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Chapter 3

Efficient EHVI Calculation

In chapter 2, the basic structure of MOBGO was introduced and some common
infill criteria were mentioned. Among these infill criteria in MOO, EHVI outper-
forms other criteria for its inherent ability to balance exploitation and exploration
[61]. However, EHVI is seldom applied in real application because the computa-
tional complexity of EHVI is very expensive1. In this chapter, an asymptotically
optimal algorithm for the computation of the exact expected hypervolume im-
provement (EHVI) is proposed, based on partitioning the integration volume into
a set of axis-parallel slices. Theoretically, the upper bound time complexities are
improved from previously O(n3 log n) and O(n4 log n) in [60], for two and three
objectives problems respectively, to now O(n log n) for both two and three objec-
tive problems, which is asymptotically optimal, as we have proved. This scheme
is also generalized in the case of high dimension in this chapter.

This chapter mainly contributes to the thesis by introducing the state-of-the-art
EHVI calculation methods. This chapter is structured as follows: Section 3.1
provides the definition of EHVI; Section 3.2 explains the reason why EHVI is an
important criterion in MOO and introduces some current algorithms to calculate
EHVI; Section 3.3 provides the partitioning methods for non-dominated space;
Section 3.4 shows the final formula expression of EHVI, based on the partitioning
method described in Section 3.3; Section 3.6 shows the EHVI calculation speed
comparison and empirical experimental results on benchmarks, with respect to
state-of-the-art multi-objective optimization algorithms.

1The computational complexity of an infill criterion is crucial in multi-objective Bayesian
global optimization, because this criterion needs to be called frequently during the execution
of such an algorithm.
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3.1 EHVI Definition

3.1 EHVI Definition

Definition 3.1 (∆ function (see also [2])) For a given vector of objective func-
tion values, y ∈ Rd, ∆(y,P, r) is the subset of the vectors in Rd which are exclu-
sively dominated by a vector y and not by elements in P and that dominate the
reference point, in symbols

∆(y,P, r) = λd{z ∈ R | y ≺ z and z ≺ r and 6 ∃q ∈ P : q ≺ z} (1-1)

For the simplicity, the notation ∆(y) will be used to express ∆(y,P, r) in this
paper.

EHVI is a generalization of EI for multi-objective cases, and it is based on the the-
ory of the HV. Similar to EI, the calculation of EHVI is based on the predictions
in the Gaussian random field. EHVI measures how much hypervolume improve-
ment could be achieved by evaluating the new point, considering the uncertainty
of the prediction. It is defined as:

Definition 3.2 (Expected Hypervolume Improvement) 1 Given parameters
of the multivariate predictive distribution µ, σ and the Pareto-front approxima-
tion P the expected hypervolume improvement (EHVI) is defined as:

EHV I(µ,σ,P, r) :=

∫
Rd

HVI(P,y) · PDFµ,σ(y)dy (1-2)

where PDFµ,σ is the multivariate independent normal distribution for mean val-
ues µ ∈ Rd, and standard deviations σ ∈ Rd

+.

Example 3.1 An illustration of the 2-D EHVI is shown in Figure 4.1. The light
gray area is the dominated subspace of P = {y(1) = (3, 1)>, y(2) = (2, 1.5)>,

y(3) = (1, 2.5)>} cut by the reference point r = (0, 0)>. The bivariate Gaussian
distribution has the parameters µ1 = 2, µ2 = 1.5, σ1 = 0.7, σ2 = 0.6. The prob-
ability density function (PDF) of the bivariate Gaussian distribution is indicated
as a 3-D plot. Here y is a sample from this distribution and the area of improve-
ment relative to P is indicated by the dark shaded area. The variable y1 stands
for the f1 value and y2 for the f2 value.

1The prediction of µ and σ depends on a Kriging model and a target point x in the search
space. Explicitly, EHVI is dependent on the target point x.
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3. EFFICIENT EHVI CALCULATION
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Figure 3.1: EHVI in 2-D (cf. Example 3.1).

For the convenience of expressing the formula of EHVI and EHVIG in later sec-
tions, it is useful to define a function we call Ψ∞.

Definition 3.3 (Ψ∞ function (see also [1])) Let φ(s) = 1/
√

2πe−
1
2
s2(s ∈ R)

denote the probability density function (PDF) of the standard normal distribu-
tion. Moreover, let Φ(s) = 1

2

(
1 + erf

(
s√
2

))
denote its cumulative probabil-

ity distribution function (CDF), and erf is Gaussian error function. The gen-
eral normal distribution with mean µ and standard deviation σ has as PDF,
φµ,σ(s) = φµ,σ(s) = 1

σ
φ( s−µ

σ
) and its CDF is Φµ,σ(s) = Φ( s−µ

σ
). Then the function

Ψ∞(a, b, µ, σ) is defined as:

Ψ∞(a, b, µ, σ) =

∫ ∞
b

(z − a)
1

σ
φ

(
z − µ
σ

)
dz

= σφ

(
b− µ
σ

)
+ (µ− a)

[
1− Φ

(
b− µ
σ

)]
(1-3)
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3.2 State-of-the-art

3.2 State-of-the-art

In the context of MOBGO, an infill criterion is used to evaluate the improve-
ment for a new point, as introduced in Chapter 2. A common criterion for a
single-objective optimization problem is Expected Improvement (EI), which was
firstly introduced by Mockus et al. [37] in 1978 and it exploits both the Kriging
prediction and the variance to give a quantitative measure of the improvements
for the points in the search space. Later, EI became more popular due to the
work of Jones et al. [41], in which it servers as an infill criterion in the so-called
Efficient Global Optimization (EGO) algorithm1. In each iteration, EGO evalu-
ates the design point with maximal EI. Its convergence properties are discussed
in [62], where a proof of global convergence under mild assumptions on the global
covariance and the smoothness of the function is given. Roughly speaking, global
convergence occurs due to the fact that EI rewards high variance and also high
mean values.

Various generalizations of EI in the field of multi-objective optimization have
been discussed in the literature, e.g., [45, 55, 61, 63, 64]. See also [47] for an
overview. In the case of multiple objectives, it is possible to consider a Gaussian
process model for each objective function separately and independently, resulting
in a multivariate distribution with d mean values µi(x) and standard deviation
σi(x). A key question when generalizing the expected improvement is how to
define improvement of a given Pareto-front approximation. In indicator-based
multi-objective optimization, the performance of a Pareto-front approximation
is assessed by a unary indicator, typically the Hypervolume Indicator, which al-
lows a simple generalization of the Expected Improvement – the EHVI. EHVI is
a straightforward generalization of the single-objective expected improvement and
was proposed by Emmerich [56] in 2005. Since then, EHVI has been used in Evo-
lutionary Algorithms for airfoil optimization [53] and quantum control [65]. It is
also applied in multi-objective generalizations of Bayesian Global Optimization
for applications, such as fluid dynamics [42], event controllers in wastewater treat-
ment [44], efficient algorithm tuning [66], electrical component design [58], and
bio-fuel power-generation [10]. In all of these applications, the bi-objective EHVI
was used. Due to its high computation time for problems which contains three
and more objectives, it is not recommended to use EHVI as an infill criterion in
such cases. Fast, but imprecise, alternatives were sought [67].

The expected hypervolume improvement (EHVI) is the expected value of the
increment of the hypervolume indicator given a Pareto-front approximation and

1Efficient Global Optimization is another name of Bayesian Global Optimization.
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3. EFFICIENT EHVI CALCULATION

a predictive multivariate Gaussian distribution predicting the outcome at a new
point. When compared to other criteria, EHVI leads to better convergence to-
wards the true Pareto front, and to a higher diversity of the Pareto-front approx-
imation set [6, 58, 67, 68]. However, the calculation of EHVI itself has so far been
time-consuming [44, 47, 69], even in the case of two dimensions. It still remains
unknown whether the integration algorithms used in the literature achieved op-
timal performance. Hence, it is important to study whether, and to what extent,
the computational efficiency of the exact computation of the EHVI can be further
improved. In addition, EHVI is called multiple times in every iteration. For the
above reasons, a fast algorithm for computing the EHVI is crucial.

