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Chapter 2

Continuous Multi-objective
Optimization

Evolutionary algorithms (EAs) and Bayesian global optimization (BGO) are two
major branches in the field of continuous optimization algorithms. Both of them
share a similar structure: (1) initialization, (2) evaluation of current solutions,
(3) adjustment of the current solutions for the aim of seeking an improvement
in the next loop, and (4) repetition of the evaluation and adjustment loop. The
difference lies in the adjustment mechanism. For EAs, it is accomplished by evo-
lutionary operators, such as recombination and mutation. For BGO, it is achieved
by learning from the past evaluations and updating a surrogate model.

To start the journey, a good preparation is always required. This chapter serves
to lay out the terminologies and the groundwork of the studies in this dissertation.
The structure of this chapter is structured as follows: Section 2.1 provides the
definition of multi-objective optimization; Section 2.2 defines some fundamental
terminologies in the field of multi-objective optimization; Section 2.3 provides the
definitions of some common infill criteria; Section 2.4 describes two state-of-the-
art evolutionary multi-objective optimization algorithms, namely SMS-EMOA
and NSGA-II, which are utilized to solve a power distribution network reconfig-
uration problem in this chapter; Section 2.5 introduces multi-objective Bayesian
global optimization, together with Kriging and a simple example.
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2. CONTINUOUS MULTI-OBJECTIVE OPTIMIZATION

2.1 Multi-objective Optimization

Multi-objective optimization is a generalization of single-objective optimization.
It can be generalized by means of selecting the best combination of parameters
in order to optimize the multiple performances simultaneously. The basic idea
of MOO is that it optimizes the performances depending on these parameters,
possibly subject to some restrictions on the allowed parameter ranges. The perfor-
mances of the problem which needs to be optimized are called objective functions
or fitness functions and they depend on the combination of parameters; the pa-
rameters are called decision variables or the decision vector ; the range of the
decision vectors is known as search space; the restrictions on allowed parameters
are called constraints ; an allowed decision vector is called a feasible decision vec-
tor. A multi-objective optimization (MOO) problem is an optimization problem
that involves multiple objective functions and it can be formulated as:

max
(
y1(x), y2(x), · · · , yd(x)

)
(1-1)

subject to x ∈ X ⊆ S

where the integer d is the number of objective functions, X is the feasible set of
decision vectors, yi i = 1, · · · , d are the objective functions, and S is the search
space of decision vectors x in m dimensional space.

Multi-objective optimization consists of two main branches of algorithmic solu-
tion approaches. The first approach is called weighted sum method. It converts a
multi-objective optimization problem into a single-objective optimization prob-
lem by multiplying each objective function with a corresponding weighting factor
and summing them up. The weighted sum method is simple and easy to be im-
plemented. However, its weakness is obvious. On the one hand, it is very difficult
to depict the thoroughly complete Pareto front set [12]. On the other hand, the
solution obtained by using the weighted sum method does not necessarily reflect
the preferences, when we want to represent the preferences of a decision maker
by weights [13].

The second approach treats each objective function separately and utilizes the
concept of a Pareto front as the fundamental concept to optimize each objective
function by using different mechanisms (non-dominated ranking, infill criteria
based on Pareto front, etc.). This research focuses on the second approach.
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2.2 Terminologies

2.2 Terminologies

This section mainly introduces the concepts and terminologies of a Pareto front
based on the objective space1. A Pareto front set is based on the dominance
concept. The dominance is defined as follows:

Definition 2.1 (Dominance [14]) Given two decision vectors x(1),x(2) ∈ X

and their corresponding objective values y(1) = y(x(1)), y(2) = y(x(2)), it is said
that y(1) dominates y(2), being represented by y(1) ≺ y(2), iff ∀i ∈ {1, 2, · · · , d} :

yi(x
(1)) ≤ yi(x

(2)) and ∃j ∈ {1, 2, · · · , d} : yj(x
(1)) < yj(x

(2)).

Dominance is a fundamental concept in multi-objective optimization, and it pro-
vides an explicit relation between two solutions. In some cases, it can be used to
decide which solution is better than the other. However, more interests from the
perspective of research are put on the non-dominated solutions in MOO, because
a point in a non-dominated space means a potential improvement of the objective
function values.

