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Chapter 7

Applications

This chapter presents and analyses an engineered expected hypervolume improve-
ment (EHVI) algorithm, which aims to solve the problem of PID parameter tun-
ing and the optimization problem of controlling the substrate feed of a bio-gas
plant. The EHVI is the expected value of the increment of the hypervolume
indicator given a Pareto front approximation and a predictive multivariate Gaus-
sian distribution of a new point. To solve this problem, S-metric selection-based
efficient global optimization (SMS-EGO), EHVI based efficient global optimiza-
tion (EHVI-EGO) and SMS-EMOA are used and compared in both the PID
parameter tuning problem and for bio-gas plant feed optimization. The results
of the experiments show that surrogate model based algorithms perform better
than SMS-EMOA, and the performance of EHVI-EGO is slightly better than
SMS-EGO.

This chapter is structured as follows: Section 7.1 describes the backgrounds of the
bio-plant and PID parameter tuning problems. Section 7.2 introduces the PID
parameter tuning task, the multi-objective nonlinear model predictive control
approach as well as, the biogas process model. Section 7.3 and Section 7.4 discuss
experimental studies and results.

7.1 Backgrounds

Based on REN21’s (Renewable Energy Policy Network for the 21st Century)
2014 report, renewable energy contributed 19 percent to worldwide energy con-
sumption and 22 percent to worldwide electricity generation in 2012 and 2013,
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7. APPLICATIONS

respectively. Among renewable energy, the use of renewable energy in the form
of biogas grew at a rapid pace in the past decade. Biogas is produced in bio-gas
plants, where an anaerobic degradable substrate is decomposed by anaerobic bac-
teria in an oxygen-free environment. The main ingredient of biogas is methane,
which can be used for further utilization, such as energy production.

Maximizing the yield and maintaining the bio-gas plant stability are crucial for
commercial use. To this ends, bio-gas plants should work at optimal operating
points. This can be achieved by adjusting the substrate mixture and by tracking
the optimal setpoints [105]. However, due to the high dimensional nonlinearity of
the anaerobic digestion process and due to lacking reliable measurement sensors
on most full-scale bio-gas plants [106], predicting the biogas throughput and de-
signing the optimal feedback control are challenging tasks in the field of anaerobic
digestion.

Batstone et al. [107] proposed the Anaerobic Digestion Model No.1 (ADM1)
in 2002, and we use it as dynamic simulation model in multi-objective nonlin-
ear model predictive control (MONMPC). In MONMPC, there is an upper-level
controller which generates the optimal methane setpoint and the corresponding
optimal substrate feed that is passed through to a lower-level controller, which
tracks a directly measurable process value (or setpoint). MONMPC is chosen due
to the multi-objective nature of bio-gas plant operation, maximizing the profits
and minimizing the ecological footprint [43].

For multi-objective black-box optimization, many algorithms exist. Evolutionary
algorithms for solving these problems exist, e.g., NSGA-II [75] and SMS-EMOA
[19], which, however, typically require many function evaluations (� 1000) to find
good approximations to Pareto fronts. In controller optimization, expensive eval-
uations of black-box objective functions pose typical challenges. In this chapter,
we focus, therefore, on optimization with a small budget of function evaluations
and use surrogate-model based optimization strategies [108], which replace exact
evaluations by approximations learned from past evaluations. Recently, this idea
has been generalized to multi-objective optimization (e.g. [109, 110, 111]). Algo-
rithms that generalize efficient global optimization are S-Metric Selection EGO
(SMS-EGO) [50] and Expected Hypervolume Improvement-based EGO (EHVI-
EGO) [42, 60, 61]. Recently, the runtime efficiency of the exact infill criterion in
the bi-objective EHVI-EGO was improved from O(n3 log n) to O(n2) [42], where
n is the number of points in the archive. This makes it competitive with other
techniques that use computable infill criteria, in particular, SMS-EGO.

The specific contributions of this chapter are as follows: In this chapter, we
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7.2 Problem Definition

will compare algorithms in the application domain of controller optimization. In
this chapter, we will provide a first application study with the new Fast EHVI-
EGO. The contribution of this chapter is also to discuss concisely the definition
of multi-objective model-predictive control optimization in bio-gas plant – more
precisely for minimizing stage cost and terminal cost of a bio-gas plant – and of
multi-objective parameter tuning of PID controllers.

