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Chapter 1

Introduction

1.1 Background

Optimization is a process of searching for the best solution from a set of available
solutions. Single-objective optimization and multi-objective optimization are two
main branches. They are distinguished with respect to the number of considered
objective functions. Specifically, single-objective optimization considers one ob-
jective function, while multi-objective optimization (MOO) involves more than
one objective function simultaneously.1 An easy way to solve a multi-objective
optimization problem is to convert it into single-objective optimization, by form-
ing a weighted sum of all objective functions. This method is simple but not
effective when the objectives are conflict. This is the reason why researchers are
interested in treating each objective separately and using the Pareto front concept
for optimization.

Based on evolutionary algorithms, many evolutionary multi-objective optimiza-
tion methodologies have been proposed over the past several decades in order to
find an efficient approximation of the Pareto front. However, evolutionary multi-
objective optimization (EMO) is inefficient when dealing with expensive function
evaluation problems, because EMO usually needs more than ten thousand func-
tion evaluations and such a large number of function evaluations are unrealistic
to be applied in many practical applications.

1In some papers, multi-objective optimization means the number of the objective functions
is 2 or 3, and many-objective optimization is used to indicate more than 3 objective functions.
Typically, optimization problems are defined by means of one or more objective function(s).
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1. INTRODUCTION

A common remedy to this problem is Multi-objective Bayesian global optimiza-
tion (MOBGO), which partially replaces exact objective function evaluations by
using predictions from the so-called Kriging or Gaussian process models. These
surrogate models provide a predictive distribution, consisting of a mean value
and a standard deviation of each objective function.2 The scheme of a MOBGO
involves sequentially updating the surrogate models by a predicted optimum and
its corresponding objective function value. An optimizer is utilized in MOBGO
in order to search for a predicted optimum, which is the next point for evaluation,
according to the so-called infill criterion.

In practical applications, MOBGO is actually not widely utilized. This is because
MOBGO requires a lot of execution time, even though it only requires far fewer
evaluations of the objective functions. Three main aspects limit the efficiency of
MOBGO:

1. Updating the surrogate models is very expensive;

2. Computational complexity of an infill criterion is very high;

3. The optimizer for searching an optimal solution from the surrogate models
is not sufficiently effective.

To improve the efficiency and effectiveness of MOBGO, many researchers have
attempted to overcome the drawbacks mentioned above. In order to update the
surrogate models more efficiently, some researchers reduced the sampling data
by using a clustering method. In this dissertation, the central research questions
are surrounding the second and the third aspects to improve the performance of
MOBGO.

1.2 Research Questions

The first research question of this work is how to improve the efficiency
of exact EHVI calculation. Since an infill criterion plays an important select-
ing role in MOBGO and values the performance of the Pareto front approxima-
tion, it is essential to find an effective and efficient infill criterion in MOBGO.
Some common infill criteria are Hypervolume (HV), Hypervolume Improvement
(HVI), Probability of Improvement (PoI), Expected Hypervolume Improvement
(EHVI). Compared to other criteria, EHVI takes the predictive mean value and

2The hypothesis of MOBGO is that objective functions are independent.
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1.2 Research Questions

standard deviation into account and can balance exploitation1 and exploration1

well, which are two important aspects in optimization. Nevertheless, EHVI is
mainly utilized in scientific research but seldom applied in real applications, which
is caused by its high computational complexity. In order to solve this problem,
an efficient EHVI calculation algorithm is proposed in this dissertation.

The second research question of this work is how to improve the ef-
fectiveness of MOBGO, by taking a-priori knowledge of the objective
functions into consideration. The definition of EHVI is based on the con-
cept of a normal distribution, with the assumption that an objective function
value is a real number, from minus infinity to infinity. The EHVI assumes an
unbounded objective space even if it is often known a-priori that the objective
function values are within a prescribed range. In some cases, a-priori knowledge
of the range of an objective function value is already available. For instance, in
a PID1 parameter tuning problem, the rising time is always a positive value. In
these cases, it is assumed that surrogate-model based algorithms could converge
to true Pareto front faster, if the range of the objective functions could be ap-
plied during the optimization. To take advantage of such a-priori knowledge, a
new criterion called Truncated Expected Hypervolume Improvement (TEHVI) is
proposed in this dissertation.

The third research question of this work is how to solve the preference-
based Pareto front problems. In a practical application, what interests a
decision maker (DM) is not the entire Pareto front approximation set, but how to
find more solutions which can best match his/her preferences. TEHVI is capable
of solving the preference-based Pareto front problems by setting the domain of
the truncated normal distributions according to a decision maker’s preference.
Inspired by the concept of TEHVI, Truncated Hypervolume is also applied to
solve this problem.

The last research question of this work is how to improve the efficiency
of the optimizer in MOBGO. An optimizer searches for the optimal solution
according to an infill criterion, which is based on the predictions of the surrogate
models. Theoretically, any single-objective optimization algorithm can be ap-
plied as the optimizer in MOBGO. Usually, some state-of-the-art single-objective
evolutionary algorithms are chosen for the optimizer, such as genetic algorithm
(GA) and covariance matrix adaptation evolution strategy (CMA-ES). However,

1Exploitation means to search a limited but promising region in the search space.
1Exploration means to search a much larger region of the search space, with the hope of

finding other promising solutions.
1PID controller is short for the proportional-integral-derivative controller.
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1. INTRODUCTION

EAs requires a large number of function evaluations of the infill criterion, in or-
der to find the optimal solution and update the surrogate models. Because of
this reason, MOBGO still requires much more execution time than evolutionary
multi-objective optimization algorithms (EMOAs), even though MOBGO needs
far fewer evaluations than EMOAs. To improve the efficiency of MOBGO, a new
criterion called Expected Hypervolume Improvement Gradient (EHVIG) is utilized
in an optimizer.

1.3 Dissertation Outline

The outline of this dissertation is described in this section. Each chapter of this
dissertation is based on at least one publication of the author. The following
provides a brief outline of each chapter.

• Chapter 2 lays out the definition of the multi-objective optimization prob-
lem and the terminologies used in this dissertation. A brief introduction
of evolutionary multi-objective algorithms (EMOAs) is provided. These
EMOAs are illustrated by a real application problem. Moreover, a brief
introduction of Bayesian Global Optimization is also described, including a
brief example to illustrate how MOBGO works. Parts of the definitions are
previously published in [1, 2, 3]:

Hupkens, I., Deutz, A., Yang, K., Emmerich, M. (2015). Faster Ex-
act Algorithms for Computing Expected Hypervolume Improvement.
In: Gaspar-Cunha A., Henggeler Antunes C., Coello C. (Eds.), Evo-
lutionary Multi-Criterion Optimization. EMO 2015. Lecture Notes in
Computer Science, vol 9019. Springer, pp. 65-79, Cham.

Emerich, M., Yang, K., Deutz, A., Wang, H., Fonseca, M. (2016).
Multicriteria generalization of Bayesian global optimization. In: Parda-
los, P., Zhigljavsky, A., Žilinskas, J. (Eds.), Advances in Stochastic and
Global Optimization. Springer, pp. 223-236.

