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Abstract If L and M are partially ordered vector spaces, then one can consider regular linear
maps from L to M , i.e. linear maps which can be written as the difference of two positive linear
maps. If the space L is directed, then the space Lr(L,M) of all regular linear operators becomes a
partially ordered vector space itself. We will mainly concern ourselves with the questions when the
space Lr(L,M) is itself a Riesz space and how, even if it is not a Riesz space, its lattice operations
work. The so-called Riesz-Kantorovich theorem gives sufficient conditions for which Lr(L,M) is a
Riesz space and it also specifies the lattice operations by means of the Riesz-Kantorovich formula:
if S, T ∈ Lr(L,M) and x ∈ L with x ≥ 0 then the supremum S ∨ T in the point x is given by

(S ∨ T )(x) = sup{S(y) + T (x− y) : 0 ≤ y ≤ x}.

It is still an open problem if whenever in a more general setting the supremum of two regular opera-
tors exists in Lr(L,M), it automatically is given by the Riesz-Kantorovich formula. Our main result
concerns the special case where L is a partially ordered vector space with a strong order unit and M
is a (possibly infinite) product of copies of the real line, equipped with the lexicographic ordering.
It will turn out that under some mild continuity and regularity conditions the lattice operations on
Lr(L,M) are indeed given by the Riesz-Kantorovich formula, even though the space Lr(L,M) is
not necessarily a Riesz space.

Keywords Lexicographic order; Riesz-Kantorovich formula; Partially ordered vector spaces.
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1 Introduction

In this section we will define the necessary terminology and we will formulate the Riesz-Kantorovich
theorem. More general theory on this subject can be found for instance in [4, 7, 9].
First we define the spaces we will be working with. Let V be a real vector space and ≤ a partial order
on V . Then (V,≤) is called a partially ordered vector space if for all x, y, z ∈ V and λ ∈ R≥0
the inequality x ≤ y implies x+ z ≤ y+ z and x ≤ y implies λx ≤ λy. If x ∈ V satisfies x ≥ 0, then
we say that x is positive and we introduce V+ for the set of positive vectors, called the positive
cone of V .
Any convex subset of a vector space V which satisfies the properties (1), (2) and (3) above is called
a convex cone in V . Instead of defining partially ordered vector spaces as a vector space with a
suitable partial order one can also define it in terms of a convex cone: if L is a convex cone in a real
vector space V then we define the order ≤ on V by saying that x ≤ y if and only if y− x ∈ L. Then
(V,≤) is a partially ordered vector space in the sense of the previous definition. This means that a
partially ordered vector space is in fact completely characterized by its positive cone.
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The partially ordered vector space V is said to be directed if every element of V can be written
as the difference of two positive vectors. If V is a partially ordered vector space and U is a linear
subspace of V then we will view U as a partially ordered vector space with the ordering inherited
from V .
Given a subset W of V we say that a vector x ∈ V is an upper (lower) bound for W if x majorizes
(minorizes) all vectors in W . The vector x ∈ V is called the supremum (infimum) of W if it is
the smallest upper (largest lower) bound of W and is denoted by supW (inf W ). A subset which
has both an upper bound and a lower bound is called order-bounded. A partially ordered vector
space V for which sup{x, y} exists in V for all x, y ∈ V is called a Riesz space or vector lattice.
We will use the following notation for the suprema and infima of finite sets∨n

i=1 xi = sup{x1, ..., xn}∧n
i=1 xi = inf{x1, ..., xn}

(1.1)

for x1, ..., xn ∈ V .
A partially ordered vector space V is said to be Archimedean if for elements u, v ∈ V with nv ≤ u
for all n ∈ Z>0 we must have that v ≤ 0. A partially ordered vector space V is called Dedekind
complete if every subset of V which has an upper bound also has a supremum. A partially ordered
vector space V is said to have the Riesz decomposition property if for any x1, x2, y ∈ V+ with
y ≤ x1 + x2 there exist y1, y2 ∈ V with 0 ≤ y1 ≤ x1, 0 ≤ y2 ≤ x2 and y1 + y2 = y. Note that any
Riesz space has the Riesz decomposition property.
Let V and W be two partially ordered vector spaces. A linear map f : V → W is called positive
if f(x) ∈ W+ for all x ∈ V+. The map f is called order-bounded if f carries order-bounded
subsets of V into order-bounded subsets of W . Finally, f is called regular if it can be written as
the difference of two positive linear maps. If the space V is directed then we can define the ordering
≤ on the space of linear operators from V to W , which we denote by L(V,W ), by saying that f ≤ g
if and only if g − f is positive. Then L(V,W ) with this ordering becomes a partially ordered vector
space itself. Similarly, this ordering turns the space of all order-bounded operators and the space
of all regular operators into partially ordered vector spaces, which we will denote by L∼(V,W ) and
Lr(V,W ) respectively. We always have the following sequence of inclusions

Lr(V,W ) ⊂ L∼(V,W ) ⊂ L(V,W ). (1.2)

Let V be a partially ordered vector space. For any pair of vectors x, y ∈ V we introduce the
order interval [x, y] as

[x, y] = {z ∈ V : z ≥ x, z ≤ y}. (1.3)

An element e ∈ V+ is a strong order unit if for any x ∈ V there exists a λ ∈ R>0 in such a way
x ≤ λe. If V has a strong order unit, then V is also directed. Let V be a partially ordered vector
space and let x ∈ V+. Then we define the ideal generated by the element x to be the linear

subspace
∞⋃
n=1

[−nx, nx] and we denote this subspace by Vx. Note that x is always a strong order unit

in the space Vx. An order interval in V is a subset of V of the form {x ∈ V : a ≤ x ≤ b} for some
a, b ∈ V . If X is a vector space over R and A is a subset of X, then a vector a ∈ A is called an inter-
nal point of A if for each x ∈ X there exists a λ0 ∈ R>0 such that a+λx ∈ A for each −λ0 ≤ λ ≤ λ0.

