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Chapter 5

Preference-Based Multi-Objective
Optimization

The ultimate goal of multi-objective optimization is to provide potential solu-
tions to a decision maker. Usually, what concerns a decision maker concerns is
a Pareto front in an interesting/preferred region, instead of the whole Pareto
front. In this chapter, a method for effectively approximating a Pareto-front ap-
proximation set in the preferred region, based on multi-objective efficient global
optimization (EGO), is introduced. EGO uses Gaussian processes (or Kriging)
to build a model of the objective function. Our variant of EGO uses truncated
expected hypervolume improvement (TEHVI) as an infill criterion, which takes
into consideration predictive mean, variance and preference region in the objective
space. Compared to expected hypervolume improvement (EHVI), the probability
density function in TEHVI follows a truncated normal distribution. This chapter
proposes a TEHVI method that makes it possible to set a region of interest on
the Pareto front and focuses the search effectively on this preferred region. An
expression for the exact and efficient computation of the TEHVI for truncation
over a two dimensional range is derived, and benchmark results on standard bi-
objective problems for small budget of evaluations are computed, which confirms
that the new approach is more effective.
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5. PREFERENCE-BASED MULTI-OBJECTIVE OPTIMIZATION

5.1 Background

Most optimization problems involve multiple objectives that need to be consid-
ered simultaneously and under certain constraints. Unlike single objective opti-
mization, the result consists of multiple trade-off solutions called Pareto front.
Over the last 20 years, Evolutionary Multi-objective Optimization (EMO) has
demonstrated a great success in approximating the whole Pareto front. How-
ever, the ultimate goal of multi-objective optimization is to assist the decision
maker to choose the most suitable solution in a preferred region. Therefore, the
preference-based multi-objective optimization is a hot topic recently. It utilizes
the preference information offered by the DM, such as weights, reference points,
trade-off constraints, to guide the search towards the Region of Interest (ROI) on
a Pareto front. The overview of existing approaches has already been provided
in [82, 83, 84]. Depending on when the DM can participate in the optimization
process, preference-based EMO can be categorized into three types: an a-priori,
a-posteriori, interactive. In a-priori method, preference information from DM is
provided before the search process, on the other hand in a-posteriori approaches;
DM preferences are incorporated after the search. Interactive approaches make
it possible to adapt the preference during optimization by having an interaction
between the DM and EMO algorithms. The method proposed in this chapter
belongs to the interactive methods.

According to the preference information offered by the DM, Bechikh et al. clas-
sified existing methods into weight-based approaches, solution ranking-based ap-
proaches, objective ranking-based approaches, reference point-based approaches,
trade-off-based approaches, and outranking-based approaches [85]. There are
also other methods to express preference, for example, utility function [86], lexi-
cographic order [87], and preference region [88]. In the following, we restrict the
summary of the state-of-art to approaches that use objective space region (or
preferred region) as preference articulation.

Desirability Functions (DFs) is widely used to specify the preferences by trans-
forming the objective values into a decision maker’s satisfaction level, considering
its simple and intuitive meaning. DFs can nonlinearly map the objectives in a
desired region into the domain [0,1], based on the DFs’ values of exemplary objec-
tive levels. Thus, an increasing desirability of the solution can reflect an increase
of objective quality. By changing the values of objectives corresponding to 0
(least favored) and 1 (most favored), the DF can focus on different regions of the
PF. It has already been successfully combined with NSGA-II [89], MOPSO [90],
SMS-EMOA [91] on both benchmark problems and practical tuning problems
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5.2 Algorithms

from machining. Karahan and Köksalan devised a territory defining steady-state
elitist evolutionary algorithm (TDEA) [92], which defines a territory around each
solution to prevent crowding. They also proposed a preference-based approach,
called prTDEA, to assign different sizes of territories for preferred regions and
non-preferred regions. Preferred regions have smaller territories so that a denser
coverage could be achieved. An interactive version of this method has been pro-
posed in [93].