Definition 2.2 (Non-dominance [2]) Given a decision vector set X ⊂ S, and
the image of the vector set is Y = {y(x)|x ∈ X}, the non-dominated subset of Y

is defined as:

nd(Y) := {y ∈ Y|@z ∈ Y : z ≺ y} (2-2)

A vector y ∈ nd(Y) in the objective space is called a non-dominated point. A
non-dominated set means that there is no solution better or equally good in all
components of the objective space. However, there could be solutions that are, at
least, better in some component(s) with sacrificing the performance in the other
component(s). The goal of MOO is trying to find all non-dominated solutions in
a whole feasible search space, which is called Pareto front, and defined as:

Definition 2.3 (Pareto front [14]) For a feasible decision set X ⊂ S , the
image of it is Y = {y(x)|x ∈ X}, the Pareto front set P∗ is defined as:

P∗ : = {y ∈ Y|@z ∈ Y : z ≺ y}
= nd(Y) (2-3)

1In some papers, dominance is represented in a search space, instead of an objective space.
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2. CONTINUOUS MULTI-OBJECTIVE OPTIMIZATION

In a Pareto front, each solution is a non-dominated point in Y. Then, the prob-
lem of MOO is converted to how to find a Pareto front set P∗. However, a
Pareto front P∗ is difficult to be obtained, especially for a high-dimensional and
continuous black-box problem. This is because usually only a finite number of
non-dominated points can be obtained. Commonly, a Pareto front approximation
set, which contains only a subset of a Pareto front set, is used to be optimized
in MOO. Then, the final question will become how to define a Pareto front ap-
proximation set P which can approximate the Pareto front set P∗ best. A Pareto
front approximation is defined as:

Definition 2.4 (Pareto front approximation) Given a Pareto front set P∗,
a Pareto front approximation set P is any set of mutually non-dominated points
and it is defined as:

P := {y ∈ Y
′ ⊆ Y|@z ∈ Y

′
: z ≺ y} (2-4)

Example 2.1 Figure 2.1 illustrates the concept of Pareto Dominance, Pareto
front and Pareto front approximation in 2-D case. Suppose the image of the
decision space X ⊂ S is Y, then Y can be expressed by dots in Figure 2.1. The
Pareto front P∗ of Y is the non-dominated set of Y and it is represented by solid
black curves. A Pareto front approximation P, represented by the solid gray dots
surrounded by dashed curves, is dominated by P∗. The other gray dots are the
dominated points, which are dominated by P.

2.3 Infill Criteria2

Given two Pareto front approximation sets, how to evaluate and compare the
quality between the two Pareto front approximation sets? This section introduces
some basic infill criteria, which will be used in later chapters, in MOO.

Hypervolume Indicator: The Hypervolume Indicator, proposed by Zitzler
and Thiele [15], measures the size of the dominated subspace bounded from below3

2This section only considers maximization problems.
3The original definition was for minimization problems and the reference point bounds the

set from above.

10



2.3 Infill Criteria1
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Figure 2.1: Example of 2-D Pareto front and Pareto front approximation.

by a reference point r. The hypervolume indicates the performance of a Pareto-
front approximation set P ⊂ (Rd)n, where n stands for the number of the points
in P, and the maximization of HV can lead to a Pareto-front approximation set
that is close to the true Pareto front. In 2-D and 3-D cases, the hypervolume
indicator can be computed in time Θ(n log n) [16]. In more than 3 dimensions,
the algorithm proposed by Chan [17] achieves O(n

d
3 polylog n) time complexity.

The hypervolume indicator is defined as:

Definition 2.5 (Hypervolume Indicator) Given a finite Pareto front approx-
imation set, say P = {y(1), . . . ,y(n)} ⊂ Rd, the Hypervolume Indicator (HV) of
P is defined as the d-dimensional Lebesgue measure of the subspace dominated by
P and bounded below by a reference point r:

HV(P) = λd(∪y∈P[r,y]) (3-5)

with λd being the Lebesgue measure on Rd.