Having introduced all the necessary preparations, we are ready to formulate the Riesz-Kantorovich
theorem.

Theorem 1.1 (The Riesz-Kantorovich theorem). Let L,M be partially ordered vector spaces. As-
sume that L has the Riesz decomposition property, that L is directed and Archimedean and that M
is a Dedekind complete Riesz space. Then Lr(L,M) is a Riesz space and for T1, ..., Tn ∈ Lr(L,M)
and x ∈ L+ the lattice operations are given by the so-called Riesz-Kantorovich formula

(
∨n
i=1 Ti)(x) = sup{

∑n
i=1 Tixi : 0 ≤ xi ≤ x,

∑n
i=1 xi = x}. (1.4)
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This theorem was established in the late 1930s independently by M. Riesz in [10] and L. Kan-
torovich in [8]. Our main object of interest is the following long-standing open problem.

If for some partially ordered vector spaces L,M with L directed and regular operators T1, ..., Tn :
L → M the supremum

∨n
i=1 Ti exists in the space Lr(L,M), does it necessarily satisfy the Riesz-

Kantorovich formula?

There have been many results, which give sufficient conditions for this question to be answered
positively, for example the Riesz-Kantorovich theorem itself or the results from [5]. One of these
results, proved by Aliprantis, Tourky and Yannelis in [6, Theorem 3.3], forms the basis for the main
theorem we prove in this paper.

Theorem 1.2 ([6, Theorem 3.3]). Let L be an ordered vector space with an order unit and a
Hausdorff linear topology such that all order intervals are compact. If for some linear continuous
functionals f1, ..., fm ∈ L∼(L,R) the supremum g =

∨m
i=1 fi exists in L∼(L,R) then g satisfies the

Riesz-Kantorovich formula.

An open problem closely related to the one we are considering, is the question under what condi-
tions for the partially ordered vector spaces L and M the space Lr(L,M) is itself a Riesz space. This
problem has been studied more than the one on the Riesz-Kantorovich formula and a few results
can be found for example in [1, 2, 12].

To conclude this section we want to give an example of a partially ordered vector space L, which
does not have the Riesz decomposition property, so for which we cannot apply the Riesz-Kantorovich
theorem, but which does satisfy all conditions of theorem 1.2 and therefore also of our main theorem.
It is based on [6, Example 2.3].

Example 1.3. Consider the vector space R3 with the following ’ice cream’ cone:

C = {(x, y, z) ∈ R3 : z ≥ 0, z2 ≥ 4(x2 + y2)}

= {λ(x, y, 2) : λ ≥ 0, x2 + y2 ≤ 1}.
(1.5)

Since C is a convex cone, it induces a partial order on R3, which we will denote by ≤C , by x ≤C y if
and only if y−x ∈ C. We equip the space with the Euclidean topology. Then we obtain the following
properties:

1. C is a closed cone.

2. The space (R3,≤C) is finite dimensional and the cone is generating. Therefore it necessarily
has a strong order unit.

3. The order intervals of (R3,≤C) are closed bounded subsets of R3 and thus they are compact.

4. (R3,≤C) does not have the Riesz decomposition property and is thus in particular is not a
Riesz space (see [6, Example 2.3] for a proof).

2 The lexicographic ordering

In this section we give a definition of the lexicographic ordering on a product of copies of the real
line and we will prove the basic results needed for the proof of our main theorem. In this formu-
lation we will use the notion of an ordinal number, which is a concept from set theory. Our main
result is already interesting for natural numbers, which are examples of ordinal numbers. Readers
not interested in ordinal numbers may read the text with natural numbers in mind.
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Let α 6= 0 be an ordinal number and set M =
∏

1≤j≤α R. If x ∈ M and β ≤ α then we let x(β)

denote the βth coordinate of x and x(1),...,(β) the vector consisting of the first β coordinates of x. We
equip M with the lexicographic ordering by saying that x ≤ y if and only if either x = y or there
exists some β ≤ α in such a way that for all γ < β we have x(γ) = y(γ) and x(β) < y(β). Note that in
this way M becomes a Riesz space as it is totally ordered. If α > 1 then M is not Archimedean and
therefore not Dedekind complete. The following key result is what distinguishes the lexicographic
ordering from the standard componentwise ordering and turns out to be essential for the proof of
our main theorem.

Lemma 2.1. Let α 6= 0 be an ordinal number. Let M =
∏

1≤j≤α R with the lexicographic ordering.
We give M the product topology. Let K ⊂ M be non-empty and compact. Then K has an order-
maximum, i.e. there exists x ∈ K such that x ≥ y for all y ∈ K.

Proof. We show this by transfinite induction to α. For α = 1 the result is well-known. Now
let α ≥ 1 and assume each non-empty compact set in

∏
1≤j≤α R has an order-maximum. Let

M =
∏

1≤j≤α+1 R and let K ⊂ M be compact. Let πα be the projection from M onto its first
α coordinates. Then we know that πα is continuous. Hence πα(K) is compact in

∏
1≤j≤α R and

thus has an order-maximum, say x. Then {y(α+1) : y ∈ K,πα(y) = x} is a compact and non-empty
subset of R and thus has an order-maximum y. Then (x, y) ∈ K and if z ∈ K then παz ≤ x and if
παz = x then z(α+1) ≤ y. Hence z ≤ (x, y). So K has an order-maximum. Finally let α be a limit
ordinal and assume that for each β < α we have that every non-empty compact subset of

∏
1≤j≤β R

has an order-maximum. Let K ⊂ M be compact. Let β < α and let πβ be the projection from
M on the first β coordinates. As before we can let xβ ∈ πβ(K) be the order-maximum. If γ < β
then clearly the first γ coordinates of xβ must be xγ since we use the lexicographic ordering. Hence

we can let x ∈ K be defined by x(β) = x
(β)
β and by construction we indeed have x ∈ K. Now if

z ∈ K with z 6= x then we let β < α be minimal such that z(β) 6= x(β) and thus we must have that
πβz < xβ = πβx. Hence also z < x. So indeed x is an order-maximum of K. So we get that for all
α ≥ 1 and all compact K in

∏
1≤j≤α R we must have that K has an order-maximum.

