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Chapter 4

TEHVI Calculation1

In optimization with expensive black box evaluations, the expected improve-
ment algorithm (also called efficient global optimization) is a commonly applied
method. It uses Gaussian Processes (or Kriging) to build a model of the ob-
jective function and uses the expected improvement as an infill criterion, tak-
ing into account both – predictive mean and variance. EI has been generalized
to multi-objective optimization using the expected hypervolume improvement,
which measures the expected gain in the hypervolume indicator of a Pareto front
approximation, as shown in Chapter 3. However, this criterion assumes an un-
bounded objective space even if it is often known a-priori that the objective
function values are within a prescribed range, e.g., lower bounded by zero. Tak-
ing advantage of such a-priori knowledge, this chapter introduces the truncated
expected hypervolume improvement and a multi-objective efficient global opti-
mization method that is based on TEHVI. This chapter shows how to compute
the truncated expected hypervolume improvement exactly and efficiently. Then
it is tested as an infill criterion in efficient global optimization. It is shown that
it can effectively make use of a-priori knowledge and achieve better results in
cases where such knowledge is given. The usefulness of the new approach is
demonstrated on benchmark examples. The empirical studies in this chapter are
confined to the bi-objective case.

This chapter is structured as follows: Section 4.1 introduces the motivations of the
TEHVI research; Section 4.2 provides the definition of TEHVI and the formula to
calculate exact TEHVI, including asymptotic complexity analysis and CPU time
assessment; Sections 4.3 and 4.4 show the experimental settings and empirical

1This chapter only considers minimization problems.
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4. TEHVI CALCULATION

experimental results, respectively.

4.1 Motivations

Many algorithms exist in the multi-objective optimization field. For the evolu-
tionary algorithm class, NSGA-II [75] and SMS-EMOA [19] are two well-known
algorithms. Surrogate-model based optimization strategies, which replace exact
evaluations by approximations learned from past evaluations, are another im-
portant branch. Compared to evolutionary algorithms, surrogate-model based
algorithms need a small budget of function evaluations. Because of this, they are
often used in the real world design optimization with expensive evaluations.

A simple and common sequential optimization scheme is to sequentially update
the surrogate model by evaluations the points that are promising due to the pre-
diction. The prospects of a new point are assessed by the so-called infill criterion.
In the context of Gaussian process models, the expected improvement criterion
is a commonly applied infill criterion. It takes into account both the predictive
mean and the predictive variance of the surrogate model. Therefore it promotes
evaluations in less explored regions that have a higher predictive variance. In
single-objective optimization the expected improvement was introduced in 1978
by Mockus et al. [37], and became more popular due to the work of Jones et al.
[41]. It was generalized to the expected hypervolume improvement (EHVI) for
multi-objective optimization by Emmerich [56].

There are alternative generalizations of the expected improvement in the filed of
multi-objective optimization. Among them, EHVI has a good convergence to a
diverse approximation of the Pareto front, however, exact calculation of EHVI
used to be time-consuming [69]. Recently, new algorithms for computing EHVI in
the bi-objective EHVI-EGO have been found. Hupkens et al. improved the time
complexity to O(n2) [1]. More recently, Emmerich et al. devised an asymptot-
ically optimal algorithm with time complexity O(n log n) [2] in the bi-objective
case, where n is the number of non-dominated points in the archive. This makes
EHVI-EGO competitive with other techniques that use fast computable infill
criteria, in particular SMS-EGO.

Besides its time consumption, EHVI does not take into account some known do-
main information of the objective function. Expected hypervolume improvement
(EHVI) is the expected increment of the hypervolume indicator, which is related
to the current approximation of the Pareto front and a predictive multivariate
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4.2 TEHVI Definition

Gaussian distribution of a new point [10]. That is to say, EHVI is based on the
assumption that the objective values follow a normal distribution, and prediction
of the objective values are from minus infinity to plus infinity. However, in some
cases, we already know an approximation range of the objective value. For in-
stance, in a PID parameter tuning problem, the rising time is always a positive
value. In this case, we assumed surrogate-model based algorithms could converge
to true Pareto front faster, if the multivariate Gaussian distribution in EHVI is
truncated to the objective function’s co-domain.

For using the co-domain information, this chapter introduces the truncated ex-
pected hypervolume improvement (TEHVI) based on EHVI. TEHVI is based
on the normal distribution, which is truncated by the objective value domain.
In terms of Bayesian reasoning, it uses the conditional distribution given the
a-priori knowledge. This knowledge is about the true output of the objective
function within a prescribed range. Practically speaking, the idea behind TEHVI
is to focus sampling on more relevant parts of the search space by taking into
account a-priori knowledge on objective function value ranges. It is hypothesized
that this will speed up the convergence of the Pareto front.