The first method suggested for EHVI calculation was Monte Carlo integration
and it was first proposed by Emmerich in [56] and [53]. This method is sim-
ple and straightforward. However, the accuracy of EHVI highly depends on the
number of the iterations. The first exact EHVI calculation algorithm was de-
rived by Emmerich et al. [60], with the computational complexity O(n3 log n)
and O(n4 log n) in the cases of 2-D and 3-D, respectively. Couckuyt et al. in-
troduced a faster exact EHVI calculation algorithm for d > 2 in [58], but did
not provide a detailed complexity analysis. Recently, Hupkens et al. reduced
the time complexity to O(n2) and O(n3) [1] for two- and three-dimensional cases,
respectively. These algorithms further improved the practical efficiency of EHVI
on test data in comparison to [58]. More recently, Emmerich et al. proposed an
asymptotically optimal algorithm for the bi-objective case with time complexity
O(n log n) [2], where n is the number of non-dominated points in the archive. So
far the best known bounds for the time complexity of exact computations have
been O(n log n) for d = 2, and O(n3) for d = 3. It is notable that the number
of transcendental function evaluations, such as erf and exp, scales only linearly
in n in the algorithm presented in [1]. A lower bound of Ω(n log n) is provided
for a given approximation set of size n. However, it makes sense to assume that
non-dominated points are sorted in the first coordinate. In that case, as will be
shown, a lower bound of Ω(n) still holds.

3.3 Non-dominated Space Partitioning Algorithm

3.3.1 Low Dimensional case

2-D case: Suppose y = y(1), . . . ,y(n) and d = 2, then the integration area
(non-dominated area) can be divided into n+1 disjoint integration slices (S(i)

2 , i =
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3.3 Non-dominated Space Partitioning Algorithm

1, . . . , n+1) by drawing parallel to y2-axis lines at each element in y, as indicated
in Figure 3.2 (left). Then, each integration slice can be expressed by its lower
bound (l(i)2 ) and upper bound (u(i)

2 ). In order to define the stripes formally,
augment P with two sentinels: y(0) = (r1,∞) and y(n+1) = (∞, r2). Then, the
integration slices for 2-D case are now defined by:

S
(i)
2 = (l

(i)
2 ,u

(i)
2 ) =

(
(l

(i)
1 , l

(i)
2 )T , (u

(i)
1 , u

(i)
2 )T

)
=
(
(y

(i−1)
1 , y

(i)
2 , (y

(i)
1 ,∞)T

)
i = 1, . . . , N2 (3-4)

y1
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Figure 3.2: Left: Partitioning of the integration region into stripes. Right:
New partitioning of the reduced integration region after the first iteration of the
algorithm.

For the 2-D case, it is straightforward that the number of integration slices N2 is
n+ 1.

3-D case: Similar to the 2-D partitioning method, in the 3-D case, each
integration slice can also be defined by its lower bound (l3) and upper bound
(u3). Since the upper bound of each integration slice is always ∞ in the y3 axis,
we can describe each integration slice as follows:

S
(i)
3 = (l

(i)
3 ,u

(i)
3 ) =

(
(l

(i)
1 , l

(i)
2 , l

(i)
3 )T , (u

(i)
1 , u

(i)
2 ,∞)T

)
i = 1, . . . , N3 (3-5)

Example 3.2 An illustration of integration slices is shown in Figure 3.3. A
Pareto front set is composed by n = 4 points (y(1) = (1, 3, 4),y(2) = (4, 2, 3),y(3) =

(2, 4, 2) and y(4) = (3, 5, 1)), and this Pareto front is shown in Figure 3.3 (a).
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Figure 3.3: Figure (a): 3-D Pareto-front Approximation. Figure (b): Integration
slices in 3-D. Figure (c): The projection of 3-D integration slices into the y1y2-plane,
each slice can be described by lower bound and upper bound.

The added point y(n+1) is y(5) = (∞,∞, r3). The integration slices in the non-
dominated space are represented by boxes in Figure 3.3 (b). Figure 3.3 (c) il-
lustrates the projection onto the y1y2-plane with rectangle slices and l,u. The
rectangular slices, which share the similar color but differ in opacity, represent
integration slices with the same value of y3 in their lower bound. For example,
the lower bound of the 3-D integration slice B4 is l

(4)
3 = (1, 2, 2), and the upper

bound of the slice is u
(4)
3 = (2, 4,∞).

The basic idea of the efficient partitioning algorithm in 3-D non-dominated space
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3.3 Non-dominated Space Partitioning Algorithm

is that the transforming the 3-D Pareto front into 2-D Pareto front. This trans-
forming consists of the following steps. Firstly, sort all the n elements (y(1), · · · ,y(n))
in Pareto-front approximation set P in descending order by coordinate y3. Sec-
ondly, set a new point y(n+1) = (∞,∞, r3). Thirdly, insert the element y(i)

(i = 1, · · · , n + 1) into the 2-D Pareto-front set P′ one by one using coordinate
y1 and y2 value 1, and discard the dominated points y[d] which are dominated
by the new inserted point y(i). During the third step, when a new point y(i)

is inserted, one and only one integration box is created on its below left side.
When there exists a discarded point y[d], one and only one integration box is
created on its above right side. In other words, an integration box is only created
when a new point y(i) is inserted to the P

′ or a point is y[d] is discarded from
the P

′ . The third step will not stop until the last point y(n+1) is inserted. Since
all the elements in P are dominated by y(n+1) and no point can dominate it in
the non-dominated space cut by a reference point r, all the elements in P will
be discarded and P

′ only consist of y(n+1) in the last iteration of the third step.
Then, the number of integration boxes for 3-D case is the sum of the number of
the points that are inserted and the number of the points that are discarded, i.e.,
N3 = (n+ 1) + n = 2n+ 1.

Algorithm 4 describes how to obtain the slices S(1)
3 , . . . , S(i)

3 , . . . , S(N3)
3 with

the corresponding lower and upper bounds (l(i)3 and u
(i)
3 ) and how to compute

the integrals for them. The partitioning algorithm is similar to the sweep line
algorithm described in [20]. The basic idea of this algorithm is to use an AVL
tree to process points in descending order of the y3 coordinate. For each such
point, say y(i), add this point to the AVL tree and find all the points (y(d[1]), . . . ,
y(d[s])) which are dominated by y(i) in the y1y2-plane and discard them from the
AVL tree. See Figure 3.4 for describing one such iteration. In each iteration, s+1
slices are created using coordinates of the points y(t), y(d[1]), . . . , y(d[s]), y(r), and
y(i) as illustrated in Figure 3.4.

Here, the number of the integration slices for 3-D case N3 is 2n + 1, when all
points are in general position (the coordinate of each point is different). Otherwise
2n+ 1 provides an upper bound for the obtained number of slices. The reason is
as follows: In the algorithm each point y(i), i = 1, . . . , n creates a slice, say slice
A(i), when it is created and a slice, say slice S(i)

3 , when it is discarded from the
AVL tree due to domination by another point, say y(s), in the y1y2-plane.

The two slices are defined as followsA(i) = ((y(t), y
(l2)
2 , y

(i)
3 ), (y

(u1)
1 , y

(i)
2 ,∞)) whereas

1The coordinate value of y3 is hidden for action of inserting and discarding, but y3 value
still exist.
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Figure 3.4: Boundary search for slices in 3-D case.

y
(l2)
2 is either y(r)

2 if no points are dominated by y(i) in the y1y2-plane or y(d[1])
2 ,

otherwise. Moreover, S(i)
3 = ((y

(i)
1 , y

(r)
2 , y

(s)
3 ), (y

(u)
1 , y

(s)
2 ,∞)), and y(u) denotes ei-

ther the right neighbour among the newly dominated points in the y1y2-plane,
or y(s) if y(i) is the rightmost point among all newly dominated points. In this
way, each slice can be attributed to exactly one point in P, except for the slice
that is created in the final iteration. In the final iteration one additional point
y(n+1) = (∞,∞,∞) is added in the y1y2-plane. This point leads to the creation
of a slice when it is added, but it adds only a single slice, because it is never
discarded. Therefore, 2n+ 1 slices are created in total.