7.2 Problem Definition

7.2.1 PID Parameter Tuning

This benchmark on PID parameter tuning is taken from [112]. The three param-
eters in PID controller are: proportionality Kp, integral Ki and derivative Kd.
The transfer function of PID controller for a continuous system can be defined
as: Y (s) = U(s)

E(s)
= Kp + Ki

s
+ Kds, where E(s) and U(s) represent error signal

and control signal, respectively. The basic idea of PID controller is attempting
to minimize an error (E(s)) by adjusting the process control inputs. The process
of PID controller can be described as follows: when a setpoint is set or E(s)
exists, E(s) will be calculated by the difference between the setpoint and actual
output, and a PID controller will generate a new control signal (U(s)) based on
E(s). Then the new control signal U(s) is applied to the plant model, and the
new actual output and E(s) are generated again. The structure of a PID control
is shown in Figure 7.1.

Plant

i
p d

K
K K s

s
 

PID Controller

( )G s
( )R s ( )E s ( )U s ( )Y s



Setpoint Control SignalError Actual Output

Figure 7.1: The structure of PID control.

Problem and Fitness function The chosen transfer functions modelling
the plant in this chapter are:
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7. APPLICATIONS

G1(s) =
25.2s2 + 21.2s+ 3

s5 + 16.58s4 + 25.41s3 + 17.18s2 + 11.70s+ 1
(2-1)

G2(s) =
4.228

(s+ 0.5)(s2 + 1.64s+ 8.456)
(2-2)

The step response of these two plants is analyzed with the criteria of settling
time (ts) and percentage overshoot (PO). Settling time (ts) is defined as time
elapsed from the application of an ideal instantaneous step input to the time, at
which the output has entered error band with 2% in this chapter, while percentage
overshoot (PO) refers to the percentage of an output exceeding its final steady-
state value.

7.2.2 Robust PID Tuning

+R(s) ∑ E(s) C(s) U(s) P (s)(I +4P (s))
+

+

d

Y (s)

−

Figure 7.2: Feedback control system with plant perturbation and external distur-
bance.

The structure of the feedback controller is shown in Fig 7.2, where R(s) is the
reference input signal, E(s) represents error signal, C(s) is the transfer function
of the controller, U(s) is control signal, P (s) stands for controlled plant, 4P (s)
is the plant perturbation, d(t) is the external disturbance and Y (s) is the output
of the system. For PID controller, three parameters are consisted in C(s): pro-
portionality B2, integral B1 and derivative B0, and the transfer function of PID

controller for a continuous system can be defined as: C(s) =
B2s

2 +B1s+B0

s
.

The basic idea of PID controller is to attempt to minimize an error (E(s)) by
adjusting the process control inputs.

The benchmark for PID tuning is taken from [113] [114]. The transfer function
of the plant is given as follows:

P (S) =

( −33.98

(98.02s + 1)(0.42s + 1)

32.63

(99.6s + 1)(0.35s + 1)
−18.85

(75.43s + 1)(0.30s + 1)

34.84

(110.5s + 1)(0.03s + 1)

)
(2-3)
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7.2 Problem Definition

Objective functions Two criteria were used here: balanced performance
criterion J∞ = (J2

a + J2
b )1/2 [115] and interval squared error J2 =

∫∞
0
eT (t)e(t)dt.

For J∞, Ja and Jb are defined as follows: J2
a = ||W1(s)T (s)||∞, J2

b = ||W2(s)S(s)||∞.
Here, W1(s) is the assumed boundary of plant perturbation 4P (s), W2(s) is a
stable weighting function matrix and they are defined in [115]:

W1(s) =
100s+ 1

s+ 1000
× I2×2, (2-4)

W2(s) =
s+ 1000

1000s+ 1
× I2×2. (2-5)

T (s) and S(s) are the sensitivity and complementary sensitivity functions of the
system, respectively, and they can be calculated by:

S(s) = (I + P (s)C(s))−1, (2-6)
T (s) = P (s)C(s)(I + P (s)C(s))−1. (2-7)

7.2.3 Bio-gas Plant Optimization

Consider a bio-gas plant fed with nu ∈ N substrates. Its ns ∈ N dimensional
system state is symbolized by x : R+

