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Chapter 1

Introduction

1.1 Background

Optimization is a process of searching for the best solution from a set of available
solutions. Single-objective optimization and multi-objective optimization are two
main branches. They are distinguished with respect to the number of considered
objective functions. Specifically, single-objective optimization considers one ob-
jective function, while multi-objective optimization (MOO) involves more than
one objective function simultaneously.1 An easy way to solve a multi-objective
optimization problem is to convert it into single-objective optimization, by form-
ing a weighted sum of all objective functions. This method is simple but not
effective when the objectives are conflict. This is the reason why researchers are
interested in treating each objective separately and using the Pareto front concept
for optimization.

Based on evolutionary algorithms, many evolutionary multi-objective optimiza-
tion methodologies have been proposed over the past several decades in order to
find an efficient approximation of the Pareto front. However, evolutionary multi-
objective optimization (EMO) is inefficient when dealing with expensive function
evaluation problems, because EMO usually needs more than ten thousand func-
tion evaluations and such a large number of function evaluations are unrealistic
to be applied in many practical applications.

1In some papers, multi-objective optimization means the number of the objective functions
is 2 or 3, and many-objective optimization is used to indicate more than 3 objective functions.
Typically, optimization problems are defined by means of one or more objective function(s).
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A common remedy to this problem is Multi-objective Bayesian global optimiza-
tion (MOBGO), which partially replaces exact objective function evaluations by
using predictions from the so-called Kriging or Gaussian process models. These
surrogate models provide a predictive distribution, consisting of a mean value
and a standard deviation of each objective function.2 The scheme of a MOBGO
involves sequentially updating the surrogate models by a predicted optimum and
its corresponding objective function value. An optimizer is utilized in MOBGO
in order to search for a predicted optimum, which is the next point for evaluation,
according to the so-called infill criterion.

In practical applications, MOBGO is actually not widely utilized. This is because
MOBGO requires a lot of execution time, even though it only requires far fewer
evaluations of the objective functions. Three main aspects limit the efficiency of
MOBGO:

1. Updating the surrogate models is very expensive;

2. Computational complexity of an infill criterion is very high;

3. The optimizer for searching an optimal solution from the surrogate models
is not sufficiently effective.

To improve the efficiency and effectiveness of MOBGO, many researchers have
attempted to overcome the drawbacks mentioned above. In order to update the
surrogate models more efficiently, some researchers reduced the sampling data
by using a clustering method. In this dissertation, the central research questions
are surrounding the second and the third aspects to improve the performance of
MOBGO.

1.2 Research Questions

The first research question of this work is how to improve the efficiency
of exact EHVI calculation. Since an infill criterion plays an important select-
ing role in MOBGO and values the performance of the Pareto front approxima-
tion, it is essential to find an effective and efficient infill criterion in MOBGO.
Some common infill criteria are Hypervolume (HV), Hypervolume Improvement
(HVI), Probability of Improvement (PoI), Expected Hypervolume Improvement
(EHVI). Compared to other criteria, EHVI takes the predictive mean value and

2The hypothesis of MOBGO is that objective functions are independent.

2



1.2 Research Questions

standard deviation into account and can balance exploitation1 and exploration1

well, which are two important aspects in optimization. Nevertheless, EHVI is
mainly utilized in scientific research but seldom applied in real applications, which
is caused by its high computational complexity. In order to solve this problem,
an efficient EHVI calculation algorithm is proposed in this dissertation.

The second research question of this work is how to improve the ef-
fectiveness of MOBGO, by taking a-priori knowledge of the objective
functions into consideration. The definition of EHVI is based on the con-
cept of a normal distribution, with the assumption that an objective function
value is a real number, from minus infinity to infinity. The EHVI assumes an
unbounded objective space even if it is often known a-priori that the objective
function values are within a prescribed range. In some cases, a-priori knowledge
of the range of an objective function value is already available. For instance, in
a PID1 parameter tuning problem, the rising time is always a positive value. In
these cases, it is assumed that surrogate-model based algorithms could converge
to true Pareto front faster, if the range of the objective functions could be ap-
plied during the optimization. To take advantage of such a-priori knowledge, a
new criterion called Truncated Expected Hypervolume Improvement (TEHVI) is
proposed in this dissertation.

