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Neural Mechanisms Underlying Risk and
Ambiguity Attitudes

Neeltje E. Blankenstein, Jiska S. Peper, Eveline A. Crone,
and Anna C. K. van Duijvenvoorde

Abstract

■ Individual differences in attitudes to risk (a taste for risk,
known probabilities) and ambiguity (a tolerance for uncertainty,
unknown probabilities) differentially influence risky decision-
making. However, it is not well understood whether risk and
ambiguity are coded differently within individuals. Here, we tested
whether individual differences in risk and ambiguity attitudes
were reflected in distinct neural correlates during choice and out-
come processing of risky and ambiguous gambles. To these ends,
we developed a neuroimaging task in which participants (n= 50)
chose between a sure gain and a gamble, which was either risky or
ambiguous, and presented decision outcomes (gains, no gains).
From a separate task in which the amount, probability, and
ambiguity level were varied, we estimated individuals’ risk and
ambiguity attitudes. Although there was pronounced neural over-

lap between risky and ambiguous gambling in a network typically
related to decision-making under uncertainty, relatively more
risk-seeking attitudes were associated with increased activation
in valuation regions of the brain (medial and lateral OFC),
whereas relatively more ambiguity-seeking attitudes were related
to temporal cortex activation. In addition, although striatum acti-
vation was observed during reward processing irrespective of a
prior risky or ambiguous gamble, reward processing after an
ambiguous gamble resulted in enhanced dorsomedial PFC activa-
tion, possibly functioning as a general signal of uncertainty
coding. These findings suggest that different neural mechanisms
reflect individual differences in risk and ambiguity attitudes and
that risk and ambiguity may impact overt risk-taking behavior in
different ways. ■

INTRODUCTION

Many of our decisions are characterized by an element
of risk, that is, an uncertainty in the outcomes we might
encounter. For instance, we may place a bet in a game of
roulette hoping to win large amounts of money (with the
risk of losing money), or we may smoke with the risk of
developing cancer. However, a fundamental difference
in these types of risk is that, in the former case, the prob-
abilities of the possible outcomes are known (e.g., the
chance of winning in roulettes when betting on the color
black is slightly less than 50%), whereas in the latter case,
the probabilities are unknown (e.g., one does not know
the exact chance of developing cancer). This distinction
between known and unknown risks has long been ac-
knowledged in the decision-making literature as “explicit”
risk and “ambiguous” risk, respectively (Tversky &
Kahneman, 1992; Knight, 1921; henceforth referred to
as risk and ambiguity). Classic behavioral experiments
have shown that risk and ambiguity are distinct types of
uncertainty that both influence our choice behavior
(Ellsberg, 1961). That is, although, generally, people are
both averse to risk and ambiguity and show a stronger
aversion to ambiguity than risk alone, individuals’ prefer-

ences for risk and ambiguity are often uncorrelated (Von
Gaudecker, Van Soest, & Wengström, 2011; Ellsberg,
1961). Although prior studies have examined the neural
mechanisms underlying these distinct types of uncer-
tainty, it is not yet well understood if risk and ambiguity
at the neural level can be disentangled within individuals.

In general, twomain brain systems have been implicated
during decision-making (for a review, see Platt & Huettel,
2008). First, a system that responds to reward contingen-
cies has been related to the ventral striatum (VS) and ven-
tral medial PFC/OFC (Bartra, McGuire, & Kable, 2013; Levy
& Glimcher, 2012; Knutson, Taylor, Kaufman, Peterson, &
Glover, 2005; Kuhnen & Knutson, 2005; O’Doherty,
Kringelbach, Rolls, Hornak, & Andrews, 2001). This
valuation system may reflect the subjective (Levy, Snell,
Nelson, Rustichini, & Glimcher, 2010) or objective (van
Duijvenvoorde et al., 2015) expected value (EV) of the
choice at hand but is also related to processing rewarding
outcomes (Delgado, Nystrom, Fissell, Noll, & Fiez, 2000)
and producing learning signals (O’Doherty, 2004). A sec-
ond system, including the insular cortex, lateral PFC, dor-
solateral PFC, and posterior parietal cortex (PPC) is more
central to the evaluation of the uncertainty of choice op-
tions (Levy, 2016; Mohr, Biele, & Heekeren, 2010; Platt &
Huettel, 2008) with the PPC being particularly important
for assessing probabilities (Huettel, Song, & McCarthy,Leiden University
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2005). Thus, although a system of subcortical (VS) and
cortical (medial PFC) regions appears to be responsible
for choice valuation and reward learning, a cortical system
(insula, lateral PFC, PPC) may bemore related to executive,
computational processes in risky decisions, such as asses-
sing uncertainty.

Several prior neuroimaging studies have tested for as-
sociations between decisions under risk and/or ambiguity
and brain activation. That is, one study that compared ris-
ky and ambiguous gambling observed increased activa-
tion for ambiguity compared with risk in the amygdala
and medial OFC, whereas risk compared with ambiguity
elicited more activation in the striatum (Hsu, Bhatt,
Adolphs, Tranel, & Camerer, 2005). However, another
study observed increased activation for ambiguity com-
pared with risk in the insula, lateral PFC, and PPC (Huettel,
Stowe, Gordon, Warner, & Platt, 2006). Both studies
concluded that these brain regions are responsible for re-
solving uncertainty. Yet, similar patterns of activation for
both risk and ambiguity have also been observed, with
overlapping activation in the medial PFC, PPC, amygdala,
and striatum (Levy et al., 2010). Thus, although these stud-
ies found areas of activation typical for decision-making
(i.e., valuation and uncertainty coding), it is not yet well un-
derstood whether risky and ambiguous decision-making
rely on distinct neural mechanisms.

A valuable addition to studying the neural specificity of
risk and ambiguity processing may be to include individ-
uals’ preferences, that is, attitudes, toward uncertainty.
Whereas someone’s risk attitude reflects to what extent
one makes a trade-off between outcome magnitudes
(e.g., the size of a monetary reward) against the probabil-
ity of that outcome, ambiguity attitude reflects how one
deals with the uncertainty around outcome probabilities
(i.e., pessimistic or optimistic about the unknown prob-
abilities; e.g., see Levy, 2016). An elegant way to estimate
these preferences is by formally modeling risk and ambi-
guity attitudes from tasks in which the gain probability,
gain amount, and level of ambiguity are varied. Behavior-
ally, this model-based method has been applied success-
fully in developmental samples (Blankenstein, Crone, van
den Bos, & vanDuijvenvoorde, 2016; Tymula et al., 2012) as
well as in adults (Tymula, Rosenberg Belmaker, Ruderman,
Glimcher, & Levy, 2013) and provides a sensitive measure
of someone’s risk and ambiguity preferences.