0 → S and its substrate feed by u : R+
0 → U,

with S ⊆ Rns and U ⊆ Rnu denoting the state and input space, respectively.
In multi-objective nonlinear model predictive control, a time dependent (t ∈
R+

0 ) optimization problem that is defined over a prediction horizon Tp ∈ R+

is solved at every discrete time instant tk := k · δ, with sampling time δ ∈
R+ and k = 0, 1, 2, . . . , [116]. The objective is to minimize a two-dimensional
objective function J : S × U → R2, which depends on the open loop state os :
R+

0 → S and the open loop substrate feed ou : R+
0 → U of the controlled bio-

gas plant, approximately modeled by a set of nonlinear differential equations
os′(t) = f (os(t),u(t)), called the bio-gas plant model f : S × U → Rns . The
optimization problem is solved by choosing the optimal substrate feed ou over a
control horizon Tc ∈ R+, δ ≤ Tc ≤ Tp. The MONMPC problem can be stated as
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follows:
For each k = 0, 1, 2, . . . set tk = k · δ and solve:

min
ou(·)∈U

J (os(τ), ou(τ))

s.t. os′(τ) = f (os(τ), ou(τ)) ,
os (tk) = x (tk) ,
os(τ) ∈ S,∀τ ∈ [tk, tk + Tp] ,
ou : [tk, tk + Tc]→ U,
ou(τ) = ou (tk + Tc) ,∀τ ∈ (tk + Tc, tk + Tp] .

(2-8)

Since the objective function, i. e. J := (J1, J2)T , is vector valued, there is not one
single optimal solution, but rather many trade-off solutions, which are all Pareto
optimal with respect to (2-8) and collected in the so-called Pareto optimal set
P∗k ⊂ U, [117]. The trade-off solution applied to the plant, ou∗k, is given by a
weighted sum, $1, $2 ∈ R:

ou∗k := arg min
ou∈P∗k

2∑
io=1

$io · Jio (os, ou) , (2-9)

and then applied for the duration of the sampling time δ:

u(t) = ou∗k(t), t ∈ [tk, tk + δ) . (2-10)

Objective functions The objective function components J1 and J2 are de-
fined as follows. The first component of the objective function is defined as:

J1 :=
1

Tp
·
∫ tk+Tp

tk

F1(τ) dτ + Tp,1, (2-11)

It is the average of the negative financial profit Eplant := (benefit− cost) ob-
tained by operating the bio-gas plant over the prediction horizon Tp, with the
first component of the stage cost defined as:

F1(τ) := −Eplant (os(τ), ou(τ)) . (2-12)

The cost function is defined by the sum of the substrate and energy costs and
the benefit function is defined by the profit obtained after selling the produced
electrical and thermal energy, which, in Germany, is determined by the Renewable
Energy Sources Act - EEG [118]. The minus sign in eq. (2-12) is added because
the optimization problem in eq. (2-8) is formulated as a minimization problem.
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7.2 Problem Definition

In eq. (2-11) the first component of the terminal cost Tp,1 is used, which is defined
as:

Tp,1 := κT,1 · F1 (tk + Tp) , (2-13)

with the weighting factor κT,1 ∈ R+.

The second component of the objective function J2,

J2 :=
1

Tp
·
∫ tk+Tp

tk

F2(τ) dτ +∫ tk+Tp

tk

∥∥ou′(τ)
∥∥2

2
dτ + Tp,2

, (2-14)

contains a weighted sum of all nc ∈ N0 boundary conditions that are active over
the prediction horizon Tp, defined in the second component of the stage cost
F2:

F2(τ) :=
nc∑
ic=1

κic · boundic (os(τ), ou(τ)) . (2-15)

Furthermore, J2 contains the integral over the change of the open loop control
input ou and the terminal penalty term Tp,2 with the weighting factor κT,2 ∈
R+:

Tp,2 := κT,2 · F2 (tk + Tp) . (2-16)

In eq. (2-15) the weights κic ∈ R+ are normalized,
∑nc

ic
κic = 1, and the boundary

conditions are defined as:

boundic : S× U→

0 < · · · ≤
(
1 or 4.68512

6

)
if active,

0 else.
(2-17)

Such that all constraints are smooth, some of the them are implemented using
the Tukey biweight function ρT : R→ R+, which is defined as, with CT := 4.6851
[119]:

ρT (uT) :=


C2

T
6

[
1−

(
1−

(
uT
CT

)2
)3
]
|uT| ≤ CT,

C2
T
6 else.