This section mainly discusses the formula to calculate truncated expected hyper-
volume improvement. It will also have asymptotically optimal time Θ(n log n),
and empirical validation and speed comparison between Monte Carlo method and
the TEHVI exact method.

4.2 TEHVI Definition

Definition 4.1 (Truncated Expected Hypervolume Improvement) 2 Given
parameters of the multivariate predictive distribution µ, σ and the Pareto-front
approximation P, a preferred multidimensional range [A,B] = [A1, B1]×· · · [Ad, Bd] ⊂
Rd in the objective space. Suppose an objective value vector y follows the trun-
cated normal distribution and lies within an interval y ∈ (A,B), where −∞ ≤
A < B ≤∞, then the truncated expected hypervolume improvement (TEHVI) is
defined as:

TEHV I(µ,σ,P, r,A,B) :=

∫
y∈[A,B]

HVI(P,y) · TPDFµ,σ(y)dy (2-1)

2The prediction of µ and σ depends on a Kriging model and a target point x in the search
space. Explicitly, TEHVI is dependent on the target point x.
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4. TEHVI CALCULATION

where TPDFµ,σ is the truncated multivariate independent normal distribution
with mean values µ ∈ Rd and standard deviations σ ∈ Rd

+.

Here, TPDFµ,σ is the probability density function for the event that y is the
result of the function evaluation, given function evaluations that are not within
the range [A,B] would be rejected. Due to rejection of values outside the range,
in Bayesian reasoning we could use the information y ∈ [A,B] (after acceptance)
as a Bayesian prior.

Example 4.1 An illustration of the EHVI is shown in Figure 4.1. The light
gray area is the dominated subspace of P = {y(1) = (3, 1)>, y(2) = (2, 1.5)>,

y(3) = (1, 2.5)>} cut by the reference point r = (0, 0)>. The bivariate Gaussian
distribution has the parameters µ1 = 2, µ2 = 1.5, σ1 = 0.7, σ2 = 0.6. The trun-
cated probability density function (TPDF) of the bivariate Gaussian distribution
is indicated as a 3-D plot, with truncated domains [A,B] = [1,∞]. Here y is a
sample from this distribution and the area of improvement relative to P is indi-
cated by the dark shaded area. The variable y1 stands for the f1 value and y2 for
the f2 value.

4.2.1 Formula Derivation

For the aim of calculating the truncated expected hypervolume improvement,
we need to define the truncated PDF (φT ) and truncated CDF (ΨT ) functions
first. Suppose the co-domain of a truncated normal distribution is [A, B], where
−∞ ≤ A < B ≤ ∞. From the definition of truncated normal distribution, φT
and ΦT functions are defined as follows[76]:

φT (x) =

{
0 if x ≤ A or x ≥ B

Z(A,B) · φ(x−µ
σ

)

σ
if A < x < B

(2-2)

ΦT (x) =


0 if x ≤ A

Z(A,B) · [Φ(x−µ
σ

)− Φ(A−µ
σ

)] if A < x < B

1 if x ≥ B

(2-3)

where: Z(A,B) = 1/[Φ(
B − µ
σ

)− Φ(
A− µ
σ

)] (2-4)

Due to the independence of the multivariate Gaussian distributions for each ob-
jective, the product of the truncated distributions can be computed using Fubini’s

58



4.2 TEHVI Definition

−1

0

1

2

3

4−1

0

1

2

3

4
0

0.5

y(1)

y(2)

y(3)

y ∆(y)

PDFt(y1| y2) PDFt(y2| y1)

x y

P
D
F
t(
y 1
,y

2
)

0

5 · 10−2

0.1

0.15

PDFt(x, y)

Figure 4.1: TEHVI in 2-D (cf. Example 4.1).

law. What needs to be done is to replace Φ by ΦT and Ψ by ΨT in the original
computation, with interval boundaries chosen according to the interval bound-
aries. Based on Θ(n log n) 2-D EHVI formula (minimization case) in A.4, the
TEHVI formula can be written as:

TEHVI(µ,σ,Y, r, A,B)

=

∫ ∞
y1=−∞

∫ ∞
y2=−∞

n+1∑
i=1

λ2[Si ∩∆(y1, y2)] · PDFµ,σ(y)dy

=
n+1∑
i=1

(y
(i−1)
1 − y(i)

1 ) · ΦT

(
y

(i)
1 − µ1

σ1

)
·ΨT (y

(i)
2 , y

(i)
2 , µ2, σ2)+

n+1∑
i=1

(
ΨT (y

(i−1)
1 , y

(i−1)
1 , µ1, σ1)−ΨT (y

(i−1)
1 , y

(i)
1 , µ1, σ1)