Several studies have started to relate individuals’ risk or
ambiguity attitudes to neural activity in decision-making.
For instance, a number of studies observed that greater
risk aversion was related to greater activation in inferior
frontal gyrus, lateral PFC, and lateral OFC, both with
model-based estimations of risk aversion (Christopoulos,
Tobler, Bossaerts, Dolan, & Schultz, 2009; Tobler,
O’Doherty, Dolan, & Schultz, 2007) as well as with
model-free risk-averse behavior (Fecteau et al., 2007;
Knoch et al., 2006). Contrary, a greater risk-seeking atti-
tude has also been positively related to activation in the
lateral OFC, ventromedial PFC, and PPC (Engelmann &

Tamir, 2009; Tobler et al., 2007; Huettel et al., 2006). Indi-
vidual differences in ambiguity attitude have been studied
to a lesser extent. Some studies revealed that more ambi-
guity aversion was related to increased activation in lateral
OFC (Hsu et al., 2005) and medial PFC (Pushkarskaya,
Smithson, Joseph, Corbly, & Levy, 2015), whereas another
study found greater activation in a neighboring region
(ventrolateral PFC) with more ambiguity-seeking attitudes
(Huettel et al., 2006). These previous studies, carried out in
relatively small samples (e.g., n = 16, Tobler et al., 2007;
n = 10, Engelmann & Tamir, 2009; n = 16, Hsu et al.,
2005; n = 13, Huettel et al., 2006), thus show conflicting
findings and did not yet disentangle risk and ambiguity
attitudes within individuals.
In the current study, we aimed to examine the neural

correlates of decision-making under risk and ambiguity
and study the association with individual differences in
risk and ambiguity attitudes in a sample of 50 healthy
adults (a recommended minimal sample size for analyses
of individual differences [Yarkoni, Poldrack, Van Essen, &
Wager, 2010; Yarkoni, 2009]). To get a robust measure of
neural activation during risky and ambiguous gambling
and subsequent outcome processing, we administered
a straightforward monetary gambling task. Here, par-
ticipants chose between a consistent sure gain and a
gambling option, which was either risky or completely
ambiguous, and presented subsequent reward outcomes
(gain or no gain). We were particularly interested in the
neural response during an active gamble, because pre-
vious studies have shown that decision-making and sub-
sequent reward processing are more robust when an
active choice is made rather than passively viewing the
stimuli (Studer, Apergis-Schoute, Robbins, & Clark, 2012;
Rao, Korczykowski, Pluta, Hoang, & Detre, 2008; Tricomi,
Delgado, & Fiez, 2004).
To derive risk and ambiguity attitudes, we modeled

each individual’s risk and ambiguity attitudes from a sep-
arate behavioral task administered after the MRI session
(see also Blankenstein et al., 2016; modeled after Tymula
et al., 2012, 2013). This enabled us to investigate the
relation between risk and ambiguity attitudes and brain
activation during risky and ambiguous gambling. Although
prior findings are mixed, one region that has relatively
consistently been associated with risk attitude is the
OFC/medial PFC (e.g., Engelmann & Tamir, 2009; Tobler
et al., 2007). In the current study, we therefore expected
that individual differences in risk attitude would be asso-
ciated with neural activation in the OFC/medial PFC
during risky gambling. Alternatively, risk attitudes may
correlate more specifically with neural activation related
to assessing uncertainty and probabilities such as the lat-
eral PFC and PPC (Christopoulos et al., 2009; Fecteau
et al., 2007; Huettel et al., 2006; Knoch et al., 2006).
Fewer studies have investigated relations between ambi-
guity attitude and brain activation (Pushkarskaya et al.,
2015; Huettel et al., 2006; Hsu et al., 2005). A central
hypothesis based on this prior work would be that
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individual’s tendency to seek out ambiguity is related to
control regions in the brain such as the lateral PFC (Huettel
et al., 2006).
Furthermore, the association between risk versus

ambiguity within a choice at hand and processing sub-
sequent reward outcomes (gain or no gain) has yet to be
examined. That is, although it is well known that process-
ing rewards is related to increased activation in the VS
and medial PFC (e.g., see Delgado et al., 2000), to our
knowledge, no study to date has explicitly disentangled
reward processing after a risky gamble from reward pro-
cessing after an ambiguous gamble. Given that behavior
in response to risk and ambiguity differs (Von Gaudecker
et al., 2011; Ellsberg, 1961), it is possible that processing
rewards after risk and ambiguity yields different re-
sponses in the reward circuitry of the brain as well. Thus,
in addition, we explored whether processing rewards
after risk or ambiguity would yield differential activation
in regions typically associated with reward (i.e., VS and
ventral medial PFC) and whether this differential reward-
related activation was associated with individual differ-
ences in risk and ambiguity attitudes.

METHODS

Participants

Fifty-seven participants (30 women) between 18 and
28 years old took part in this study. All participants were
recruited via local advertisements in the Netherlands and
provided written informed consent. This study was ap-
proved by the institutional review board of the Leiden
University Medical Centre. All anatomical scans were
cleared by a radiologist, and no abnormalities were re-
ported. Participants were screened for MRI contraindica-
tions and neurological or psychiatric disorders, had
normal or corrected-to-normal vision, and were right-
handed. Five participants reported to have been diag-
nosed with a disorder, including depression, anxiety,
attention deficit hyperactivity disorder, and cyclothymic
disorder (a mild form of bipolar disorder). These partic-
ipants were scanned but were excluded from all analyses.
Note that, when we reran our analyses including these
participants, this did not qualitatively affect our results.
In addition, one participant was excluded because of
too few trials in which the gambling option was chosen
(i.e., <10 gambles), and one participant was excluded
because of excessive head motion in the scanner
(i.e., >3 mm). The final sample therefore included
50 healthy participants (25 women; Mage = 23.71 years,
SDage = 2.56, age range = 18.85–28.46 years).

Wheel of Fortune Task

fMRI Task

Participants played a wheel of fortune task (Figure 1) in
which they were asked to make a number of choices

between pairs of wheels, presenting a safe (a consistent
sure gain of A3) versus a gambling option, which could
yield more money (A31, A32, A33, or A34; varied to
keep participants engaged in the task) but could also
yield nothing (A0). The gambling wheel presented
either a risky gamble or an ambiguous gamble. In the
risky gambles, the probabilities were known, with blue
indicating the portion of the wheel corresponding to gain
and red indicating the portion of the wheel corresponding
to no gain. In the ambiguous gambles, the probabilities
were completely hidden by a gray “lid” with a question
mark on it. Participants played 92 trials: 46 ambiguous tri-
als and 46 risky trials, which were presented intermixed.
Of the risky trials, 30 trials reflected a gamble with a 50%
gain probability, 8 trials reflected a gamble with a 75% gain
probability, and 8 trials reflected a gamble with a 25% gain
probability (Figure 1B).