The third research question of this work is how to solve the preference-
based Pareto front problems. In a practical application, what interests a
decision maker (DM) is not the entire Pareto front approximation set, but how to
find more solutions which can best match his/her preferences. TEHVI is capable
of solving the preference-based Pareto front problems by setting the domain of
the truncated normal distributions according to a decision maker’s preference.
Inspired by the concept of TEHVI, Truncated Hypervolume is also applied to
solve this problem.

The last research question of this work is how to improve the efficiency
of the optimizer in MOBGO. An optimizer searches for the optimal solution
according to an infill criterion, which is based on the predictions of the surrogate
models. Theoretically, any single-objective optimization algorithm can be ap-
plied as the optimizer in MOBGO. Usually, some state-of-the-art single-objective
evolutionary algorithms are chosen for the optimizer, such as genetic algorithm
(GA) and covariance matrix adaptation evolution strategy (CMA-ES). However,

1Exploitation means to search a limited but promising region in the search space.
1Exploration means to search a much larger region of the search space, with the hope of

finding other promising solutions.
1PID controller is short for the proportional-integral-derivative controller.
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EAs requires a large number of function evaluations of the infill criterion, in or-
der to find the optimal solution and update the surrogate models. Because of
this reason, MOBGO still requires much more execution time than evolutionary
multi-objective optimization algorithms (EMOAs), even though MOBGO needs
far fewer evaluations than EMOAs. To improve the efficiency of MOBGO, a new
criterion called Expected Hypervolume Improvement Gradient (EHVIG) is utilized
in an optimizer.

1.3 Dissertation Outline

The outline of this dissertation is described in this section. Each chapter of this
dissertation is based on at least one publication of the author. The following
provides a brief outline of each chapter.

• Chapter 2 lays out the definition of the multi-objective optimization prob-
lem and the terminologies used in this dissertation. A brief introduction
of evolutionary multi-objective algorithms (EMOAs) is provided. These
EMOAs are illustrated by a real application problem. Moreover, a brief
introduction of Bayesian Global Optimization is also described, including a
brief example to illustrate how MOBGO works. Parts of the definitions are
previously published in [1, 2, 3]:

Hupkens, I., Deutz, A., Yang, K., Emmerich, M. (2015). Faster Ex-
act Algorithms for Computing Expected Hypervolume Improvement.
In: Gaspar-Cunha A., Henggeler Antunes C., Coello C. (Eds.), Evo-
lutionary Multi-Criterion Optimization. EMO 2015. Lecture Notes in
Computer Science, vol 9019. Springer, pp. 65-79, Cham.

Emerich, M., Yang, K., Deutz, A., Wang, H., Fonseca, M. (2016).
Multicriteria generalization of Bayesian global optimization. In: Parda-
los, P., Zhigljavsky, A., Žilinskas, J. (Eds.), Advances in Stochastic and
Global Optimization. Springer, pp. 223-236.

Yang, K., Emmerich, M.T.M., Li, R., Wang, J., Bäck, T. (2014).
Power Distribution Network Reconfiguration by Evolutionary Integer
Programming. In: Bartz-Beielstein T., Branke J., Filipič B., Smith J.
(Eds.), Parallel Problem Solving from Nature–PPSN XIII. PPSN 2014.
Lecture Notes in Computer Science, vol 8672, pp. 11-23. Springer,
Cham.
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• Chapter 3 defines what is Expected Hypervolume Improvement (EHVI) and
how to calculate EHVI efficiently. The computational complexity of EHVI
is analyzed, together with a comparison between the performance of EHVI
and other infill criteria. Parts of this chapter are published in the following
articles [4, 5]:

Yang, K., Emmerich, M., Deutz, A., Fonseca, C.M. (2017). Comput-
ing 3-D Expected Hypervolume Improvement and Related Integrals in
Asymptotically Optimal Time. In: Trautmann H. et al. (Eds.), Evo-
lutionary Multi-Criterion Optimization. EMO 2017. Lecture Notes in
Computer Science, vol 10173. Springer, pp. 685-700, Cham.