(2-18)

In eq. (2-18), uT ∈ R must be replaced by the difference between the constrained
value and its boundary condition.

Examples for the nc constraint functions boundic , ic = 1, . . . , nc, are upper and
lower boundaries for VFA/TA, COD degradation rate, pH value, OLR, HRT,
NH4-N and VFA (for details see [43]).
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Bio-gas Process:

In the simulation experiments performed in this chapter, a model of a bio-gas
plant is used. This model and the real plant are described here. The modeled
bio-gas plant is a full-scale agricultural bio-gas plant with an electrical power
of 500 kW, located in Germany. The plant is configured as a two-stage system
with a primary digester (1st) (Vliq = 1977 m3) and a secondary (or post) digester
(Vliq = 4182 m3), whereas the secondary digester also serves as a final storage
tank. A pumping station offers the possibility of interchanging sludge between
both digesters. The first digester is mainly fed with maize silage, swine, and
cattle manure as well as grass silage. The secondary digester is not fed. The
produced biogas is burned in two CHPs with an electrical power of 250 kW each.
The produced electrical power is injected into the local grid, which is enumerated
by the EEG 2009. Both digesters are heated with the thermal energy produced
by the CHPs and are operated at about 40 oC.

The simulation model is implemented in MATLAB R© in a self-developed toolbox,
which is freely available under the terms of the GNU GPL.

7.3 Experimental Settings

PID Parameter Tuning For the PID controller problem, the following
parameters were used. The search space for the three parameters (Kp, Ki and
Kd) in G1(s) [120] and G2(s) [112] is shown in Table 7.1.

Table 7.1: Parameter setting.

G1(s) G2(s)

SMS-EMOA SMS-EGO EHVI-EGO SMS-EMOA SMS-EGO EHVI-EGO
Kp [0,10] [0,10] [0,10] [0,10] [0,10] [0,10]
Ki [0,13] [0,13] [0,13] [0,6] [0,6] [0,6]
Kd [0,18] [0,18] [0,18] [0,6] [0,6] [0,6]
npop 30 32 32 30 32 32
neval 90 50 50 90 50 50

Robust PID tuning The parameters for the algorithms are shown in Table
7.2.
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Table 7.2: Parameter settings.

Algorithm µ/Initial Population λ iteration pc pm

EHVI-EGO 30 / 200 / /
TEHVI-EGO 30 / 200 / /
NSGA-II 30 30 200 0.9 1/N

SMS-EMOA 30 / 200 0.9 1/N

The TEHVI-EGO boundary ((A,B)) for all the experiments are (0,∞), except for
ZDT3 problem. Since the lower bound of ZDT3 is close to −1, the TEHVI-EGO
boundary for ZDT3 was set to (−1,∞). For the generalized Schaffer problem,
the parameter γ was set to γ = 0.4. All the experiments were repeated five
times.

Bio-gas Plant Optimization The simulation of biogas is composed by two
stages: intermediate process and steady state. In the first stage, the objective
functions are J1 and J2 described in section 7.2. For steady state, the objective
functions are F1 and F2 described in section 7.2. Three different initial substrate
feeds, as shown in Table 7.3, were set to test whether the MONMPC is robust
against initial substrate feed. SMS-EGO and EHVI-EGO were used and com-
pared, the parameters of these two algorithms can be found in Table 7.3, where
Tp, Tc and δ are the control parameters and represent prediction horizon, control
horizon, and control sampling time, respectively.

7.4 Experimental Results

7.4.1 PID Parameter Tuning

For PID parameter tuning, the final best and average non-dominated Pareto
fronts in the 20 runs are shown in Figures 7.3 and 7.4, where g1 and g2 represent
settling time (ts) and percentage overshoot (PO), respectively. The search space
for G1(s) and G2(s) are described in Table 7.1.

Figures 7.3 and 7.4 refer to the best and the average Pareto fronts in all runs
respectively, and these are generated by using attainment curves of toolbox plot-
atta [34, 36].
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Table 7.3: Parameter sets for all experiments.