Notation 2.2. Let L be an ordered vector space. For any integer m > 0 and x ∈ L+ we define the
following non-empty convex sets

Amx = {(y1, ..., ym) ∈ Lm+ :
∑m
i=1 yi ≤ x} (2.1)

and
Fmx = {(y1, ..., ym) ∈ Lm+ :

∑m
i=1 yi = x}. (2.2)

If x ∈
∏
j∈J R for some index set J then we write x(j) for the j-th component of x and similarly if

f : L →
∏
j∈J R is any map then we write f (j) for the map f (j) : L → R, x 7→ (f(x))(j). Similarly,

if α is an ordinal, then for x ∈
∏

1≤β≤α R and γ < α we mean by x(1),...,(γ) the vector in
∏

1≤β≤γ R
which corresponds to the first γ coordinates of x and if f : L →

∏
1≤β≤α R is any map and γ < α

then we mean by f (1),...,(γ) the map f (1),...,(γ) : L→
∏

1≤β≤γ R, x 7→ (f(x))(1),...,(γ).

We have to prove one more lemma, which gives another essential property of the lexicographic
ordering.

Lemma 2.3. Let L be a directed partially ordered vector space. Let α ≥ 1 be an ordinal number

and let M =
∏

1≤j≤α R with the lexicographic ordering. Let f1, ..., fm ∈ L∼(L,M) such that f
(j)
i is

regular for all i ∈ {1, ...,m} and all 1 ≤ j ≤ α and such that g = f1 ∨ ... ∨ fm exists in L∼(L,M).

Let β < α. Then f
(1),...,(β)
1 ∨ ... ∨ f (1),...,(β)m exists and equals g(1),...,(β).
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Proof. Suppose this is not the case. Then we can let h : L →
∏

1≤j≤β R be order-bounded and

x ∈ L+ such that h ≥ f
(1),...,(β)
i for all 1 ≤ i ≤ m and h(x) < g(1),...,(β)(x). By regularity we can

write

f
(j)
i = g

(j)
i − h

(j)
i , (2.3)

where g
(j)
i ≥ 0, h

(j)
i ≥ 0 for 1 ≤ i ≤ m and 1 ≤ j ≤ α. Upon defining

h′ : L → M,

y 7→
(
h(1)(y), ..., h(β)(y),

∑m
i=1 g

(β+1)
i (y), ...,

∑m
i=1 g

(α)
i (y)

)
,

(2.4)

we note that h′ ∈ L∼(L,M) and we see that h′ ≥ fi for all i ∈ {1, ...,m} since we use the lexico-

graphic ordering on M and since h ≥ f (1),...,(β)i for all 1 ≤ i ≤ m. Furthermore we see that

h′(x) =
(
h(1)(x), ..., h(β)(x),

∑m
i=1 g

(β+1)
i (x), ...,

∑m
i=1 g

(α)
i (x)

)
< g(x),

(2.5)

since h(x) < g(1),...,(β)(x) and we use the lexicographic ordering on M . Hence h′ 6≥ g and that gives
a contradiction with the definition of g.

3 Main Theorem

We are ready to state and prove our main theorem, which is an improved version of Theorem 1.2. In
their paper, Aliprantis, Tourky and Yannelis divide up the proof over two lemmas, Lemma 3.1 and
Lemma 3.2 and use these lemmas to prove the theorem. For our theorem, we use transfinite induc-
tion, starting with Theorem 1.2. In the successor ordinal case, we largely follow the steps Aliprantis,
Tourky and Yannelis used: the proof is divided up in three parts. The proofs of the second and third
part are almost identical to the proofs of [6, Lemma 3.2] and [6, Theorem 3.3] respectively. The
first part is quite different and substantially more difficult; the first half is new and necessary to
show something which is almost trivial in [6, Lemma 3.1] (namely that the intersection of the sets
Y and Z defined below is empty), but certainly not so in this setting. To prove this, we need the
full Riesz-Kantorovich formula for the smaller image space, not just the special case we are looking
at in the first part. This is also the reason why we cannot separate this theorem into two lemmas
and a theorem, just like Aliprantis, Tourky and Yannelis did. The second half is roughly the same
as the proof of [6, Lemma 3.1]. The limit ordinal case is of course new, but is much easier than the
successor ordinal case.

We remark that an example of a space which satisfies the properties of the space L in Theorem
3.1, but not of the domain space in the Riesz-Kantorovich theorem, can be found in Example 1.3.
Other examples of spaces which satisfy the properties of the space L in Theorem 3.1 include any
finite dimensional ordered vector space with a generating cone and bounded order intervals or any
C(K)-space, for K compact, Hausdorff and hyperstonean, which guarantees that C(K) is a dual
space, equipped with the weak*-topology and the pointwise ordering.

This theorem was first proven in the autor’s Master Thesis, see [11].

Theorem 3.1. (Main theorem) Let L be an ordered vector space with an order unit e and a
Hausdorff linear topology in such a way that all order intervals are compact. Let α be an ordinal
number with α ≥ 1 and let M =

∏
1≤j≤α R with the lexicographic ordering and the product topology.

Assume we have f1, f2, ..., fm continuous, linear maps from L to M such that f
(j)
i is regular for all
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i ∈ {1, ...,m} and all ordinals j with 1 ≤ j ≤ α and such that the supremum g =
∨m
i=1 fi exists in

L∼(L,M). Then g satisfies the Riesz-Kantorovich formula.