Yang, K., Deutz, A., Fonseca, C.M., Bäck, T., Emmerich, M. (2017).
Efficient exact computation of expected hypervolume improvement in
Bayesian global optimization. Journal of Global Optimization, Sub-
mitted.

• Chapter 4 describes the definition and the exact calculation method of
Truncated Expected Hypervolume Improvement (TEHVI). TEHVI is derived
from the definition of EHVI, which utilizes the a-priori knowledge of the
objective functions, in order to improve the efficiency of MOBGO, by means
of the conditional distribution. Part of this chapter is published in the
following article [6]:

Yang, K., Deutz, A., Yang, Z., Bäck, T., Emmerich, M. (2016). Trun-
cated expected hypervolume improvement: Exact computation and
application. In: 2016 IEEE Congress on Evolutionary Computation
(CEC), pp. 4350-4357, IEEE.

• Chapter 5 introduces preference-based multi-objective optimization. This
chapter aims at finding a more fine-grained resolution of a preferred region,
instead of exploring the whole set of Pareto front solutions. Two methods
are applied in this chapter: TEHVI assisted by Bayesian global optimization
and Truncated Hypervolume assisted by EAs. The works are previously
published in [7, 8]:

Yang, K., Li, L., Deutz, A., Bäck, T., Emmerich, M. (2016). Preference-
based multiobjective optimization using truncated expected hypervol-
ume improvement. In: 2016 12th International Conference on Nat-
ural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-
FSKD), pp. 276-281, IEEE.

Wang, Y., Li, L., Yang, K., Emmerich, M. (2017). A new approach to
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target region based multiobjective evolutionary algorithms. In: 2017
IEEE Congress on Evolutionary Computation (CEC), pp. 1757-1764,
IEEE.

• Chapter 6 proposes a new infill criterion, namely, the gradient of EHVI
(EHVIG) and utilizes EHVIG in multi-objective optimization by two ap-
proaches: one is applying EHVIG in gradient ascent algorithm and the other
is regarding EHVIG as a stopping criterion in evolutionary algorithms to
find the globally optimal solution. This work is mainly in the following
paper [9]:

Yang, K., Emmerich, M., Bäck, T., Deutz, A. (2017). Multi-objective
Bayesian global optimization using expected hypervolume improve-
ment gradient. Swarm and Evolutionary Computation, Submitted.

• Chapter 7 mainly concerns real-world applications of multi-objective op-
timization, particularly in the fields of bio-gas plant and PID parameter
tuning. These works have been previously published in [6, 10]:

Yang, K., Gaida, D., Bäck, T., Emmerich, M. (2015). Expected
hypervolume improvement algorithm for PID controller tuning and
the multiobjective dynamical control of a biogas plant. In: 2015 IEEE
Congress on Evolutionary Computation (CEC), pp. 1934-1942, IEEE.

Yang, K., Deutz, A., Yang, Z., Bäck, T., Emmerich, M. (2016). Trun-
cated expected hypervolume improvement: Exact computation and
application. In: 2016 IEEE Congress on Evolutionary Computation
(CEC), pp. 4350-4357, IEEE.

• Chapter 8 summarizes the contribution of this dissertation and provides
some suggestions for future work.

• Besides the publications mentioned above, other publications of the author
is [11]:

Yang, Z., Wang, H., Yang, K., Bäck, T., Emmerich, M. (2016). SMS-
EMOA with multiple dynamic reference points. In: 2016 12th In-
ternational Conference on Natural Computation, Fuzzy Systems and
Knowledge Discovery (ICNC-FSKD), pp. 282-288, IEEE.
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