Component Test A Test B Test C LB UB unit

Qmaize 15 5 40 0 30 m3/d
Qmanure 10 5 30 5 15 m3/d
Qgrass 2 0 10 0 30 m3/d

Exp. no. Tp/d Tc/[d] δ/[d] npop neval Method

1 150 10 10 32 50 SMS-EGO
2 150 10 10 32 40 SMS-EGO
3 150 10 10 32 60 SMS-EGO
4 150 10 10 32 50 EHVI-EGO
5 150 10 10 32 40 EHVI-EGO
6 150 10 10 32 60 EHVI-EGO
7 150 10 10 20 60 SMS-EMOA
8 150 10 10 25 75 SMS-EMOA
9 150 10 10 20 80 SMS-EMOA
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Figure 7.3: Best Pareto fronts.
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Figure 7.4: Average Pareto fronts.

Comparing the best Pareto fronts generated by surrogate-model-based algorithms
and model-free algorithm in Figure 7.3, almost all the elements in SMS-EMOA
best Pareto front are dominated by those generated by SMS-EGO and EHVI-
EGO, and surrogate model based algorithms (EHVI-EGO and SMS-EGO) out-
perform model-free algorithm (SMS-EMOA). Comparing the best Pareto front
generated by the EHVI-EGO and SMS-EGO in G1(s) and G2(s), EHVI-EGO is
slightly more robust to reach the “ideal“ Pareto front as close as possible than the
SMS-EGO.

The difference between best and average Pareto fronts in EHVI-EGO and SMS-
EGO are not obviously. This means that when compared to model-free opti-
mization algorithms, surrogate-model-based algorithms can faster converge to
the “ideal“ Pareto front with fewer evaluations, and EHVI-EGO is more robust
to converge than SMS-EGO within a certain number of evaluations.

For statistic analysis, hypervolume in all the experiments are analysed in Table
7.4. The reference points for G1(s) and G2(s) in Table 7.4 are [5 5] and [10,5],
respectively.
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Table 7.4: HV Comparison.

G1(s) G2(s)

AVG MIN MAX σ AVG MIN MAX σ

EHVI-EGO 23.38 23.33 23.40 0.02 27.34 26.87 27.62 0.25
SMS-EGO 21.26 14.03 23.37 3.45 27.23 26.04 27.48 0.32
SMS-EMOA 18.95 13.11 22.50 2.81 19.01 3.08 27.49 7.26

From Table 7.4, surrogate-model-based algorithms are more robust compared to a
model-free algorithm (SMS-EMOA). EHVI-EGO provides a higher average value
of HV and lower value of corresponding standard deviation than those of the
other two algorithms. Therefore, in the case of PID parameter tuning problem,
EHVI-EGO is more robust and performs better than SMS-EGO and SMS-EMOA.

Figures 7.5 and 7.6 show the step response forG1(s) andG2(s). In Figure 7.3, each
set of PID parameters corresponds to the first suggested point sorted by NSGA-II
[75]. The computation time ts, corresponds with EHVI-EGO is faster than that
of SMS-EGO and SMS-EMOA, and PO using EHVI-EGO is also smaller than
the other two algorithms.

7.4.2 Robust PID Tuning

Table 7.5: Robust PID parameter tuning.

Test Function Methods reference point
Pareto front size HV

max min mean std max min mean std

PID EHVI-EGO [30 2] 6 3 4.6 1.1402 53.7859 32.5078 47.4223 8.6584
PID TEHVI-EGO [30 2] 5 3 4.2 0.8367 53.9046 38.6312 49.0419 6.3154
PID NSGA-II [30 2] 54 36 45 8.3066 28.0222 27.9868 28.0054 0.0142
PID SMS-EMOA [30 2] 9 1 5.2 3.0332 53.3783 27.4147 36.8671 11.8578

Table 7.5 shows the result of the robust PID parameter tuning problem. Figure
7.7 shows the best Pareto fronts of each method for this problem. It shows
that TEHVI-EGO can explore more non-dominated candidates than the other
algorithms, and almost all the other Pareto fronts are dominated by the (red)
squared Pareto front of EHVI-EGO.