The reference point needs to be provided by the user, and it should, if possible,
be chosen in such a way that it is dominated by all elements of the Pareto-front
approximation sets P that might occur during the optimization process.

Hypervolume Improvement Hypervolume Improvement (HVI) is also called
Improvement of Hypervolume in [18]. The basic idea of HVI is the HV change of
a Pareto front approximation set P before and after adding an evaluated point y
in it. The definition of Hypervolume Improvement is:
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2. CONTINUOUS MULTI-OBJECTIVE OPTIMIZATION

Definition 2.6 (Hypervolume Improvement) Given a finite collection of vec-
tors P ⊂ Rd, the Hypervolume Improvement (HVI) of a vector y ∈ Rd is defined
as:

HVI(y,P) = HV(P ∪ {y})− HV(P) (3-6)

In case we want to emphasize the reference point r, the notation HVI(y,P, r)

will be used to denote the Hypervolume Improvement. Note that HVI(y,P) = 0,
in case y ∈ P.

Hypervolume Contribution Another HV based criterion is Hypervolume
Contribution (HVC). It is applied as a selection criterion in SMS-EMOA [19].
The most efficient algorithm to calculate HVC (one time) currently holds a time
complexity Θ(n log n) for d = 2, 3 as proposed by Emmerich and Fonseca in
[20]. The basic idea behind HVI and HVC is the same, that is, to calculate the
difference of the hypervolume between two Pareto front approximation sets. The
Hypervolume Contribution is defined as:

Definition 2.7 (Hypervolume Contribution) Given a finite collection of vec-
tors P ⊂ Rd, the Hypervolume Contribution (HVC) of a vector y ∈ Rd is defined
as:

HVC(y,P) = HV(P)− HV(P \ {y}) (3-7)

In case we want to emphasize the reference point r, the notation HVC(y,P, r)

will be used to denote the Hypervolume Contribution.

Example 2.2 Figure 2.2 illustrates the concept of the Hypervolume Improve-
ment and the Hypervolume Contribution. For the 2-D case, suppose a Pareto
front approximation set is P, which is composed by y(1) = (1, 2.5)T , y(2) =

(2, 1.5)T and y(3) = (3, 1)T . When a new point y(+) = (2.8, 2.3)T is added, the Hy-
pervolume Improvement HVI(P,y(+)) is the yellow area. The Hypervolume Con-
tribution of y(1) is the green area. The right figures illustrate the Hypervolume
Improvement and the Hypervolume Contribution for the 3-D case. A Pareto-
front approximation is P =

(
y(1) = (4, 4, 1)T , y(2) = (1, 2, 4)T , y(3) = (2, 1, 3)T

)
.

The Hypervolume Improvement of y(+) = (3, 3, 2)T relative to P is given by the
joint volume covered by the yellow slices. The Hypervolume Contribution of y(1)

is given by the joint volume covered by the green slices.
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2.3 Infill Criteria1

Other infill criteria, for instance, Expected Hypervolume Improvement, Probability
of Improvement and Truncated Hypervolume Improvement will be introduced in
later chapters.
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Figure 2.2: The left column illustrates Hypervolume Improvement for 2-D and
3-D cases. The right column illustrates Hypervolume Contribution for 2-D and 3-D
cases. The yellow areas stand for the Hypervolume improvement of y(+), and green
areas represent the Hypervolome contribution of y(1).
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2. CONTINUOUS MULTI-OBJECTIVE OPTIMIZATION

2.4 Evolutionary Multi-objective Optimization Al-
gorithms

Evolutionary algorithms are population based metaheuristics optimization algo-
rithms and they are inspired by biological paradigm of natural selection, recom-
bination and mutation [21, 22]. The main advantage of evolutionary algorithms,
when applied to solve multi-objective optimization problems, is the fact that they
typically generate sets of solutions, allowing computation of an approximation of
the entire Pareto front.

