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Chapter 6

EHVI Gradient Calculation

The Expected Hypervolume Improvement (EHVI) is a frequently used infill cri-
terion in Multi-Objective Bayesian Global Optimization (MOBGO), due to its
good ability to lead the exploration. Recently, the computational complexity of
EHVI calculation is reduced to O(n log n) both in 2-D and 3-D cases. However,
the maximization of EHVI, which is carried out in each iteration of the algorithm,
still requires a significant amount of time. This chapter introduces a formula for
the Expected Hypervolume Improvement Gradient (EHVIG) and proposes an ef-
ficient algorithm to calculate EHVIG. The new criterion (EHVIG) is utilized by
two different strategies in this chapter. Firstly, it enables gradient ascent meth-
ods to be used in MOBGO. Moreover, since the EHVIG of an optimal solution
should be a zero vector, it can be regarded as a stopping criterion in global op-
timization, e.g., an Evolution Strategy. Empirical experiments are performed on
seven benchmark problems. The experimental results show that the second pro-
posed strategy, using EHVIG as a stopping criterion, can outperform the normal
MOBGO on the problems, where the optimal solutions are located in the interior
of the search space. For the remaining test problems, EHVIG can still perform
better when gradient projection is applied.

This chapter mainly discusses the computation of the 2-D EHVIG and how to
apply EHVIG in MOBGO by two approaches: using EHVIG in gradient ascent
algorithm for local search and using EHVIG as a stopping criterion in an evo-
lutionary algorithm. The chapter is structured as follows: Section 6.1 describes
the motivations of the EHVIG research; Section 6.2 introduces the definition of
the EHVIG and proposes an efficient algorithm to calculate 2-D EHVIG, includ-
ing a computational performance assessment between the proposed efficient exact
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6.1 Motivations

calculation method and numerical calculation method in 2-D EHVIG case; Sec-
tion 6.3 introduces the gradient method using EHVIG in MOBGO; Section 6.4
illustrates how to utilize EAs (CMA-ES in this chapter) assisted by the stop-
ping criterion EHVIG in MOBGO; Section 6.5 shows the empirical experimental
results.

6.1 Motivations

Compared to EAs, MOBGO still performs much slower using the infill criterion
EHVI, because EHVI needs to be called many times in the process of searching for
the optimal point based on the Kriging models. Since the calculation of the EHVI
can be formulated in a closed form, it is possible to analyze its differentiability.
It is easy to see, that all components of the EHVI expression are differentiable.
However, a precise formula of the EHVIG has not been derived until now. Once
the formula of EHVIG is derived, it could speed up the MOBGO in the process
of searching for the optimal point by using the gradient ascent algorithm to
maximize EHVI or using it as a stopping criterion in EAs.

6.2 Expected Hypervolume Improvement Gradi-
ent (EHVIG)

Considering the definition of the EHVI in Equation (2-1) and the efficient al-
gorithm to calculate 2-D EHVI (minimization case) in A.4, the EHVI is dif-
ferentiable with respect to the predictive mean and its corresponding standard
deviation, which are again differentiable with respect to the input vector (or tar-
get point) in the search space. The EHVIG is the first order derivative of the
EHVI with respect to a target point x under consideration in the search space.
It is defined as:

Definition 6.1 (Expected Hypervolume Improvement Gradient) 1 Given
parameters of the multivariate predictive distribution µ, σ at a target point x in
the search space, the Pareto-front approximation P, and a reference point r , the

1The prediction of µ and σ depends on a Kriging model and a target point x in the search
space. Explicitly, EHVIG is dependent on the target point x.
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6. EHVI GRADIENT CALCULATION

expected hypervolume improvement gradient (EHVIG) at x is defined as:

EHV IG(x,µ,σ,P, r) =
∂
(∫

Rd HVI(P,y) · PDFµ,σ(y)dy
)

∂x
=
∂ (EHV I(µ,σ,P, r))

∂x
(2-1)

According to the definition of EHVIG in Equation (2-1) and the efficient algorithm
to calculate EHVI in Equation (A-12), we can substitute the Equation (A-12) into
Equation (2-1), say that the formula of EHVIG for 2-D case can be expressed
as:

EHV IG(x,µ,σ,P, r) =
∂(EHV I(µ,σ,P, r))

∂x

=
∂
(∑n+1

i=1 (y
(i−1)
1 − y(i)

1 ) · Φ(
y
(i)
1 −µ1
σ1

) ·Ψ(y
(i)
2 , y

(i)
2 , µ2, σ2)

)
∂x

+ (2-2)

∂
(∑n+1

i=1

(
Ψ(y

(i−1)
1 , y

(i−1)
1 , µ1, σ1)−Ψ(y

(i−1)
1 , y

(i)
1 , µ1, σ1)

)
·Ψ(y

(i)
2 , y

(i)
2 , µ2, σ2)

)
∂x

(2-3)

For the Terms (2-2) and (2-3), the prerequisite of calculating these two Terms is
to calculate the gradient of the Ψ function and of the Φ(y−µ

σ
) function. The final

expressions for ∂Ψ(a,b,µ,σ)
∂x

and ∂Φ( y−µ
σ

)

∂x
are shown in Equation (2-4) and Equation

(2-5), respectively. For detailed proofs, please refer to the Appendix (A.3) in this
dissertation.