Yang, K., Emmerich, M.T.M., Li, R., Wang, J., Bäck, T. (2014).
Power Distribution Network Reconfiguration by Evolutionary Integer
Programming. In: Bartz-Beielstein T., Branke J., Filipič B., Smith J.
(Eds.), Parallel Problem Solving from Nature–PPSN XIII. PPSN 2014.
Lecture Notes in Computer Science, vol 8672, pp. 11-23. Springer,
Cham.
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1.3 Dissertation Outline

• Chapter 3 defines what is Expected Hypervolume Improvement (EHVI) and
how to calculate EHVI efficiently. The computational complexity of EHVI
is analyzed, together with a comparison between the performance of EHVI
and other infill criteria. Parts of this chapter are published in the following
articles [4, 5]:

Yang, K., Emmerich, M., Deutz, A., Fonseca, C.M. (2017). Comput-
ing 3-D Expected Hypervolume Improvement and Related Integrals in
Asymptotically Optimal Time. In: Trautmann H. et al. (Eds.), Evo-
lutionary Multi-Criterion Optimization. EMO 2017. Lecture Notes in
Computer Science, vol 10173. Springer, pp. 685-700, Cham.

Yang, K., Deutz, A., Fonseca, C.M., Bäck, T., Emmerich, M. (2017).
Efficient exact computation of expected hypervolume improvement in
Bayesian global optimization. Journal of Global Optimization, Sub-
mitted.

• Chapter 4 describes the definition and the exact calculation method of
Truncated Expected Hypervolume Improvement (TEHVI). TEHVI is derived
from the definition of EHVI, which utilizes the a-priori knowledge of the
objective functions, in order to improve the efficiency of MOBGO, by means
of the conditional distribution. Part of this chapter is published in the
following article [6]:

Yang, K., Deutz, A., Yang, Z., Bäck, T., Emmerich, M. (2016). Trun-
cated expected hypervolume improvement: Exact computation and
application. In: 2016 IEEE Congress on Evolutionary Computation
(CEC), pp. 4350-4357, IEEE.

• Chapter 5 introduces preference-based multi-objective optimization. This
chapter aims at finding a more fine-grained resolution of a preferred region,
instead of exploring the whole set of Pareto front solutions. Two methods
are applied in this chapter: TEHVI assisted by Bayesian global optimization
and Truncated Hypervolume assisted by EAs. The works are previously
published in [7, 8]:

Yang, K., Li, L., Deutz, A., Bäck, T., Emmerich, M. (2016). Preference-
based multiobjective optimization using truncated expected hypervol-
ume improvement. In: 2016 12th International Conference on Nat-
ural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-
FSKD), pp. 276-281, IEEE.

Wang, Y., Li, L., Yang, K., Emmerich, M. (2017). A new approach to

5



1. INTRODUCTION

target region based multiobjective evolutionary algorithms. In: 2017
IEEE Congress on Evolutionary Computation (CEC), pp. 1757-1764,
IEEE.

• Chapter 6 proposes a new infill criterion, namely, the gradient of EHVI
(EHVIG) and utilizes EHVIG in multi-objective optimization by two ap-
proaches: one is applying EHVIG in gradient ascent algorithm and the other
is regarding EHVIG as a stopping criterion in evolutionary algorithms to
find the globally optimal solution. This work is mainly in the following
paper [9]:

Yang, K., Emmerich, M., Bäck, T., Deutz, A. (2017). Multi-objective
Bayesian global optimization using expected hypervolume improve-
ment gradient. Swarm and Evolutionary Computation, Submitted.

• Chapter 7 mainly concerns real-world applications of multi-objective op-
timization, particularly in the fields of bio-gas plant and PID parameter
tuning. These works have been previously published in [6, 10]:

Yang, K., Gaida, D., Bäck, T., Emmerich, M. (2015). Expected
hypervolume improvement algorithm for PID controller tuning and
the multiobjective dynamical control of a biogas plant. In: 2015 IEEE
Congress on Evolutionary Computation (CEC), pp. 1934-1942, IEEE.

Yang, K., Deutz, A., Yang, Z., Bäck, T., Emmerich, M. (2016). Trun-
cated expected hypervolume improvement: Exact computation and
application. In: 2016 IEEE Congress on Evolutionary Computation
(CEC), pp. 4350-4357, IEEE.

• Chapter 8 summarizes the contribution of this dissertation and provides
some suggestions for future work.

• Besides the publications mentioned above, other publications of the author
is [11]:

Yang, Z., Wang, H., Yang, K., Bäck, T., Emmerich, M. (2016). SMS-
EMOA with multiple dynamic reference points. In: 2016 12th In-
ternational Conference on Natural Computation, Fuzzy Systems and
Knowledge Discovery (ICNC-FSKD), pp. 282-288, IEEE.
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Chapter 2

Continuous Multi-objective
Optimization

Evolutionary algorithms (EAs) and Bayesian global optimization (BGO) are two
major branches in the field of continuous optimization algorithms. Both of them
share a similar structure: (1) initialization, (2) evaluation of current solutions,
(3) adjustment of the current solutions for the aim of seeking an improvement
in the next loop, and (4) repetition of the evaluation and adjustment loop. The
difference lies in the adjustment mechanism. For EAs, it is accomplished by evo-
lutionary operators, such as recombination and mutation. For BGO, it is achieved
by learning from the past evaluations and updating a surrogate model.

To start the journey, a good preparation is always required. This chapter serves
to lay out the terminologies and the groundwork of the studies in this dissertation.
The structure of this chapter is structured as follows: Section 2.1 provides the
definition of multi-objective optimization; Section 2.2 defines some fundamental
terminologies in the field of multi-objective optimization; Section 2.3 provides the
definitions of some common infill criteria; Section 2.4 describes two state-of-the-
art evolutionary multi-objective optimization algorithms, namely SMS-EMOA
and NSGA-II, which are utilized to solve a power distribution network reconfig-
uration problem in this chapter; Section 2.5 introduces multi-objective Bayesian
global optimization, together with Kriging and a simple example.

7



2. CONTINUOUS MULTI-OBJECTIVE OPTIMIZATION

2.1 Multi-objective Optimization

Multi-objective optimization is a generalization of single-objective optimization.
It can be generalized by means of selecting the best combination of parameters
in order to optimize the multiple performances simultaneously. The basic idea
of MOO is that it optimizes the performances depending on these parameters,
possibly subject to some restrictions on the allowed parameter ranges. The perfor-
mances of the problem which needs to be optimized are called objective functions
or fitness functions and they depend on the combination of parameters; the pa-
rameters are called decision variables or the decision vector ; the range of the
decision vectors is known as search space; the restrictions on allowed parameters
are called constraints ; an allowed decision vector is called a feasible decision vec-
tor. A multi-objective optimization (MOO) problem is an optimization problem
that involves multiple objective functions and it can be formulated as:

max
(
y1(x), y2(x), · · · , yd(x)

)
(1-1)

subject to x ∈ X ⊆ S

where the integer d is the number of objective functions, X is the feasible set of
decision vectors, yi i = 1, · · · , d are the objective functions, and S is the search
space of decision vectors x in m dimensional space.

Multi-objective optimization consists of two main branches of algorithmic solu-
tion approaches. The first approach is called weighted sum method. It converts a
multi-objective optimization problem into a single-objective optimization prob-
lem by multiplying each objective function with a corresponding weighting factor
and summing them up. The weighted sum method is simple and easy to be im-
plemented. However, its weakness is obvious. On the one hand, it is very difficult
to depict the thoroughly complete Pareto front set [12]. On the other hand, the
solution obtained by using the weighted sum method does not necessarily reflect
the preferences, when we want to represent the preferences of a decision maker
by weights [13].