After the choice, participants were presented with re-
ward feedback (gain or no gain; Figure 1C). This was
done to investigate effects of risk and ambiguity within
the choice at hand on subsequent reward processing
and to study potential effects of risk and ambiguity atti-
tudes on reward processing after a risky or ambiguous
gamble. We programmed the experiment such that the

Figure 1. (A) Example of the trial sequence of the fMRI task showing an
ambiguous trial with gain as reward outcome. Each trial started with a
500-msec fixation cross, after which thewheels appeared. After 1000msec,
a gray square appeared in the center of the screen prompting the
participants to respond. A response had to be given within 3000 msec.
A gray selection frame confirmed the participant’s choice. After a jittered
fixation cross (2000–4000 msec with increments of 500 msec), participants
were presented with the reward outcome of their choice (gain or no
gain), which was visible for 1250 msec. The next trial began after an
intertrial interval with intervals varying between 0 and 9350 msec
( jittered). (B) The different gambling wheels. (C) Gain and no gain
outcomes.
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probabilities presented in the wheels (25%, 50%, or 75%)
matched the actual possibilities of winning when choos-
ing to gamble. For example, for the 50% risk trials, there
was a 50% chance of winning when choosing the gamble.
That is, the computer, on a trial-by-trial basis, randomly
selected (without replacement) either gain or no gain
in half of the trials. The order of gains and no gains
was randomized for each participant. We observed that,
on average, participants’ experienced probabilities in
risky and ambiguous gambles matched the presented
probabilities. Finally, on each trial, the computer randomly
selected (without replacement) one of the four possible
amounts (A31, A32, A33, or A34) to display on a trial-
by-trial basis. Thus, although each individual was exposed
to the same distribution of probabilities, the amount var-
ied per trial. Reward feedback for gains was presented as
the amount in blue. Reward feedback for no gains was
presented as A0 in red. To motivate participants to fre-
quently choose the gamble option, the EV (the amount
of a choice option multiplied by its probability) of the
gamble option was considerably higher than the EV of
the safe option (which was always A3). This enabled
the comparison of brain activation during gambling
under risk with brain activation during gambling under
ambiguity and during their corresponding outcomes.

The task was presented in the MRI scanner via E-prime
(Psychology Software Tools, Pittsburgh, PA) and started
with a 500-msec fixation cross, after which the wheels ap-
peared. After 1000 msec, a gray square appeared in the
center of the screen cuing the participants to respond.
Responses had to be given within a 3000-msec interval.
Participants responded to the task with their right index
finger (to select the wheel on the left) and right middle
finger (to select the wheel on the right). After the re-
sponse was made, a gray selection frame appeared
around the chosen wheel, confirming the participant’s
choice. This remained visible for the duration of the
3000-msec interval. In case of no response, the words
“TOO LATE” appeared in the center of the screen for
1250 msec, after which the next trial began. This hap-
pened only in 0.67% of the trials, and these trials were
excluded from all analyses. A jittered fixation cross
(2000–4000 msec with increments of 500 msec) sepa-
rated the choice phase from the outcome phase. The
reward outcomes (gain, no gain, or safe gain) were
presented for 1250 msec. The optimal trial sequence
(i.e., the ordering of risky and ambiguous trials) and
the intertrial intervals were chosen using OptSeq (Dale,
1999), with jittered intervals varying between 0 and
9350 msec (M= 1961 msec). The 500-msec fixation cross
that preceded each trial was not part of the intertrial
interval.

Finally, we randomly displayed the different wheels
(gamble, safe) left and right on the screen. In addition,
the risky wheels had varying color configurations that
were presented randomly on a trial-by-trial basis, with
the blue proportion of the wheel displayed in the left

or right portion of the wheel (in the case of 50% proba-
bility trials) or the upper left, upper right, lower left, or
lower right portion of the wheel (in the case of 25% and
75% probability trials).

Behavioral Task

To scrutinize individuals’ risk and ambiguity attitudes, a
behavioral version of the wheel of fortune task was ad-
ministered after the fMRI session as validated previously
(Blankenstein et al., 2016) and modeled after Tymula
et al. (2012). To derive sensitive measures of risk and
ambiguity attitudes from individuals that could not be
influenced by changes in the decision environment, no
outcomes were provided in this task.
In this behavioral task, the gambling wheel varied in

amount (A5, A8, A20, or A50), probability (0.125,
0.25, 0.375, 0.50, 0.625, or 0.75), and ambiguity level
(0%, 25%, 50%, 75%, or 100%). The level of ambiguity
was manipulated by varying the size of the “lid” covering
the wheel. Combining all amounts with all probabilities
resulted in 24 unique risk trials. Combining all amounts
with all ambiguity levels resulted in 16 unique ambiguous
trials. All trials were presented twice, resulting in 80 trials,
which were used to estimate individuals’ risk and ambi-
guity attitudes (see Model-based Estimations of Risk and
Ambiguity Attitudes section).
The task was presented after the fMRI session via

E-prime (Psychology Software Tools). Each trial started
with a jittered fixation cross (between 500 and 1000 msec,
with increments of 100 msec) after which the wheels
appeared. After 1000 msec, a gray square appeared in
the center of the screen, prompting the participants to
respond using their right index finger (left wheel) and
middle finger (right wheel). Response time was self-
paced. A yellow selection frame confirmed the partici-
pant’s choice (500 msec). Similar to the fMRI task, we
controlled for effects of attention and key preference by
counterbalancing the position of the blue and red parts of
the wheel (left, right, bottom, and top of the wheel) and
the position of the ambiguous lids (top or bottom) across
trials. Finally, the different wheels (gamble, safe) were
randomly displayed left and right on the screen.

Procedure

Participants received instructions on the MRI session in a
quiet laboratory room. Next, the wheel of fortune fMRI
task was explained. Participants were instructed that the
ambiguous wheel could reflect a gamble of any of the
risky probabilities (25%, 50%, 75%), and they practiced
10 trials on a laptop. Participants were told that, after
the task, the computer would randomly select the out-
comes of three trials, of which the average amount was
paid out in addition to a standard payout fee. Eventually,
the computer randomly selected a rounded average of a
gain trial, a no gain trial, and a safe gain trial, which
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amounted to an additional payout of A11 or A12. The
wheel of fortune task was presented in two runs of
9 min each, with a short break in between. Stimuli were
presented on a screen, which was visible via a mirror that
was placed on the head coil. Participants responded to
the task with their right index finger (to select the wheel
on the left) and right middle finger (to select the wheel
on the right) using a button box that was attached to the
participant’s leg. Head movements were restricted by
inserting foam padding between the participant’s head
and the head coil. After the MRI session, participants
completed the behavioral version of the wheel of fortune
task, which lasted approximately 20 min. Here, partici-
pants were given a hypothetical choice task and in-
structed to choose their preferred option. We explained
the different levels of ambiguity by showing the different
“lids” that could vary in size and cover more or less of the
wheel and show the wheels that could lie underneath
these lids. Participants played three practice trials before
the task began.

Model-based Estimations of Risk and
Ambiguity Attitudes

To estimate each participant’s risk and ambiguity atti-
tudes from the behavioral task, we modeled the subjec-
tive value (or expected utility [EU]) of each choice option
by using a power utility function with an additional term
to take into account ambiguity attitude (Blankenstein
et al., 2016; Tymula et al., 2012; Levy et al., 2010; Gilboa
& Schmeidler, 1989):

EU x; p;Að Þ ¼ p − β� A
2

� �
� xα

In this equation, x denotes the amount, p denotes the
probability, A denotes the ambiguity level, α denotes
the risk attitude, and β denotes the ambiguity attitude.
An α of 1 indicates a purely linear utility function, indicat-
ing a risk-neutral attitude. An α < 1 indicates a concave
utility function and thus a risk-averse attitude. Converse-
ly, an α > 1 indicates convexity and thus a risk-seeking
attitude. To assess subjective value, we multiplied the
utility of a choice option with the probability of the
(hypothetical) outcome. Here, the ambiguity level was
taken into account, with p as the objective probability,
β as the individual ambiguity attitude to be estimated,
and A as the objective ambiguity level. A β of 0 indicates
an ambiguity-neutral attitude, meaning that the individual
is unaffected by the level of ambiguity. A β > 0 indicates
an ambiguity-averse attitude, meaning that the individual
would behave as if the probability is less than the objec-
tive probability (50%). Finally, a β < 1 would indicate an
ambiguity-seeking attitude, in which case the individual
would behave as if the probability is more than the objec-
tive probability.