∂Ψ(a, b, µ, σ)

∂x
=
(b− a

σ
· φ(

b− µ
σ

)− Φ(
b− µ
σ

)
)
· ∂µ
∂x

+

φ(
b− µ
σ

) ·
(
1 +

(b− µ)(b− a)

σ2

)
· ∂σ
∂x

(2-4)

∂Φ(y−µ
σ

)

∂x
= φ(

y − µ
σ

) · (µ− y
σ2
· ∂σ
∂x
− 1

σ
· ∂µ
∂x

) (2-5)

By substituting Equations (2-4) and (2-5) into Term (2-2) with applying the chain
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6.2 Expected Hypervolume Improvement Gradient (EHVIG)

rule, Term (2-2) can be expressed by:

∂
(∑n+1
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(2-6)

Similar to the derivation of Term (2-2), Term (2-3) can be expressed by:
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=
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(2-7)

Then, the EHVIG is the sum of Terms (2-6) and (2-7). In these two Terms, ∂µi
∂x

and ∂σi
∂x

(i = 1, 2) are the first order derivatives of the Kriging predictive means
and standard deviations at a target point x, respectively. These parameters can
be precisely calculated by means of a Kriging model. For the details of the
formulas and how to calculate these parameters, please refer to [103].

Performance Assessment The performance assessment of the EHVIG will be
illustrated by a single numerical experiment. The bi-criteria optimization prob-
lem is: y1(x) = ||x−1|| → min, y2(x) = ||x+1|| → min, x ∈ [−1, 6]×[−1, 6] ⊂ R2

[2]. Figure 6.1 shows the landscape of EHVIG, in which the evaluated points are
marked by blue circles. The EHVIG calculated by the exact method is indicated
by the black arrow in the left figure. The EHVIG calculated by the numerical
method is indicated by the red arrows in the right figure. The landscapes of
EHVIG in both figures are very similar, however, there exist some slight differ-
ences between them, while very small and caused by numerical errors.

6.3 Gradient Ascent Algorithm

Previously, the optimizer opt in Algorithm 3 was chosen as CMA-ES [104], which
is a state-of-the-art heuristic global optimization algorithm. Since the formula of
2-D EHVIG is derived in this chapter, a gradient ascent algorithm can replace
CMA-ES to speed up the process of finding an optimal point x∗.

Many gradient ascent algorithms (GAAs) exist. The conjugate gradient algorithm
is one of the most efficient algorithms among them. However, it cannot solve the

90



6.4 Stopping Criterion – EHVIG

-1 0 1 2 3 4 5 6

x
1

-1

0

1

2

3

4

5

6

x
2

-1 0 1 2 3 4 5 6

x
1

-1

0

1

2

3

4

5

6

x
2

Figure 6.1: The landscape of EHVIG. Left: computed using exact calculation
algorithm, Right: computed using numerical calculation method.

constrained problems, and this is the reason why we exclude it in this chapter.
For the other GAAs, the general formula of computing the next solution is:

x(t+1) = x(t) + s · ∇F (x(t)) (3-8)

where x(t) is the current solution, x(t+1) is the updated solution, s is the stepsize,
and ∇F (·) is the gradient of the objective functions or of the infill criterion. In
this chapter, ∇F is EHVIG.

Another important aspect is that the starting point is very important to the
performance of GAAs. In order to improve the probability of finding the globally
optimal point, CMA-ES was used to initialize the starting points in this chapter.
The structure of gradient ascent based search algorithm is shown in Algorithm
10.