The second approach treats each objective function separately and utilizes the
concept of a Pareto front as the fundamental concept to optimize each objective
function by using different mechanisms (non-dominated ranking, infill criteria
based on Pareto front, etc.). This research focuses on the second approach.

8



2.2 Terminologies

2.2 Terminologies

This section mainly introduces the concepts and terminologies of a Pareto front
based on the objective space1. A Pareto front set is based on the dominance
concept. The dominance is defined as follows:

Definition 2.1 (Dominance [14]) Given two decision vectors x(1),x(2) ∈ X

and their corresponding objective values y(1) = y(x(1)), y(2) = y(x(2)), it is said
that y(1) dominates y(2), being represented by y(1) ≺ y(2), iff ∀i ∈ {1, 2, · · · , d} :

yi(x
(1)) ≤ yi(x

(2)) and ∃j ∈ {1, 2, · · · , d} : yj(x
(1)) < yj(x

(2)).

Dominance is a fundamental concept in multi-objective optimization, and it pro-
vides an explicit relation between two solutions. In some cases, it can be used to
decide which solution is better than the other. However, more interests from the
perspective of research are put on the non-dominated solutions in MOO, because
a point in a non-dominated space means a potential improvement of the objective
function values.

Definition 2.2 (Non-dominance [2]) Given a decision vector set X ⊂ S, and
the image of the vector set is Y = {y(x)|x ∈ X}, the non-dominated subset of Y

is defined as:

nd(Y) := {y ∈ Y|@z ∈ Y : z ≺ y} (2-2)

A vector y ∈ nd(Y) in the objective space is called a non-dominated point. A
non-dominated set means that there is no solution better or equally good in all
components of the objective space. However, there could be solutions that are, at
least, better in some component(s) with sacrificing the performance in the other
component(s). The goal of MOO is trying to find all non-dominated solutions in
a whole feasible search space, which is called Pareto front, and defined as:

Definition 2.3 (Pareto front [14]) For a feasible decision set X ⊂ S , the
image of it is Y = {y(x)|x ∈ X}, the Pareto front set P∗ is defined as:

P∗ : = {y ∈ Y|@z ∈ Y : z ≺ y}
= nd(Y) (2-3)

1In some papers, dominance is represented in a search space, instead of an objective space.

9



2. CONTINUOUS MULTI-OBJECTIVE OPTIMIZATION

In a Pareto front, each solution is a non-dominated point in Y. Then, the prob-
lem of MOO is converted to how to find a Pareto front set P∗. However, a
Pareto front P∗ is difficult to be obtained, especially for a high-dimensional and
continuous black-box problem. This is because usually only a finite number of
non-dominated points can be obtained. Commonly, a Pareto front approximation
set, which contains only a subset of a Pareto front set, is used to be optimized
in MOO. Then, the final question will become how to define a Pareto front ap-
proximation set P which can approximate the Pareto front set P∗ best. A Pareto
front approximation is defined as:

Definition 2.4 (Pareto front approximation) Given a Pareto front set P∗,
a Pareto front approximation set P is any set of mutually non-dominated points
and it is defined as:

P := {y ∈ Y
′ ⊆ Y|@z ∈ Y

′
: z ≺ y} (2-4)

Example 2.1 Figure 2.1 illustrates the concept of Pareto Dominance, Pareto
front and Pareto front approximation in 2-D case. Suppose the image of the
decision space X ⊂ S is Y, then Y can be expressed by dots in Figure 2.1. The
Pareto front P∗ of Y is the non-dominated set of Y and it is represented by solid
black curves. A Pareto front approximation P, represented by the solid gray dots
surrounded by dashed curves, is dominated by P∗. The other gray dots are the
dominated points, which are dominated by P.

2.3 Infill Criteria2

Given two Pareto front approximation sets, how to evaluate and compare the
quality between the two Pareto front approximation sets? This section introduces
some basic infill criteria, which will be used in later chapters, in MOO.

Hypervolume Indicator: The Hypervolume Indicator, proposed by Zitzler
and Thiele [15], measures the size of the dominated subspace bounded from below3

2This section only considers maximization problems.
3The original definition was for minimization problems and the reference point bounds the

set from above.
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P

P∗Dominated points

r

Figure 2.1: Example of 2-D Pareto front and Pareto front approximation.

by a reference point r. The hypervolume indicates the performance of a Pareto-
front approximation set P ⊂ (Rd)n, where n stands for the number of the points
in P, and the maximization of HV can lead to a Pareto-front approximation set
that is close to the true Pareto front. In 2-D and 3-D cases, the hypervolume
indicator can be computed in time Θ(n log n) [16]. In more than 3 dimensions,
the algorithm proposed by Chan [17] achieves O(n

d
3 polylog n) time complexity.

The hypervolume indicator is defined as:

Definition 2.5 (Hypervolume Indicator) Given a finite Pareto front approx-
imation set, say P = {y(1), . . . ,y(n)} ⊂ Rd, the Hypervolume Indicator (HV) of
P is defined as the d-dimensional Lebesgue measure of the subspace dominated by
P and bounded below by a reference point r:

HV(P) = λd(∪y∈P[r,y]) (3-5)

with λd being the Lebesgue measure on Rd.

The reference point needs to be provided by the user, and it should, if possible,
be chosen in such a way that it is dominated by all elements of the Pareto-front
approximation sets P that might occur during the optimization process.

Hypervolume Improvement Hypervolume Improvement (HVI) is also called
Improvement of Hypervolume in [18]. The basic idea of HVI is the HV change of
a Pareto front approximation set P before and after adding an evaluated point y
in it. The definition of Hypervolume Improvement is:

11



2. CONTINUOUS MULTI-OBJECTIVE OPTIMIZATION

Definition 2.6 (Hypervolume Improvement) Given a finite collection of vec-
tors P ⊂ Rd, the Hypervolume Improvement (HVI) of a vector y ∈ Rd is defined
as:

HVI(y,P) = HV(P ∪ {y})− HV(P) (3-6)

In case we want to emphasize the reference point r, the notation HVI(y,P, r)

will be used to denote the Hypervolume Improvement. Note that HVI(y,P) = 0,
in case y ∈ P.

Hypervolume Contribution Another HV based criterion is Hypervolume
Contribution (HVC). It is applied as a selection criterion in SMS-EMOA [19].
The most efficient algorithm to calculate HVC (one time) currently holds a time
complexity Θ(n log n) for d = 2, 3 as proposed by Emmerich and Fonseca in
[20]. The basic idea behind HVI and HVC is the same, that is, to calculate the
difference of the hypervolume between two Pareto front approximation sets. The
Hypervolume Contribution is defined as:

Definition 2.7 (Hypervolume Contribution) Given a finite collection of vec-
tors P ⊂ Rd, the Hypervolume Contribution (HVC) of a vector y ∈ Rd is defined
as:

HVC(y,P) = HV(P)− HV(P \ {y}) (3-7)

In case we want to emphasize the reference point r, the notation HVC(y,P, r)

will be used to denote the Hypervolume Contribution.

Example 2.2 Figure 2.2 illustrates the concept of the Hypervolume Improve-
ment and the Hypervolume Contribution. For the 2-D case, suppose a Pareto
front approximation set is P, which is composed by y(1) = (1, 2.5)T , y(2) =

(2, 1.5)T and y(3) = (3, 1)T . When a new point y(+) = (2.8, 2.3)T is added, the Hy-
pervolume Improvement HVI(P,y(+)) is the yellow area. The Hypervolume Con-
tribution of y(1) is the green area. The right figures illustrate the Hypervolume
Improvement and the Hypervolume Contribution for the 3-D case. A Pareto-
front approximation is P =

(
y(1) = (4, 4, 1)T , y(2) = (1, 2, 4)T , y(3) = (2, 1, 3)T

)
.