2.4.1 NSGA-II

NSGA-II is an improved version of NSGA (Nondominated Sorting Genetic Algo-
rithm) [23], and it is a classical multi-objective algorithm proposed by Deb et al.
[24, 25]. Being the most commonly applied evolutionary algorithm in the field of
multi-objective optimization, NSGA-II serves as a reference algorithm in this dis-
sertation. NSGA-II implements elitist mechanism,2 where all the non-dominated
solutions discovered are preserved from the beginning of the initial population.
The selection mechanism of NSGA-II considers two factors: non-dominated rank
of an individual in the population and its crowding distance (the average distance
between two points on either side of this point along each of the objectives) for
two objectives optimization. The priority between these two factors is the non-
dominated rank. If two solutions are in the same non-dominated rank, the one
that resides in the less crowded region is chosen. The basic structure of NSGA-II
is shown in Algorithm 1.

2.4.2 SMS-EMOA

A popular algorithm that uses the hypervolume indicator as a selection criterion
is SMS-EMOA [27]. In its two-dimensional instantiation, it can be viewed as a
steady state variant of the NSGA-II algorithm [25] that replaces the crowding
distance by hypervolume contributions, and thereby generates a sequence of ap-
proximation sets that grow according to the hypervolume indicator. The basic
structure of SMS-EMOA is illustrated in Algorithm 2.

2This was claimed by the authors, but it is wrong and explained in Emmerich et al. [26].
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2.4 Evolutionary Multi-objective Optimization Algorithms

Algorithm 1: NSGA-II
Input: Crossover rate pc, mutation rate pm, population size µ, offspring

size λ, objective functions y

Output: Pareto front approximation P

1: Evaluate an initial set of µ points and store these in
P = ((x(1),y(1) = y(x(1))), . . . , (x(µ),y(µ) = y(x(µ))));

2: while termination criterion not satisfied do
3: Select parents X

′ from P: X
′
= Selection(P) ;

4: Crossover for X
′ : X

′
= Crossover(X

′
, pc) ;

5: Mutation for X
′ : X

′
= Mutation(X

′
, pm) ;

6: Evaluate the offspring X
′ and store these in

P
′
= ((X

′(1),y(1) = y(X
′(1))), . . . (X

′(λ),y(λ) = y(X
′(λ))));

7: Fast non-dominated sorting for P ∪ P
′ :

F = FastNonDominatedSorting(P ∪ P
′
) ;

8: Update P by selecting best µ individuals from P ∪ P
′ ;

9: Return P

SMS-EMOA shows a slightly better performance on standard benchmarks than
other commonly applied multi-objective optimization algorithms such as NSGA-
II [27]. Therefore, SMS-EMOA was chosen as another reference algorithm in this
research. We will compare its performance with that of multi-objective Bayesian
global optimization defined in Chapters 3, 4, 5 and 8.

2.4.3 Example1

The utilization of evolutionary multi-objective algorithm is illustrated through a
power distribution network reconfiguration problem (DNRP), which is served as
a preliminary study in this dissertation. The network reconfiguration problem
in a power distribution system aims at finding the best configuration of a radial
network by changing the status of the switches in a power network system. There
are two types of switches: normally closed switches and normally open switches.
See Figure 2.3, for an example of a power distribution network configuration, the

1This example is a discrete optimization problem, and all the other parts of this dissertation
consider only continuous optimization problems.
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2. CONTINUOUS MULTI-OBJECTIVE OPTIMIZATION

Algorithm 2: SMS-EMOA
Input: Objective functions y, population size µ
Output: Pareto front approximation P

1: Evaluate an initial set of µ points and store these in
P = ((x(1),y(1) = y(x(1))), . . . , (x(µ),y(µ) = y(x(µ))));

2: while termination criterion not satisfied do
3: Generate a new solution xnew using PMX recombination and/or

polynomial mutation operator (cf. [25]) on (some) solutions of P ;
4: Add point xnew to P ;
5: Compute dominance rank of each solution in P by means of

non-dominated sorting ;
6: Determine Rmax as the worst ranked layer of P and remove it from the

solution with smallest hypervolume contribution ;

7: Return P

119 bus system [28], where the solid black lines represent normally closed switches,
while dashed red lines represent normally open switches. Network reconfiguration
is the process of changing the topology of the power network by operating these
switches for the purpose of minimization of the power loss. Since each switch
has two conditions, a system which has N nodes should contain 2N−1 possible
switch configurations. In order to ensure that all the customers can get electricity
and no short circuit exists in the system, there are two constraints for network
reconfiguration: no cycles (the radial structure of the network must be maintained
in each new structure) and no islands (all the loads must be served).

