn (for |t| ≤ π).

Using the last two upper bounds in combination with (4.23), we obtain∑∞
j=0 |C

[0]
nj | =

∑∞
j=0

∣∣ 1
2π

´ π
−π e−ijtG(t)dt

∣∣ ≤ ∑∞j=0 Lj ≤
(

1 +
∑∞

j=1
1
j2

)
3Kθn. Hence, putting

M0 =
(

1 +
∑∞

j=1
1
j2

)
3K, we have

∞∑
j=0

|C [0]
nj | ≤M0 (for n ≥ 1).(4.24)

Let p+ 1 ≤ ` ≤ p+ q. In order to bound
∣∣C [`]

nj

∣∣ =
∣∣ 1

2π

´ π
−π e−ijt F [`]

n (t)dt
∣∣, we put

G(t) = F [`]
n (t),
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and note that, because of definition (4.20) and Remark 4.4, we have again properties (4.21,
4.22, 4.23). Using that G(t) = F`(t)

n = (λ∗`)
n−1F`(t), we have now in (4.23) the equalities

L0 = maxt |F`(t)| and Lj = 1
j2

maxt |F ′′` (t)| (j ≥ 1). Putting M` =
∑∞

j=0 Lj, we obtain

∞∑
j=0

|C [`]
nj| ≤M` (for p+ 1 ≤ ` ≤ p+ q and n ≥ 1).(4.25)

4.4 Part 4 of the proof: bounding
∑∞

j=0

∣∣C [`]
nj

∣∣ for 1 ≤ ` ≤ p

Three lemmas will be used; the first two are related to material in the seminal paper [39].

Lemma 4.6. Let constants K,α be given. Suppose values δnj satisfy, for n ≥ 1 and j ≥ 0,

0 ≤ δnj ≤
K√
n
,(4.26)

0 ≤ δnj ≤
K
√
n

(j − αn)2
(if j 6= αn).(4.27)

Then a finite value M , depending only on K, exists with
∑∞

j=0 δnj ≤M (for all n ≥ 1).

A version of this lemma was used–implicitly–in [39]. We omit the proof of Lemma 4.6,
because it is simple and very similar to the proof of the related result given in [39], p.278.

The following lemma is about G0(t), µ(t), with values in Ck×k and C, respectively, where

G0(t) and µ(t) are twice continuously differentiable on [−π, π],(4.28)

G0(−π) = G0(π), G′0(−π) = G′0(π) and µ(−π) = µ(π), µ′(−π) = µ′(π),(4.29)

|µ(0)| = 1, |µ(t)| < 1 (for 0 < |t| ≤ π),(4.30)

µ(t) = µ(0) · exp[αit− (β + δi)t2 +O(t3)] as t→ 0, with real α, β, δ, where β > 0.(4.31)

Lemma 4.7. Assume G0(t), µ(t) satisfy all of the conditions just mentioned, and let

Dnj =
1

2π

ˆ π

−π
e−ijt µ(t)n−1G0(t)dt, δnj = |Dnj|.

Then a constant K exists such that (4.26), (4.27) hold (for all n ≥ 1 and j ≥ 0).

Proof.
The proof will be based on ideas taken from [39], pp. 277-278.
Proving (4.26).
A combination of the fact that |µ(t)| < 1 (for 0 < |t| ≤ π) with the asymptotic expansion

for µ(t) (when t→ 0) (see (4.30, 4.31)) shows that for some constant β0, with 0 < β0 < β,

|µ(t)| ≤ e−β0t
2

(for 0 ≤ |t| ≤ π).(4.32)

Therefore,

|δnj| ≤
1

2π

ˆ π

−π
|µ(t)|n−1|G0(t)|dt ≤

exp(β0π
2)

2π

ˆ π

−π
exp(−β0nt

2)|G0(t)|dt ≤ K0√
n

ˆ ∞
−∞

exp(−β0x
2)dx,
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for some constant K0. Hence, a constant K exists as required in (4.26).

Proving (4.27).
We assume n ≥ 1, αn 6= j ≥ 0, and introduce the functions H0(t) = e−iαtG0(t),

ν(t) = e−iαtµ(t), H(t) = ν(t)n−1H0(t), so that

Dnj =
1

2π

ˆ π

−π
e−i(j−αn)tH(t) dt, ν(t) = ν(0) · exp[−(β + δi)t2 +O(t3)] (for t→ 0).