For model fitting, the simplex algorithm of the general
purpose optimization toolbox (optim) in R was used
(R Core Team, 2015). To model trial-by-trial choices, a
logistic choice rule was used to compute the probability
of choosing the gamble option (Pr(ChoseGamble) as a
function of the difference in subjective value of the gamble
(EUGamble) and the safe option (EUSafe). In addition, to ac-
count for possible stochasticity in choice, we modeled the
decisions of participants as susceptible to an error (μ):

Pr ChoseGambleð Þ ¼ 1
1þ exp − EUGamble − EUSafeð Þ=μð Þ

We refitted this function using a grid search procedure to
account for local minima in the estimated parameters. The
resulting risk and ambiguity attitudes were used as
predictors of brain activation in whole-brain regressions.
To facilitate interpretation, ambiguity attitude was
recoded, such that higher values indicate a more seeking
attitude.

MRI Data Acquisition

We used a 3-T scanner (Philips Achieva TX, Erlangen,
Germany) with a standard whole-head coil. Functional
scans were acquired during two runs of 246 dynamics
each, using T2* EPI. Volumes covered the whole brain
(repetition time = 2.2 sec, echo time = 30 msec, sequential
acquisition = 38 slices, voxel size = 2.75 × 2.75 ×
2.75 mm, field of view = 220 × 220 × 114.68 mm). We
discarded the first two volumes to allow equilibration of
T1 saturation effects.

MRI Data Analyses

Preprocessing

The data were analyzed using SPM8 (Wellcome Depart-
ment of Cognitive Neurology, London, United Kingdom).
Images were corrected for slice timing acquisition and
rigid body motion. Functional volumes were spatially
normalized to EPI templates. Translational movement
parameters never exceeded 3 mm (<1 voxel) in any
direction for any participant or scan (movement range =
0.00–1.19 mm, M = 0.058 mm, SD = 0.020 mm). The nor-
malization algorithm used a 12-parameter affine transform
with a nonlinear transformation involving cosine basis
function and resampled the volumes to 3-mm3 voxels.
Templates were based on MNI-305 stereotaxic space.
The functional volumes were spatially smoothed using a
6-mm FWHM isotropic Gaussian kernel.

General Linear Model

To perform statistical analyses on individual participants’
data, we used the general linear model in SPM8. The
fMRI time series were modeled as a series of two events
convolved with the hemodynamic response function. The
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onset of the choice phase was modeled with a duration
of choice (1000 msec + response time; see Figure 1).
Events were modeled separately for gambling under risk
and gambling under ambiguity and for choosing the safe
option under risk and choosing the safe option under
ambiguity. This resulted in four conditions in the choice
phase: gamble risk, gamble ambiguity, safe risk, and safe
ambiguity. The onset of the feedback phase (second
event) was modeled with zero duration. We modeled
gain and no gain after a risky or ambiguous gamble and
safe gain after a risky or ambiguous safe choice. This re-
sulted in six conditions in the feedback phase: gain risk,
no gain risk, gain ambiguity, no gain ambiguity, safe gain
risk, and safe gain ambiguity. Given that outcomes are
based on choices, a participant who gambled more fre-
quently viewed more gain and no gain feedback than a
participant who chose the safe option (A3) more fre-
quently. However, the participants gambled a consider-
able number of times on average (M = 0.77, SD =
0.18). This translated into the participants experiencing
36 gains on average (SD = 8.21, range = 18–46) and
35 no gains (SD = 8.33, range = 17–46) after gambling.
Hence, all participants experienced at least 18 gains and
17 no gains, thus leaving a sufficient number of trials for
our fMRI analyses on reward outcomes. Furthermore, to
check that the prior outcome (gain, no gain) did not
influence the neuroimaging results during gambling, we
also tested a separate general linear model that included
whether the gamble was preceded by a gain or a no gain.
Because results remained similar between the two
models, we only report the more parsimonious model
without reward outcome modeled in the gambling
conditions.

Trials on which the participants failed to respond were
modeled separately as a covariate of no interest. In addi-
tion, six motion parameters were included as nuisance
regressors. The least squares parameter estimates of
the height of the best-fitting canonical hemodynamic
response function for each condition separately were
used in pairwise contrasts. These pairwise comparisons
resulted in participant-specific contrast images, which were
used for second-level group analyses. All second-level group
analyses were conducted with family-wise error (FWE)
cluster correction ( p < .05, with a primary voxel-wise
threshold of p < .001 [uncorrected]; Woo, Krishnan, &
Wager, 2014) or FWE voxel correction ( p < .05), indicat-
ed where needed. To visualize patterns of activation in
clusters identified in the whole-brain regressions, we used
the MarsBaR toolbox (Brett, Anton, Valabregue, & Poline,
2002; marsbar.sourceforge.net). Coordinates of local
maxima are reported in MNI space.

Two types of models. In addition to our main model
with all various probability trials (i.e., 25%, 50%, and
75% gain probability), we also include in the tables
which clusters are present in a model with the ambiguous
trials and risky trials with a 50% probability only. The latter

was done because, objectively, the ambiguous trials re-
flect a 50% probability (e.g., Levy, 2016; Tymula et al.,
2012). For the model with 50% probability risk trials only,
we modeled the other probability risk trials (25%, 75%) as
covariates of no interest.

RESULTS

Behavioral Results

Behavioral Task

Results from the model-based estimations showed that
participants were predominantly risk and ambiguity
averse. That is, most risk attitudes were below 1 (M =
0.63, SD = 0.21, range = 0.30–1.03), and most ambiguity
attitudes (after recoding) were below 0 (M = −0.30,
SD = 0.37, range = −1.0 to 0.66). This general pattern
of aversion to risk and ambiguity coincides with prior
research (Levy et al., 2010; Huettel et al., 2006), although
the range of the attitudes, and inspection of scatterplots,
indicated considerable individual differences in aversion
to risk and ambiguity (see Figure 2A). Finally, we observed
a moderate negative relation between risk and ambiguity
attitudes, indicating that more risk seeking was in relation
to less ambiguity seeking (r = −.22, p = .124; Figure 2).
However, this relation was not significant, echoing prior
studies that have predominantly found nonsignificant
relations between these phenomena (van den Bos &
Hertwig, 2017; Blankenstein et al., 2016; Tymula et al.,
2013; Bossaerts, Ghirardato, Guarnaschelli, & Zame, 2010;
Levy et al., 2010).