The objective functions are the minimization of power loss and the maximization
of the network’s reliability–i.e. minimization of voltage deviation in this section.
The objective function for the minimization of power loss can be described
as [29]:

min floss =
b∑
i=1

kiRi
P 2
i +Q2

i

V 2
i

=
b∑
i=1

kiRi | Ii |2 (4-8)

subject to:
V min
i ≤ Vi ≤ V max

i (4-9)

Ii ≤ Imaxi , i = 1, ..., b (4-10)

Here b is the number of branches and for each branch i ∈ {1, ..., b}, Ri is the
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2.4 Evolutionary Multi-objective Optimization Algorithms

Figure 2.3: Initial configuration of the 119-bus test system.

branch resistance, Pi and Qi are the active power and the inactive power of a
branch terminal i, Vi is the terminal node voltage of branch i, V min

i and V max
i

are the minimum and maximum bus voltage of branch i, respectively, ki is the
status variable of i-th switch. If ki is 0, then switch i is open and if ki is 1, then
switch i is closed. Ii is the branch current and Imaxi is the maximum current in
branch i.

The objective function forminimization of voltage deviation can be expressed
as follows [30][31]:

min fV DI = max{| 1− Umin |, | 1− Umax |} (4-11)

where Umin and Umax are respectively the lowest and highest values of bus voltage
which is divided by rated voltage to normalize them to value in [0, 1]. In this
dissertation, Newton’s Method based on MATPOWER [32], which is a power
flow calculation toolbox on MATLAB, is applied to calculate power loss and
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2. CONTINUOUS MULTI-OBJECTIVE OPTIMIZATION

voltage deviation. The parameters in Newton’s methods are: maximum number
of iterations is 20 and termination tolerance on per unit is 1e-8.

In this problem, a multi-objective optimization algorithm is achieved by replacing
the selection scheme of a previously single objective optimizer by that of a multi-
objective algorithm, namely the (µ+µ) selection of NSGA-II [25] and the (µ+1)
selection of SMS-EMOA [19] (which has earlier been used also in Pareto archivers
[33]). As a second objective voltage deviation is minimized (see equation 4-
11).

As an adaptation, we introduce a variant of SMS-EMOA and NSGA-II with a
self-adaptive single step size. Whenever more than five mutations per individual
were unsuccessful, the step size was multiplied by a constant factor of 1/1.2
(following the 1/5th success rule). The success of a generation was registered
if a new non-dominated solution entered the archive of non-dominated solutions
among all solutions encountered so far.
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Figure 2.4: Best, worst, and average attainment curves for the multi-objective
optimization of 119 DNRP. The worst attainment curves of the multiple stepsizes
are missing in the below pictures, because they are too far away from the best
curves.

The results (attainment curves) for a population size of µ = 30 and 11 runs per
algorithm are shown in Figure 2.4, where f1 and f2 represent voltage deviation
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2.5 Multi-objective Bayesian Global Optimization

and power loss, respectively. Here, attainment curve1 is a useful tool to assess
the statistical performances of stochastic multi-objective optimizers, and visualize
the outcome of a series of optimization trails [34, 35, 36].

In the following discussion of Pareto front, we mean the archive of all non-
dominated solutions encountered in a single run. SMS-EMOA with a single step
size provides the best Pareto fronts in the best case and also in the average case.
Interestingly, all strategies find a Pareto front with a concave part, which is inter-
preted that locally there is a strong conflict between power loss minimization and
voltage deviation minimization in this problem. However, the range of voltage
deviation is relatively small, so that ’from a distance’ the Pareto front has an
apparent knee point region. Solutions in this region are recommended as good
compromise solutions, whereas points located on the flanks of the Pareto front
are not recommended, as small improvements in one objective will cause a large
deterioration of the other objective.