By two partial integrations, there follows Dnj = −1
2π(j−αn)2

´ π
−π e−i(j−αn)tH ′′(t) dt, so that

|Dnj| ≤
1

(j − αn)2

1

2π

ˆ π

−π
|H ′′(t)|dt.

We have H ′′(t) = An(t) +Bn(t) + Cn(t), where

An(t) = (n− 1)(n− 2) [ν ′(t)]2 [ν(t)]n−3H0(t),

Bn(t) = (n− 1)[ν(t)]n−2
[
ν ′′(t)H0(t) + 2 ν ′(t)H ′0(t)

]
,

Cn(t) = [ν(t)]n−1H ′′0 (t).

Because (4.32) holds, and ν ′(0) = 0, we have for some constant K0

|ν(t)| ≤ e−β0t
2

and |ν ′(t)| ≤ K0|t| (for 0 ≤ |t| ≤ π).

Combining these two upper bounds with the above expressions for An(t), Bn(t), Cn(t), we
see that K1,K2,K3 exist such that, for all n ≥ 1,

ˆ π

−π
|An| ≤ K1 n

2

ˆ π

−π
|t|2 exp(−β0nt

2) dt ≤ K1

√
n

ˆ ∞
−∞

x2 exp(−β0x
2) dx,

ˆ π

−π
|Bn| ≤ K2 n

ˆ π

−π
exp(−β0nt

2) dt ≤ K2

√
n

ˆ ∞
−∞

exp(−β0x
2) dx,

ˆ π

−π
|Cn| ≤ K3.

It follows that there is a constant K with |Dnj| ≤ K
√
n

(j−αn)2
�

Lemma 4.8. Let ` be given with 1 ≤ ` ≤ p. Then the function F [`]
n (t), cf. definition

(4.20), can be written as F [`]
n (t) = µ(t)n−1G0(t), with µ(t), G0(t) satisfying the assumptions

(4.28–4.31) made in Lemma 4.7.

Proof. By the construction in Section 4.2 and Remark 4.4, we have F [`]
n (t) = µ(t)n−1G0(t),

where µ(t) = φ(t)λ`(t) and G0(t) = φ(t)F`(t) satisfy the assumptions (4.28, 4.29, 4.30).
To prove also (4.31), we note that

µ(t) = λ`(t) (for |t| ≤ ε).(4.33)

By Lemma 4.2, there are α1, α2, . . . (possibly depending on `, but not on γ) such that

λ`(t) = λ∗` [1 + α1z + α2z
2 + . . . ] (for t→ 0), with z = −γ + γ e−it and α1 > 0.

By expanding in powers of t, it can be seen that

λ`(t) = λ∗` · exp[αit− (β + δi)t2 +O(t3)] (for t→ 0),(4.34)
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with α = −α1γ and β + δi = γ
2
[α1 + (2α2 − α 2

1 )γ]. Accordingly, we define the function

f(x) = x
2

[
α1 +

(
2 Re(α2)− α 2

1

)
x
]

(for all real x),

and we put β = f(γ), δ = γ2Im(α2).
Because 1 ≥ |λ`(t)/λ∗` | = exp[−βt2 +O(t3)] (for t→ 0), there follows

f(γ) ≥ 0.

Although this inequality has (formally) been derived only for the value γ at hand, it must
evidently hold for any γ′ with 0 < γ′ < γ0. Therefore, also f(γ0) ≥ 0, which implies

β = f(γ) = α1γ
2

(1− γ
γ0

) + ( γ
γ0

)2f(γ0) ≥ α1γ
2

(1− γ
γ0

) > 0.

Combining the resulting inequality β > 0 with (4.33, 4.34), we obtain (4.31) �

Because C
[`]
nj = 1

2π

´ π
−π e−ijt F [`]

n (t)dt, the above three lemmas imply the existence of
constants M`, not depending on n, with

∞∑
j=0

|C [`]
nj| ≤M` (for 1 ≤ ` ≤ p and n ≥ 1).(4.35)

The proof of Theorem 2.1 is completed using (4.24, 4.25, 4.35) as indicated in Section 4.1.

Acknowledgement I thank Professor Dr.Willem Hundsdorfer for stimulating discussions
and for mentioning to me the question about LMMs formulated at the end of Section 1.2.
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