6.4 Stopping Criterion – EHVIG

Traditionally, when EAs are searching for the optimal point x∗, convergence ve-
locity and some other statistical criteria are used to determine whether the EAs
should stop/restart or not. These criteria can balance the quality of the per-
formance and efficiency of the execution time to some degree, but not optimally.
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Algorithm 10: Gradient Ascent Based Search Algorithm
Input: Kriging Models M1, · · · ,Md, Pareto-front approximation P,

reference point r, number of clusters Nc

Output: Optimal solution x∗

1: Initialize λ points using CMA-ES with 15 iterations;
2: Cluster λ points into Nc clusters G1, · · · , GNc ;
3: for i = 1 to i <= Nc do
4: Update starting point xs, xs = mean(Gi) ;
5: Calculate the optimal point x∗i using simple gradient ascent algorithm

and the starting point xs;
6: Calculate the corresponding EHVI value EHV I i

7: Find the optimal point x∗ among x∗1, · · · ,x∗Nc ;
8: Return x∗;

Because all these criteria are blind to whether an individual is already the optimal
or not.

Considering the gradient of the optimal point in the search space should be a
zero vector and EHVIG can be exactly calculated, EHVIG can be used as a stop-
ping/restart criterion in EAs when they are searching for the optimal point with
the EHVI as the infill criterion. Theoretically speaking, the EHVI should be
maximized during the procedure, therefore, this strategy should also be required
to check the negative value of the second derivative of EHVI at this point. How-
ever, this is omitted due to the complexities. The structure of CMA-ES assisted
by EHVIG is shown in Algorithm 11.

6.5 Experimental Results

Experimental Settings The benchmarks were well-known test problems:
BK1 [78], SSFYY1 [79], ZDT1, ZDT2, ZDT3 [80] and the generalized Schaffer
problem [81] with different parameter settings for γ. All these benchmarks were
employed by using different searching strategies in MOBGO, as shown in Table
6.1. Each trail was repeated for 10 times. All the experiments were finished on the
same computer: Intel(R) i7-3770 CPU @ 3.40GHz, RAM 16GB. The operating
system was Ubuntu 16.04 LTS (64 bit) and platform was MATLAB 8.4.0.150421
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(R2014b), 64 bit.

Algorithm 11: CMA-ES Assisted by EHVIG
Input: Kriging Models M1, · · · ,Md, Pareto-front approximation P,

reference point r, restart number Nr

Output: Optimal solution x∗

1: for i = 1 to i <= Nr do
2: Initialize parameters in CMA-ES;
3: flag = 1 ;
4: for flag ≥ ε do
5: Get offspring by normal CMA-ES with default parameters ;
6: Select the best individual x∗i from the offspring ;
7: Predict the mean value µ∗ and the standard deviation σ∗ at x∗i ;
8: flag = Sum(|EHV IG(x∗i,µ∗,σ∗,P, r)|) ;

9: Find the optimal point x∗ among x∗1, · · · ,x∗Nr ;
10: Return x∗;

Table 6.1: CMA-ES Parameter Settings.

ε Nr Stopping Criterion Max Iter. Gradient Decent Nc

Alg. 1 / 3 Default 2000 No /
Alg. 2 10−5 3 EHVIG 2000 No /
Alg. 3 / 0 Default 15 Yes 4
Alg. 4 / 0 Default 15 No /
Alg. 5 10−5 3 EHVIG projection 2000 No /

Table 6.2 shows the final experimental results. The final performance on each
algorithm is evaluated by HV and execution time. The highest value of HV on
each test problem is indicated in bold, and the smallest value of the standard
deviation of HV is also shown in bold. For the execution time, both the least
execution time and smallest standard deviation of time, among Alg. 1, Alg. 2
and Alg. 3 are indicated in bold.

Here, Alg. 4 (original CMA-ES with no restart mechanism and with a max
iteration of 15) is a control group for Alg. 3 to test whether the GAA works as
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6. EHVI GRADIENT CALCULATION

predicted or not. Since there is no new mechanism added to Alg. 4 and max
iteration is too small, the performance of Alg. 4 is indeed worse than the other
three algorithms. Hence, there is no need to compare the execution time of Alg.
4 with others.

From Table 6.2, it can be seen that Alg. 3, using GAA for searching an optimal
point and CMA-ES for the initialization of the starting points, can improve the
final performance a little bit, compared to Alg. 4. However, it can not outperform
the original CMA-ES (Alg. 1). The reason is related to the starting points in
the GAA, that is: GAA is very sensitive to the starting point and the starting
points generated by CMA-ES with 15 iterations are located at the local optimal
area.

Compared to original CMA-ES (Alg. 1), Alg. 2 (CMA-ES using EHVIG as
the stopping criterion) outperforms Alg. 1 on BK1, SSFYY1, GSP, and GSP12.
Among these four test problems, the execution time of Alg. 2 is much faster than
Alg. 1 in the cases of the SSFYY1 and GSP problems. When applying EHVIG
as a stopping criterion in Alg. 2, algorithm CMA-ES can terminate the loop
earlier when the EHVIG of one individual is a zero vector, and therefore some
execution time can be saved. In other words, while original CMA-ES does not
know whether a current individual is already the optimal solution or not, EHVIG
can be used as a criterion to check this individual. For the BK1 and GSP12
problems, Alg. 2 needs more time, but the performance of Alg. 2 is better than
Alg. 1.