2.5 Multi-objective Bayesian Global Optimization

In multi-objective optimization, the objective function evaluations are usually
costly and evolutionary multi-objective optimization algorithms are usually not
efficient to solve these expensive function evaluation problems. This is because
EMOAs typically require a large number of function evaluations, furthermore,
the Pareto optimality of the solutions cannot be guaranteed with fewer function
evaluations. Therefore, EMOA is not recommended when function evaluations
are expensive. In such cases, a better idea is perhaps to utilize information
from all previous evaluations. This kind of algorithm is called Bayesian Global
Optimization (BGO), which was proposed by Mockus et al. in [37].

The basic idea of BGO is to use a surrogate model based on Kriging or Gaussian
process. A surrogate model reflects the relationship between decision vectors
and their corresponding objective values. This surrogate model is learnt from the
previous evaluations. For multi-objective problems, the family of these algorithms
is calledMulti-Objective Bayesian Global Optimization (MOBGO). The scheme of
a MOBGO algorithm is sequentially updating a surrogate model, instead of ’true’
objective functions, by an optimizer and its corresponding objective function
value. An optimizer in MOBGO is utilized to search for a promising point x∗ by
maximizing/minimizing an infill criterion according to surrogate models.

1Attainment curve is also called attainment surface for more than two objectives.
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2. CONTINUOUS MULTI-OBJECTIVE OPTIMIZATION

2.5.1 Kriging

Kriging is a statistical interpolation method. Being a Gaussian process based
modelling method, it is cheap to evaluate [38]. Kriging has been proven to be
a popular surrogate model to approximate noise-free data in computer experi-
ments, where Kriging models are fitted on previously evaluated points and then
replace the real time-consuming simulation model [39]. Given a set of n decision
vectors X = (x(1),x(2), · · · ,x(n))T in m dimensional search space, and associated
function values y(X) = (y(x(1)), y(x(2)), · · · , y(x(n)))T , Kriging assumes y to be a
realization of a random process Y and it is of the form [40, 41]:

Y (x) = µ(x) + ε(x) (5-12)

where µ(x) is estimated mean value over all given sampled points, and ε(x) is a re-
alization of a normally distributed Gaussian random process with zero mean and
variance σ2. The regression part µ(x) approximates globally the function Y and
Kriging/Gaussian process ε(x) takes local variations into account. Moreover, as
opposed to other regression methods, such as supported vector machine (SVM),
Kriging/GP also provides an uncertainty qualification of a prediction. The cor-
relation between the deviations at two points (x and x′) is defined as:

Corr[ε(x), ε(x′)] = R(x,x′) =
d∏
i=1

Ri(xi, x
′
i) (5-13)

Here R(., .) is the correlation function, which can be cubic or spline function.
Commonly, a Gaussian function (also known as squared exponential) is cho-
sen:

R(x,x′) =
d∏
i=1

exp(−θi(xi − x′i)2) (θi >= 0)

where θ are parameters of correlation model and they can be interpreted as mea-
suring the importance of the variable. Then the covariance matrix can be ex-
pressed by the correlation function:

Cov(ε) = σ2Σ, where Σi,j = R(xi,xj)

When µ(x) is assumed to be an unknown constant, this unbiased prediction is
called ordinary Kriging (OK). In OK, the Kriging model determines the hyper-
parameters θ = [θ1, θ2, · · · , θn] by maximizing the likelihood on the observed
dataset. The expression of the likelihood function is:

L = −n
2

ln(σ2)− 1

2
ln(|Σ|)
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2.5 Multi-objective Bayesian Global Optimization

The maximum likelihood estimates of the mean µ̂ and the variance σ̂2 are given
by:

µ̂ =
1TnΣ−1y

1TnΣ−11n

σ̂2 =
1

n
(y − 1nµ̂)TΣ−1(y − 1nµ̂)

Then the predictor of mean and variance at point xt can be derived and they are
shown as follows [41]:

µ(xt) = µ̂+ cTΣ−1(y − µ̂1n)

σ2(xt) = σ̂2[1− cTΣ−1c +
1− cTΣTc

1T
nΣ−11n

]

where c = (Corr[Y (xt), Y (x1)], · · · , Corr[Y (xt), Y (xn)])T .