Proof. We will prove the theorem by transfinite induction on α. The case α = 1 follows directly
from Theorem 1.2. So we fix α ≥ 1 and assume the statement of the theorem is true for image spaces
R1, ...,

∏
1≤j≤α R. Set M =

∏
1≤j≤α+1 R. The induction step for successor ordinals will consist of

proving the following three statements:

(i) Assume we have f1, f2, ..., fm continuous, linear maps from L to M in such a way that f
(j)
i is

regular for all i ∈ {1, ...,m} and all ordinals j with 1 ≤ j ≤ α and such that the supremum
(
∨m
i=1 fi)

+ exists in L∼(L,M). Then there exists some (x∗1, x
∗
2, ..., x

∗
m) ∈ Ame satisfying∑m

i=1 fi(x
∗
i ) ≥

∑m
i=1 fi(xi) (3.1)

for each (x1, x2, ..., xm) ∈ Ame , together with the identity

(
∨m
i=1 fi)

+
(e) =

∑m
i=1 fi(x

∗
i ). (3.2)

(ii) Assume we have f1, f2, ..., fm continuous, linear maps from L to M such that f
(j)
i is regular

for all i ∈ {1, ...,m} and all ordinals j with 1 ≤ j ≤ α and such that the supremum
∨m
i=1 fi

exists in L∼(L,M). Then there exists some (x∗1, x
∗
2, ..., x

∗
m) ∈ Fme satisfying∑m

i=1 fi(x
∗
i ) ≥

∑m
i=1 fi(xi) (3.3)

for each (x1, x2, ..., xm) ∈ Fme , together with the identity

(
∨m
i=1 fi) (e) =

∑m
i=1 fi(x

∗
i ). (3.4)

(iii) Assume we have f1, f2, ..., fm continuous, linear maps from L to M such that f
(j)
i is regular

for all i ∈ {1, ...,m} and all ordinals j with 1 ≤ j ≤ α and such that the supremum
∨m
i=1 fi

exists in L∼(L,M). Then the Riesz-Kantorovich formula holds.

Proof of (i). Since all fi are continuous and all order intervals in L are compact, we see that

K = {
m∑
i=1

fi(xi) : (x1, ..., xm) ∈ Ame } is compact. Lemma 2.1 implies that K contains an order-

maximum with respect to the lexicographic ordering on M , which yields the first statement in (i).

We pick (x∗1, ..., x
∗
m) ∈ Ame in such a way that∑m

i=1 fi(x
∗
i ) ≥

∑m
i=1 fi(xi) (3.5)

for all (x1, ..., xm) ∈ Ame .
Writing g = (f1 ∨ ... ∨ fm)+, the positivity of this function yields the estimate

g(e) ≥ g(
∑m
i=1 x

∗
i )

=
∑m
i=1 g(x∗i )

≥
∑m
i=1 fi(x

∗
i ).

(3.6)

Hence it remains to show that the reverse inequality holds.

First we assume that f
(α+1)
i ≥ 0 for all i ∈ {1, ...,m}. Lemma 2.3 implies that∨m

i=1 f
(1),...,(α)
i = (

∨m
i=1 fi)

(1),...,(α), (3.7)
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since we use the lexicographic ordering on
∏

1≤j≤α R. Upon writing

h =
(∨m

i=1 f
(1),...,(α)
i

)+
, (3.8)

the induction hypothesis yields that h is positive, linear and satisfies for x ∈ L+ the identity

h(x) = max{
∑m
i=1 fi(xi)

(1),...,(α) : (x1, ..., xm) ∈ Amx }. (3.9)

Here the usual supremum is replaced by a maximum on account of the continuity of the functionals

f
(1),...,(α)
i and the compactness of order intervals. Then our choice of x∗1, ..., x

∗
m yields the identity

h(e) =
∑m
i=1 fi(x

∗
i )

(1),...,(α)

= h(
∑m
i=1 x

∗
i ).

(3.10)

To aid us in our calculations, we start by looking at the case where
∑m
i=1 fi(x

∗
i )

(α+1) = 0. Seeking
a contradiction, we pick j ∈ {1, ...,m} and y ≥ 0 and we suppose that they satisfy the identities

h(y) = fj(y)(1),...,(α)

fj(y)(α+1) > 0.
(3.11)

Since the defining property (3.9) of the function h is given by a maximum, we can pick z1, ..., zm ∈ L+

in such a way that we have the identities∑m
i=1 zi ≤ e− y

h(e− y) =
∑m
i=1 fi(zi)

(1),...,(α).
(3.12)

This yields that y+
∑m
i=1 zi ≤ e, y+ zj ≥ 0, zi ≥ 0 for all i ∈ {1, ...,m}, which allows us to compute∑m

i=1,i6=j fi(zi)
(1),...,(α) + fj(y + zj)

(1),...,(α) = fj(y)(1),...,(α) +
∑m
i=1 fi(zi)

(1),...,(α)

= h(y) + h(e− y)

= h(e)

=
∑m
i=1 fi(x

∗
i )

(1),...,(α).

(3.13)

In addition, the positivity of the functions f
(α+1)
i for i ∈ {1, ...,m} yields∑m

i=1,i6=j fi(zi)
(α+1) + fj(y + zj)

(α+1) ≥ fj(y)(α+1)

> 0

=
∑m
i=1 fi(x

∗
i )

(α+1).