As opposed to previous techniques, which required grid decomposition of the non-
dominated subspace into O(n3) integration slices, the new integration technique
can make use of efficient partitioning of the dominated space into only 2n + 1
axis-aligned integration slices. In practice, the new computation scheme will be
of great advantage to making the EHVI and related integrals applicable in multi-
objective optimization with three objectives, especially in Bayesian Optimization
and surrogate-assisted multi-objective evolutionary algorithms.
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3.3 Non-dominated Space Partitioning Algorithm

Algorithm 4: Integration slices aquiring in 3-D Case
Input: (y(1), · · · ,y(n)): mutually non-dominated R3-points sorted by third

coordinate (y3) in descending order
Output: S(1)

3 , · · · , S(i)
3 , · · · , S(N3)

3

1: y(n+1) = (∞,∞, r3) ;
2: Initialize AVL tree T for 3-D points

Insert y(1), (∞, r2,∞)T and (r1,∞,∞)T into T;
3: Initialize the number of integration slices nb = 1;
4: Initialize EHV I = 0;
5: for i = 2 to n+ 1 do /* Main loop */
6: Retrieve the following information from tree T:
7: r: index of the successor of y(i) in x-coordinate (right neighbour);
8: t: index of the successor of y(i) in y-coordinate (left neighbour);
9: d[1], · · · , d[s]: indices of points dominated by y(i) in y1y2-plane,

sorted ascendingly in the first coordinate(y1);
10: S

(nb)
3 .l3 = y

(i)
3 , S

(nb)
3 .u2 = y

(i)
2 , S

(nb)
3 .u3 =∞ ;

11: if s == 0 then /* Case 1 */
12: S

(nb)
3 .l1 = y

(t)
1 , S

(nb)
3 .l2 = y

(r)
2 , S

(nb)
3 .u1 = y

(i)
1 ;

13: nb = nb + 1 ;

14: else /* Case 2 */
15: for j = 1 to s+ 1 do
16: if j == 1 then
17: S

(nb)
3 .l1 = y

(t)
1 , S

(nb)
3 .l2 = y

(d[1])
2 , S

(nb)
3 .u1 = y

(d[1])
1 ;

18: else if j == s+ 1 then
19: S

(nb)
3 .l1 = y

(d[s])
1 , S

(nb)
3 .l2 = y

(r)
2 , S

(nb)
3 .u1 = y

(i)
1 ;

20: else
21: S

(nb)
3 .l1 = y

(d[j-1])
1 , S

(nb)
3 .l2 = y

(d[j])
2 , S

(nb)
3 .u1 = y

(d[j])
1 ;

22: nb = nb + 1 ;

23: Discard y(d[1]), · · · ,y(d[s]) from tree T;
24: Insert y(i) in tree T.

25: Return S(1)
3 , · · · , S(i)

3 , · · · , S(N3)
3
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3. EFFICIENT EHVI CALCULATION

3.3.2 High Dimensional case

In higher dimensional cases, the non-dominated space can be partitioned into axis
aligned hyperboxes, similar to 3-D case. In d dimensional case, the hyperboxes
can be denoted by S(1)

d , . . . , S
(i)
d , . . . , S

Nd
d with their lower bound (l(1), . . . , l(Nd))

and upper bound (u(1), . . . ,u(Nd)). Here, Nd is the number of hyperboxes. The
hyper-integral box S(i)

d is defined as:

S
(i)
d = (l

(i)
d ,u

(i)
d ) =

(
(l

(i)
1 , · · · , l(i)d )T , (u

(i)
1 , · · · ,∞)T

)
i = 1, . . . , Nd (3-6)

An efficient algorithm for partitioning high-dimensional non-dominated space is
proposed in this chapter. This new proposed algorithm is based on two state-of-
the-art algorithms DKLV17 [70] by Dächert et al. and LKF17 [71] by Lacour et
al. Here, algorithm DKLV17 is an efficient algorithm to locate the local lower
bound points in a dominated space for maximization problem, based on a spe-
cific neighborhood structure among local lower bounds. Meanwhile, LKF17 is
an efficient algorithm to calculated hypervolume improvement by partitioning
the dominated space. In other words, LKF17 is also efficient to partition the
dominated space and provides the boundary information for each hyerbox in the
dominated space.

Algorithm 5: Partitioning non-dominated space for high dimen-
sional cases

Input: Pareto-front approximation P (maximization problem), a reference
point r

Output: Hyperboxes Sd
1: Locate local lower bound points L: L = DKLV 17(P, r);
2: Set new Pareto front P′ using L: P′ = L ;
3: Set a reference point r

′ : r
′
= {∞}d ;

4: Get local lower bound points L
′ and local upper bound points U

′ :
(L
′
,U

′
) = LKF17(P

′
, r
′
) ;

5: Sd = (L
′
,u
′
) ;

6: Return Sd

The basic idea of the proposed algorithm to partition high-dimensional non-
dominated space is transforming the problem of partitioning non-dominated space
into the problem of partitioning the dominated space by introducing an interme-
diate Pareto-front approximation P

′ . This transforming is done by the following
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3.3 Non-dominated Space Partitioning Algorithm

steps. Suppose that we have a current Pareto-front approximation P and we want
to partition the non-dominated space of P. Firstly, DKLV17 is applied to locate
the local lower bound points (L) of P in dominated space. If we regard the local
lower bound points L as a new Pareto-front approximation P

′ , the dominated
space of P′ is exact the non-dominated space of P. The pseudo code of parti-
tioning non-dominated space for high dimensional cases is shown in Algorithm
5.
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Figure 3.5: The illustration of partitioning non-dominated space for high dimen-
sional case. Above left: Pareto-front approximation P. Above right: Locating
L points using DKLV17. Below left: Partition the dominated space of P′ using
LKF17. Below right: The partitioned non-dominated space of P.

Example 3.3 Figure 3.5 illustrates Algorithm 5. For the 2-D maximization case,
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suppose the Pareto-front approximation is P, which is composed by y(1) = (1, 2.5),
y(2) = (2, 1.5) and y(3) = (3, 1). The reference point is r = (0, 0), see Figure
3.5 (above left). Use DKLV17 to locate the local lower bound points l, which
consist of l(1) = (0, 2.5), l(2) = (1, 1.5), l(3) = (2, 1) and l(4) = (3, 0), see Figure
3.5 (above right). Regard all the local lower bound points l as the elements of
a new Pareto-front approximation set P′ = (l(1), · · · , l(4)). Set a new reference
point r

′
= (∞,∞) and utilize LKF17 to partition the dominated space of P

′,
considering minimization case, see Figure 3.5 (below left). Then the partitioned
non-dominated space of P is actually the partitioned dominated space of P′, see
Figure 3.5 (below right).