The Hypervolume Improvement of y(+) = (3, 3, 2)T relative to P is given by the
joint volume covered by the yellow slices. The Hypervolume Contribution of y(1)

is given by the joint volume covered by the green slices.
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2.3 Infill Criteria1

Other infill criteria, for instance, Expected Hypervolume Improvement, Probability
of Improvement and Truncated Hypervolume Improvement will be introduced in
later chapters.

y1
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Figure 2.2: The left column illustrates Hypervolume Improvement for 2-D and
3-D cases. The right column illustrates Hypervolume Contribution for 2-D and 3-D
cases. The yellow areas stand for the Hypervolume improvement of y(+), and green
areas represent the Hypervolome contribution of y(1).
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2. CONTINUOUS MULTI-OBJECTIVE OPTIMIZATION

2.4 Evolutionary Multi-objective Optimization Al-
gorithms

Evolutionary algorithms are population based metaheuristics optimization algo-
rithms and they are inspired by biological paradigm of natural selection, recom-
bination and mutation [21, 22]. The main advantage of evolutionary algorithms,
when applied to solve multi-objective optimization problems, is the fact that they
typically generate sets of solutions, allowing computation of an approximation of
the entire Pareto front.

2.4.1 NSGA-II

NSGA-II is an improved version of NSGA (Nondominated Sorting Genetic Algo-
rithm) [23], and it is a classical multi-objective algorithm proposed by Deb et al.
[24, 25]. Being the most commonly applied evolutionary algorithm in the field of
multi-objective optimization, NSGA-II serves as a reference algorithm in this dis-
sertation. NSGA-II implements elitist mechanism,2 where all the non-dominated
solutions discovered are preserved from the beginning of the initial population.
The selection mechanism of NSGA-II considers two factors: non-dominated rank
of an individual in the population and its crowding distance (the average distance
between two points on either side of this point along each of the objectives) for
two objectives optimization. The priority between these two factors is the non-
dominated rank. If two solutions are in the same non-dominated rank, the one
that resides in the less crowded region is chosen. The basic structure of NSGA-II
is shown in Algorithm 1.

2.4.2 SMS-EMOA

A popular algorithm that uses the hypervolume indicator as a selection criterion
is SMS-EMOA [27]. In its two-dimensional instantiation, it can be viewed as a
steady state variant of the NSGA-II algorithm [25] that replaces the crowding
distance by hypervolume contributions, and thereby generates a sequence of ap-
proximation sets that grow according to the hypervolume indicator. The basic
structure of SMS-EMOA is illustrated in Algorithm 2.

2This was claimed by the authors, but it is wrong and explained in Emmerich et al. [26].
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2.4 Evolutionary Multi-objective Optimization Algorithms

Algorithm 1: NSGA-II
Input: Crossover rate pc, mutation rate pm, population size µ, offspring

size λ, objective functions y

Output: Pareto front approximation P

1: Evaluate an initial set of µ points and store these in
P = ((x(1),y(1) = y(x(1))), . . . , (x(µ),y(µ) = y(x(µ))));

2: while termination criterion not satisfied do
3: Select parents X

′ from P: X
′
= Selection(P) ;

4: Crossover for X
′ : X

′
= Crossover(X

′
, pc) ;

5: Mutation for X
′ : X

′
= Mutation(X

′
, pm) ;

6: Evaluate the offspring X
′ and store these in

P
′
= ((X

′(1),y(1) = y(X
′(1))), . . . (X

′(λ),y(λ) = y(X
′(λ))));

7: Fast non-dominated sorting for P ∪ P
′ :

F = FastNonDominatedSorting(P ∪ P
′
) ;

8: Update P by selecting best µ individuals from P ∪ P
′ ;

9: Return P

SMS-EMOA shows a slightly better performance on standard benchmarks than
other commonly applied multi-objective optimization algorithms such as NSGA-
II [27]. Therefore, SMS-EMOA was chosen as another reference algorithm in this
research. We will compare its performance with that of multi-objective Bayesian
global optimization defined in Chapters 3, 4, 5 and 8.

2.4.3 Example1

The utilization of evolutionary multi-objective algorithm is illustrated through a
power distribution network reconfiguration problem (DNRP), which is served as
a preliminary study in this dissertation. The network reconfiguration problem
in a power distribution system aims at finding the best configuration of a radial
network by changing the status of the switches in a power network system. There
are two types of switches: normally closed switches and normally open switches.
See Figure 2.3, for an example of a power distribution network configuration, the

1This example is a discrete optimization problem, and all the other parts of this dissertation
consider only continuous optimization problems.
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2. CONTINUOUS MULTI-OBJECTIVE OPTIMIZATION

Algorithm 2: SMS-EMOA
Input: Objective functions y, population size µ
Output: Pareto front approximation P

1: Evaluate an initial set of µ points and store these in
P = ((x(1),y(1) = y(x(1))), . . . , (x(µ),y(µ) = y(x(µ))));

2: while termination criterion not satisfied do
3: Generate a new solution xnew using PMX recombination and/or

polynomial mutation operator (cf. [25]) on (some) solutions of P ;
4: Add point xnew to P ;
5: Compute dominance rank of each solution in P by means of

non-dominated sorting ;
6: Determine Rmax as the worst ranked layer of P and remove it from the

solution with smallest hypervolume contribution ;

7: Return P

119 bus system [28], where the solid black lines represent normally closed switches,
while dashed red lines represent normally open switches. Network reconfiguration
is the process of changing the topology of the power network by operating these
switches for the purpose of minimization of the power loss. Since each switch
has two conditions, a system which has N nodes should contain 2N−1 possible
switch configurations. In order to ensure that all the customers can get electricity
and no short circuit exists in the system, there are two constraints for network
reconfiguration: no cycles (the radial structure of the network must be maintained
in each new structure) and no islands (all the loads must be served).

The objective functions are the minimization of power loss and the maximization
of the network’s reliability–i.e. minimization of voltage deviation in this section.
The objective function for the minimization of power loss can be described
as [29]:

min floss =
b∑
i=1

kiRi
P 2
i +Q2

i

V 2
i

=
b∑
i=1

kiRi | Ii |2 (4-8)

subject to:
V min
i ≤ Vi ≤ V max

i (4-9)

Ii ≤ Imaxi , i = 1, ..., b (4-10)

Here b is the number of branches and for each branch i ∈ {1, ..., b}, Ri is the
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2.4 Evolutionary Multi-objective Optimization Algorithms

Figure 2.3: Initial configuration of the 119-bus test system.

branch resistance, Pi and Qi are the active power and the inactive power of a
branch terminal i, Vi is the terminal node voltage of branch i, V min

i and V max
i

are the minimum and maximum bus voltage of branch i, respectively, ki is the
status variable of i-th switch. If ki is 0, then switch i is open and if ki is 1, then
switch i is closed. Ii is the branch current and Imaxi is the maximum current in
branch i.