(3.14)

So we obtain
∑m
i=1,i6=j fi(zi)+fj(y+zj) >

∑m
i=1 fi(x

∗
i ), which gives a contradiction with the defining

property (3.5) of (x∗1, ..., x
∗
m). Therefore for all j ∈ {1, ...,m} and y ∈ L+ with h(y) = fj(y)(1),...,(α) we

have fj(y)(α+1) = 0. Clearly we also have for all j ∈ {1, ...,m} and y ∈ L+ that h(y) ≥ fj(y)(1),...,(α)

by our definition of h. Hence we see that for all j ∈ {1, ...,m} and all y ∈ L+ we have

fj(y) ≤ (h(y), 0), (3.15)

which yields
fj ≤ (h, 0). (3.16)
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This implies that g ≤ (h, 0). In particular, we can estimate

g(e) ≤ (h(e), 0)

= (
∑m
i=1 fi(x

∗
i )

(1),...,(α),
∑m
i=1 fi(x

∗
i )

(α+1))

=
∑m
i=1 fi(x

∗
i ).

(3.17)

Therefore we obtain
g(e) =

∑m
i=1 fi(x

∗
i ). (3.18)

It remains to consider the case where
∑m
i=1 fi(x

∗
i )

(α+1) > 0. We introduce the set

Y = {(y1, ..., ym) ∈ Lm+ : h(
∑m
i=1 yi) =

∑m
i=1 fi(yi)

(1),...,(α),∑m
i=1 fi(yi)

(α+1) >
∑m
i=1 fi(x

∗
i )

(α+1)}.
(3.19)

This set is clearly convex and non-empty, as it contains t(x∗1, ..., x
∗
m) for all t > 1. In addition, we

introduce the set
Z = {(z1, ..., zm) ∈ Lm :

∑m
i=1 zi ≤ e}, (3.20)

which is also non-empty and convex. Our goal is to that Y and Z are disjoint. Seeking a contradiction,
we suppose that Y ∩ Z 6= ∅ and pick any (y1, ..., ym) ∈ Y ∩ Z. Since the defining property (3.9) of
the function h is given by a maximum and e −

∑m
i=1 yi ≥ 0, we can pick z1, ..., zm ∈ L+ in such a

way that ∑m
i=1 zi ≤ e−

∑m
i=1 yi

h(e−
∑m
i=1 yi) =

∑m
i=1 fi(zi)

(1),...,(α).
(3.21)

This yields
∑m
i=1(yi + zi) ≤ e, yi + zi ≥ 0 for all i ∈ {1, ...,m}, which allows us to compute∑m
i=1 fi(yi + zi)

(1),...,(α) =
∑m
i=1 fi(yi)

(1),...,(α) +
∑m
i=1 fi(zi)

(1),...,(α)

= h(
∑m
i=1 yi) + h(e−

∑m
i=1 yi)

= h(e)

=
∑m
i=1 fi(x

∗
i )

(1),...,(α).

(3.22)

In addition, the positivity of f
(α+1)
i for i ∈ {1, ...,m} also yields∑m
i=1 fi(yi + zi)

(α+1) ≥
∑m
i=1 fi(yi)

(α+1)

>
∑m
i=1 fi(x

∗
i )

(α+1).
(3.23)

So we obtain that
∑m
i=1 fi(yi + zi) >

∑m
i=1 fi(x

∗
i ), which gives a contradiction with the defining

property (3.5) of (x∗1, ..., x
∗
m). So we must have that Y ∩ Z = ∅.

The set Z has an internal point in Lm by [6, Lemma 2.1]. On account of the Separation Theorem

[3, Theorem 5.61], we pick a non-zero linear functional (h
(α+1)
1 , ..., h

(α+1)
m ) ∈ (L∗)m that separates

Z and Y , i.e.∑m
i=1 h

(α+1)
i (yi) ≥

∑m
i=1 h

(α+1)
i (zi) for all (y1, ..., ym) ∈ Y and (z1, ..., zm) ∈ Z. (3.24)

Since (x∗1, ..., x
∗
m) ∈ Z the bound (3.24) yields∑m

i=1 h
(α+1)
i (yi) ≥

∑m
i=1 h

(α+1)
i (x∗i ) for all (y1, ..., ym) ∈ Y, (3.25)
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together with∑m
i=1 h

(α+1)
i (x∗i ) = limβ↓1

∑m
i=1 h

(α+1)
i (βx∗i )

≥
∑m
i=1 h

(α+1)
i (zi) for all (z1, ..., zm) ∈ Z.

(3.26)

Next, we show that h
(α+1)
1 = ... = h

(α+1)
m := h(α+1). Suppose, by way of contradiction, that there

exists some z ∈ L such that h
(α+1)
1 (z) > h

(α+1)
2 (z). Then for some β > 1 we must have

h
(α+1)
1 (x∗1 + z) + h

(α+1)
2 (x∗2 − z) +

∑m
i=3 h

(α+1)
i (x∗i ) >

∑m
i=1 h

(α+1)
i (βx∗i ). (3.27)

However, we see that (βx∗1, ..., βx
∗
m) ∈ Y since β > 1 and (x∗1+z, x∗2−z, x∗3, ..., x∗m) ∈ Z, which contra-

dicts (3.24). By the symmetry of the situation we see that h
(α+1)
1 = h

(α+1)
2 = · · · = h

(α+1)
m := h(α+1).

Now we show that h(α+1) ≥ 0. Fix x ∈ L+. Note that (e − βx, 0, 0, ....) ∈ Z for all β > 0.
Therefore, (3.26) yields ∑m

i=1 h
(α+1)(x∗i ) ≥ h(α+1)(e)− βh(α+1)(x), (3.28)

which can be rewritten to obtain the bound

h(α+1)(x) ≥ h(α+1)(e)−
∑m
i=1 h

(α+1)(x∗
i )

β
(3.29)

for each β > 0. Letting β →∞ yields h(α+1)(x) ≥ 0. Hence h(α+1) ≥ 0 and thus h(α+1) ∈ L∼.