In [94], an interactive decision-making approach is embedded in the preference-
inspired co-evolutionary algorithm (PICEA-g). The DM can easily brush his/her
preferred region in the objective space without specifying any parameters. Goal
vectors are generated according to this region and co-evolved with solution vec-
tors, in order to achieve solutions in the ROI brushed by the DM. Other methods
include weighted hypervolume [95] and hyperplane construction [96], all of which
can be used to specify preferred regions.

Among the existing preference-based multiobjective optimization methods, surrogate-
assisted optimization is rarely used. Moreover, the combination of TEHVI is
meaningful and feasible when a DM has a vague idea about his/her preference
region in the objective space, because TEHVI has an inherent ability to explore
a certain region in the objective space. Specifying an interval region for each
objective is also referred to as brushing or zooming, and it has already been ap-
plied in the context of interactive multicriteria optimization with non-expensive
function evaluations by decision makers [94]. Here we introduce such techniques
to surrogate assisted multiobjective optimization.

5.2 Algorithms

5.2.1 TEHVI-EGO for Preference-based Multi-Objective
Optimization

For the aim of obtaining a preferred Pareto front, TEHVI-EGO is used in this
chapter to solve this problem. The details of TEHVI calculation can be found in
Chapter 4. Truncated domains [A,B] are chosen according to a preferred region
in objective space. The definition of preferred region is:

Definition 5.1 (Preferred region) Given an objective space and two vectors,
say A ⊂ R2 and B ⊂ R2, a preferred region (PR) is the area bounded by A and
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5. PREFERENCE-BASED MULTI-OBJECTIVE OPTIMIZATION

B in the objective space:

PR =

[(
A1

A2

)
,

(
B1

B2

)]
(2-1)

An example of preferred region is shown in Figure 5.1. The yellow region is a
preferred region, and the boundary of this region is set for the truncated region
for each objective function.
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Figure 5.1: A preferred region for 2-D case.

The pseudocode for TEHVI-EGO with a preferred region is shown in Algorithm 6.
It is important to compute a preliminary approximation of the Pareto front (line
3-6) before the preference region is set. This way the probability is increased and
new non-dominated points can be found in this region. The interaction approach
could be compared to ’zooming in’ the preferred region or seen as a kind of
brushing technique.

5.2.2 Preferred region with EAs

The concept of a preferred region can be integrated to the pre-selection criterion
in Bayesian Global Optimization, and works well in Evolutionary Multi-objective
Optimization. Our preferred region based Evolutionary Multi-Objective Algo-
rithm model works reliably when the DM wants to concentrate only on those re-
gions of the P which really interests him/her. For algorithms in this model, which
include T-SMS-EMOA, T-R2-EMOA and T-NSGA-II (where T stands for pre-
ferred region), three ranking criteria (1. non-dominated sorting; 2. performance
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5.2 Algorithms

Algorithm 6: TEHVI-EGO
Input: initialization size µ, termination criterion Tc, truncated boundary

[A,B], parameter ap
Output: Preferred Pareto front PF

1: Initialize µ points and Pareto front PF;
2: g = 1;
3: while g <= ap do
4: Set infill criterion as EHVI ;
5: Find the optimal point using CMA-ES;
6: Update PF and g = g + 1;

7: DM interaction: Set [A,B] as truncated boundary;
8: while ap < g <= Tc do
9: Set infill criterion as TEHVI (A,B);

10: Find the optimal point by maximizing TEHVI (e.g., using CMA-ES);
11: Update PF and g = g + 1;

12: Return PF

indicator (Hypervolume in T-SMS-EMOA or R2 in T-R2-EMOA) or crowding
distance in T-NSGA-II; 3. the Chebyshev distance to the preferred region) work
together to achieve a well-converged and well-distributed set of Pareto optimal
solutions in the preferred region using preference information provided by the
DM. Non-dominated sorting is used as the first level ranking criterion, perfor-
mance indicator or crowding distance as the second and the Chebyshev distance
as the third level ranking criterion. The Chebyshev distance speeds up evolution
toward the preferred region and is computed as the distance to the center of the
preferred region.