)
×

ΨT (y
(i)
2 , y

(i)
2 , µ2, σ2) (2-5)

According to the definition of truncated normal distribution and the formula of
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normal exipsi function (Ψ), the truncated exipsi function (ΨT ) for minimization
problems can be derived by the following procedure:

ΨT (a, b, µ, σ, A,B)min =

∫ b

A

(a− z)
1

σ
φT (

z − µ
σ

)dz

=

∫ b

A

(a− z) · Z(A,B) · 1

σ
φ(
z − µ
σ

)dz

= Z(A,B) ·
∫ b

A

(a− z)
1

σ
φ(
z − µ
σ

)dz

= Z(A,B) · [(σφ(
b− µ
σ

) + (a− µ)Φ(
b− µ
σ

)−

(σφ(
A− µ
σ

) + (a− µ)Φ(
A− µ
σ

))] (2-6)

In some cases, it is difficult to transform maximization problems to minimization
problems. For solving it, the truncated exipsi function for maximization problems
is necessary and it is:

ΨT (a, b, µ, σ, A,B)max =

∫ B

b

(a− z)
1

σ
φT (

z − µ
σ

)dz

= Z(A,B) · [(σφ(
b− µ
σ

) + (µ− a)(1− Φ(
b− µ
σ

))−

(σφ(
B − µ
σ

) + (µ− a)(1− Φ(
B − µ
σ

))] (2-7)

4.2.2 Computational Speed Test

In this subsection the computational speed of TEHVI computation is assessed
when there are different population sizes. For validation purposes, the results are
compared with results from Monte Carlo integration. The acceptance-rejection
method [77] was used as the sampling strategy in Monte Carlo method. Samples
out of the feasible interval range were rejected. The Monte Carlo method was
allowed to run for 100,000 iterations. All the experiments were performed on the
same computer: Intel(R) i7-3770 CPU @ 3.40GHz, RAM 16GB. The operating
system was Ubuntu 14.04 LTS (64 bit), complier was gcc 4.9.2 with flag ’-Ofast’
for exact method, and platform was MATLAB 8.4.0.150421 (R2014b), 64 bit for
Monte Carlo method.

Fig 4.2, the left subfigure is the randomly generated Pareto fronts with the type
of convexSpherical and concaveSpherical in the 2-D case from [20]. The
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Figure 4.2: Left: Randomly generated fronts with |P | = 100. Right: TEHVI
comparison of Monte Carlo method and exact method.

right subfigure shows the convergence of Monte Carlo integration to the Pareto
fronts. The evaluated points are (9.9955, 0.3001) and (8.4149, 0.1264) for ex-
periment 1 (convex Pareto front) and experiment 2 (concave Pareto front), re-
spectively. The reference point for both experiments was (15,15). It shows that
the TEHVI value based on Monte Carlo method is similar to exact method after
50,000 iterations. However, the Monte Carlo method needs more iterations to
generate a sufficiently accurate TEHVI value.

Table 4.1 shows the empirical speed experiments between exact TEHVI calcula-
tion method and Monte Carlo method. The parameters: σm = 2.5, µm = 10 and
m = 2 were used to randomly generate Pareto fronts in the experiments. Pareto
front sizes |P | ∈ {10, 100, 1000} and different number of predictions (candidate
points) of Batch Size are used together with σm and µm. In the experiments,
batch mode means that the Pareto front population does not change and compu-
tations of transcendental functions (erf, exp) on grid coordinates can be re-used.
This results in a significant speed-up in the empirical performance, although the
time complexity is not affected. 10 trials were randomly generated by the same
parameters, and average runtimes (10 runs) for the whole trails with the same
parameters were computed. It shows that the exact and efficient TEHVI cal-
culation method is fast, even for large population sizes of 1000 points it can be
computed in ca. 1 second. It is also fast when compared to an imprecise Monte
Carlo method. Note that this study should not be used as a speed comparison,
as the Monte Carlo method is not precise. However, it indeed shows that the
time consumption of the Monte Carlo method increases quickly.
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Table 4.1: TEHVI computation speed experiments results.