The objective function forminimization of voltage deviation can be expressed
as follows [30][31]:

min fV DI = max{| 1− Umin |, | 1− Umax |} (4-11)

where Umin and Umax are respectively the lowest and highest values of bus voltage
which is divided by rated voltage to normalize them to value in [0, 1]. In this
dissertation, Newton’s Method based on MATPOWER [32], which is a power
flow calculation toolbox on MATLAB, is applied to calculate power loss and
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2. CONTINUOUS MULTI-OBJECTIVE OPTIMIZATION

voltage deviation. The parameters in Newton’s methods are: maximum number
of iterations is 20 and termination tolerance on per unit is 1e-8.

In this problem, a multi-objective optimization algorithm is achieved by replacing
the selection scheme of a previously single objective optimizer by that of a multi-
objective algorithm, namely the (µ+µ) selection of NSGA-II [25] and the (µ+1)
selection of SMS-EMOA [19] (which has earlier been used also in Pareto archivers
[33]). As a second objective voltage deviation is minimized (see equation 4-
11).

As an adaptation, we introduce a variant of SMS-EMOA and NSGA-II with a
self-adaptive single step size. Whenever more than five mutations per individual
were unsuccessful, the step size was multiplied by a constant factor of 1/1.2
(following the 1/5th success rule). The success of a generation was registered
if a new non-dominated solution entered the archive of non-dominated solutions
among all solutions encountered so far.
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Figure 2.4: Best, worst, and average attainment curves for the multi-objective
optimization of 119 DNRP. The worst attainment curves of the multiple stepsizes
are missing in the below pictures, because they are too far away from the best
curves.

The results (attainment curves) for a population size of µ = 30 and 11 runs per
algorithm are shown in Figure 2.4, where f1 and f2 represent voltage deviation
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2.5 Multi-objective Bayesian Global Optimization

and power loss, respectively. Here, attainment curve1 is a useful tool to assess
the statistical performances of stochastic multi-objective optimizers, and visualize
the outcome of a series of optimization trails [34, 35, 36].

In the following discussion of Pareto front, we mean the archive of all non-
dominated solutions encountered in a single run. SMS-EMOA with a single step
size provides the best Pareto fronts in the best case and also in the average case.
Interestingly, all strategies find a Pareto front with a concave part, which is inter-
preted that locally there is a strong conflict between power loss minimization and
voltage deviation minimization in this problem. However, the range of voltage
deviation is relatively small, so that ’from a distance’ the Pareto front has an
apparent knee point region. Solutions in this region are recommended as good
compromise solutions, whereas points located on the flanks of the Pareto front
are not recommended, as small improvements in one objective will cause a large
deterioration of the other objective.

2.5 Multi-objective Bayesian Global Optimization

In multi-objective optimization, the objective function evaluations are usually
costly and evolutionary multi-objective optimization algorithms are usually not
efficient to solve these expensive function evaluation problems. This is because
EMOAs typically require a large number of function evaluations, furthermore,
the Pareto optimality of the solutions cannot be guaranteed with fewer function
evaluations. Therefore, EMOA is not recommended when function evaluations
are expensive. In such cases, a better idea is perhaps to utilize information
from all previous evaluations. This kind of algorithm is called Bayesian Global
Optimization (BGO), which was proposed by Mockus et al. in [37].

The basic idea of BGO is to use a surrogate model based on Kriging or Gaussian
process. A surrogate model reflects the relationship between decision vectors
and their corresponding objective values. This surrogate model is learnt from the
previous evaluations. For multi-objective problems, the family of these algorithms
is calledMulti-Objective Bayesian Global Optimization (MOBGO). The scheme of
a MOBGO algorithm is sequentially updating a surrogate model, instead of ’true’
objective functions, by an optimizer and its corresponding objective function
value. An optimizer in MOBGO is utilized to search for a promising point x∗ by
maximizing/minimizing an infill criterion according to surrogate models.

1Attainment curve is also called attainment surface for more than two objectives.
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2. CONTINUOUS MULTI-OBJECTIVE OPTIMIZATION

2.5.1 Kriging

Kriging is a statistical interpolation method. Being a Gaussian process based
modelling method, it is cheap to evaluate [38]. Kriging has been proven to be
a popular surrogate model to approximate noise-free data in computer experi-
ments, where Kriging models are fitted on previously evaluated points and then
replace the real time-consuming simulation model [39]. Given a set of n decision
vectors X = (x(1),x(2), · · · ,x(n))T in m dimensional search space, and associated
function values y(X) = (y(x(1)), y(x(2)), · · · , y(x(n)))T , Kriging assumes y to be a
realization of a random process Y and it is of the form [40, 41]:

Y (x) = µ(x) + ε(x) (5-12)

where µ(x) is estimated mean value over all given sampled points, and ε(x) is a re-
alization of a normally distributed Gaussian random process with zero mean and
variance σ2. The regression part µ(x) approximates globally the function Y and
Kriging/Gaussian process ε(x) takes local variations into account. Moreover, as
opposed to other regression methods, such as supported vector machine (SVM),
Kriging/GP also provides an uncertainty qualification of a prediction. The cor-
relation between the deviations at two points (x and x′) is defined as:

Corr[ε(x), ε(x′)] = R(x,x′) =
d∏
i=1

Ri(xi, x
′
i) (5-13)

Here R(., .) is the correlation function, which can be cubic or spline function.
Commonly, a Gaussian function (also known as squared exponential) is cho-
sen:

R(x,x′) =
d∏
i=1

exp(−θi(xi − x′i)2) (θi >= 0)

where θ are parameters of correlation model and they can be interpreted as mea-
suring the importance of the variable. Then the covariance matrix can be ex-
pressed by the correlation function:

Cov(ε) = σ2Σ, where Σi,j = R(xi,xj)

When µ(x) is assumed to be an unknown constant, this unbiased prediction is
called ordinary Kriging (OK). In OK, the Kriging model determines the hyper-
parameters θ = [θ1, θ2, · · · , θn] by maximizing the likelihood on the observed
dataset. The expression of the likelihood function is:

L = −n
2

ln(σ2)− 1

2
ln(|Σ|)
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The maximum likelihood estimates of the mean µ̂ and the variance σ̂2 are given
by:

µ̂ =
1TnΣ−1y

1TnΣ−11n

σ̂2 =
1

n
(y − 1nµ̂)TΣ−1(y − 1nµ̂)

Then the predictor of mean and variance at point xt can be derived and they are
shown as follows [41]:

µ(xt) = µ̂+ cTΣ−1(y − µ̂1n)

σ2(xt) = σ̂2[1− cTΣ−1c +
1− cTΣTc

1T
nΣ−11n

]

where c = (Corr[Y (xt), Y (x1)], · · · , Corr[Y (xt), Y (xn)])T .

2.5.2 Structure of MOBGO

Compared to multi-objective evolutionary algorithms, MOBGO requires only a
small budget of function evaluations [10]. As a result, it has already been im-
plemented in the real world optimization for expensive evaluation problems. Ac-
cording to the authors’ knowledge, it was for the first time used in the context
of airfoil optimization [42]. Later, it was applied in the field of biogas plant
controllers [43], in the detection of water quality management [44], in the struc-
tural design optimization [45] and could be implemented in the other real-world
optimization problems with expensive evaluations.

Multi-Objective Bayesian Global Optimization is assuming that d objective func-
tions are mutually independent in an objective space. In MOBGO, the Kriging
method or Gaussian process can approximate Kriging models M with respect
to objective functions and the uncertainties of the prediction, from the existing
evaluated data D =

(
(x(1),y(1) = Y (x(1))), . . . , (x(µ),y(µ) = Y (x(µ)))

)
. Each ob-

jective function at a given point x(t) is approximated by a one-dimensional normal
distribution, with mean µ and standard deviation σ. Then MOBGO can predict
the multivariate outputs by means of an independent joint normal distribution
with parameters µ1, . . . , µd and σ1, . . . , σd at the point x(t).