108



7.4 Experimental Results

Time (seconds)

A
m

pl
itu

de

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

 

 

EHVI-EGO

SMS-EGO

SMS-EMOA

Figure 7.5: G1(s) step response. For EHVI-EGO Kp = 1.95, Ki = 3.07, Kd =

4.61, for SMS-EGO Kp = 2.25, Ki = 2.92, Kd = 4.20, and for SMS-EMOA Kp =

2.00, Ki = 4.04, Kd = 4.48.
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Figure 7.7: The best Pareto fronts for PID problem.
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Figure 7.6: G2(s) step response. For EHVI-EGO Kp = 2.71, Ki = 1.05, Kd =

2.13, for SMS-EGO Kp = 1.99, Ki = 0.98, Kd = 1.35, and for SMS-EMOA Kp =

2.35, Ki = 0.96, Kd = 1.97.

Table 7.6: PID parameters in Figure 7.8.

Algorithm B2 B1 B0

EHVI-EGO

[
−146.8052 −183.1330

−39.5844 38.28307

] [
−58.8757 −39.9390

39.1692 164.6072

] [
−29.1297 168.1379

11.2049 148.3339

]

THEIV-EGO

[
−110.9551 197.8837

198.4738 199.5100

] [
45.5191 194.3873

80.6678 −188.7033

] [
−30.7334 151.2778

76.1469 35.5006

]

NSGA-II

[
−68.0186 199.9837

83.4419 21.5003

] [
−15.0820 199.8181

117.6667 200

] [
74.1652 139.4757

58.1943 94.3620

]

SMS-EMOA

[
−44.6694 198.9674

113.6318 198.1877

] [
−123.9725 69.6727

−44.6645 149.6474

] [
−34.5741 158.8530

−10.7696 116.9635

]

Figure 7.8 shows the step response with plant perturbation, and the PID param-
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eters are shown in Table 7.6. The objective values for each method are: EHVI-
EGO= (2.1264, 0.5646), TEHVI-EGO= (2.1391, 0.1023), NSGA-II = (2.1722, 0.9990)
and SMS-EMOA=(2.1707, 0.9991). It is clear that the EGO-based controller out-
puts are slightly better than those generated by the other two algorithms. For
output y2, the overshoot of the TEHVI-EGO step response is bigger than the other
three responses. This is acceptable, considering that the objective functions do
not have the overshoot criterion, and the overshot is also less than 20%.

7.4.3 Bio-plant Optimization

For the bio-gas plant, two strategies of setting reference point are used: fixed and
dynamic reference points. The fixed reference point is always (0.1, 1.6), while,
the dynamic reference point is determined on the fly by the algorithm and is
calculated by adding one to the maximum value of the existing Pareto fronts.
The initial substrate feeds and parameters in the experiments are represented in
Table 7.3. Bio-gas plant simulation costs a lot of time (about 15-24 hours), and
thereby, we did the experiments only once.

Figure 7.9 illustrates the final intermediate Pareto fronts with dynamic reference
point and initial substrate feeds of experiments A and C, respectively.

In Figure 7.9, nearly all elements in the SMS-EGO and SMS-EMOA intermediate
Pareto fronts are dominated by those in EHVI-EGO intermediate Pareto fronts.
When compared the performance of SMS-EGO with that of SMS-EMOA, SMS-
EMOA is a little bit better than SMS-EGO at the cost of 150, 525 and 300 more
evaluations in Exp. 1&7, 2&8 and 3&9, respectively. The choice of the reference
point is very important in these experiments. The HV differs a lot when choosing
different reference points. Take an example in Figure 7.9 (a). When compared
the red and blue Pareto fronts in the right subfigure, only one element in EHVI-
EGO Pareto front is dominated by that of SMS-EGO, and HV for A3 and A6
are 0.1381 and 0.1584, respectively with the same reference point of (-1.8, 0.7).
However, HV for A3 and A6 are 3.3995 and 3.3758 using the reference point of
(0.1, 1.6). Hence, the criterion of HV is very sensitive to the reference point, and
the bad choice of reference point can mislead the final decision, even when the
results are very clear.