2.5.2 Structure of MOBGO

Compared to multi-objective evolutionary algorithms, MOBGO requires only a
small budget of function evaluations [10]. As a result, it has already been im-
plemented in the real world optimization for expensive evaluation problems. Ac-
cording to the authors’ knowledge, it was for the first time used in the context
of airfoil optimization [42]. Later, it was applied in the field of biogas plant
controllers [43], in the detection of water quality management [44], in the struc-
tural design optimization [45] and could be implemented in the other real-world
optimization problems with expensive evaluations.

Multi-Objective Bayesian Global Optimization is assuming that d objective func-
tions are mutually independent in an objective space. In MOBGO, the Kriging
method or Gaussian process can approximate Kriging models M with respect
to objective functions and the uncertainties of the prediction, from the existing
evaluated data D =

(
(x(1),y(1) = Y (x(1))), . . . , (x(µ),y(µ) = Y (x(µ)))

)
. Each ob-

jective function at a given point x(t) is approximated by a one-dimensional normal
distribution, with mean µ and standard deviation σ. Then MOBGO can predict
the multivariate outputs by means of an independent joint normal distribution
with parameters µ1, . . . , µd and σ1, . . . , σd at the point x(t).

These predictive means and standard deviations can be used to calculate infill
criteria. An infill criterion measures how promising a new point is, when com-
pared to a current Pareto-front approximation. With the assistance of a single
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2. CONTINUOUS MULTI-OBJECTIVE OPTIMIZATION

objective optimization algorithm, ’optimal’ solution x∗ can be found according
to the score of the infill criterion. This score of the infill criterion is calculated
by the predictions of the Kriging models, instead of by the direct objective func-
tions. Then, the ’optimal’ solution x∗ is evaluated, and both the dataset D and
the Pareto-front approximation set P are updated.

Algorithm 3: MOBGO algorithm
Input: Objective functions y, initialization size µ, termination criterion Tc
Output: Pareto-front approximation P

1: Initialize µ points (x(1), · · · ,x(µ));
2: Evaluate the initial set of µ points: (y(1) = y(x(1)), . . . ,y(µ) = y(x(µ)));
3: Store (x(1), · · · ,x(µ)) and (y(1) = y(x(1)), . . . ,y(µ) = y(x(µ))) in D:
D = ((x(1),y(1)), . . . , (x(µ),y(µ)));

4: Compute the non-dominated subset of D and store it in P;
5: g = 1;
6: while g <= Tc do
7: Train surrogate models M based on D;
8: Use an optimizer to find the promising point x∗ based on surrogate

models M , with the infill criterion C;
9: Update D: D = D ∪ (x∗,y(x∗));
10: Update P as non-dominated subset of D;
11: g = g + 1;
12: end while
13: Return P.

The basic structure of the MOBGO algorithm is shown in Algorithm 3. It mainly
contains three parts: initialization, updating and searching, and returning.

Firstly, the dataset D is initialized and the Pareto-front approximation set P is
calculated, as shown in Algorithm 3 from Step 1 to Step 5. The initialization
of D contains generation of the decision vectors (Step 1), calculation of the cor-
responding objective values (Step 2) and storage of this information in data set
D (Step 3). This data set D will be utilized to build the Kriging models in the
second part.

The second part of MOBGO is the main loop, as shown in Algorithm 3 from Step 6
to Step 12. In this main loop, it is started by training the Kriging modelsM based
on data set D (Step 6). Please note that M contains d independent models for
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2.5 Multi-objective Bayesian Global Optimization

each objective function, and these models would be used as temporary objective
functions instead of ’true’ objective functions at Step 7. Then, an optimizer can
find the promising point x∗ by maximizing or minimizing an infill criterion C (Step
7). Here, an infill criterion is calculated by its corresponding calculation formula,
as the inputs of Kriging modelsM , Pareto-front approximation P, decision vector
x, etc. In Step 8, a single-objective optimization algorithm is required to find
the promising point x∗ for each temporary objective function – i.e., surrogate
model. In this dissertation, the BI-Population CMA-ES has been chosen as the
optimizer to find the promising point x∗, considering its favorable theoretical
properties [46]. After finding the promising point x∗, Step 9 and Step 10 will
update the dataset D by adding (x∗,y(x∗)) into D and update the Pareto-front
approximation P, respectively. The main loop from Step 6 to Step 12 will not
stop until g meats the termination criterion Tc.