These predictive means and standard deviations can be used to calculate infill
criteria. An infill criterion measures how promising a new point is, when com-
pared to a current Pareto-front approximation. With the assistance of a single
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2. CONTINUOUS MULTI-OBJECTIVE OPTIMIZATION

objective optimization algorithm, ’optimal’ solution x∗ can be found according
to the score of the infill criterion. This score of the infill criterion is calculated
by the predictions of the Kriging models, instead of by the direct objective func-
tions. Then, the ’optimal’ solution x∗ is evaluated, and both the dataset D and
the Pareto-front approximation set P are updated.

Algorithm 3: MOBGO algorithm
Input: Objective functions y, initialization size µ, termination criterion Tc
Output: Pareto-front approximation P

1: Initialize µ points (x(1), · · · ,x(µ));
2: Evaluate the initial set of µ points: (y(1) = y(x(1)), . . . ,y(µ) = y(x(µ)));
3: Store (x(1), · · · ,x(µ)) and (y(1) = y(x(1)), . . . ,y(µ) = y(x(µ))) in D:
D = ((x(1),y(1)), . . . , (x(µ),y(µ)));

4: Compute the non-dominated subset of D and store it in P;
5: g = 1;
6: while g <= Tc do
7: Train surrogate models M based on D;
8: Use an optimizer to find the promising point x∗ based on surrogate

models M , with the infill criterion C;
9: Update D: D = D ∪ (x∗,y(x∗));
10: Update P as non-dominated subset of D;
11: g = g + 1;
12: end while
13: Return P.

The basic structure of the MOBGO algorithm is shown in Algorithm 3. It mainly
contains three parts: initialization, updating and searching, and returning.

Firstly, the dataset D is initialized and the Pareto-front approximation set P is
calculated, as shown in Algorithm 3 from Step 1 to Step 5. The initialization
of D contains generation of the decision vectors (Step 1), calculation of the cor-
responding objective values (Step 2) and storage of this information in data set
D (Step 3). This data set D will be utilized to build the Kriging models in the
second part.

The second part of MOBGO is the main loop, as shown in Algorithm 3 from Step 6
to Step 12. In this main loop, it is started by training the Kriging modelsM based
on data set D (Step 6). Please note that M contains d independent models for
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2.5 Multi-objective Bayesian Global Optimization

each objective function, and these models would be used as temporary objective
functions instead of ’true’ objective functions at Step 7. Then, an optimizer can
find the promising point x∗ by maximizing or minimizing an infill criterion C (Step
7). Here, an infill criterion is calculated by its corresponding calculation formula,
as the inputs of Kriging modelsM , Pareto-front approximation P, decision vector
x, etc. In Step 8, a single-objective optimization algorithm is required to find
the promising point x∗ for each temporary objective function – i.e., surrogate
model. In this dissertation, the BI-Population CMA-ES has been chosen as the
optimizer to find the promising point x∗, considering its favorable theoretical
properties [46]. After finding the promising point x∗, Step 9 and Step 10 will
update the dataset D by adding (x∗,y(x∗)) into D and update the Pareto-front
approximation P, respectively. The main loop from Step 6 to Step 12 will not
stop until g meats the termination criterion Tc.

The last part of MOBGO is the return of Pareto-front approximation P.

In single objective Bayesian Global Optimization, some common infill criteria in-
clude the Expected Improvement (EI) [41, 47], Probability of Improvement (PoI)
[48, 49], and Lower Confidence Bounds (LCB) [50, 51, 52, 53]. In Multi-Objective
Bayesian Global Optimization, some common infill criteria are: Hypervolume
Indicator (HV) [54], Probability of Improvement (PoI) [48, 49, 55], Hypervol-
ume Improvement (HVI) [27]1, Euclidean distance-based EI [55], Hypervolume
Contribution (HVC) [19], Expected Hypervolume Improvement (EHVI) [47, 56],
Tchebycheff aggregation based EI (EA-EI)[57], Hypervolumme based PoI [58],
Truncated Expected Hypervolume Improvement (TEHVI) [6, 7], and EI of penalty-
based boundary intersection (PBI-EI) [59].

2.5.3 Example

The behavior of the BGO based on the expected hypervolume improvement will
be illustrated by a single numerical experiment.

The numerical example is visualized in the plots of Figure 2.5. The bicriteria
optimization problem from Emmerich et al. [60] is: f1(x) = ||x − 1|| → min,
f2(x) = ||x + 1|| → min, x ∈ [−2, 2]× [−2, 2] ⊂ R2. The Pareto front is the line
segment from (0, 2 ·

√
2) to (2 ·

√
2, 0), the efficient set is the line segment that

connects (−1,−1) and (1, 1). The metamodel used is a Gaussian random field
model with Gaussian correlation function exp(−θ||x(1) − x(2)||2), for x(1) ∈ Rm

1The HVI was called the most likely improvement (MLI) in [27].
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Figure 2.5: Example Run of Multicriteria Bayesian Global Optimization.

and x(2) ∈ Rm, herem = 2. We set θ = 0.0001, which was estimated by maximum
likelihood method for initial sample. An initial set of 10 points was evaluated
indicated by the dark blue squares in Figure 2.5 (f). From this starting set 15
new points were generated using the expected hypervolume improvement. The
maximizer of the expected improvement was found using a uniform grid. In total,
each objective function was evaluated 25 times.

The results of the experiment are depicted in plots. In all pictures, points that
have been evaluated are indicated by triangles. The points from the initial set
are additionally marked by squares. Efficient points are surrounded by circles.
The figures in the the top row, Figure 2.5 (a) and (b), depict the mean value
of the Gaussian random field model at x ∈ [−2,2] × [−2,2] for f1 and f2, re-
spectively. Likewise, the figures in the middle row, Figure 2.5 (c) and (d), depict
the variance of the Gaussian random field model at x ∈ [−2,2] × [−2,2] for
f1 and f2, respectively. The expected hypervolume improvement values after 25
iterations are shown in Figure 2.5 (e). The final set of points in the objective
space and the Pareto front approximation can be found in Figure 2.5 (f). After
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only 25 evaluations of the original objective functions, the algorithm finds a good
approximation to the Pareto front.

2.6 Summary

Most practical optimization problems involve more than one objective, simply
due to the fact that no product, process, or system can be assessed with a single
criterion. Since, frequently, there are conflicting criteria, such as minimizing cost
and maximizing the quality of a product, Multi-Objective Optimization problems
give rise to a set of trade-off optimal (known as Pareto optimal) solutions.

In this chapter, we defined vital terms that are used in MOBGO research, intro-
duced some infill criteria in MOO, described two state-of-the-art EMOAs with
a practical problem, and introduced the structure of MOBGO, together with a
simple example for the illustration. This chapter only defines the fundamental
terminologies of this research. Other related terminologies are represented in each
chapter.
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Chapter 3

Efficient EHVI Calculation

In chapter 2, the basic structure of MOBGO was introduced and some common
infill criteria were mentioned. Among these infill criteria in MOO, EHVI outper-
forms other criteria for its inherent ability to balance exploitation and exploration
[61]. However, EHVI is seldom applied in real application because the computa-
tional complexity of EHVI is very expensive1. In this chapter, an asymptotically
optimal algorithm for the computation of the exact expected hypervolume im-
provement (EHVI) is proposed, based on partitioning the integration volume into
a set of axis-parallel slices. Theoretically, the upper bound time complexities are
improved from previously O(n3 log n) and O(n4 log n) in [60], for two and three
objectives problems respectively, to now O(n log n) for both two and three objec-
tive problems, which is asymptotically optimal, as we have proved. This scheme
is also generalized in the case of high dimension in this chapter.