Since (e, 0, ..., 0) ∈ Z and
m∑
i=1

x∗i ≤ e we see from equation (3.26) that

h(α+1)(
∑m
i=1 x

∗
i ) ≤ h(α+1)(e)

≤ h(α+1)(
∑m
i=1 x

∗
i )

(3.30)

and thus we obtain the identity

h(α+1)(
∑m
i=1 x

∗
i ) = h(α+1)(e). (3.31)

Furthermore, since h(α+1) 6= 0 and e is an order unit, it follows that h(α+1)(e) > 0. Since (e, 0, ..., 0) ∈
Z the bound (3.26) yields that

∑m
i=1 h

(α+1)(x∗i ) > 0. These considerations allow us to define

δ(α+1) =
∑m
i=1 fi(x

∗
i )

(α+1)∑m
i=1 h

(α+1)(x∗
i )
∈ R>0. (3.32)

We claim that δ(α+1)h(α+1)(x) ≥ f
(α+1)
i (x) for each i ∈ {1, ...,m} and x ∈ L+ that have h(x) =

fi(x)(1),...,(α). To see this, fix i ∈ {1, ...,m} and x ∈ L+ in such a way that h(x) = fi(x)(1),...,(α).
If fi(x)(α+1) ≤ 0 then δ(α+1)h(α+1)(x) ≥ 0 ≥ fi(x)(α+1) is trivially true. Assume, therefore, that
fi(x)(α+1) > 0 and define

γ(α+1) =
∑m
i=1 fi(x

∗
i )

(α+1)

fi(x)(α+1) ∈ R>0. (3.33)

For β > 1 we can compute

fi(βγ
(α+1)x)(α+1) = β

∑m
i=1 fi(x

∗
i )

(α+1)

fi(x)(α+1) fi(x)(α+1)

= β
∑m
i=1 fi(x

∗
i )

(α+1)

>
∑m
i=1 fi(x

∗
i )

(α+1),

(3.34)
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since we assumed that
∑m
i=1 fi(x

∗)(α+1) > 0. Hence the linearity of h and f
(1),...,(α)
i yields that

(0, ..., 0, βγ(α+1)x, 0, ..., 0) ∈ Y , where βγ(α+1)x takes the i-th position of this vector. Hence with
equation (3.25) we get

δ(α+1)γ(α+1)h(α+1)(x) = δ(α+1) limβ↓1 h
(α+1)(βγ(α+1)x)

≥ δ(α+1)
∑m
i=1 h

(α+1)(x∗i )

=
∑m
i=1 fi(x

∗
i )

(α+1)

= γ(α+1)fi(x)(α+1).

(3.35)

Therefore δ(α+1)h(α+1)(x) ≥ fi(x)(α+1) for all x ∈ L+ with h(x) = fi(x)(1),...,(α). Thus, due to the
lexicographic ordering on M , we have for all x ≥ 0 that

fi(x) ≤ (h(x), δ(α+1)h(α+1)(x)). (3.36)

Since this bound holds for all i ∈ {1, ...,m} we get that

g(x) ≤ (h(x), δ(α+1)h(α+1)(x)) (3.37)

for all x ≥ 0. In particular, we get

g(e) ≤ (h(e), δ(α+1)h(α+1)(e))

=
∑m
i=1 fi(x

∗
i )

(3.38)

since h(e) = h(
∑m
i=1 x

∗
i ) and h(α+1)(e) = h(α+1)(

∑m
i=1 x

∗
i ). Therefore we conclude that

g(e) =
∑m
i=1 fi(x

∗
i ). (3.39)

From now on, we do not assume that f
(α+1)
i ≥ 0 for i ∈ {1, ...,m}. Since the f

(α+1)
i are all

regular for i ∈ {1, ...,m} we can let gi, h be positive linear functionals so that for i ∈ {1, ...m} we
have

f
(α+1)
i = gi − h. (3.40)

Due to compactness of the set Am+1
e we can pick (y∗1 , ..., y

∗
m+1) ∈ Ame in such a way that the bound∑m

i=1(f
(1)
i (y∗i ), ..., f

(α)
i (y∗i ), gi(y

∗
i )) + (0, ..., 0, h)(y∗m+1)

≥
∑m
i=1(f

(1)
i (xi), ..., f

(α)
i (xi), gi(xi)) + (0, ..., 0, h)(xm+1)

(3.41)

holds for each (x1, x2, ..., xm+1) ∈ Am+1
e . By positivity of (0, ..., 0, h) we can assume without loss

of generality that
m+1∑
j=1

y∗j = e so that y∗m+1 = e −
m∑
j=1

y∗j . Then we obtain that the set of functions

{(f (1)i , ..., f
(α)
i , gi) : i ∈ {1, ...,m}} ∪ {(0, ..., 0, h)} satisfies the assumptions we made in the first half
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of this proof. Hence we get by our previous results

g(e) =
(∨m

i=1(f
(1)
i , ..., f

(α)
i , g

(α+1)
i − h)

)+
(e)

=

((∨m
i=1

(
(f

(1)
i , ..., f

(α)
i , gi)− (0, ..., 0, h)

))
∨ ((0, ..., 0, h)− (0, ..., 0, h))

)
(e)

=
(∨m

i=1(f
(1)
i , ..., f

(α)
i , gi) ∨ (0, ..., h)

)
(e)− (0, ..., 0, h) (e)

=
∑m
i=1(f

(1)
i (y∗i ), ..., f

(α)
i (y∗i ), gi(y

∗
i )) + (0, ..., 0, h(e−

∑m
i=1 y

∗
i ))− (0, ..., 0, h(e))

=
∑m
i=1(f

(1)
i (y∗i ), ..., f

(α)
i (y∗i ), gi(y

∗
i )− h(y∗i )) + (0, ..., 0, h(e)− h(e))

=
∑m
i=1(f

(1)
i (y∗i ), ..., f

(α)
i (y∗i ), f

(α+1)
i (y∗i ))

=
∑m
i=1 fi(y

∗
i )

≤
∑m
i=1 fi(x

∗
i )

(3.42)

by our choice of x∗1, ..., x
∗
m. Since in the very first part of the proof we saw that g(e) ≥

∑m
i=1 fi(x

∗
i )

we must have g(e) =
∑m
i=1 fi(x

∗
i ) and that finishes the proof of part (i).