fMRI Task

In the fMRI task, when choosing between the safe option
and the gamble option (risky or ambiguous), participants
gambled significantly less in the ambiguous trials than in
the risky trials, as indicated by a paired samples t test
(t(49) = −2.35, p = .023; MAmbig = 0.75, SDAmbig =
0.25; MRisk = 0.82, SDRisk = 0.14). This effect was more
pronounced when comparing the ambiguous trials with
the 50% probability risk trials only (t(49) = −4.61, p <
.001; MAmbig = 0.75, SDAmbig = 0.25; MRisk50 = 0.90,
SDRisk50 = 0.18). Furthermore, when gambling, partici-
pants responded slower in the ambiguous trials than in
the risky trials in both the model with all trials (t(49) =
4.09, p < .001; MAmbig = 653.73, SDAmbig = 281.95;
MRisk = 529.83, SDRisk = 163.66) as well as the model
with 50% probability trials only (t(49) = 3.40, p = .001;
MAmbig = 653.73, SDAmbig = 281.95; MRisk50 = 547.84,
SDRisk50 = 206.16). Thus, although participants were
encouraged to gamble in both conditions (by offering
gambles with relatively high EVs), we still observed that
they chose the ambiguous gamble less frequently than
the risky gamble and responded slower in the ambiguous
compared with risky condition, indicative of a general
aversion to ambiguity (Levy et al., 2010; Ellsberg, 1961).
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Next, to examine whether feedback influenced behav-
ior in the scanner, we investigated changes in gambling
behavior in the fMRI task across time. To this end, we
divided behavior across four task bins (with 11 or 12 trials
per bin) per condition (risk and ambiguity). A mixed
ANOVA showed that, in addition to a main effect of Con-
dition, there was a significant Bin × Condition inter-
action (F(3, 147) = 3.34, p = .021, η2 = .064) and a
main effect of bin (F(3, 147) = 9.15, p < .001, η2 =
.157). That is, gambling behavior overall increased slight-
ly across time, specifically in the ambiguous condition
(see Figure 2B). Similar effects were found when compar-
ing the ambiguous condition with the 50% probability
risk trials only (Bin × Condition interaction: F(3,
147) = 3.27, p = .023, η2 = .064; main effect of Bin: F(3,
147) = 8.57, p < .001, η2 = .149).
Finally, we correlated behavior from the fMRI task

(proportion gambling in risk and ambiguity) with the
model-based estimations of risk and ambiguity attitude
(derived from the behavioral task outside the scanner).
These analyses showed that risk attitude was positively
correlated with proportion gambling in risk (ralltrials =
.453, palltrials < .001; r50:50trials = .317, p50:50trials = .025)
and proportion gambling in ambiguity (r = .465, p =
.001). However, ambiguity attitude was not correlated
with behavior in the scanner (all ps > .7). This suggests
that relatively more risk-seeking, but not ambiguity-
seeking, attitudes were associated with a greater general
tendency to gamble in the fMRI task (see Figure 2C and D).

fMRI Results

Whole-brain Contrasts

Risky and ambiguous gambling. First, to study which
brain regions were more strongly activated during gam-
bling under risk versus ambiguity, we calculated the
whole-brain contrast Gamble Risk > Gamble Ambiguity
and the reversed contrast, based on all probability trials.
The first revealed greater activation during gambling un-
der risk in clusters including the right dorsolateral PFC
and occipital cortex, extending into bilateral PPC (FWEcc
p < .05, k > 94; Figure 3A, Table 1). The reversed con-
trast (Gamble Ambiguity > Gamble Risk) did not result
in significant clusters of activation.

Conjunction analysis of risky and ambiguous gam-
bling. To check that regions important for complex
decision-making were recruited during our task, we next
examined the overlap in brain activation for risky and am-
biguous gambling. To this end, we performed a conjunc-
tion analysis in which we applied the “Logical AND”
strategy, which requires that all comparisons in the con-
junction are individually significant (Nichols, Brett,
Andersson, Wager, & Poline, 2005). These particular
results are reported at FWE voxel correction ( p < .05),
because cluster correction resulted in one cluster of
activation composed of almost the entire brain, impeding
interpretation (Woo et al., 2014). As could be expected, the
conjunction analysis revealed widespread overlapping

Figure 2. (A) Relation between
risk attitude (α, x axis) and
ambiguity attitude (β, y axis),
derived from the behavioral
task. Higher values indicate
more risk or ambiguity
seeking. (B) Proportion
gambling ( y axis), across task
bins for the risky and ambiguous
conditions of the fMRI task.
(C) Relation between proportion
gambling in the risky condition
of the fMRI task (x axis) and
risk attitude derived from the
behavioral task (α, x axis). (D)
Relation between proportion
gambling in the ambiguous
condition of the fMRI task
(x axis) and ambiguity attitude
derived from the behavioral
task (β, y axis).
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activation for risky and ambiguous gambling in regions im-
portant for risky choice, such as the frontoparietal and pa-
rietal regions, including lateral PFC, PPC, ACC, SMA, insula,
and putamen (FWE p < .05; Table 2, Figure 3B).

Whole-brain regressions of risk and ambiguity attitudes.
We next tested whether individual differences in risk and
ambiguity attitudes (derived from the behavioral task)
were related to brain activation during risky and ambigu-
ous gambling using whole-brain regressions.1 Given the
moderate correlation between risk and ambiguity atti-
tudes (r = −.22, p = .124), we controlled for ambiguity
attitude in the regression with risk attitude and for risk
attitude in the regression with ambiguity attitude. Specif-
ically, in the regression testing for associations between
risk attitude and risky gambling, we entered ambiguity
attitude as a covariate of no interest. Likewise, in the
regression testing for associations between ambiguity at-
titude and ambiguous gambling, we entered risk attitude
as a covariate of no interest.
First, we observed that a relatively more risk-seeking

attitude was associated with increased activation during
gambling under risk (Gamble Risk > Fixation) in the me-
dial OFC/ventral ACC and in the left lateral OFC (FWEcc
p< .05, k> 57; Table 3, Figure 4A). With respect to gam-
bling under ambiguity (Gamble Ambiguity > Fixation), a
relatively more ambiguity-seeking attitude was related to
increased activation in a cluster of right superior and mid-
dle temporal cortex (FWEcc p < .05, k > 88; Table 4,
Figure 4B). It should be noted that, when testing
brain–behavior associations restricted toward the activa-
tion observed in the main contrasts (Gamble Risk >
Gamble Ambiguity and vice versa), no associations be-
tween risk and ambiguity attitudes and brain activation
were observed.

Reward outcome after risky and ambiguous gambling.
First, we examined which areas contribute to gain versus
no gain irrespective of risk and ambiguity by calculating
the contrast Gain > No Gain. These particular results are
reported at FWE voxel correction ( p < .05) because
cluster correction resulted in one cluster of activation

Figure 3. (A) Whole-brain
contrasts for Gamble Risk >
Gamble Ambiguity. Results
were FWE cluster corrected
( pFWE < .05, k > 94) with a
primary voxel-wise threshold
of p < .001 (uncorrected).
The reversed contrast (Gamble
Ambiguity > Gamble Risk)
yielded no significant activation.
(B) Conjunction of Gamble
Risk > Fixation and Gamble
Ambiguity > Fixation. Results
were FWE voxel-wise corrected
( p < .05) and are visualized
with k > 10.