3.4 Computing the integrals

Before introducing the EHVI formula deviation, it is useful to define an important
function ϑ:

Definition 3.4 (ϑ function) Let φ(s) = 1/
√

2πe−
1
2
s2(s ∈ R) denote the prob-

ability density function (PDF) of the standard normal distribution. Moreover,
let Φ(s) = 1

2

(
1 + erf

(
s√
2

))
denote its cumulative probability distribution func-

tion (CDF), and erf is Gaussian error function. The general normal distribution
with mean µ and standard deviation σ has as PDF, φµ,σ(s) = φµ,σ(s) = 1

σ
φ( s−µ

σ
)

and its CDF is Φµ,σ(s) = Φ( s−µ
σ

), the integration box (or hyper-box) Bi con-
sist of a lower bound point l(i) and a upper bound point u(i). Then the function
ϑ(l

(i)
k , u

(i)
k , σk, µk) is defined as:

ϑ(l
(i)
k , u

(i)
k , σk, µk) : =

∫ ∞
yk=u

(i)
k

λ1[Bi ∩∆(yk)] · PDFµk,σk(yk)dyk

=

∫ ∞
yk=u

(i)
k

(u
(i)
k − l

(i)
k ) · PDFµk,σk(yk)dyk

= (u
(i)
k − l

(i)
k ) · (1− Φ(

u
(i)
k − µk
σk

)) where k = 1, · · · , d− 1

(4-7)

In the definition of ϑ function, λ1[Bi ∩ ∆(yk)] is the Hypervolume Improvement
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of the ith integration box in dimension k, i.e., a 1-D Hypervolume Improvement.
Considering the partitioning methods in Chapter 3.3, λ1[Bi∩∆(yk)] = |[l(i)k , u

(i)
k ]∩

[l
(i)
k , yk]| = min{u(i)

k , yk} − l
(i)
k , where k = 1, · · · , d. The idea of introducing the

ϑ function is that the improvement for
∫∞
yk=u

(i)
k
λ1[Bi ∩∆(yk)] · PDFµk,σk(yk)dyk,

where k = 1, · · · , d− 1, is a constant, that is ϑ itself. This is very useful during
the calculation process of EHVI, because ϑ function for each integration box Bi

can be calculated once and reused to save calculation time.

3.4.1 2-D EHVI

According to the definition of the 2-D integration slice in Equation 3.3.1, the
Hypervolume Improvement y ∈ R2 for the 2-D case is:

HVI2(P,y, r) =

N2∑
i=1

λ2[S
(i)
2 ∩∆(y,P, r)] (4-8)

This gives rise to the compact integral for the original EHVI:

EHVI(µ,σ,P, r) =

∫ ∞
y1=−∞

∫ ∞
y2=−∞

N2∑
i=1

λ2[S
(i)
2 ∩∆(y)] · PDFµ,σ(y)dy (4-9)

Here y = (y1, y2), the intersection of S(i)
2 with ∆(y1, y2) is non-empty if and only

if (y) dominates the lower left corner of S(i)
2 . In other words, if and only if y is

located in the rectangle with lower left corner (l
(i)
1 , l

(i)
2 ) and upper right corner

(∞,∞). See Figure 3.2 (right) for an illustration. Therefore:

EHVI(µ,σ,P, r) =

N2∑
i=1

∫ ∞
y1=l

(i)
1

∫ ∞
y2=l

(i)
2

λ2[S
(i)
2 ∩∆(y)] · PDFµ,σ(y)dy (4-10)

In Equation (4-10), the summation is done after integration. This is allowed,
because integration is a linear mapping. Moreover, the integration interval

∫∞
y1=l

(i)
1

can be divided into (
∫ u(i)1

y1=l
(i)
1

+
∫∞
y1=u

(i)
1

), because the Hypervolume Improvement

λ1[S
(i)
2 ∩ ∆(y1)] differs in these two integration intervals. Then Equation (4-10)
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is expressed by:

EHVI(µ,σ,P, r) =

N2∑
i=1

∫ u
(i)
1

y1=l
(i)
1

∫ ∞
y2=l

(i)
2

λ2[S
(i)
2 ∩∆(y)] · PDFµ,σ(y)dy+ (4-11)

N2∑
i=1

∫ ∞
y1=u

(i)
1

∫ ∞
y2=l

(i)
2

λ2[S
(i)
2 ∩∆(y)] · PDFµ,σ(y)dy (4-12)

Here λ1[Bi ∩∆(yk)] is the Hypervolume Improvement in dimension k, i.e., a 1-D
Hypervolume Improvement. According to the definition of Hypervolume Improve-
ment, λ1[Bi ∩ ∆(yk)] is constant and it is (u

(i)
1 − l

(i)
1 ). Therefore, the Expected

Improvement in dimension y1 is also a constant and it is: ϑ(l
(i)
1 , u

(i)
1 , σ1, µ1). Recall

Ψ∞ function, then the Equation (4-11) and (4-12) are:

Cp.(4− 11) =

N2∑
i=1

(
Ψ∞(l

(i)
1 , l

(i)
1 , µ1, σ1)−Ψ∞(l

(i)
1 , u

(i)
1 , µ1, σ1)

)
·Ψ∞(l

(i)
2 , l

(i)
2 , µ2, σ2)

(4-13)

Cp.(4− 12) =

N2∑
i=1

ϑ(l
(i)
1 , u

(i)
1 , µ1, σ1) ·Ψ∞(l

(i)
2 , l

(i)
2 , µ2, σ2) (4-14)

3.4.2 3-D EHVI

Given a partitioning of the non-dominated space into integration slices S(1)
3 , . . . ,

S
(i)
3 , . . . , S(2n+1)

3 , the part of the integral related to each of the integration slices
can be computed separately. To see how this can be done, the Hypervolume
Improvement of a point y ∈ R3 is rewritten as:

HVI3(P,y, r) =

N3∑
i=1

λ3[S
(i)
3 ∩∆(y)] (4-15)

where ∆y is the part of the objective space that is dominated by y. The HVI
expression in the definition of EHVI in Equation (1-2) can be replaced by HVI3
in Equation (4-15):

EHVI(µ,σ,P, r) =

N3∑
i=1

∫ ∞
y1=l

(i)
1

∫ ∞
y2=l

(i)
2

∫ ∞
y3=l

(i)
3

λ3[S
(i)
3 ∩∆(y)] · PDFµ,σ(y)dy

(4-16)
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Similar to the 2-D case, we can divide the integration interval
∫∞
y1=l

(i)
1

and
∫∞
y2=l

(i)
2

into (
∫ u(i)1

y1=l
(i)
1

+
∫∞
y1=u

(i)
1

) and (
∫ u(i)2

y2=l
(i)
2

+
∫∞
y2=u

(i)
2

), respectively. Based on this divi-

sion, Equation (4-16) can be expressed by:

Cp.4− 16 =

N3∑
i=1

∫ u
(i)
1

y1=l
(i)
1

∫ u
(i)
2

y2=l
(i)
2

∫ ∞
y3=l

(i)
3

λ3[S
(i)
3 ∩∆(y)] · PDFµ,σ(y)dy+ (4-17)

N3∑
i=1

∫ u
(i)
1

y1=l
(i)
1

∫ ∞
y2=u

(i)
2

∫ ∞
y3=l

(i)
3

λ3[S
(i)
3 ∩∆(y)] · PDFµ,σ(y)dy+ (4-18)

N3∑
i=1

∫ ∞
y1=u

(i)
1

∫ u
(i)
2

y2=l
(i)
2

∫ ∞
y3=l

(i)
3

λ3[S
(i)
3 ∩∆(y)] · PDFµ,σ(y)dy+ (4-19)

N3∑
i=1

∫ ∞
y1=u

(i)
1

∫ ∞
y2=u

(i)
2

∫ ∞
y3=l

(i)
3

λ3[S
(i)
3 ∩∆(y)] · PDFµ,σ(y)dy (4-20)

Recalling the definition of ϑ function and calculation of λ1[Bi∩∆(yk)], component
(4-17) can be written as follows:

Cp.4− 17 =

N3∑
i=1

(Ψ∞(l
(i)
1 , l

(i)
1 , µ1, σ1)−Ψ∞(l

(i)
1 , u

(i)
1 , σ1, µ1))·

(Ψ∞(l
(i)
2 , l

(i)
2 , µ2, σ2)−Ψ∞(l

(i)
2 , u

(i)
2 , σ2, µ2)) ·Ψ∞(l

(i)
3 , l

(i)
3 , µ3, σ3)