Proof of (ii). The first statement follows for the same reason as in part (i). So pick (x∗1, ..., x
∗
m) ∈

Fme such that
m∑
i=1

fi(x
∗
i ) ≥

m∑
i=1

fi(xi) for each (x1, x2, ..., xm) ∈ Fme . First note since (x∗1, ..., x
∗
m) ∈ Fme

that in fact x∗1 = e −
m∑
i=2

x∗i . Upon introducing g =
∨m
i=1 fi, we start by observing that g − f1 =

[
∨m
i=2(fi − f1)]+, together with the estimate∑m

i=2(fi − f1)(x∗i ) =
∑m
i=1 fi(x

∗
i )− f1(e)

≥
∑m
i=2 fi(xi) + f1 (e−

∑m
i=2 xi)− f1(e)

=
∑m
i=2(fi − f1)(xi)

(3.43)

for any (x2, ..., xm) ∈ Am−1e , since if (x2, ..., xm) ∈ Am−1e then (e−
m∑
i=2

xi, x2, ..., xm) ∈ Fme . Therefore

by part (i) we have that
(g − f1)(e) =

∑m
i=2(fi − f1)(x∗i ). (3.44)

In particular, we obtain

g(e) = f1 (e−
∑m
i=2 x

∗
i ) +

∑m
i=2 fi(x

∗
i )

=
∑m
i=1 fi(x

∗
i ),

(3.45)

which is the desired formula.

Proof of (iii). Now fix an arbitrary x ∈ L+ and then select an order unit e ∈ L which has x ≤ e.

For each 0 < β < 1, set xβ = βx + (1 − β)e. Clearly, each xβ is an order unit and 0 ≤ xβ ≤ e
holds for each 0 < β < 1. We consider the index set (0, 1) directed by the increasing order relation
�, i.e. β � γ in (0, 1) if and only if β ≥ γ. It is clear that we have the limit xβ → x. Since the set
Fme is compact, the continuous function Fme →M, (x1, ..., xm) 7→

∑m
i=1 fi(xi) attains its maximum.

By part (ii), we know that g satisfies the Riesz-Kantorovich formula for each order unit. Therefore,
by our assumption on the space M and the compactness of Fmeβ , for each 0 < β < 1 there exists
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some (zβ1 , ..., z
β
m) ∈ Lm+ such that

∑m
i=1 z

β
i = xβ and

βg(x) + (1− β)g(e) = g(xβ)

=
∑m
i=1 fi(z

β
i ).

(3.46)

Since zβi ∈ [0, e] for each β ∈ (0, 1) and each i ∈ {1, ...,m} and the order interval [0, e] is com-

pact, there exists a subnet of {(zβ1 , ..., zβm)} (which without loss of generality we also denote by

{(zβ1 , ..., zβm)}) in such a way that zβi → zi for some zi ∈ [0, e]. From xβ − zβi ∈ [0, e] for each β and
the closedness of [0, e], we see that 0 ≤ x − zi ≤ e. So 0 ≤ zi ≤ x and

∑m
i=1 zi = x. Finally, letting

β → 1 in equation (3.46) it follows from the continuity of each fi that

g(x) =
∑m
i=1 fi(zi). (3.47)

Since we already know that g(x) ≥
∑m
i=1 fi(yi) for all (y1, ..., ym) ∈ Fmx , it follows that sup{

∑m
i=1 fi(yi) :

(y1, ..., ym) ∈ Fmx } = g(x). So the proof of this induction step is finished.

Finally let α be a limit ordinal and assume that the theorem holds for all image spaces
∏

1≤j≤β
for β < α. Set M =

∏
1≤j≤α R and let f1, f2, ..., fm be continuous, linear maps from L to M such

that f
(j)
i is regular for all i ∈ {1, ...,m} and all ordinals j with 1 ≤ j ≤ α and such that the

supremum g :=
∨m
i=1 fi exists in L∼(L,M). Let x ∈ L+. Let β < α. Since we know from Lemma 2.3

that
∨m
i=1(f

(1),...,(β)
i ) =

∨m
i=1 f

(1),...,(β)
i we can use the induction hypothesis to obtain that

g(x)(1),...,(β) = sup{
∑m
i=1 fi(xi)

(1),...,(β) : (x1, ..., xm) ∈ Fmx }. (3.48)

Since we use the lexicographic ordering on M we know that sup{
∑m
i=1 fi(xi) : (x1, ..., xm) ∈ Fmx }

exists in M and that we have the identity

g(x)(1),...,(β) = sup{
∑m
i=1 fi(xi)

(1),...,(β) : (x1, ..., xm) ∈ Fmx }

= sup{
∑m
i=1 fi(xi) : (x1, ..., xm) ∈ Fmx }(1),...,(β).

(3.49)

Since this identity holds for all β < α, we immediately obtain

g(x) = sup{
∑m
i=1 fi(xi) : (x1, ..., xm) ∈ Fmx } (3.50)

and the proof is finished.

Remark 3.2. From the proof of this theorem it becomes clear why we used the lexicographic
ordering instead of the componentwise ordering. One of the key properties of the lexicographic
ordering is that each compact set has an order-maximum, which we use extensively. This is not true
for the componentwise ordering as can be seen from the following example. Let f : R → R2, λ 7→
λ(−1, 1) and g : R → R2, λ 7→ 0. Then we see that {f(1 − y) + g(y) : 0 ≤ y ≤ 1} = {λ(−1, 1) : 0 ≤
λ ≤ 1}. This set does not have an order-maximum, since its order-supremum equals (0, 1), which is
not an element of this set. Since sets of the form {f(1− y) + g(y) : 0 ≤ y ≤ 1} are precisely the sets
for which we need an order-maximum to exist, there is no hope to prove a similar statement for the
componentwise ordering in the same way we did for the lexicographic ordering. Note, however, that
[6, Lemma 3.1] and [6, Lemma 3.2], which form the base for steps (i) and (ii) in the proof above,
can easily be proven for the componentwise ordering.