The hypervolume, R2 indicator or crowding distance is chosen as the second level
ranking criterion, which is used as a diversity mechanism and is measured based
on coordinate transformations using desirability functions (DFs). The concept of
desirability was introduced by Harrington [97] in the context of multi-objective
industrial quality control and the approach of expressing the preferences of the
DM using DFs is suggested by Wagner and Trautmann [91]. DFs map the ob-
jective values to desirabilities, which are normalized values in the interval [0,1],
where the larger the value, the more satisfying the quality of the objective value.
The Harrington DF [97] and Derringer-Suich DF [98] are two most common types
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5. PREFERENCE-BASED MULTI-OBJECTIVE OPTIMIZATION

of DFs and both of them result in biased distributions of the solutions on the P

through mapping the objective values to desirabilities based on preference infor-
mation. In our algorithm model, we use a simple type of DFs, which classifies
the domain of the objective function into only two classes, "unacceptable" and
"acceptable". In this approach we have:

D(x) =

{
1 x is in the preferred region,
0 x is not in the preferred region.

The desirability here is for a solution, it is not necessary to consider desirability
by each objective because the goal of our algorithm is to zoom in the preferred
region. Therefore, we treat solutions out of the preferred region as unacceptable
solutions and assign their desirabilities to be 0; at the same time, we assume that
all solutions inside the preferred region are of equal importance, (i.e. acceptable)
and assign their desirabilities to be 1. There is no further bias on the points in
the preferred region, however, if other types of DFs are integrated into the new
algorithms, it is possible to generate solutions of different distributions in the
preferred region concerning the specified preferences.

For solutions with desirability 0, their second level ranking criterion is assigned
to be 0. For solutions with desirability 1, their second level ranking criterion
needs to be calculated further. Because only solutions in the preferred region
are retained, a way is derived to simplify the calculation of the indicator values
or to realize a reference point free version of indicators [99], which is based on
coordinate transformation. The preferred region is treated as a new coordinate
space of which the origin being the lower bound. For the maximization problem
in T-SMS-EMOA or the minimization problem in T-R2-EMOA, a coordinate
transformation is performed for the i-th objective as:

Cti(x) = fi(x)− LB(fi)

For the minimization problems in T-SMS-EMOA or the maximization problems
in T-R2-EMOA, coordinate transformation is performed for the i-th objective
as:

Cti(x) = UB(fi)− (fi(x)− LB(fi))

where LB(fi) and UB(fi) are the lower bound and upper bound of the i-th
objective in the preferred region, which is predefined by the DM.
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The reason for distinguishing the maximization from the minimization problems
when performing coordinate transformation is that the origin of the new coordi-
nate space (i.e., the lower bound of the target region) is used as the reference point
when calculating the indicator values. In T-SMS-EMOA, the worst point in the
target region is chosen as the reference point when calculating hypervolume. On
the other hand, the ideal point is chosen as the reference point when calculating
R2 indicator in T-R2-EMOA. After coordinate transformation, the calculation
of the second-ranking criterion is implemented only in the target region instead
of the whole coordinate system. It does make sense because the target region is
the desired space to the DM. No reference point is needed in the calculation of
crowding distance, and therefore, both formulas of coordinate transformation can
be chosen in T-NSGA-II.

The shape of the target region is not necessarily rectangular; it could be a circle,
an ellipse or any other shape, as long as the shape can sufficiently reflect whether
a solution is in the target region or not. For instance, if the DM wants the
solutions to be restricted to a sphere, he/she can specify the center point and
radius of the sphere and our algorithms can obtain the approximation set of the
P in the sphere.