(4-21)

Similar to the derivation of Component (4-17), components (4-18), (4-19) and
(4-20) can be written as follows:

Cp.4− 18 =

N3∑
i=1

(Ψ∞(l
(i)
1 , l

(i)
1 , µ1, σ1)−Ψ∞(l

(i)
1 , u

(i)
1 , σ1, µ1)) · ϑ(l

(i)
2 , u

(i)
2 , σ2, µ2)·

Ψ∞(l
(i)
3 , l

(i)
3 , µ3, σ3) (4-22)

Cp.4− 19 =

N3∑
i=1

ϑ(l
(i)
1 , u

(i)
1 , σ1, µ1) · (Ψ∞(l

(i)
2 , l

(i)
2 , µ2, σ2)−Ψ∞(l

(i)
2 , u

(i)
2 , σ2, µ2))·

Ψ∞(l
(i)
3 , l

(i)
3 , µ3, σ3) (4-23)

Cp.4− 20 =

N3∑
i=1

ϑ(l
(i)
1 , u

(i)
1 , σ1, µ1) · ϑ(l

(i)
2 , u

(i)
2 , σ2, µ2) ·Ψ∞(l

(i)
3 , l

(i)
3 , µ3, σ3) (4-24)

The final EHVI formula is the sum of Components (4-21), (4-22), (4-23) and
(4-24).
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3.4.3 High Dimensional Case

The interval of integration in each coordinate, except the last coordinate, can be
divided into two parts: [l, u] and [u,∞]. Therefore, the equation for EHVI for
each hyperboxes can be decomposed into 2d−1 parts. For the interval of [u,∞],
the improvements (λk[S

(i)
d ∩∆(yk)]) are constant numbers, and the Ψ function can

be simplified by calculating function Φ and the improvement in these coordinate.
For the last coordinate, there is no need to separate the interval, because the
improvement in this coordinate (λm[S

(i)
d ∩∆(ym)]) is a variable in [l,∞].

According to the definition of high dimensional integral boxes in Section 3.3.2,
the formula of EHVI for a high dimensional case(d > 4) can be calculated by the
following equation:
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=

N
d

∑i=
1 ∫

∞y
1
=
l (i)
1

··· ∫
∞y
d
=
l (i)
d

λ
d [S

(i)
d
∩

∆
(y

1 ,···
,y
d )]·

P
D
F
µ
,σ

(y
)d

y

=

N
d

∑i=
1 (

( ∫
y
1
=
u
(i)
1

y
1
=
l (i)
1

+ ∫
∞y
1
=
u
(i)
1

)···( ∫
y
d−

1
=
u
(i)
d−

1

y
d−

1
=
l (i)
d−

1

+ ∫
∞y
d−

1
=
u
(i)
d−

1 )· ∫
∞y
d
=
l (i)
d )
·λ

d [S
(i)
d
∩

∆
(y

1 ,···
,y
d )]·

P
D
F
µ
,σ

(y
)d

y

=  ∫
u
(i)
1

y
1
=
l (i)
1 ∫

u
(i)
2

y
2
=
l (i)
2

··· ∫
u
(i)
d−

2

y
d−

2
=
l (i)
d−

2 ∫
u
(i)
d−

1

y
d−

1
=
l (i)
d−

1 ∫
u
(i)
d

y
d
=
l (i)
d

∫
u
(i)
1

y
1
=
l (i)
1 ∫

u
(i)
2

y
2
=
l (i)
2

··· ∫
u
(i)
d−

2

y
d−

2
=
l (i)
d−

2 ∫
∞y
d−

1
=
l (i)
d−

1 ∫
u
(i)
d

y
d
=
l (i)
d

∫
u
(i)
1

y
1
=
l (i)
1 ∫

u
(i)
2

y
2
=
l (i)
2

··· ∫
∞y
d−

2
=
l (i)
d−

2 ∫
u
(i)
d−

1

y
d−

1
=
l (i)
d−

1 ∫
u
(i)
d

y
d
=
l (i)
d

∫
u
(i)
1

y
1
=
l (i)
1 ∫

u
(i)
2

y
2
=
l (i)
2

··· ∫
∞y
d−

2
=
l (i)
d−

2 ∫
∞y
d−

1
=
l (i)
d−

1 ∫
u
(i)
d

y
d
=
l (i)
d

...
...

...
...

...
...

∫
∞y
1
=
l (i)
1 ∫

∞y
2
=
l (i)
2
··· ∫

u
(i)
d−

2

y
d−

2
=
l (i)
d−

2 ∫
∞y
d−

1
=
l (i)
d−

1 ∫
u
(i)
d

y
d
=
l (i)
d

∫
∞y
1
=
l (i)
1 ∫

∞y
2
=
l (i)
2
··· ∫

u
(i)
d−

2

y
d−

2
=
l (i)
d−

2 ∫
u
(i)
d−

1

y
d−

1
=
l (i)
d−

1 ∫
u
(i)
d

y
d
=
l (i)
d

∫
∞y
1
=
l (i)
1 ∫

∞y
2
=
l (i)
2
··· ∫

∞y
d−

2
=
l (i)
d−

2 ∫
u
(i)
d−

1

y
d−

1
=
l (i)
d−

1 ∫
u
(i)
d

y
d
=
l (i)
d

∫
∞y
1
=
l (i)
1 ∫

∞y
2
=
l (i)
2
··· ∫

∞y
d−

2
=
l (i)
d−

2 ∫
∞y
d−

1
=
l (i)
d−

1 ∫
u
(i)
d

y
d
=
l (i)
d 

λ
d [S

(i)
d
∩

∆
(y

1 ,···
,y
d )]·

P
D
F
µ
,σ

(y
)d

y

43



3. EFFICIENT EHVI CALCULATION
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3.4 Computing the integrals
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3. EFFICIENT EHVI CALCULATION

In the component of (4-25), the integral of each dimension
∫ u(i)k
yk=l

(i)
k

λk[S
(i)
k ∩∆(y1, · · · , yk)]·

PDFµ,σ(y)dy, 1 ≤ k ≤ d−1 has two and only two different expressions (Ψ∞ or ϑ),

except for the last dimension, the expression of
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d ∩ ∆(y1, · · · , yd)] ·

PDFµ,σ(y)dy is always Ψ∞. The final expression of EHVI is the sum of the
combination of the product of each different expressions. Since the integral of
dimension 1 ≤ k ≤ d− 1 has two different expressions and dimension k = d has
one expression, the final EHVI expression is the sum of 2d−1 terms.

In Equation (4-26), j2 stands for the binary string of j in the integer system.
The length of j2 is d− 1. C(j)2

k is a binary bit and represents the k-th bit of j in
binary string. For example, if d = 5, j = 8 and k = 4, then j2 = (1 0 0 0) and
C
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k = 1. Still in Equation (4-26), ω(i, k, C
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k ) is defined as:
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(4-27)

Equation (4-26) shows how to calculate EHVI in the case of d objectives, and
based on it, the runtime complexity of the proposed algorithm can be calculated.
The exact EHVI is calculated by the sum of

∏d−1
k=1 ω(i, k, C

(j)2
k )·Ψ∞(l

(i)
d , l

(i)
d , µd, σd)

for 2d−1 times, which performs O(1) for each hyperboxes calculation. Currently,
the minimum number of hyperboxes Nd, d ≥ 4 for a non-dominated space is still
unknown. It is hypothesized by the author that Nd is equal to the number of the
local lower bound points, which can be calculated by DKLV17 algorithm. The
upper bound of runtime complexity is O(nτ), where O(τ) is the computation com-
plexity of the search algorithm. For the case of d = 1, 2, 3, O(τ) ∈ O(log n).