Table 1. MNI Coordinates of Local Maxima Activated Clusters
for the Contrast Gamble Risk > Gamble Ambiguity

Cluster of Activation

MNI
Coordinates

Significance Voxelsx y z

R inferior temporal gyrusa 51 −58 −14 <.001 7,235

Rmiddle occipital gyrusa 36 −88 10

L calcarine gyrusa 0 −88 −2

R calcarine gyrusa 12 −100 −2

L superior parietal lobulea −27 −64 52

Lmiddle occipital gyrusa −30 −85 19

L superior parietal lobulea −15 −73 55

L calcarine gyrusa −12 −79 10

R calcarine gyrusa 12 −103 10

L superior occipital gyrusa −15 −85 7

Lmiddle occipital gyrusa −39 −82 4

Rmiddle frontal gyrus 48 44 16 <.001 94

R inferior frontal gyrus 45 38 10

Rmiddle frontal gyrus 45 41 25

Results were FWE cluster corrected ( pFWE < .05, k > 94) with a primary
voxel-wise threshold of p < .001 (uncorrected). Results of the reversed
contrast (Gamble Ambiguity > Gamble Risk) did not result in significant
brain activation. Anatomical labels were acquired with automated ana-
tomical labeling. L = Left; R = Right.

aCoordinate remained present in themodel with 50% probability trials only.
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encompassing almost the entire brain, limiting interpre-
tation (Woo et al., 2014). Here, we observed activation in
VS and middle cingulate cortex (FWE p < .05; Table 5,
Figure 5A).
To compare reward processing (gain versus no gain)

after an ambiguous gamble or a risky gamble, we ran a
whole-brain repeated-measures ANOVA with Condition
(Gain Risk > No Gain Risk, Gain Ambiguity > No Gain

Ambiguity) as the within-participant factor. Results of
the ANOVA showed that reward processing after an am-
biguous gamble, compared with a risky gamble, revealed
increased activation in the dorsomedial PFC (MNI coordi-
nates: x = 12, y = 29, z = 52; FWEcc p < .05, k = 52;
Figure 5B). The reversed effect ([Gain Risk > No Gain
Risk] > [Gain Ambiguity > No Gain Ambiguity]) was
not associated with significant brain activation.

Finally, no associations between risk and ambiguity
attitudes and brain activation during reward processing
were observed.

DISCUSSION

This study aimed to elucidate specific neural systems
underlying risk (known probabilities) and ambiguity
(unknown probabilities) processing at the individual level.
Specifically, we investigated the association between indi-
viduals’ risk and ambiguity attitudes and brain activation
during gambling, tested the role of risk and ambiguity
within a choice at hand on subsequent neural reward
processing, and explored associations between risk and
ambiguity attitudes and reward processing after a risky
and ambiguous gamble. To these ends, we combined
an fMRI gambling paradigm with separately established
model-based estimations of risk and ambiguity attitudes.
Results showed that there was variability between indi-
viduals in risk and ambiguity attitudes and that these
attitudes were only moderately and nonsignificantly cor-
related. This allowed the investigation of risk and am-
biguity attitudes as individual predictors of the neural

Table 2. MNI Coordinates of Local Maxima Activated for the
Conjunction Analysis with Gamble Risk > Fixation and Gamble
Ambiguity > Fixation

Area of Activation

MNI
Coordinates

t Voxelsx y z

R fusiform gyrusa 24 −76 −11 24.04 21,622

R superior occipital gyrusa 18 −94 16 23.44

L lingual gyrusa 3 −79 1 23.24

L middle occipital gyrusa −30 −88 19 21.80

L middle occipital gyrusa −33 −88 13 21.26

L fusiform gyrusa −27 −79 −17 20.80

R middle occipital gyrusa 33 −88 16 20.74

L calcarine gyrusa −6 −85 −5 20.70

L lingual gyrusa −12 −82 −8 20.66

L fusiform gyrusa −24 −70 −14 20.26

L cerebelluma −18 −82 −17 20.24

L lingual gyrusa −18 −79 −11 20.09

L middle occipital gyrusa −12 −100 1 19.33

R calcarine gyrusa 12 −94 4 19.02

L calcarine gyrusa −12 −79 4 18.84

L middle occipital gyrusa −18 −97 10 18.37

L middle frontal gyrusa −45 38 31 9.72 383

L superior frontal gyrusa −30 47 40 6.48

L superior orbital gyrusa −30 62 −2 5.65

R middle frontal gyrusb 45 44 28 9.93 461

R middle orbital gyrusb 45 47 −17 6.12

R superior frontal gyrusb 27 53 37 5.99

R middle frontal gyrusb 42 59 4 5.94

R middle orbital gyrusb 45 53 −5 5.86

Results were FWE voxel-wise corrected ( p < .05). Only areas of activa-
tion larger than 10 contiguous voxels are reported. Anatomical labels
were acquired with automated anatomical labeling.

aLocal maximum remained present in the model with 50% probability
risk trials only.

bLocal maximum was additionally present in the model with 50% prob-
ability risk trials only.

Table 3. MNI Coordinates of Local Maxima Activated Clusters
for the Contrast Gamble Risk > Fixation with Risk Attitude as a
Positive Regressor

Cluster of Activation

MNI
Coordinates

Significance Voxelsx y z

L middle orbital gyrus −27 41 −11 .033 57

L middle orbital gyrus −33 47 −14

L middle orbital gyrus −21 32 −20

R olfactory cortex-
caudate nucleus

3 17 −11 .013 71

L rectal gyrus −9 17 −14

L inferior frontal gyrus
(pars orbitalis)

−18 23 −17

L rectal gyrus −12 26 −14

R olfactory cortex 6 23 −5

L olfactory cortex −12 14 −17

Results were FWE cluster corrected ( pFWE < .05, k> 57) with a primary
voxel-wise threshold of p < .001 (uncorrected). Anatomical labels
were acquired with automated anatomical labeling.
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processes underlying risky and ambiguous decision-
making. The fMRI analyses resulted in a number of main
findings. First, despite pronounced neural overlap between
risky and ambiguous gambling in a network previously
associated with risk taking and decision-making (e.g., see

Levy, 2016; Platt & Huettel, 2008; Eshel, Nelson, Blair,
Pine, & Ernst, 2007; Huettel et al., 2005; Knutson et al.,
2005; Kuhnen & Knutson, 2005; Ernst et al., 2004), indi-
vidual differences in risk and ambiguity attitudes showed
different neural substrates during risky and ambiguous
gambling, respectively. That is, we observed that a rela-
tively more risk-seeking attitude was associated with in-
creased activation in medial and lateral OFC during risky
gambling and that a relatively more ambiguity-seeking
attitude was related to increased activation in superior
and middle temporal gyrus during ambiguous gambling.
Second, processing rewards relative to no rewards re-
sulted in robust activity in the VS, irrespective of a pre-
vious risky or ambiguous gamble. However, processing
rewards compared with no rewards after an ambiguous
gamble, compared with after a risky gamble, resulted in
increased dorsomedial PFC activation. Finally, risk and
ambiguity attitudes were not correlated with any neural
activity during reward processing. The discussion is orga-
nized alongside these main findings.
The main question addressed in this study was whether

risk and ambiguity processing relied on different neural
substrates. Both risky and ambiguous gambling were

Table 4. MNI Coordinates of Local Maxima Activated Clusters
for the Contrast Gamble Ambiguity > Fixation with Ambiguity
Attitude as a Positive Regressor, for the Model Including All Risk
Trials

Cluster of Activation

MNI
Coordinates

Significance Voxelsx y z

R superior temporal gyrus 63 −22 −5 .008 88

R middle temporal gyrus 57 −28 1

R middle temporal gyrus 57 −34 1

R rolandic operculum 57 −16 16

Results were FWE cluster corrected ( pFWE < .05, k> 88) with a primary
voxel-wise threshold of p < .001 (uncorrected). Anatomical labels were
acquired with automated anatomical labeling.