T-SMS-EMOA The details of T-SMS-EMOA are given in Algorithm 7.
The framework of T-SMS-EMOA is based on SMS-EMOA. However, after fast
non-dominated sorting, all the solutions in the worst ranked front are seperated
into two parts (acceptable and unacceptable) by the DF. Solutions in part 1 have
desirability 0 and their hypervolume contributions are assigned to be 0; solu-
tions in part 2 have desirability 1 and coordinate transformation is conducted
on each objective of each solution in this part. After that, their hypervolume
contributions are calculated in the new coordinate system and the origin in the
new coordinate system is adopted as the reference point. The other difference
between T-SMS-EMOA and SMS-EMOA is the involvement of the Chebyshev
distance. In the early iterations, it is unlikely to exists individuals in the pre-
ferred region, the Chebyshev distance works on attracting solutions towards the
preferred region.

T-R2-EMOA The details of T-R2-EMOA are given in Algorithm 8. R2-
EMOA is extended to T-R2-EMOA in the same way as SMS-EMOA is extended to
T-SMS-EMOA. The formula of coordinate transformation used in T-R2-EMOA,
however, is opposite to the formula used in T-SMS-EMOA for the same problem,
since the origin of the new coordinate system is used as the reference point in
the measure of both hypervolume indicator in T-SMS-EMOA and R2 indicator
in T-R2-EMOA.
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Algorithm 7: T-SMS-EMOA
P0 ← init( ) /∗Initialise random population∗/
t← 0

repeat
qt+1 ← generate(Pt) /∗generate offspring by variation∗/
Pt = Pt ∪ {qt+1}
{R1, ..., Rv} ← fast-nondominated-sorting(Pt)
∀x ∈ Rv : compute DCh(x)/∗ Chebyshev distance ∗/
Rv = Rv1 ∪Rv2 /∗separate acceptable and unacceptable parts:
∀x ∈ Rv1 : D(x) = 0; ∀x ∈ Rv2 : D(x) = 1 ∗ /
∀x ∈ Rv1 : HC(x) = 0

Rv2 ← Coordinate Transformation(Rv2)
∀x ∈ Rv2 : HC(x) = HV (Rv2)−HV (Rv2\x)

if unique argmin{HC(x) : x ∈ Rv} exists
x∗ = argmin{HC(x) : x ∈ Rv}

else
x∗ = argmax{DCh(x) : x ∈ Rv}/∗in case of tie, choose randomly∗/

Pt+1 = P\{x∗}
t← t+ 1

until termination condition fulfilled

T-NSGA-II The details of T-NSGA-II are given in Algorithm 9. In T-
NSGA-II, the size of the offsping population is the same as the size of the parent
population. The next population is generated by choosing the best half solutions
from the merged parent and offspring population: starting with points in the first
non-domination front, continuing with points in the second non-domination front,
and so on. Picking points in the descending order of crowding distance when all
points in one non-domination front cannot be fully accommodated in Pt+1 and
picking points in the descending order of the Chebyshev distance when all the
points with the same crowding distance can not be accommodated in Pt+1. Unlike
T-SMS-EMOA and T-R2-EMOA, no reference point is needed in T-NSGA-II.
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Algorithm 8: T-R2-EMOA
P0 ← init( ) /∗Initialise random population∗/
t← 0

repeat
qt+1 ← generate(Pt) /∗generate offspring by variation∗/
Pt = Pt ∪ {qt+1}
{R1, ..., Rv} ← fast-nondominated-sorting(Pt)
∀x ∈ Rv : compute DCh(x)/∗ Chebyshev distance ∗/
Rv = Rv1 ∪Rv2 /∗separate acceptable and unacceptable parts:
∀x ∈ Rv1 : D(x) = 0; ∀x ∈ Rv2 : D(x) = 1 ∗ /
∀x ∈ Rv1 : r(x) = 0

