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Appendix A

A.1 Symbols
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APPENDIX

Table A.1: Notations.

Symbol Type Description Ref.
m N+ Dimension of a search space Eq. (2.1
d N+ Dimension of an objective space Eq. 1
S R™ Search space Eq. 0.1
X cS Feasible set in S Eq. 2.1
X eX Decision vector Eq. 0.1
X cX Decision vector set Eq. 0.2
Vi R The i-th objective function Eq. 0.1
y R¢ The objective functions Def. (2.1
yi(x) R The i-th objective value of x Def. (2.1
P (R4)" Pareto front Def. (2.3
P (R4)" Pareto front approximation Def. (2.4
n N+ Number of the points in P or P* Def. (2.5
r R4 Reference point Def. (2.5
Yi N+ The i-th objective space Fig. 2.9
o N+ Population size Alg. |1
DPm 0 < pm <1 Mutation rate Alg. [1
De 0 <p.<1 Crossover rate Alg. [1
R; RT Branch resistance Def. 4-8
fross RT Active power loss Def. [4-
P; Rt Active power Def. [4-8
Qi R* Inactive power Def. [4-8
Vi R+ Node voltage Def. [4-§
I; R* Branch current Def. [4-8
fvpr R+ Voltage deviation Def. 4-11
o R4 Mean values of predictive distribution Alg. 3
o (Rg)? Standard deviations of predictive distribution Alg. 3
y», o y™ R¢ The vectors in P, where P = (y), ... y®™) Fig. [2.2
Sy (R%)2 Integration slices for d dimension Def. [3.3.1
lg), e lElN’i) R? Lower bound of integration boxes Def. [3.3.1
ug e ,uéNd) R¢ Upper bound of integration boxes Def. |3.3.1
Ny N+t Number of integration boxes Def. [3.3.1
x* R? An optimal point in search space Alg. |3
D R(m+d) Training data set Alg. 3
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A.2 Abbreviations

A.2 Abbreviations

Table A.2: Abbreviations-I.

Abb. Full Name
AVL Adelson-Velskii and Landis
BGO Bayesian Global Optimization
CDF Cumulative Density Function
CMA-ES  Covariance Matrix Adaptation Evolution Strategy
DKLV Dachert, Klamroth, Lacour and Vanderpooten
LKF Lacour, Klamroth and Fonseca
DF(s) Desirability Function(s)
DM Decision Maker
DNRP Distribution Network Reconfiguration Problem
EA(s) Evolutionary Algorithm(s)
EGO Efficient Global Optimization
EHVI Expected Hypervolume Improvement
EHVIG  Expected Hypervolume Improvement Gradient
EI Expected Improvement
EMOA(s) Evolutionary Multi-objective Optimization Algorithm(s)
GA Genetic Algorithm
GAA Gradient Ascent Algorithm
GSP Generalized Schaffer Problem
HV Hypervolume Indicator
HVI Hypervolume Improvement
HVC Hypervolume Contribution
LCB Lower Confidence Bound
MLI Most Likely Improvement
MONMPC  Multi-Objective Nonlinear Model Predictive Control
MOO Multi-objective Optimization
MOPSO  Multi-Objective Particle Swarm Optimization
NOEs Number of Evaluations
NSGA-IT  Non-dominated Sorting Genetic Algorithm II
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Table A.3: Abbreviations-II.

Abb. Full Name
OK Ordinary Kriging
PCA Principal Component Analysis
PDF Probability Density function
PICEA-g  Preference-Inspired Co-Evolutionary Algorithm
PID Proportional Integral Derivative
PMX Partial-Mapped Crossover
PO Percentage Overshoot
Pol Probability of improvement
PR Preferred Region
REN21 Renewable Energy Policy Network for the 21st Century
ROI Region of Interest
SMS-EMOA  S-metric Selection Evolutionary Multi-Optimization Algorithm
SMS-EGO  S-metric Selection Efficient Global Optimization
TCDF Truncated Cumulative Density Function
TEHVI Truncated Expected Hypervolume Improvement
THV Truncated Hypervolume
TPDF Truncated Probability Density Function
A Lebesgue Measure
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A.3 EHVIG Formula Derivation

A.3 EHVIG Formula Derivation

1. ¢'(z) = —x¢(x) (A-1)