Type |P | Batch Size
Time_average (s)

Exact Monte Carlo

convex 10 1 0.00005 3.82615
convex 10 10 0.00019 37.56125
convex 10 100 0.00166 379.19625
convex 10 1000 0.02030 > 10 min
convex 100 1 0.00022 13.34105
convex 100 10 0.00165 140.10564
convex 100 100 0.01654 > 10 min
convex 100 1000 0.16084 > 10 min
convex 1000 1 0.00208 203.11692
convex 1000 10 0.01644 > 10 min
convex 1000 100 0.16746 > 10 min
convex 1000 1000 1.69174 > 10 min

concave 10 1 0.00006 3.89077
concave 10 10 0.00016 39.15924
concave 10 100 0.00142 389.16426
concave 10 1000 0.01585 > 10 min
concave 100 1 0.00023 13.95431
concave 100 10 0.00150 138.14462
concave 100 100 0.01457 > 10 min
concave 100 1000 0.14779 > 10 min
concave 1000 1 0.00203 204.58791
concave 1000 10 0.01494 > 10 min
concave 1000 100 0.14657 > 10 min
concave 1000 1000 1.53391 > 10 min

4.3 Experimental Setup

In the comparison, nine test problems are used. They are: BK1 [78], SSFYY1
[79], ZDT1, ZDT2, ZDT3, ZDT4, ZDT6[80], generalized Schaffer problem (GSP)
[81] and PID parameter tuning problem.
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The parameters for the algorithms are shown in Table 4.2.

Table 4.2: Parameter settings.

Algorithm µ/Initial Population λ iteration pc pm

EHVI-EGO 30 / 200 / /
TEHVI-EGO 30 / 200 / /
NSGA-II 30 30 200 0.9 1/N

SMS-EMOA 30 / 200 0.9 1/N

The TEHVI-EGO boundary (A,B) for all the experiments are (0,∞), except
for the ZDT3 problem. Since the lower bound of ZDT3 is close to −1, the
TEHVI-EGO boundary for ZDT3 was set to (−1,∞). For the generalized Schaffer
problem, the parameter γ was set as γ = 0.4. All the experiments were repeated
5 times.

4.4 Empirical Results

Table 4.3 shows the results for all the test problems. TEHVI-EGO and EHVI-
EGO are better than the other two algorithms. Among the EGO based algo-
rithms, TEHVI-EGO performs slightly better than EHVI-EGO. The reason for
these results is that all the fitness values for all the problems are positive, except
for the ZDT3, and the truncation forces the optimization algorithm to focus on
the fitness spaces in the positive domain. Figure 4.3 shows the Pareto fronts gen-
erated by 4 different algorithms for generalized Schaffer problem (GSP) in the left.
The Pareto fronts generated by TEHVI-EGO and EHVI-EGO are much closer to
true Pareto front than the other two algorithms. Compared to the performance
of EHVI-EGO with respect to HV, HV of TEHVI-EGO Pareto front is slightly
bigger than that of EHVI-EGO. The interval boundaries for TEHVI-EGO are set
to A = 0, B = ∞ in Figure 4.3 (right). This is based on the assumption that
only the lower bound of the fitness value is known.

However, the strategy for setting the interval boundary is tricky. In Figure 4.3,
the right plot shows the Pareto fronts generated by TEHVI-EGO with different
interval boundary. In this case, the (red) squared Pareto front focuses on the
knee points with more points but can not explore the extreme boundary of the
true Pareto front well, when compared to the (blue) triangle one. Meanwhile,
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Table 4.3: Empirical comparison of different algorithms for test problems.

Test Function Methods reference point
Pareto front size HV

max min mean std max min mean std

BK1 EHVI-EGO [60 60] 126 118 121.6 3.5071 3176.3411 3175.8606 3176.0758 0.2057
BK1 TEHVI-EGO [60 60] 131 120 124.6 4.6690 3176.4359 3175.8961 3176.1843 0.2451
BK1 NSGA-II [60 60] 58 53 55.6 2.0736 3132.1585 3126.3921 3129.2289 2.3525
BK1 SMS-EMOA [60 60] 51 50 50.8 0.4472 3035.8162 2889.2727 2964.0079 65.9014

SSFYY1 EHVI-EGO [5 5] 99 91 93.8 3.1145 20.7376 20.7308 20.7345 0.0027
SSFYY1 TEHVI-EGO [5 5] 100 88 95 5.0990 20.7431 20.7269 20.7355 0.0062
SSFYY1 NSGA-II [5 5] 57 53 55.6 1.6733 20.3667 20.1943 20.2895 0.0662
SSFYY1 SMS-EMOA [5 5] 51 43 47.4 4.0373 18.5052 16.2884 17.6106 0.8399

ZDT1 EHVI-EGO [15 15] 64 43 56.2 8.0436 224.6547 224.6409 224.6468 0.0064
ZDT1 TEHVI-EGO [15 15] 71 40 52.6 11.4149 224.6569 224.6461 224.6502 0.0044
ZDT1 NSGA-II [15 15] 45 39 43.2 2.4900 224.6172 220.7671 222.7442 1.7513
ZDT1 SMS-EMOA [15 15] 51 48 49.4 1.1402 218.6193 217.7475 218.2609 0.3504