Rv2 ← Coordinate Transformation(Rv2)
∀x ∈ Rv2 : r(x) = R2(P\{x}; Λ; i)/ ∗ i: ideal point∗/
if unique argmin{r(x) : x ∈ Rv} exists

x∗ = argmin{r(x) : x ∈ Rv}
else

x∗ = argmax{DCh(x) : x ∈ Rv}/∗in case of tie, choose randomly∗/
Pt+1 = P\{x∗}
t← t+ 1

until termination condition fulfilled

5.3 Empirical Experiments

5.3.1 TEHVI assisted EGO

Experimental Setup All the experiments were based on the same computer
and the hardware were: Intel(R) i7-3770 CPU @ 3.40GHz, RAM 16GB. The op-
erating system was Ubuntu 14.04 LTS (64 bit), and software were gcc 4.9.2 with
compiler flag -Ofast for exact TEHVI calculation, and MATLAB 8.4.0.150421
(R2014b), 64 bit for EGO. The benchmarks were: ZDT1, ZDT2 and the general-
ized Schaffer problem (GSP) [81], with the parameter of γ = 0.4. Each experiment
was repeated once. The preference regions were set as in Table 5.1: The number
of initial points for all the experiments was set to 30, and the iteration number
was set to 300. After initialization, 30 iterations based on TEHVI with prefer-
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Algorithm 9: T-NSGA-II
P0 ← init( ) /∗Initialise random population∗/
t← 0

repeat
Qt ← generate(Pt) /∗generate offsprings by variation∗/
Pt = Pt ∪Qt

∀x ∈ Pt : compute DCh(x)/∗ Chebyshev distance ∗/
{R1, ..., Rv} ← fast-nondominated-sorting(Pt)
for i = rank 1,...,v do
Ri = Ri1 ∪Ri2 /∗separate acceptable and unacceptable parts∗/
∀x ∈ Ri1 : Dc(x) = 0/ ∗Dc: crowding distance∗/
Ri2 ← Coordinate Transformation(Ri2)
∀x ∈ Ri2 : compute Dc(x)

Pt+1 ← half of Pt based on rank, Dc and then DCh

t← t+ 1

until termination condition fulfilled

Table 5.1: Parameter settings.

Benchmark
rg. 1 rg. 2 rg. 3 rg. 4

[A1, B1] [A2, B2] [A1, B1] [A2, B2] [A1, B1] [A2, B2] [A1, B1] [A2, B2]

GSP [0,∞] [0,∞] [0, 0.1] [0.5, 1] [0, 0.5] [0, 0.5] [0.5, 1] [0, 0.1]

ZDT1 [0,∞] [0,∞] [0, 0.5] [0.5, 1] [0, 0.5] [0, 0.5] [0.5, 1] [0, 0.5]

ZDT2 [0,∞] [0,∞] [0, 0.5] [0.5, 1] [0, 0.5] [0, 0.5] [0.5, 1] [0, 0.5]

ence region of A = (0, 0)T and B = (∞,∞)T were performed for obtaining a
preliminary Pareto front approximation. Then the rest of 240 iterations results,
which based on the truncated domain with the precise preferred regions, is shown
in Table 5.2.

Empirical Results The experimental results for GSP, ZDT1 and ZDT2
problems are shown in Figure 5.2, 5.3 and 5.4 respectively. Each upper left
subfigure is a Pareto front without preferred region (or, a preferred region is
set as (A,B) = (0T ,∞T ). The yellow region in each figure ((b),(c) and(d))
represents the preference region.

The experiments show that most elements in a Pareto front concentrate on the
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Figure 5.2: The preferred Pareto front for GSP problem.
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(d) rg. 4: A = (0.5, 0), B = (1, 0.5).

Figure 5.3: The preferred Pareto front for ZDT1 problem.
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Figure 5.4: The preferred Pareto front for ZDT2 problem.