The following corollary might give a more general solution to the Riesz-Kantorovich problem
than before. It is concerned with the situation of Theorem 3.1 but then for spaces without a strong
order unit. It is based on [6, Lemma 3.6].
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Corollary 3.3. Let L be a partially ordered vector spaces with a Hausdorff topology for which the
order-intervals are compact. Let α ≥ 1 be an ordinal number and let M =

∏
1≤j≤α R equipped with

the lexicographic ordering. Then the following statements are equivalent.

1. There is a pair f, g ∈ Lr(L,M) of continuous maps such that f (j) and g(j) are regular for all
1 ≤ j ≤ α, such that f ∨ g exists in L∼(L,M), but does not satisfy the Riesz-Kantorovich
formula for all x ∈ L+.

2. There is a pair f, g ∈ Lr(L,M) of continuous maps and a point x ∈ L+ such that f (j) and g(j)

are regular for all 1 ≤ j ≤ α, such that f ∨ g exists in L∼(L,M), but the restriction (f ∨ g)|Lx
is not the supremum of f |Lx and g|Lx in L∼(Lx,M).

Proof. Assume that (1) holds and let f, g ∈ Lr(L,M) be a pair of continuous maps such that
f (j) and g(j) are regular for all 1 ≤ j ≤ α, such that f ∨ g exists in L∼(L,M), but does not satisfy
the Riesz-Kantorovich formula. Then we can let x ∈ L+ such that

f ∨ g(x) > sup{f(y) + g(x− y) : 0 ≤ y ≤ x}. (3.51)

Consider the space Lx. As mentioned earlier we get that x is a strong order unit for Lx. Seeking a
contradiction, we assume that f |Lx ∨ g|Lx exists in L∼(Lx,M) and that

(f ∨ g)|Lx = f |Lx ∨ g|Lx . (3.52)

Then by Theorem 3.1, which we can apply since f |Lx and g|Lx satisfy the conditions of Theorem
3.1 and the space Lx has a strong order unit, we obtain that

(f |Lx ∨ g|Lx)(x) = sup{f |Lx(y) + g|Lx(x− y) : y ∈ Lx, 0 ≤ y ≤ x}

= sup{f |Lx(y) + g|Lx(x− y) : y ∈ L, 0 ≤ y ≤ x}

< (f ∨ g)(x)

= (f |Lx ∨ g|Lx)(x),

(3.53)

where we used the definition of Lx and the assumptions. This yields a contradiction. Therefore (2)
holds and we obtain the implication (1)⇒ (2).

Conversely, suppose that (2) is true. Let f, g ∈ Lr(L,M) be a pair of continuous maps and pick
x ∈ L+ in such a way that f (j) and g(j) are regular for all 1 ≤ j ≤ α, such that f ∨ g exists in
L∼(L,M), but the restriction (f ∨ g)|Lx is not the supremum of f |Lx and g|Lx in L∼(Lx, V ). Again
we argue by contradiction. Assume that f ∨ g satisfies the Riesz-Kantorovich formula for all z ∈ L+.
Pick h ∈ L∼(Lx,M) such that h ≥ f |Lx and h ≥ g|Lx and fix z ∈ L+

x and 0 ≤ y ≤ z. Then we
obtain since y, z − y ∈ Lx that

h(z) = h(y) + h(z − y)

≥ f |Lx(y) + g|Lx(z − y).
(3.54)

Therefore we must have that

h(z) ≥ sup{f |Lx(y) + g|Lx(z − y) : 0 ≤ y ≤ z}

= sup{f(y) + g(z − y) : 0 ≤ y ≤ z}

= (f ∨ g)(z)

= (f ∨ g)|Lx(z),

(3.55)
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since f∨g satisfies the Riesz-Kantorovich formula. Therefore we see that h ≥ (f∨g)|Lx . Furthermore
we obtain for z ∈ L+ that

(f ∨ g)|Lx(z) = (f ∨ g)(z)

≥ f(z)

= f |Lx(z)

(3.56)

and similarly (f ∨ g)|Lx(z) ≥ g|Lx(z). This yields (f ∨ g)|Lx ≥ f |Lx ∨ g|Lx . Combining these two
statements gives that (f ∨g)|Lx = f |Lx ∨g|Lx which gives a contradiction to our assumption. There-
fore (1) must hold and we obtain (2)⇒ (1).

Since the componentwise ordering on products of R is used more often than the lexicographic
ordering, it is of course of much interest to prove a statement similar to Theorem 3.1 for the compo-
nentwise ordering. As stated before it is not difficult to show an equivalent for [6, Lemma 3.1] and
[6, Lemma 3.2] for this case, but the problem lies in the fact that a compact set no longer needs to
have an order-maximum, so the proof of [6, Theorem 3.3] cannot be adapted easily.

It is remarkable to note the following: since a product of at least two times the real line with
the lexicographic ordering is not even Archimedean, it is as a Riesz space in some sense as far
away as possible from being Dedekind complete, since Dedekind completeness implies that a space
is Archimedean. So in fact, we now know that the Riesz-Kantorovich formula holds for the most
’extreme’ image spaces: the Dedekind complete ones on one had and the ones with the lexicographic
ordering on the other hand. So even though one likes to think of the Dedekind complete spaces as
’better’ spaces than other Riesz spaces, in this case that is not entirely justified, especially since the
conditions on the domain space are a lot weaker for the lexicographic ordering than for the Dedekind
complete case. So in proving the Riesz-Kantorovich formula for the general case, it turns out that
the more extreme special cases are in fact the easiest to consider.
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