On ZDT series problems, however, the performance of Alg. 2 is worse than Alg. 1.
An explanation of this phenomenon is that the optimal solutions for ZDT series
problems are located on the boundary of the search space. According to the
definition of the gradient, EHVIG would be infeasible at these boundaries, and
thus EHVIG would mislead CMA-ES to search the optimal solution. A remedy to
improve the performance of Alg. 2 is applying the projection of EHVIG to check
whether an individual is optimal or not on the boundaries, instead of EHVIG.
Here, the projection of EHVIG is the orthogonal projection of EHVIG onto the
active constraint boundary. Since we are only dealing with box constraints, all
the components of the gradient that correspond to active boundaries in the same
dimension are set to zero. In Table 6.2, compared to Alg. 2 in ZDT series
problems, Alg. 5 is assisted by the projection of EHVIG and can reach Pareto
front approximations closer to the true ones with less execution time. For ZDT1
and ZDT2 problems, the average HV values of Alg. 5 are even better than Alg.
1 with less execution time.
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Table 6.2: Experimental Results.

Benchmark Ref. Alg. 1 Alg. 2 Alg. 3 Alg. 4 Alg. 5

BK1 (60,60)

Time(mins)
mean 6.2817 13.4433 8.0933 0.4350 /

std. 0.6480 1.0280 0.8803 0.0166 /

HV
mean 3175.7582 3175.9683 3166.4668 3133.8960 /

std. 0.3620 0.2940 3.6840 6.0266 /

SSFYY1 (5,5)

Time(mins)
mean 13.1067 4.7667 7.2550 0.4233 /

std. 5.4001 0.3306 0.3705 0.0117 /

HV
mean 20.7096 20.7098 20.5474 20.0187 /

std. 0.0069 0.0035 0.0361 0.1284 /

ZDT1 (11,11)

Time(mins)
mean 82.9317 76.9400 15.0667 6.6133 34.8383

std. 38.5988 12.1167 8.2437 4.2966 14.7293

HV
mean 120.6491 120.6488 120.6268 120.6275 120.6498

std. 0.0055 0.0052 0.0069 0.0066 0.0063

ZDT2 (11,11)

Time(mins)
mean 40.3233 39.6800 6.8889 2.0983 33.8407

std. 7.1394 6.1038 0.1332 0.1628 2.3391

HV
mean 120.3025 120.2965 120.1151 119.2155 120.3159

std. 0.0130 0.0067 0.3474 2.9890 0.0127

ZDT3 (11,11)

Time(mins)
mean 53.6267 45.9850 8.5450 2.8550 13.3067

std. 8.5955 8.8638 0.5120 0.4217 9.0423

HV
mean 128.7486 128.4772 127.7556 127.4168 128.6857

std. 0.0079 0.7747 1.2385 1.2383 0.1029

GSP (5,5)

Time(mins)
mean 46.4850 7.5017 13.3167 0.5283 /

std. 40.2517 0.3572 0.7771 0.0112 /

HV
mean 24.9066 24.9066 24.9055 24.9050 /

std. 0.0001 0.0000 0.0001 0.0001 /

GSP12 (5,5)

Time(mins)
mean 20.3167 20.6650 13.7200 4.6867 /

std. 0.4215 0.7123 0.4407 0.1403 /

HV
mean 24.3914 24.3930 24.3883 24.3848 /

std. 0.0034 0.0019 0.0016 0.0013 /
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6.6 Summary

This chapter introduced an efficient algorithm to exactly calculate the 2-D EHVIG
and applied EHVIG in Multi-Objective Bayesian Global Optimization using two
different strategies in the process of searching for the optimal solution: using
EHVIG as a stopping criterion in the original CMA-ES and using gradient ascent
algorithm (CMA-ES used here to initialize the starting points).

The empirical experimental results show that the gradient ascent based algorithm
is much faster than original CMA-ES, but it has an obvious drawback: it gets
easily stuck at a locally optimal point. Another strategy, taking EHVIG as the
stopping criterion in CMA-ES, can improve the quality of the final Pareto front
and reduce some execution time, compared to original CMA-ES on the problem
whose optimal points are not at the boundaries in the search space. This strategy
does not work on ZDT series problems because EHVIG cannot be calculated at
the boundaries in the search space. However, a useful remedy to this strategy is
the projection of EHVIG.
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