Figure 7.10 shows the steady Pareto front in Exp. A and C. The performance gap
between all the three algorithms is not obvious. Even some few elements in the
Pareto front, generated by EHVI-EGO, are dominated by those of SMS-EMOA
and SMS-EMOA. When compared the intermediate with steady Pareto fronts us-
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Figure 7.8: Step responses.
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ing a dynamic reference point, the performance gap of the three algorithms dimin-
ished for steady state. That is to say, the predictions by surrogate-model-based
algorithms still process a slight difference to the real data, for steady state.

Figure 7.10 (a) and (b) are both the intermediate Pareto fronts using a fixed
reference point with different initial substrate feed strategies (A and B). Figure
7.10 (c) and (d) are the steady Pareto fronts based on fixed reference point.

For the fixed reference point strategy, the performance of EHVI-EGO is similar to
SMS-EGO. The reason of this could be the bad choice of the reference point. Some
actual better Pareto fronts are regarded as the worse ones in process optimization,
due to the improper reference point. However, it still needs more experiments to
verify this assumption.

Comparing all the intermediate Pareto fronts with a dynamic and fixed reference
point, EHVI-EGO outperforms SMS-EGO when using a dynamic reference point,
while SMS-EGO is better than EHVI-EGO when using a fixed reference point.
This means that SMS-EGO is more robust against the choice of a reference point
than EHVI-EGO. Another evidence of this conclusion can be found in Table
7.7: the number of elements in EHVI-EGO intermediate Pareto front is always
smaller than that of SMS-EGO, and EHVI-EGO standard deviation is larger than
SMS-EGO’s.

Table 7.7: Number of elements in intermediate Pareto fronts.

EHVI-EGO SMS-EGO
Ref. Exp. AVG MIN MAX σ AVG MIN MAX σ

Dynamic A 14.51 6 23 4.04 20.49 7 27 5.09
Dynamic C 16.71 5 28 5.86 21.87 11 35 5.34
Fixed A 19.29 7 33 8.15 22.53 11 31 4.50
Fixed B 16.04 9 24 3.38 20.73 8 29 6.45

Contrary to PID parameter tuning, the Pareto fronts in a bio-gas plant are more
similar. This is because the total function evaluations numbers within the sim-
ulation in the bio-gas plant are much larger than the corresponding ones in PID
parameter tuning. For the bio-gas plant, Tp = 150, Tc = 10 and neval is the
function evaluation number in each control period. Therefore, the total function
evaluations number in the whole simulation period is 15 times neval.
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7.5 Summary

In this chapter, we investigated different evolutionary multi-criterion optimiza-
tion algorithms for the optimization of PID controllers and bio-gas plants opti-
mization. The focus of our study was hypervolume based methods for problems
that allow only a small (≈ 100) number of exact objective function evaluations.
In particular, a state-of-the-art evolutionary algorithm (SMS-EMOA) was com-
pared to multi-objective efficient global optimization algorithms, SMS-EGO and
EHVI-EGO, which utilize a surrogate model of the objective functions. In the
problem domain of PID controller tuning, the results were, as expected, that the
surrogate model assisted strategies yielded better results than the SMS-EMOA.
Among them, the EHVI-EGO performs slightly better than the SMS-EGO, but
it is more sensitive to the change of the reference point.

However, in the case of the optimization of the bio-gas plant, the result seems to
be less consistent. While also in this case, for intermediate control optimization
the EHVI-EGO shows the best performance, there is no big gap between all
the algorithms performances. Also the SMS-EMOA, which uses no surrogate
model, manages to produce a diverse Pareto-front that in terms of convergence is
only slightly worse than that of EHVI-EGO. More surprisingly, the gap between
the algorithms performances almost diminishes when it comes to applying the
optimized control in steady state. The consistency of the results by the three
algorithms shows that the solution is probably close to the true Pareto front.

Between EHVI-EGO and TEHVI-EGO, TEHVI-EGO outperforms EHVI-EGO
in the case of robust PID tuning problem, as the TEHVI only considers the
EHVI in a certain domain, and therefore, it can force the algorithm on exploring
in this domain. Summarizing, based on the result of this study we recommend
using TEHVI-EGO when the a-priori knowledge of the objective functions is
available. Otherwise, we recommend to use EHVI-EGO, because it shows a good
performance more consistently as compared to the other algorithms. For further
work, it is recommended to research the robust setting for the reference point.
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