3.5 Other Related Criterion

Probability of Improvement is another important criterion in MOBGO, and it was
first introduced by Stuckman [72], and then generalized by Emmerich et al. [53]
to multi-objective optimization. It was also considered in MOBGO in Couckuyt
et al. [58] and in Keane et al. [55]. It is defined as:

Definition 3.5 (Probability of Improvement) Given parameters of the mul-
tivariate predictive distribution µ, σ and the Pareto-front approximation P, the
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3.6 Empirical Experiments

Probability of Improvement (PoI) is defined as:

PoI(µ,σ,P) :=

∫
Rd
PDFσ,µ(y)dy (5-28)

where PDFµ,σ is the multivariate independent normal distribution for mean val-
ues µ ∈ Rd, and standard deviations σ ∈ Rd

+.

According to the partitioning method in Section 3.4.3, the calculation of PoI can
be achieved by the following expression:

PoI(µ,σ,P) =

∫ ∞
y1=−∞

· · ·
∫ ∞
yd=−∞

PDFµ,σ(y)dy1 . . . dyd

=
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u

(i)
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)− Φ(
l
(i)
j − µj
σj

) (5-29)

Here, Nd is the number of integration slices, and N2 = n+ 1, N3 = 2n+ 1 for 2-D
and 3-D cases respectively. Since PoI is a reference-free indicator1, reference point
r = {−∞}d should be set in order to obtain the correct boundary information
(ld,ud).

3.6 Empirical Experiments

3.6.1 Speed Comparison

Three EHVI calculation algorithms, CDD13 [58], IRS_fast [1] and KMAC1 [4, 5],
are compared using the same benchmarks in this experiment. The test bench-
marks from Emmerich and Fonseca [20] are used to generate Pareto-front sets.
The Pareto-front sets and evaluated points were randomly generated based on
convexSpherical and concaveSpherical functions.

The parameters: σd = 2.5, µd = 10, d = 2, · · · , 5 were used in the experiments.
Pareto front sizes |P | ∈ {10, 20, · · · , 200} and the number of predictions (candi-
date points) Batch Size1 ∈ {1} are used together with σd and µd. Ten trials were

1This means that the integration space for PoI is unbounded and covers the entire non-
dominated space.

1KMAC stands for the authors’ given names.
1Batch Size means the number of the evaluated points under the same Pareto-front approx-

imation set.
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3. EFFICIENT EHVI CALCULATION

Figure 3.6: Randomly generated fronts of type convexSpherical, concave-

Spherical, and cliff3D from [20] with |P | = 100 (left, middle and right).

randomly generated by the same parameters, and average runtimes (10 runs) for
whole trails with the same parameters were computed. All the experiments were
performed on the same computer and the hardware were: Intel(R) Xeon(R) CPU
I7 3770 3.40GHz, RAM 16GB. The operating system was Ubuntu 16.04 LTS (64
bit), and software were gcc 4.9.2 with compiler flag -Ofast, except for SUMO
code, MATLAB 8.4.0.150421 (R2014b), 64 bit. The experiments were set to halt
if the algorithms could not finish the EHVI computation within 30 minutes. The
results are shown in Figure 3.7.

The experimental results in Figure 3.7 show that KMAC is much faster than
CDD13, especially when |P | is increased. Sometimes, we need to calculate EHVI
for multiple points under the same Pareto-front set and test whether the algo-
rithms handle this problem efficiently. Since execution time would be increased
dramatically when Batch Size is increased for high dimension (d ≥ 4), here we
only consider the 3-D case. Table 3.1 shows the experimental results with different
Batch Size.

The parameters: σ = (2.5, 2.5, 2.5), µ = (10, 10, 10) were used in the experiments.
Pareto front sizes |P | ∈ {10, 100, 1000} and the number of predictions (candidate
points) or Batch Size ∈ {1, 10, 100, 1000} are used together with σ and µ. Ten
trials were randomly generated by the same parameters, and average runtimes
(10 runs) for the whole 10 trails with the same parameters were computed. The
data for 3-D case with |P | = 100 are visualized in Figure 3.6, and these figures
are originally from [20]. All the experiments were run on the same hardware:
Intel(R) Xeon(R) CPU E5-2667 v2 3.30GHz, RAM 48GB. The operating system
was Ubuntu 12.04 LTS (64 bit), and the compiler was gcc 4.9.2 with compiler
flag -Ofast, except for SUMO code, MATLAB 8.4.0.150421 (R2014b), 64 bit.
The experiments were set to halt if the algorithms could not finish the EHVI
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3.6 Empirical Experiments

computation within 3 hours. The results are shown in Table 3.1.
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Figure 3.7: Speed comparison of EHVI calculation. Above: concave random
Pareto front set; Below: convex random Pareto front set.
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3. EFFICIENT EHVI CALCULATION

Table 3.1: Empirical comparisons of strategies for 3-D EHVI calculation.

Type |P | Batch Size
Time Average (s)

CDD13 [58] IRS_fast [1] KMAC

convex 10 1 0.13785 0.00037 0.00005
convex 10 10 0.14090 0.00056 0.00021
convex 10 100 0.16500 0.00304 0.00095
convex 10 1000 0.69104 0.02778 0.00754
convex 100 1 13.97556 0.05337 0.00038
convex 100 10 17.05551 0.13730 0.00099
convex 100 100 45.90095 0.93196 0.00831
convex 100 1000 422.31263 8.38585 0.06462
convex 1000 1 >3 hours 94.72402 0.00390
convex 1000 10 >3 hours 155.77306 0.01067
convex 1000 100 >3 hours 795.11319 0.06517
convex 1000 1000 >3 hours 2838.31854 0.53801

concave 10 1 0.11209 0.00026 0.00007
concave 10 10 0.12790 0.00054 0.00014
concave 10 100 0.14002 0.00294 0.00077
concave 10 1000 0.36697 0.02597 0.00840
concave 100 1 10.62329 0.04895 0.00031
concave 100 10 12.63582 0.12927 0.00146
concave 100 100 27.51827 0.85124 0.00768
concave 100 1000 314.32314 7.67280 0.06285
concave 1000 1 >3 hours 91.51055 0.00332
concave 1000 10 >3 hours 149.58491 0.01079
concave 1000 100 >3 hours 744.46691 0.06696
concave 1000 1000 >3 hours 2499.29737 0.50981

cliff3D 10 1 0.12514 0.00026 0.00007
cliff3D 10 10 0.13222 0.00055 0.00013
cliff3D 10 100 0.14432 0.00278 0.00075
cliff3D 10 1000 0.44964 0.02725 0.00761
cliff3D 100 1 10.90605 0.04730 0.00029
cliff3D 100 10 12.85031 0.12709 0.00112
cliff3D 100 100 44.79395 0.80735 0.00689
cliff3D 100 1000 679.51368 7.46205 0.06099
cliff3D 1000 1 >3 hours 136.37944 0.00344
cliff3D 1000 10 >3 hours 165.34537 0.01007
cliff3D 1000 100 >3 hours 731.03794 0.06480
cliff3D 1000 1000 >3 hours 2543.16864 0.51032
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3.6 Empirical Experiments

The results show that the proposed algorithm, KMAC, is the fastest one for all
the test problems. Empirical comparisons on randomly generated Pareto fronts
of different shape show that the new algorithm is by a factor of 7 to 3.9 × 104

faster than previously published implementations in the 3-D case.

3.6.2 Benchmark Performance

Five state-of-the-art algorithms are compared in this section, they are: EHVI-
MOBGO, PoI-MOBGO, NSGA-II [25], NSGA-III [73][74] and SMS-EMOA [19].
The benchmarks are DTLZ1, DTLZ2, DTLZ3, DTLZ4, DTLZ5 and DTLZ7. The
parameter settings for all these test algorithms are shown in Table 3.2. Here,
EHVI-EGO and PoI-EGO were only tested with evaluation budget as 300, be-
cause these two algorithms are time-consuming1. The reference points for each
benchmark are shown in Table 3.3. Each setting was repeated ten times.