ZDT2 EHVI-EGO [15 15] 27 24 26 1.2247 224.3152 224.2933 224.3099 0.0093
ZDT2 TEHVI-EGO [15 15] 29 27 28.2 1.0954 224.3168 224.3151 224.3161 0.0008
ZDT2 NSGA-II [15 15] 57 44 47.8 5.4037 224.0502 210.1391 213.4889 5.9302
ZDT2 SMS-EMOA [15 15] 22 10 16 5.6569 189.7940 176.3485 184.7327 6.0880

ZDT3 EHVI-EGO [15 15] 20 12 17.8 3.4928 235.8485 235.8015 235.8328 0.0196
ZDT3 TEHVI-EGO [15 15] 32 15 21 6.8191 235.8495 235.8039 235.8359 0.0183
ZDT3 NSGA-II [15 15] 47 42 44.2 1.9235 235.7032 221.2648 228.3704 5.3756
ZDT3 SMS-EMOA [15 15] 31 16 24 5.7879 207.4997 202.1116 204.0837 2.1858

ZDT4 EHVI-EGO [15 15] 7 3 4.4 1.6733 224.3295 204.4661 217.2593 8.0295
ZDT4 TEHVI-EGO [15 15] 11 6 7.4 2.0736 224.5959 217.9858 221.3740 2.9304
ZDT4 NSGA-II [15 15] 47 37 43.2 4.1473 215.6850 184.2184 203.9832 12.6032
ZDT4 SMS-EMOA [15 15] 20 5 13 5.3385 145.3309 116.0149 127.4335 36.2023

ZDT6 EHVI-EGO [15 15] 25 16 19.6 3.7815 218.7974 218.7442 218.7843 0.0228
ZDT6 TEHVI-EGO [15 15] 32 19 23.3 6.1305 218.8301 218.7871 218.8095 0.0178
ZDT6 NSGA-II [15 15] 41 25 35.2 7.2938 218.6877 155.9356 198.5166 26.2609
ZDT6 SMS-EMOA [15 15] 22 7 11.6 6.0249 145.3309 116.0149 127.4335 11.8642

GSP EHVI-EGO [5 5] 167 140 161.4 11.9708 24.9066 24.9063 24.9065 0.0001
GSP TEHVI-EGO [5 5] 169 154 166 6.7082 24.9066 24.9066 24.9066 <0.0001
GSP NSGA-II [5 5] 60 56 58 2.0000 24.8933 24.8838 24.8903 0.0040
GSP SMS-EMOA [5 5] 51 50 50.8 0.4472 24.8605 24.6154 24.7519 0.1140

the HV value of the red squared Pareto front is smaller than blue triangle one.
The reason for the difference is that the precise integration domain (0, 1) is much
smaller than (0,∞). This could lead to the low probability of exploration at the
extreme boundary, which is close to infinity, and high probability of sampling the
area on the Pareto front, which is closer to the minimization point (in this case,
this point is (0, 0)).
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4.5 Summary

Figure 4.3: Left: The results of one trial experiment for GSP in Table 4.3. Right:
TEHVI-EGO with different interval boundary.

4.5 Summary

In this chapter, we introduced an exact method for the calculation of the trun-
cated expected hypervolume improvement and investigated different multi-objective
optimization algorithms for the benchmarks and the optimization of a controller.
In particular, the two state-of-the-art evolutionary algorithms (NSGA-II and
SMS-EMOA) were compared with multi-objective efficient global optimization
algorithms (EHVI-EGO and TEHVI-EGO), which utilize a surrogate model of
the objective function. Among the 9 test problems, TEHVI-EGO yielded better
results than the other three algorithms, with respect to HV.

As the TEHVI only calculates the EHVI in a particular domain, and can force the
algorithm on exploring in this domain, TEHVI-EGO exhibits poor performance
of exploring the extreme boundaries for the Pareto fronts, when the interval co-
domain is set as the boundary of the fitness. However, in this case, TEHVI-EGO,
compared to EHVI-EGO, can focus on the knee point of the Pareto fronts, which
could be used when a particular domain of a Pareto front is attractive.
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To summarize, based on the result of this study, we recommend using TEHVI-
EGO when boundaries of domain regions are known, because it shows a good
performance more consistently when compared to the other algorithms. In ad-
dition, it can focus on the Pareto front in a particular domain. For the further
work, it is recommended to research the gradient of TEHVI.
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