This chapter mainly contributes to the thesis by introducing the state-of-the-art
EHVI calculation methods. This chapter is structured as follows: Section 3.1
provides the definition of EHVI; Section 3.2 explains the reason why EHVI is an
important criterion in MOO and introduces some current algorithms to calculate
EHVI; Section 3.3 provides the partitioning methods for non-dominated space;
Section 3.4 shows the final formula expression of EHVI, based on the partitioning
method described in Section 3.3; Section 3.6 shows the EHVI calculation speed
comparison and empirical experimental results on benchmarks, with respect to
state-of-the-art multi-objective optimization algorithms.

1The computational complexity of an infill criterion is crucial in multi-objective Bayesian
global optimization, because this criterion needs to be called frequently during the execution
of such an algorithm.

26



3.1 EHVI Definition

3.1 EHVI Definition

Definition 3.1 (∆ function (see also [2])) For a given vector of objective func-
tion values, y ∈ Rd, ∆(y,P, r) is the subset of the vectors in Rd which are exclu-
sively dominated by a vector y and not by elements in P and that dominate the
reference point, in symbols

∆(y,P, r) = λd{z ∈ R | y ≺ z and z ≺ r and 6 ∃q ∈ P : q ≺ z} (1-1)

For the simplicity, the notation ∆(y) will be used to express ∆(y,P, r) in this
paper.

EHVI is a generalization of EI for multi-objective cases, and it is based on the the-
ory of the HV. Similar to EI, the calculation of EHVI is based on the predictions
in the Gaussian random field. EHVI measures how much hypervolume improve-
ment could be achieved by evaluating the new point, considering the uncertainty
of the prediction. It is defined as:

Definition 3.2 (Expected Hypervolume Improvement) 1 Given parameters
of the multivariate predictive distribution µ, σ and the Pareto-front approxima-
tion P the expected hypervolume improvement (EHVI) is defined as:

EHV I(µ,σ,P, r) :=

∫
Rd

HVI(P,y) · PDFµ,σ(y)dy (1-2)

where PDFµ,σ is the multivariate independent normal distribution for mean val-
ues µ ∈ Rd, and standard deviations σ ∈ Rd

+.

Example 3.1 An illustration of the 2-D EHVI is shown in Figure 4.1. The light
gray area is the dominated subspace of P = {y(1) = (3, 1)>, y(2) = (2, 1.5)>,

y(3) = (1, 2.5)>} cut by the reference point r = (0, 0)>. The bivariate Gaussian
distribution has the parameters µ1 = 2, µ2 = 1.5, σ1 = 0.7, σ2 = 0.6. The prob-
ability density function (PDF) of the bivariate Gaussian distribution is indicated
as a 3-D plot. Here y is a sample from this distribution and the area of improve-
ment relative to P is indicated by the dark shaded area. The variable y1 stands
for the f1 value and y2 for the f2 value.

1The prediction of µ and σ depends on a Kriging model and a target point x in the search
space. Explicitly, EHVI is dependent on the target point x.
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3. EFFICIENT EHVI CALCULATION
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Figure 3.1: EHVI in 2-D (cf. Example 3.1).

For the convenience of expressing the formula of EHVI and EHVIG in later sec-
tions, it is useful to define a function we call Ψ∞.

Definition 3.3 (Ψ∞ function (see also [1])) Let φ(s) = 1/
√

2πe−
1
2
s2(s ∈ R)

denote the probability density function (PDF) of the standard normal distribu-
tion. Moreover, let Φ(s) = 1

2

(
1 + erf

(
s√
2

))
denote its cumulative probabil-

ity distribution function (CDF), and erf is Gaussian error function. The gen-
eral normal distribution with mean µ and standard deviation σ has as PDF,
φµ,σ(s) = φµ,σ(s) = 1

σ
φ( s−µ

σ
) and its CDF is Φµ,σ(s) = Φ( s−µ

σ
). Then the function

Ψ∞(a, b, µ, σ) is defined as:

Ψ∞(a, b, µ, σ) =

∫ ∞
b

(z − a)
1

σ
φ

(
z − µ
σ

)
dz

= σφ

(
b− µ
σ

)
+ (µ− a)

[
1− Φ

(
b− µ
σ

)]
(1-3)
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3.2 State-of-the-art

In the context of MOBGO, an infill criterion is used to evaluate the improve-
ment for a new point, as introduced in Chapter 2. A common criterion for a
single-objective optimization problem is Expected Improvement (EI), which was
firstly introduced by Mockus et al. [37] in 1978 and it exploits both the Kriging
prediction and the variance to give a quantitative measure of the improvements
for the points in the search space. Later, EI became more popular due to the
work of Jones et al. [41], in which it servers as an infill criterion in the so-called
Efficient Global Optimization (EGO) algorithm1. In each iteration, EGO evalu-
ates the design point with maximal EI. Its convergence properties are discussed
in [62], where a proof of global convergence under mild assumptions on the global
covariance and the smoothness of the function is given. Roughly speaking, global
convergence occurs due to the fact that EI rewards high variance and also high
mean values.

Various generalizations of EI in the field of multi-objective optimization have
been discussed in the literature, e.g., [45, 55, 61, 63, 64]. See also [47] for an
overview. In the case of multiple objectives, it is possible to consider a Gaussian
process model for each objective function separately and independently, resulting
in a multivariate distribution with d mean values µi(x) and standard deviation
σi(x). A key question when generalizing the expected improvement is how to
define improvement of a given Pareto-front approximation. In indicator-based
multi-objective optimization, the performance of a Pareto-front approximation
is assessed by a unary indicator, typically the Hypervolume Indicator, which al-
lows a simple generalization of the Expected Improvement – the EHVI. EHVI is
a straightforward generalization of the single-objective expected improvement and
was proposed by Emmerich [56] in 2005. Since then, EHVI has been used in Evo-
lutionary Algorithms for airfoil optimization [53] and quantum control [65]. It is
also applied in multi-objective generalizations of Bayesian Global Optimization
for applications, such as fluid dynamics [42], event controllers in wastewater treat-
ment [44], efficient algorithm tuning [66], electrical component design [58], and
bio-fuel power-generation [10]. In all of these applications, the bi-objective EHVI
was used. Due to its high computation time for problems which contains three
and more objectives, it is not recommended to use EHVI as an infill criterion in
such cases. Fast, but imprecise, alternatives were sought [67].

The expected hypervolume improvement (EHVI) is the expected value of the
increment of the hypervolume indicator given a Pareto-front approximation and

1Efficient Global Optimization is another name of Bayesian Global Optimization.
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3. EFFICIENT EHVI CALCULATION

a predictive multivariate Gaussian distribution predicting the outcome at a new
point. When compared to other criteria, EHVI leads to better convergence to-
wards the true Pareto front, and to a higher diversity of the Pareto-front approx-
imation set [6, 58, 67, 68]. However, the calculation of EHVI itself has so far been
time-consuming [44, 47, 69], even in the case of two dimensions. It still remains
unknown whether the integration algorithms used in the literature achieved op-
timal performance. Hence, it is important to study whether, and to what extent,
the computational efficiency of the exact computation of the EHVI can be further
improved. In addition, EHVI is called multiple times in every iteration. For the
above reasons, a fast algorithm for computing the EHVI is crucial.