Figure 4. (A) The positive effect
of risk attitude (α) on risky
gambling (Gamble Risk >
Fixation), controlled for
ambiguity attitude. The right
panel shows the positive relation
between risk attitude (x axis) on
brain activation ( y axis) in the
medial OFC. Results were FWE
cluster corrected ( pFWE < .05,
k > 57) with a primary voxel-
wise threshold of p < .001
(uncorrected). (B) The positive
effect of ambiguity attitude
(β) on ambiguous gambling
(Gamble Ambiguity > Fixation),
controlled for risk attitude. The
right panel shows the positive
relation between ambiguity
attitude (x axis) and brain
activation ( y axis) in the right
superior temporal gyrus. Results
were FWE cluster corrected
( pFWE < .05, k > 88) with a
primary voxel-wise threshold
of p < .001 (uncorrected).
The graphs are for illustrative
purposes only. No statistical
analyses were performed on
the ROIs.
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associated with robust activity in ACC, PPC, lateral PFC,
striatum (putamen), and insula, regions commonly
observed in various risk-taking paradigms (Levy, 2016;
Platt & Huettel, 2008; Eshel et al., 2007; Huettel et al.,
2005; Knutson et al., 2005; Kuhnen & Knutson, 2005;
Ernst et al., 2004). The main comparisons between risk
and ambiguity revealed little differences between risky
and ambiguous gambling. This was unexpected given that
prior studies did observe differences between these con-
ditions, although not all in consistent or overlapping
directions (Levy et al., 2010; Huettel et al., 2006; Hsu
et al., 2005). However, neural differences between risky
and ambiguous gambling were observed when we related
neural responses to individuals’ attitudes toward risk and
ambiguity. The use of model-based estimations has the
advantage that they reflect a sensitive measure of an indi-
vidual’s preference for risk and ambiguity and are derived
from an integrative choice model that simultaneously
estimates risk and ambiguity attitude (Blankenstein
et al., 2016; Tymula et al., 2013).

From these analyses, we observed that a relatively
more risk-seeking attitude was related to increased acti-
vation in the medial and lateral OFC during risky gam-
bling. Particularly, the activation observed in the medial
OFC coincides with prior studies that also used model-
based estimations of risk attitudes and observed that rel-
atively less risk aversion (Tobler et al., 2007) or more risk
seeking (Engelmann & Tamir, 2009) was associated with
increased activation in the medial OFC. Possibly, this acti-
vation reflects the influence of individual differences in
risk attitude in a region commonly associated with the
coding of EV or subjective value (Levy & Glimcher,
2012; Tobler et al., 2007) and may suggest the enhanced
recruitment of this area in individuals who exhibit rela-
tively more risk-seeking behavior. With respect to am-
biguity attitude, we observed increased activation in
superior and middle temporal gyrus with relatively more
ambiguity-seeking attitudes. Together, these analyses sug-
gest that, despite the large overlap in the general network
that was engaged when making risky and ambiguous gam-
bles, the way these regions are engaged depends on indi-
vidual differences in attitudes toward risk and ambiguity.

Not all findings that were reported in previous studies
could be confirmed in the current study. Contrary to prior
studies, we did not find a relation between individuals’
risk attitudes and activation of frontoparietal regions
(e.g., inferior frontal gyrus, lateral PFC, PPC; Gilaie-Dotan
et al., 2014; Christopoulos et al., 2009; Fecteau et al.,
2007; Huettel et al., 2006). Unexpectedly, we also did
not observe a relation between ambiguity attitude and
lateral PFC or OFC activation (Huettel et al., 2006; Hsu
et al., 2005). In part, this could be attributed to the use
of model-free measures of risk behavior in some of these
studies (e.g., behavior on the Balloon Analogue Risk
Task; Fecteau et al., 2007; Knoch et al., 2006), which
may be a different measure of someone’s risk and ambi-
guity preferences. Furthermore, some of these above-
mentioned studies used TMS/direct current stimulation
or structural brain measures (i.e., gray matter volume),
which may provide different but complementary informa-
tion on risk and ambiguity processes (Gilaie-Dotan et al.,
2014; Fecteau et al., 2007; Knoch et al., 2006). In addi-
tion, some of these studies offered choices between
two gambles (with varying levels of risk) instead of offer-
ing a choice between a gamble and a safe option, itera-
tively manipulated the value of the safe option based on
participants’ prior choices, or derived risk and ambiguity
attitudes from different choice paradigms (Christopoulos
et al., 2009; Huettel et al., 2006; Hsu et al., 2005). Finally,
although our paradigm included variation in risk, it only
included one level of ambiguity (see for a parametric ap-
proach, Levy et al., 2010), leading to small(er) variations
in subjective value of the latter. Together, the above-
mentioned elaborate manipulations are useful additions
for future research. Alternatively, in the current study, we
examined neural correlates of each attitude while ac-
counting for the other attitude. Thus, although our find-

Table 5. MNI Coordinates of Local Maxima Activated for the
Contrast Gain > No Gain, Irrespective of Risk and Ambiguity

Area of Activation

MNI
Coordinates

t Voxelsx y z

L putamena −15 8 −14 8.93 110

R putamena 12 5 −17 7.57 76

R caudate nucleusa 9 11 −11 7.30

L superior frontal gyrusa −18 23 58 7.01 55

L precentral gyrus −24 −23 58 6.96

L middle frontal gyrusa −21 26 55 6.68

L superior frontal gyrus −15 32 46 5.60

R middle occipital gyrusa 51 −70 28 6.67 17

L inferior parietal lobe −48 −40 49 6.45 21

L/R middle cingulate cortex 0 −40 43 6.24 25

R middle cingulate cortex 3 −34 40 5.74

R middle cingulate cortex 3 −40 34 5.44

R superior frontal gyrus 24 26 49 6.01 10

L rectal gyrusb −3 41 −17 6.38 15

R/L middle orbital gyrusb 0 44 −14 5.96

L superior frontal gyrusb −21 41 40 6.08 17

Results were FWE voxel-wise corrected ( p < .05). Only areas of activa-
tion larger than 10 contiguous voxels are reported. Anatomical labels
were acquired with automated anatomical labeling.

aLocal maximum remained present in the model with only 50% gain
probability risk trials.

bLocal maximum was additionally present in the model with 50% prob-
ability risk trials only.
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ings warrant replication, they may be more specific for an
individual’s risk and ambiguity attitudes.