2. ¢'(x) = ¢(z) (A-2)
O0(*E)  y—p, p—y do 1 Ou

3-a—x—¢( > )'(02 ‘g—;'a—x) (A-3)

Using the chain rule and quotient rule, considering that y does not depend
on x, we get the statement in (A:

90 (*3H) Qs(y—u)_a(%) _ oty

ox o ox o o

After tidying up, we get a statement in (A-3):

aq)(%):(é(y—u).(u—y do 1 au)

ox o o2 Ox o 0x
o¥(a,b,u,0) b—a b—py L b—p Op
4 ox N ( o i o )~ o o )) 6X+
b—p (b—p)b—a), Jo
WS I ) %

Using the product rule and considering a and b do not depend on x, we get
the statement:

o¥(a,b,pu,o0)  OV¥(a,b,u,0) 0_;L N oV¥(a,b,u,0) Jdo

Ix ou Ox oo Ox (A-4)

“w o

rule, quotient rule, and product rule, the statements of 8\1](%’2’“ 7) and aq’(%’f’;“ )

are:
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o ol
06(*3") b—p 0P(*)
— o e (1) () )
e ) LAl B B )
N O T (A-5)

oty o B oy 220

e R L e L R =)

_ (b;uH(b—u)U'Q(b—a) -d)(b;M)

— o1 L) G (A6)

After substituting Equations (A-5)) and (A-6)) into (A-4), then we get state-
ment in (A{4):

oY (a,b, u,o)

b—a

B b— b—p. O
ox _( o i o ) — & o ))3_X+
N
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A.4 2-D EHVI Formula (Minimization Case)

A.4 2-D EHVI Formula (Minimization Case)

Definition A.1 (U function) Let ¢(s) = 1/v2me 2", s € R denote the PDF
of the standard normal distribution and ®(s) = % (1 + erf(\%)) denote its cu-
mulative probability distribution function (CDF). The general normal distribu-
tion with mean p and variance o has the PDF ¢, ,(s) = 2¢(*>2) and the CDF
Duo(s) = P(*). Then the function ¥ is defined as:

W(a,b 1, 0) = / (020" 2ya

oo o

— oo+ - we (1)), (A7)

g

It partitions the integration domain into n + 1 disjoint rectangular stripes S,
.+, Spt1, see Figure [A1] for an illustration. For this, we augment the set P by
two points y(© = (r;, —00) and y"*) = (—00,73). The stripes are now defined

by:
(7) (i-1)
S; = ( b ) yl(i) L i=1,...,n+1. (A-8)
—00 Yo

Suppose Y are the sorted non-dominated vectors of the current Pareto front
approximation P. A formula will be derived that consists of n + 1 integrals, as
indicated in Figure [A.1} The HVI of a point y € R? can be expressed by:

n+1

HVI(y,Y,r) ZA2 [S;N Ay (A-9)

This gives rise to the compact integral for the original EHVI, y = (y1, y2):

EHVI(p,0,Y,r) =

n+1

/ / _ > XlSiNA((y1,32))] - PDE,o(y)dy (A-10)

=1

It is observed that the intersection of S; with A((y1,¥2)) is non-empty if and only
if y = (y1,y2) dominates the upper right corner of S;. In other words, if and only
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Figure A.1: Partitioning of the integration region into stripes. Right: New

partitioning of the reduced integration region after first iteration of the algorithm.

if y is located in the rectangle with lower left corner (yy), —o0) and upper right

corner (yy_l), yéi) ). Therefore:

EHVI(p,0,Y,r)

n+1 yg 1) yéi)
-y / / MolS: 1 A((y1,2))] - PDE, o (y)dy (A-11)
i—1 Jy1=—00 Jyp=—c0

n+1
=1
n+1 ygi*U

i—1 Y=yt

n+1 ()
i— i Y i i
i=1

o

)
/ Aol 1 A((51,2))] - PDF,o(y)dy +
Y2=—00

Yy1=—00

)
/ AolS: N A((y1,92))] - PDEwo(y)dy
Y2=—00

n+1
i—1 i—1 i—1 i
Z(\If(y; )7y§ )7#1701)_\P(y£ )7y§)7l’6170-1)> X

i=1

\I](yéi)v ?/éi), M2, 02) (A—12)

Since integration is a linear mapping, it is allowed to do the summation after
integration in Eq. (A-11)). The integrals are now over a rectangular region and
can be solved using the function ¥ as detailed in [2].
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