Table 5.2: The size of Pareto front analysis.

Benchmark
n

rg. 1 rg. 2 rg. 3 rg. 4

GSP 112 64 115 70
ZDT1 77 78 58 80
ZDT2 112 64 115 70

corresponding preferred region, and they are adjacent to the true Pareto front.
Moreover, the Pareto front approximation in a preferred region also covers the
extreme boundary in this area. Since the truncated probability density function
is not zero only in the truncated domain, TEHVI is not zero only in a preferred
region and zero outside of the preferred region. Because of this, EGO can inten-
sively explore the preferred region in the objective space. Some solutions exist
in the outside preferred region. This is reasonable, considering the initialization
and only 30 precise evaluations. Moreover, all these procedures are explorations
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in the whole objective space. In the case of ZDT1 problem, the Pareto front with
the preferred region in Figure 5.3 (b) can not explore the extreme boundary in
the preferred region. This is probably caused by a failure of the CMA-ES [100]
to locate points in this narrow part. It might be advisable to widen the interval
range in such cases.

5.3.2 Preferred region based on EAs1

Experimental Settings In this section, simulations are conducted to demon-
strate the performance of the algorithms, namely T-SMS-EMOA, T-R2-EMOA,
and T-NSGA-II. In all simulations, we use the SBX operator with an index of
15 and polynomial mutation with an index 20 [101]. The crossover and mutation
probabilities are set to 1 and 1/N , respectively.

We conduct experiments on some benchmark problems, including ZDT, DTLZ
and knapsack problems, to investigate the performance of the new algorithms.
All experiments were run on a personal laptop with i5-5257U @ 2.7 GHz and 8G
RAM. The population size and the number of evaluations are chosen to be depen-
dent on the complexity of the test problem. Table 5.3 shows the population size
and the number of evaluations (NOEs) we use on different test problems.

Table 5.3: Population Size and Number of Evaluations.

Problems Population Size NOEs
ZDT1 100 10000
ZDT2-3 100 20000
DTLZ1-2 100 30000

knapsack-250-2
knapsack-500-2

200 200000

knapsack-250-3
knapsack-500-3

250 500000

Experimental Results

Two-Objective ZDT Test Problems In this section, we consider three ZDT
test problems. First, we consider the 30-variable ZDT1 problem. This problem

1This part of work is mainly done by Yali Wang.
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has a convex Pareto optimal front which is a connected curve and can be de-
termined by f2(x) = 1 −

√
f1(x). The true P spans continuously in f1 ∈ [0, 1].

Four different preferred regions are chosen to observe the performance of T-SMS-
EMOA, T-R2-EMOA and T-NSGA-II in Figure 5.5, Figure 5.6 (a) and Figure
5.6 (b), respectively. The first preferred region covers the entire P with the lower
bound (0,0) and the upper bound (1,1). The second preferred region restricts
preferred solutions to the central part of the P and its lower bound is (0.1,0.1),
and upper bound is (0.5,0.5). The third and fourth preferred regions take two
ends of the P, respectively and have their lower bounds to be (0,0.6) and (0.6,0),
upper bounds to be (0.3,1) and (1,0.3), respectively.

Figure 5.5: Representative P approximations of T-SMS-EMOA on ZDT1. The
different preferred regions are highlighted by gray boxes and their lower and upper
bounds are: upper left graph: (0,0)(1,1), upper right graph: (0.1,0.1)(0.5,0.5), lower
left graph: (0,0.6)(0.3,1), lower right graph: (0.6,0)(1,0.3).