The last part of MOBGO is the return of Pareto-front approximation P.

In single objective Bayesian Global Optimization, some common infill criteria in-
clude the Expected Improvement (EI) [41, 47], Probability of Improvement (PoI)
[48, 49], and Lower Confidence Bounds (LCB) [50, 51, 52, 53]. In Multi-Objective
Bayesian Global Optimization, some common infill criteria are: Hypervolume
Indicator (HV) [54], Probability of Improvement (PoI) [48, 49, 55], Hypervol-
ume Improvement (HVI) [27]1, Euclidean distance-based EI [55], Hypervolume
Contribution (HVC) [19], Expected Hypervolume Improvement (EHVI) [47, 56],
Tchebycheff aggregation based EI (EA-EI)[57], Hypervolumme based PoI [58],
Truncated Expected Hypervolume Improvement (TEHVI) [6, 7], and EI of penalty-
based boundary intersection (PBI-EI) [59].

2.5.3 Example

The behavior of the BGO based on the expected hypervolume improvement will
be illustrated by a single numerical experiment.

The numerical example is visualized in the plots of Figure 2.5. The bicriteria
optimization problem from Emmerich et al. [60] is: f1(x) = ||x − 1|| → min,
f2(x) = ||x + 1|| → min, x ∈ [−2, 2]× [−2, 2] ⊂ R2. The Pareto front is the line
segment from (0, 2 ·

√
2) to (2 ·

√
2, 0), the efficient set is the line segment that

connects (−1,−1) and (1, 1). The metamodel used is a Gaussian random field
model with Gaussian correlation function exp(−θ||x(1) − x(2)||2), for x(1) ∈ Rm

1The HVI was called the most likely improvement (MLI) in [27].
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2. CONTINUOUS MULTI-OBJECTIVE OPTIMIZATION

Figure 2.5: Example Run of Multicriteria Bayesian Global Optimization.

and x(2) ∈ Rm, herem = 2. We set θ = 0.0001, which was estimated by maximum
likelihood method for initial sample. An initial set of 10 points was evaluated
indicated by the dark blue squares in Figure 2.5 (f). From this starting set 15
new points were generated using the expected hypervolume improvement. The
maximizer of the expected improvement was found using a uniform grid. In total,
each objective function was evaluated 25 times.

The results of the experiment are depicted in plots. In all pictures, points that
have been evaluated are indicated by triangles. The points from the initial set
are additionally marked by squares. Efficient points are surrounded by circles.
The figures in the the top row, Figure 2.5 (a) and (b), depict the mean value
of the Gaussian random field model at x ∈ [−2,2] × [−2,2] for f1 and f2, re-
spectively. Likewise, the figures in the middle row, Figure 2.5 (c) and (d), depict
the variance of the Gaussian random field model at x ∈ [−2,2] × [−2,2] for
f1 and f2, respectively. The expected hypervolume improvement values after 25
iterations are shown in Figure 2.5 (e). The final set of points in the objective
space and the Pareto front approximation can be found in Figure 2.5 (f). After

24



2.6 Summary

only 25 evaluations of the original objective functions, the algorithm finds a good
approximation to the Pareto front.

2.6 Summary

Most practical optimization problems involve more than one objective, simply
due to the fact that no product, process, or system can be assessed with a single
criterion. Since, frequently, there are conflicting criteria, such as minimizing cost
and maximizing the quality of a product, Multi-Objective Optimization problems
give rise to a set of trade-off optimal (known as Pareto optimal) solutions.

In this chapter, we defined vital terms that are used in MOBGO research, intro-
duced some infill criteria in MOO, described two state-of-the-art EMOAs with
a practical problem, and introduced the structure of MOBGO, together with a
simple example for the illustration. This chapter only defines the fundamental
terminologies of this research. Other related terminologies are represented in each
chapter.

25