A second question that we aimed to address was whether
risk and ambiguity within a choice at hand influence the
subsequent neural reward processing (gain vs. no gain).
We observed that reward processing irrespective of a prior
risky or ambiguous gamble, and independent of risk or
ambiguity attitude, resulted in a robust striatal response,
replicating many prior studies (e.g., see Braams, Peters,
Peper, Güroğlu, & Crone, 2014; Delgado, 2007; Knutson
et al., 2005; Kuhnen & Knutson, 2005). This suggests that
the striatum has a general reward signaling function and is
not dependent on the nature of the gamble (i.e., known or
unknown probabilities). A second finding was that reward
processing after an ambiguous gamble compared with a
risky gamble revealed increased activation in the dorso-
medial PFC. This activity coincides with research on un-
certainty processing in general. That is to say, a reversed
inference search with the term “uncertainty” in the Neuro-
synth database (on online meta-analysis database: www.
neurosynth.org; Yarkoni, Poldrack, Nichols, Van Essen, &
Wager, 2012) shows that the dorsomedial PFC is robustly
documented in 98 studies on various forms of uncertainty
processing (see Figure 5C), for instance, with respect to
risky decision-making (e.g., prediction uncertainty; Volz,
Schubotz, & von Cramon, 2003, 2004), and even with re-
spect to self-reported intolerance to uncertainty about
possible future aversive events (Schienle, Köchel, Ebner,

Reishofer, & Schäfer, 2010). The fact that we observed this
activation in our study during reward processing after
an ambiguous gamble fits well with the interpretation that
this region represents a common neural substrate for un-
certainty coding.
Finally, we explored whether individuals who differ in

risk or ambiguity attitude also process outcomes of gam-
bles differently, which has not yet been examined in prior
research. No associations between risk or ambiguity atti-
tude and brain activation during reward processing were
observed. Possibly, individual differences in risk and am-
biguity preferences are only reflected by the neural
mechanisms underlying choices and not the subsequent
processing of outcomes. However, future research
should further establish this finding.
A number of limitations need to be taken into consider-

ation. First, although we observed different neural mech-
anisms underlying individuals’ risk and ambiguity attitudes
during risky and ambiguous gambling, respectively, we
stress that we did not observe a dissociation. That is, when
investigating whether risk and ambiguity attitudes were as-
sociated with activation observed in the main contrasts
(such as Risk > Ambiguity), no relations were found with
risk or ambiguity attitudes. However, individual differ-
ences in risk and ambiguity attitudes may not necessarily
be reflected in the activation that is homogeneous for the
group as a whole. Rather, individual differences in risk and
ambiguity attitudes may be reflected in neural systems that

Figure 5. (A) Whole-brain
contrast for Gain > No Gain.
Results were FWE voxel-wise
corrected at p < .05 and
visualized here with k > 10.
(B) Results of the whole-brain
repeated-measures ANOVA
showing the contrast [Gain
Ambiguity > No Gain
Ambiguity] > [Gain Risk > No
Gain Risk]. Results were FWE
cluster corrected ( p < .05, k >
52), with a primary voxel-wise
threshold of p < .001
(uncorrected). The right panel
shows the parameter estimate
of the dorsomedial PFC, plotted
for ambiguity and risk (for visual
illustration only, no analyses
were performed on the ROI).
(C) Neurosynth meta-analysis of
fMRI activations associated with
the search term “uncertainty”
(reverse inference, false
discovery rate corrected = 0.01)
based on 98 studies.
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show heterogeneity across participants (e.g., see van
Duijvenvoorde, Figner, et al., 2016; Gabrieli, Ghosh, &
Whitfield-Gabrieli, 2015). Nevertheless, future studies
need to replicate these findings using larger sample sizes.
Second, we used a task to define individuals’ risk and am-
biguity attitudes that differed on several aspects from the
functional imaging task. That is, given our interest of neu-
ral processes underlying risky and ambiguous gambling,
we manipulated the fMRI paradigm such that participants
were more likely to gamble than to choose the safe op-
tion. That is, the EV of the gamble option was consider-
ably higher (i.e., between A7.75 and A25.5) than the
safe option (A3). In addition, in the behavioral task, par-
ticipants did not observe direct outcomes and could not
win any money, whereas in the fMRI task, participants
were told that they won the amount of three randomly
chosen trials. Thus, we cannot know for certain whether
participants considered the decisions in the behavioral
task equally important as those in the fMRI task and
whether participants believed that they were getting paid
according to what was explained in the instructions in the
fMRI task. Given that different behavioral and even brain
patterns may emerge when using real versus hypothetical
gambles (e.g., see Camerer & Mobbs, 2016), it is impor-
tant to ensure that participants consider the gambles in
both tasks equally important and that the payouts are
believable. In future research, this could be achieved by
informing participants that three trials will be randomly
played for real for each task and preferably by letting
the participants exert control over these randomly cho-
sen trials (Levy et al., 2010). Furthermore, the behavioral
task was always administered after the fMRI session,
which may have affected the model-based estimations
of risk and ambiguity attitudes. Thus, when using a
similar setup, future studies may benefit from counter-
balancing the order of tasks to eliminate its effect. In
addition, whereas risk attitude was positively related to
gambling behavior in the fMRI task, we did not observe
this between-task correlation for ambiguity attitude.
Possibly, this is because we included only one level of
ambiguity in the fMRI task, thereby limiting the variation
in choice behavior. Whether the cognitive processes
underlying both tasks are truly comparable is therefore dif-
ficult to establish, and thus, the brain–behavior associations
observed in the current study need to be replicated in fu-
ture research preferably with an fMRI task that allows the
estimation of risk and ambiguity attitudes from behavior in
the scanner, while simultaneously enabling the investiga-
tion of reward processing after a risky and ambiguous gam-
ble. Finally, the current study only focused on gambling in
the gain frame. Future studies may benefit from also in-
cluding a loss frame, for example, to study gain versus loss
or loss versus no loss, in risky and ambiguous conditions.
In conclusion, the current study aimed to provide a

clear view of the neural substrates of risk and ambiguity
processing at the individual level, the association be-
tween risk and ambiguity within a choice and subsequent

reward processing, and associations between risk and
ambiguity attitudes and reward processing. We show
that, despite the large overlap in the general network that
was engaged during risky and ambiguous gambling, brain
activation during gambling depends on individual differ-
ences in attitudes toward risk and ambiguity. Especially,
the neural correlates of risk attitudes during gambling
under risk including medial OFC are consistent with a large
body of literature suggesting that this valuation network
drives risk taking (Levy & Glimcher, 2012; Platt & Huettel,
2008; Delgado, 2007; Knutson et al., 2005; Kuhnen &
Knutson, 2005). The fact that we did not observe this pat-
tern of brain activation with ambiguity attitude suggests
that different neural correlates were associated with atti-
tudes toward risk and toward ambiguity. Moreover, these
findings highlight the importance of taking individual dif-
ferences into account that may bemasked by group effects.
In addition, we found evidence that reward processing after
an ambiguous, compared with risky, gamble is related to a
heightened dorsomedial PFC response, indicative of a gen-
eral signal of uncertainty coding. These insights may be
applied to future research investigating individual differ-
ences in problematic decision-making behavior, such as
pathological gambling and adolescent risk taking, which
is associated with a heightened sensitivity toward rewards
(van Duijvenvoorde, Peters, Braams, & Crone, 2016;
Braams, van Duijvenvoorde, Peper, & Crone, 2015).
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Note

1. A different approach to test for effects of individual differ-
ences in dealing with risk and ambiguity would be to probe for
regions that correlate with subjective value modeled as a para-
metric modulator separately during risky decision-making and
during ambiguous decision-making (cf. Levy et al., 2010). Al-
though our paradigm was not optimized for parametric analyses
(i.e., the current fMRI task includes little variation in risk and
none in ambiguity) and comparing subjective value under risk
versus ambiguity was not the goal of the current study, these
analyses were performed for possible future meta-analytical
purposes only. In brief, we only observed a positive parametric
effect of subjective value under risk in the right parietal cortex,
namely, in the right supramarginal gyrus (MNI coordinates: [63,
−31, 28], FWEcc p = .026, k = 54). Further details and results
are available upon request by contacting the first author).
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