Figure 5.5 and Figure 5.6 ((a) and (b)) show P approximations obtained from
the algorithms on the four different preferred regions in a random single run. It
is observed that all three algorithms can find well-distributed and well-converged
solutions on the P in the preferred regions and no outliers exist. The solution
set obtained by T-SMS-EMOA is more uniform than the solution sets obtained
by the other two algorithms. It is also observable that R2 indicator has a bias
towards the center of the PF.
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5.3 Empirical Experiments

(a) Representative P approximations of T-R2-EMOA on ZDT1. The different pre-
ferred regions are highlighted by gray boxes and their lower and upper bounds are:
upper left graph: (0,0)(1,1), upper right graph: (0.1,0.1)(0.5,0.5), lower left graph:
(0,0.6)(0.3,1), lower right graph: (0.6,0)(1,0.3).

(b) Representative P approximations of T-NSGA-II on ZDT1. The different preferred
regions are highlighted by gray boxes and their lower and upper bounds are: upper left
graph: (0,0)(1,1), upper right graph: (0.1,0.1)(0.5,0.5), lower left graph: (0,0.6)(0.3,1),
lower right graph: (0.6,0)(1,0.3).

Figure 5.6: The preferred Pareto fronts for ZDT1 problem.
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5. PREFERENCE-BASED MULTI-OBJECTIVE OPTIMIZATION

We examine the performance of new algorithms using the hypervolume metric.
The hypervolume is calculated within the preferred region by normalizing the
values of each objective to the values between 0 and 1 and using the lower bound
of the preferred region as the reference point for the maximization problem and
the upper bound of a preferred region as the reference point for the minimiza-
tion problem. Table 5.4 shows the median of hypervolume over 30 runs. The
statistical results correspond to the observation that T-SMS-EMOA outperforms
T-R2-EMOA and T-NSGA-II slightly. The original SMS-EMOA, R2-EMOA and
NSGA-II are also involved in the comparison, and the results of the original
MOEAs are obtained by presenting constraints in the description of a prob-
lem. Although the results of our algorithms are not better than those of original
MOEAs with constraints on the range of objectives, experiments show that our
algorithms can reduce computation time dramatically.

Table 5.4: The median of hypervolume and average computation time (Sec.) on
ZDT1 with respect to different preferred regions.

New Algorithms
T-SMS-EMOA T-R2-EMOA T-NSGA-II

preferred region Metric
(0,0) HV 0.6580 0.6566 0.6425
(1,1) Time 24.99 74.01 0.21

(0.1,0.1) HV 0.1640∗ 0.1638∗ 0.1543
(0.5,0.5) Time 10.30 23.61 0.19
(0,0.6) HV 0.8110 0.8097 0.7936
(0.3,1) Time 12.86 31.78 0.20
(0.6,0) HV 0.6255∗ 0.6233∗ 0.6079
(1,0.3) Time 11.45 27.92 0.21

Original Algorithms SMS-EMOA R2-EMOA NSGA-II
(0,0) HV 0.6621 0.6610 0.6609
(1,1) Time 108.57 314.99 0.25

(0.1,0.1) HV 0.1694 0.1693 0.1690
(0.5,0.5) Time 106.32 274.05 0.23
(0,0.6) HV 0.8197 0.8185 0.8191
(0.3,1) Time 105.73 271.00 0.21
(0.6,0) HV 0.6364 0.6348 0.6356
(1,0.3) Time 101.82 283.3 0.22
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5.4 Summary

In the table, the symbol of “∗” on the values for the same preferred region means
the medians of these algorithms are significantly indifferent. The Mann-Whitney
U test (also called the Mann-Whitney-Wilcoxon (MWW), Wilcoxon rank-sum
test, or Wilcoxon-Mann-Whitney test) is used to determine whether the medians
of different algorithms for the same problem are significantly indifferent.

Next, we consider the 30-variable ZDT2 and ZDT3 problems. ZDT2 has a non-
convex Pareto optimal front, and ZDT3 has a disconnected Pareto optimal front,
which consists of five non-contiguous convex parts. Circle preferred regions are
adopted in the case of ZDT2 and ZDT3 problems. A circle with a center point
(1,0) and radius 0.5 intersects the whole P of ZDT2 at its one end, and a circle
with a center point (0.6,0.5) and radius 0.3 intersects the whole P at its central
part. The two different circles are chosen as examples for preferred regions on the
ZDT2 problem. Experiments for a circle with a center point (0.3,0.1) and radius
0.3 as the preferred region are conducted on the ZDT3 problem.