Table 3.2: Algorithm Parameter Settings.

EHVI-MOBGO PoI-MOBGO NSGA-II NSGA-III SMS-EMOA

µ 30 30 30 / 30
λ 1 1 30 /

Evaluation 300 300 300/2000 300/2000 300/2000
Divisions_outer / / / 12 /

pc / / 0.9 0.9
pm / / 1/6 1/6

Platform MATLAB MATLAB MATLAB Python MATLAB

Table 3.3: Reference Points.

DTLZ1 DTLZ2 DTLZ3 DTLZ4 DTLZ5 DTLZ7

REF (400,400,400) (2.5,2.5,2.5) (1500,1500,1500) (2.5,2.5,2.5) (11,11,11) (1,1,10)

The final Pareto fronts were evaluated by Hypervolume. The empirical experimen-
tal results, with respect to statistical mean and standard deviation, are shown in
Table 3.4 and 3.5. MOBGO based algorithms perform better than EAs (NSGA-
II, NSGA-III and SMS-EMOA), despite the fact that the evaluation budget was
increased to 2000. Among EHVI-MOBGO and PoI-MOBGO, EHVI-MOBGO

1Updating Kriging model and finding the optimal solution using CMA-ES are expensive.
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3. EFFICIENT EHVI CALCULATION

Table 3.4: Empirical Comparisons.

MOBGO EAs EAs
Algorithm EHVI PoI NSGA2 NSGA3 SMS-EMOA NSGA2 NSGA3 SMS-EMOA

Eval. 300 300 300 300 300 2000 2000 2000

DTLZ1

6.38174E+7 6.31810E+7 6.34392E+7 6.36393E+7 6.04776E+7 6.39818E+7 6.39986E+7 6.39985E+7
6.39662E+7 6.33303E+7 6.32707E+7 6.38025E+7 6.18341E+7 6.39958E+7 6.39990E+7 6.39932E+7
6.39672E+7 6.35670E+7 6.31858E+7 6.35901E+7 6.14465E+7 6.39958E+7 6.39991E+7 6.39995E+7
6.39729E+7 6.35214E+7 6.37121E+7 6.36915E+7 6.29733E+7 6.39993E+7 6.39984E+7 6.39995E+7
6.39722E+7 6.36307E+7 6.37121E+7 6.36159E+7 5.99827E+7 6.39840E+7 6.39992E+7 6.39801E+7
6.39833E+7 6.33890E+7 6.30707E+7 6.36498E+7 6.23334E+7 6.39969E+7 6.39999E+7 6.39977E+7
6.39776E+7 6.34682E+7 6.36282E+7 6.32780E+7 6.22081E+7 6.39969E+7 6.39990E+7 6.39951E+7
6.39790E+7 6.28641E+7 6.34714E+7 6.37243E+7 6.18742E+7 6.39919E+7 6.39996E+7 6.39951E+7
6.39723E+7 6.35972E+7 6.34714E+7 6.34629E+7 6.18742E+7 6.39764E+7 6.39928E+7 6.39926E+7
6.39791E+7 6.34263E+7 6.36216E+7 6.32948E+7 6.03677E+7 6.39947E+7 6.39985E+7 6.39946E+7

mean 6.39587E+7 6.33975E+7 6.34583E+7 6.35749E+7 6.15372E+7 6.39914E+7 6.39984E+7 6.39946E+7
std. 4.99505E+4 2.30970E+5 2.22275E+5 1.75929E+5 9.64758E+5 7.78434E+3 2.01767E+3 5.68083E+3

DTLZ2

1.50123E+1 1.49961E+1 1.35131E+1 1.45495E+1 1.28434E+1 1.39116E+1 1.49691E+1 1.47435E+1
1.50293E+1 1.49869E+1 1.35313E+1 1.43761E+1 1.36917E+1 1.35030E+1 1.49737E+1 1.46302E+1
1.50133E+1 1.50001E+1 1.36346E+1 1.44741E+1 1.29611E+1 1.40951E+1 1.49713E+1 1.42623E+1
1.50302E+1 1.50036E+1 1.33895E+1 1.41762E+1 1.31983E+1 1.40951E+1 1.49893E+1 1.47413E+1
1.50178E+1 1.49990E+1 1.33895E+1 1.42859E+1 1.24597E+1 1.38371E+1 1.49763E+1 1.47010E+1
1.50288E+1 1.49972E+1 1.34931E+1 1.43059E+1 1.28168E+1 1.44331E+1 1.49705E+1 1.48084E+1
1.50325E+1 1.50030E+1 1.34931E+1 1.45558E+1 1.29619E+1 1.41515E+1 1.49737E+1 1.46117E+1
1.50263E+1 1.50075E+1 1.28980E+1 1.44279E+1 1.30089E+1 1.34422E+1 1.49844E+1 1.46629E+1
1.50263E+1 1.49913E+1 1.29148E+1 1.44522E+1 1.31828E+1 1.34422E+1 1.49747E+1 1.47318E+1
1.49865E+1 1.49901E+1 1.39749E+1 1.46875E+1 1.34046E+1 1.43841E+1 1.49816E+1 1.47118E+1

mean 1.50203E+1 1.49975E+1 1.34232E+1 1.44291E+1 1.30529E+1 1.39295E+1 1.49765E+1 1.46605E+1
std. 1.02673E-2 5.15545E-3 2.20199E-1 1.14701E-1 2.53151E-1 3.02290E-1 5.18375E-3 9.54696E-2

outperforms PoI-MOBGO in most cases, except for DTLZ4 and DTLZ5. The
reason is that PoI is a reference-free indicator, and it considers all the possibili-
ties of an evaluated point in the subspace which dominates P. Compared to PoI,
however, EHVI only considers the subspace, which is dominated by P and is cut
by a reference point r. In other words, EHVI cannot indicate any improvement of
an evaluated point in the rest of non-dominated space, which is cut by a reference
point.

3.7 Summary

This chapter described the Expected Hypervolume Improvement as the criterion
used in MOBGO. The exact calculation of EHVI in the 2-D and the 3-D cases
was introduced with the computational complexity of O(n log n). Compared to
[1], the computational complexity is improved by the factor n2/ log n for 2-D and
3-D cases. This meets the lower bound for the time complexity of the EHVI com-
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3.7 Summary

Table 3.5: Empirical Comparisons.

MOBGO EAs EAs
Algorithm EHVI PoI NSGA2 NSGA3 SMS-EMOA NSGA2 NSGA3 SMS-EMOA

Eval. 300 300 300 300 300 2000 2000 2000

DTLZ3

3.37465E+9 3.37431E+9 3.35455E+9 3.36011E+9 3.27636E+9 3.37471E+9 3.37498E+9 3.37459E+9
3.37462E+9 3.37188E+9 3.34970E+9 3.35426E+9 3.27336E+9 3.37477E+9 3.37498E+9 3.37494E+9
3.37405E+9 3.36607E+9 3.33783E+9 3.36719E+9 3.26915E+9 3.37446E+9 3.37499E+9 3.37413E+9
3.37433E+9 3.34920E+9 3.35935E+9 3.36343E+9 3.28850E+9 3.37443E+9 3.37498E+9 3.37440E+9
3.37460E+9 3.36956E+9 3.33889E+9 3.36678E+9 3.26551E+9 3.37478E+9 3.37500E+9 3.37469E+9
3.37455E+9 3.37459E+9 3.36864E+9 3.35810E+9 3.34960E+9 3.37471E+9 3.37498E+9 3.37467E+9
3.37466E+9 3.37371E+9 3.35894E+9 3.36364E+9 3.20942E+9 3.37498E+9 3.37499E+9 3.37469E+9
3.37452E+9 3.37278E+9 3.36435E+9 3.36349E+9 3.30056E+9 3.37499E+9 3.37500E+9 3.37496E+9
3.37465E+9 3.36970E+9 3.36268E+9 3.36183E+9 3.30523E+9 3.37361E+9 3.37499E+9 3.37413E+9
3.37443E+9 3.37337E+9 3.36111E+9 3.35554E+9 3.30145E+9 3.37484E+9 3.37498E+9 3.37467E+9

mean 3.37451E+9 3.36952E+9 3.35561E+9 3.36144E+9 3.28391E+9 3.37463E+9 3.37499E+9 3.37459E+9
std. 1.41276E+5 4.75297E+6 8.29054E+6 3.54949E+6 2.51542E+7 2.75889E+5 5.94791E+3 2.20550E+5