Figure 5.7 shows PF approximation of T-SMS-EMOA in these preferred regions.
Similar figures can also be achieved by T-R2-EMOA and T-NSGA-II. Orange
points denote the results obtained by means of T-SMS-EMOA on provided pref-
erence information. Approximated optimal P of ZDT2 problem for 100 blue
points are from [102]. Statistical results of the median of hypervolume for three
algorithms (T-SMS-EMOA, T-R2-EMOA and T-NSGA-II) for 30 independent
runs in each preferred region are shown in Table 5.5.

Table 5.5: The median of hypervolume on ZDT2 and ZDT3 with respect to
different circle preferred regions.

MOEA
T-SMS-EMOA T-R2-EMOA T-NSGA-II

preferred region
ZDT2 (1,0) 0.5 0.3168 0.3167 0.3159

ZDT2 (0.6,0.5) 0.3 0.3257 0.3256 0.3234
ZDT3 (0.3,0.1) 0.3 0.3377 0.3375 0.3365

5.4 Summary

This chapter introduced two main approaches to solve the preference-based multi-
objective optimization problems. The first approach is using TEHVI as the pre-
selection criterion in MOBGO. The basic idea behind TEHVI-EGO is straightfor-
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5. PREFERENCE-BASED MULTI-OBJECTIVE OPTIMIZATION

Figure 5.7: Representative P approximations of T-SMS-EMOA on ZDT2 and
ZDT3. The preferred regions are purple circles and center points are red points.

ward: using the lower and upper bounds in THEIV to define the preferred region
in the objective space, TEHVI can lead the algorithm to explore more solutions
in this preferred region. TEHVI-EGO for solving the problem of preference-based
multiobjective optimization is introduced. The concept of a preferred region is
introduced by means of the corresponding truncated domain in TEHVI (interval
range in objective space). Then, EGO can intensively explore the preferred re-
gion in objective space, and obtain preferred parts of the Pareto front. Empirical
experiments were based on GSP, ZDT1 and ZDT2 problems, and show that a
Pareto front can effectively converge to a preferred region through the proposed
method. Compared to non-preference method, the population of the points in a
preference region is larger, which means more choices are provided in this pref-
erence region. The computational cost remains small – O(n log n) for a current
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5.4 Summary

Pareto front consisting of n points. In summary, TEHVI-EGO shows a robust
capability to search Pareto front segments in a particularly preferred region.

Inspired by the definition of TEHVI, preferred region based EAs are proposed and
introduced in the second approach. In this chapter, a region-based multi-objective
evolutionary algorithm model is also proposed. Three algorithms named T-SMS-
EMOA, T-R2-EMOA and T-NSGA-II have been instantiated when combining the
algorithm model with original SMS-EMOA, R2-EMOA and NSGA-II algorithms.
These new algorithms have been applied to some continuous benchmark problems
with two objectives. Experimental results show that our algorithms can guide the
search toward the preferred region on the Pareto optimal front. No outlier appears
on a reasonable number of function evaluations. Although our new algorithms
presented similar performance with the original MOEAs on tested problems by
integrating accessorial constraints in the problem description, our algorithms save
computational efforts by guiding the search towards the preferred region without
exploring the whole set of Pareto optimal solutions. On the contrary, in the case of
original MOEAs, the increase in the number of constraints leads to the decrease
of the search ability. Moreover, the proposed algorithms exhibit the trend of
behaving better with the increase in the number of objectives, compared to the
original MOEAs. The experiments on many-objective problems (i.e., problems
with four or more objectives) should be conducted in future work.
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