DTLZ4

1.38157E+1 1.45550E+1 1.17541E+1 1.08884E+1 9.55215E+0 1.47844E+1 1.49959E+1 1.48530E+1
1.36793E+1 1.44860E+1 9.30831E+0 1.16457E+1 1.08876E+1 1.32053E+1 1.36099E+1 9.33000E+0
1.30832E+1 1.45194E+1 9.33753E+0 1.18060E+1 8.85919E+0 1.47539E+1 1.35738E+1 1.31180E+1
1.38658E+1 1.48104E+1 1.29697E+1 1.28858E+1 9.20911E+0 9.32150E+0 1.49421E+1 1.32434E+1
1.36991E+1 1.45245E+1 1.31589E+1 1.21828E+1 1.06302E+1 1.35101E+1 1.49398E+1 1.48101E+1
1.44512E+1 1.42640E+1 1.42940E+1 1.32904E+1 8.86695E+0 1.45135E+1 1.49798E+1 1.32412E+1
1.42156E+1 1.45332E+1 1.44560E+1 1.19631E+1 8.91678E+0 1.47941E+1 1.35860E+1 1.34922E+1
1.35453E+1 1.38725E+1 1.30766E+1 1.24391E+1 9.20227E+0 9.30187E+0 1.30364E+1 1.33983E+1
1.38884E+1 1.44282E+1 1.30079E+1 1.26858E+1 9.16894E+0 1.48205E+1 1.36039E+1 1.33954E+1
1.37201E+1 1.45676E+1 1.27012E+1 1.29606E+1 1.11599E+1 1.29413E+1 1.49813E+1 1.36090E+1

mean 1.37964E+1 1.44561E+1 1.24064E+1 1.22748E+1 9.64531E+0 1.31946E+1 1.42249E+1 1.32491E+1
std. 2.50980E-1 1.60714E-1 1.36386E+0 5.77561E-1 7.48353E-1 1.60385E+0 7.42880E-1 8.12735E-1

DTLZ5

1.31781E+3 1.31885E+3 1.29108E+3 1.31652E+3 1.28384E+3 1.31670E+3 1.31872E+3 1.31681E+3
1.31609E+3 1.31883E+3 1.31533E+3 1.31687E+3 1.31455E+3 1.31755E+3 1.31888E+3 1.31803E+3
1.31703E+3 1.31885E+3 1.31556E+3 1.31650E+3 1.30785E+3 1.31759E+3 1.31878E+3 1.31815E+3
1.31754E+3 1.31885E+3 1.30788E+3 1.31583E+3 1.28715E+3 1.31804E+3 1.31889E+3 1.31744E+3
1.31741E+3 1.31882E+3 1.31565E+3 1.31663E+3 1.29529E+3 1.31714E+3 1.31887E+3 1.31827E+3
1.31706E+3 1.31883E+3 1.30716E+3 1.31333E+3 1.30770E+3 1.31731E+3 1.31881E+3 1.31844E+3
1.31711E+3 1.31878E+3 1.31571E+3 1.31034E+3 1.30873E+3 1.31675E+3 1.31875E+3 1.31785E+3
1.31802E+3 1.31884E+3 1.31501E+3 1.31654E+3 1.31039E+3 1.31769E+3 1.31876E+3 1.31813E+3
1.31735E+3 1.31882E+3 1.31564E+3 1.31595E+3 1.30349E+3 1.31785E+3 1.31881E+3 1.31832E+3
1.31742E+3 1.31883E+3 1.30992E+3 1.31640E+3 1.29023E+3 1.31760E+3 1.31883E+3 1.31795E+3

mean 1.31728E+3 1.31883E+3 1.31089E+3 1.31549E+3 1.30092E+3 1.31742E+3 1.31881E+3 1.31794E+3
std. 3.69904E-1 1.43867E-2 5.50786E+0 1.46033E+0 9.43520E+0 3.57031E-1 4.52836E-2 3.43975E-1

DTLZ7

5.09516E+0 4.40942E+0 -1.64477E+0 1.94194E+0 -3.70070E+0 -1.36049E+0 4.90652E+0 1.97405E+0
5.17729E+0 4.03866E+0 -2.52335E+0 2.08332E+0 -5.84918E+0 -4.14008E+0 5.08696E+0 4.34746E-2
5.15481E+0 4.28059E+0 -4.49931E+0 2.70067E+0 -4.80969E+0 1.48952E+0 4.66387E+0 2.56120E-1
4.89191E+0 4.02969E+0 -1.46708E+0 1.18938E+0 -4.38641E+0 2.25216E+0 4.71677E+0 1.98754E-1
5.06238E+0 4.42348E+0 -1.54354E+0 2.12846E+0 -4.43218E+0 -4.30157E+0 4.99910E+0 1.60383E+0
4.93139E+0 4.22680E+0 -2.94045E+0 1.27511E+0 -6.29530E-1 -1.04859E+0 5.08663E+0 2.61729E+0
5.16743E+0 4.52667E+0 -3.76357E+0 2.76559E+0 -3.21233E+0 -2.91679E+0 4.95629E+0 1.78240E+0
5.02720E+0 4.16430E+0 -2.93363E+0 2.23855E+0 -4.61563E+0 -9.60784E-1 4.66007E+0 1.01542E+0
5.06158E+0 4.31499E+0 -4.74578E+0 1.94897E+0 -4.83294E+0 -3.53033E+0 4.67642E+0 5.15294E-1
5.08646E+0 4.06894E+0 -5.35736E+0 1.59954E-1 -4.29017E+0 -6.53071E-1 4.91579E+0 1.06682E-1

mean 5.08646E+0 4.06894E+0 -5.35736E+0 1.59954E-1 -4.29017E+0 -6.53071E-1 4.91579E+0 1.06682E-1
std. 7.59397E-2 1.42676E-1 9.78696E-1 5.81027E-1 1.02525E+0 1.76415E+0 1.61886E-1 7.87267E-1
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3. EFFICIENT EHVI CALCULATION

putation for d = 2, 3, shown by reduction of the Hypervolume Indicator problem,
see [1]. Thus, the algorithm is asymptotically optimal and the time complexity of
2-D and 3-D EHVI computation is in Θ(n log n). For the arbitrary dimensional
case when d ≥ 2, the formula for exact EHVI calculation is generalized in this
chapter. In the speed-comparison experiments, the average execution time of
KMAC is compared with that of CDD13. The experimental results show that
KMAC is much faster than CDD13, especially for high dimensional cases.

This chapter also compared EHVI-MOBGO with other state-of-the-art multi-
objective optimization algorithms. Multi-objective Bayesian global optimization
algorithms yield better results, compared to evolutionary multi-objective opti-
mization algorithms. Among multi-objective Bayesian global optimization al-
gorithms, the Pareto-front approximation sets generated by EHVI-MOBGO are
usually closer to the true Pareto front. However, PoI-MOBGO is better than
EHVI-MOBGO when dealing with DTLZ4 and DTLZ5 problems. The reason
is that PoI is a reference-free criterion and EHVI is a reference-based criterion,
and EHVI only implies the improvement in the non-dominated space which is
cut above by the reference point. A remedy to this problem can be achieved by
setting a large reference point or using dynamic reference point. The reference
point cannot be too large, otherwise, EHVI at any evaluated points would be
similar, even the same, which is due to the numerical stability.
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