The first method suggested for EHVI calculation was Monte Carlo integration
and it was first proposed by Emmerich in [56] and [53]. This method is sim-
ple and straightforward. However, the accuracy of EHVI highly depends on the
number of the iterations. The first exact EHVI calculation algorithm was de-
rived by Emmerich et al. [60], with the computational complexity O(n3 log n)
and O(n4 log n) in the cases of 2-D and 3-D, respectively. Couckuyt et al. in-
troduced a faster exact EHVI calculation algorithm for d > 2 in [58], but did
not provide a detailed complexity analysis. Recently, Hupkens et al. reduced
the time complexity to O(n2) and O(n3) [1] for two- and three-dimensional cases,
respectively. These algorithms further improved the practical efficiency of EHVI
on test data in comparison to [58]. More recently, Emmerich et al. proposed an
asymptotically optimal algorithm for the bi-objective case with time complexity
O(n log n) [2], where n is the number of non-dominated points in the archive. So
far the best known bounds for the time complexity of exact computations have
been O(n log n) for d = 2, and O(n3) for d = 3. It is notable that the number
of transcendental function evaluations, such as erf and exp, scales only linearly
in n in the algorithm presented in [1]. A lower bound of Ω(n log n) is provided
for a given approximation set of size n. However, it makes sense to assume that
non-dominated points are sorted in the first coordinate. In that case, as will be
shown, a lower bound of Ω(n) still holds.

3.3 Non-dominated Space Partitioning Algorithm

3.3.1 Low Dimensional case

2-D case: Suppose y = y(1), . . . ,y(n) and d = 2, then the integration area
(non-dominated area) can be divided into n+1 disjoint integration slices (S(i)

2 , i =
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3.3 Non-dominated Space Partitioning Algorithm

1, . . . , n+1) by drawing parallel to y2-axis lines at each element in y, as indicated
in Figure 3.2 (left). Then, each integration slice can be expressed by its lower
bound (l(i)2 ) and upper bound (u(i)

2 ). In order to define the stripes formally,
augment P with two sentinels: y(0) = (r1,∞) and y(n+1) = (∞, r2). Then, the
integration slices for 2-D case are now defined by:

S
(i)
2 = (l

(i)
2 ,u

(i)
2 ) =

(
(l

(i)
1 , l

(i)
2 )T , (u

(i)
1 , u

(i)
2 )T

)
=
(
(y

(i−1)
1 , y

(i)
2 , (y

(i)
1 ,∞)T

)
i = 1, . . . , N2 (3-4)
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Figure 3.2: Left: Partitioning of the integration region into stripes. Right:
New partitioning of the reduced integration region after the first iteration of the
algorithm.

For the 2-D case, it is straightforward that the number of integration slices N2 is
n+ 1.

3-D case: Similar to the 2-D partitioning method, in the 3-D case, each
integration slice can also be defined by its lower bound (l3) and upper bound
(u3). Since the upper bound of each integration slice is always ∞ in the y3 axis,
we can describe each integration slice as follows:

S
(i)
3 = (l

(i)
3 ,u

(i)
3 ) =

(
(l

(i)
1 , l

(i)
2 , l

(i)
3 )T , (u

(i)
1 , u

(i)
2 ,∞)T

)
i = 1, . . . , N3 (3-5)

Example 3.2 An illustration of integration slices is shown in Figure 3.3. A
Pareto front set is composed by n = 4 points (y(1) = (1, 3, 4),y(2) = (4, 2, 3),y(3) =

(2, 4, 2) and y(4) = (3, 5, 1)), and this Pareto front is shown in Figure 3.3 (a).
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Figure 3.3: Figure (a): 3-D Pareto-front Approximation. Figure (b): Integration
slices in 3-D. Figure (c): The projection of 3-D integration slices into the y1y2-plane,
each slice can be described by lower bound and upper bound.

The added point y(n+1) is y(5) = (∞,∞, r3). The integration slices in the non-
dominated space are represented by boxes in Figure 3.3 (b). Figure 3.3 (c) il-
lustrates the projection onto the y1y2-plane with rectangle slices and l,u. The
rectangular slices, which share the similar color but differ in opacity, represent
integration slices with the same value of y3 in their lower bound. For example,
the lower bound of the 3-D integration slice B4 is l

(4)
3 = (1, 2, 2), and the upper

bound of the slice is u
(4)
3 = (2, 4,∞).

The basic idea of the efficient partitioning algorithm in 3-D non-dominated space
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3.3 Non-dominated Space Partitioning Algorithm

is that the transforming the 3-D Pareto front into 2-D Pareto front. This trans-
forming consists of the following steps. Firstly, sort all the n elements (y(1), · · · ,y(n))
in Pareto-front approximation set P in descending order by coordinate y3. Sec-
ondly, set a new point y(n+1) = (∞,∞, r3). Thirdly, insert the element y(i)

(i = 1, · · · , n + 1) into the 2-D Pareto-front set P′ one by one using coordinate
y1 and y2 value 1, and discard the dominated points y[d] which are dominated
by the new inserted point y(i). During the third step, when a new point y(i)

is inserted, one and only one integration box is created on its below left side.
When there exists a discarded point y[d], one and only one integration box is
created on its above right side. In other words, an integration box is only created
when a new point y(i) is inserted to the P

′ or a point is y[d] is discarded from
the P

′ . The third step will not stop until the last point y(n+1) is inserted. Since
all the elements in P are dominated by y(n+1) and no point can dominate it in
the non-dominated space cut by a reference point r, all the elements in P will
be discarded and P

′ only consist of y(n+1) in the last iteration of the third step.
Then, the number of integration boxes for 3-D case is the sum of the number of
the points that are inserted and the number of the points that are discarded, i.e.,
N3 = (n+ 1) + n = 2n+ 1.

Algorithm 4 describes how to obtain the slices S(1)
3 , . . . , S(i)

3 , . . . , S(N3)
3 with

the corresponding lower and upper bounds (l(i)3 and u
(i)
3 ) and how to compute

the integrals for them. The partitioning algorithm is similar to the sweep line
algorithm described in [20]. The basic idea of this algorithm is to use an AVL
tree to process points in descending order of the y3 coordinate. For each such
point, say y(i), add this point to the AVL tree and find all the points (y(d[1]), . . . ,
y(d[s])) which are dominated by y(i) in the y1y2-plane and discard them from the
AVL tree. See Figure 3.4 for describing one such iteration. In each iteration, s+1
slices are created using coordinates of the points y(t), y(d[1]), . . . , y(d[s]), y(r), and
y(i) as illustrated in Figure 3.4.

Here, the number of the integration slices for 3-D case N3 is 2n + 1, when all
points are in general position (the coordinate of each point is different). Otherwise
2n+ 1 provides an upper bound for the obtained number of slices. The reason is
as follows: In the algorithm each point y(i), i = 1, . . . , n creates a slice, say slice
A(i), when it is created and a slice, say slice S(i)

3 , when it is discarded from the
AVL tree due to domination by another point, say y(s), in the y1y2-plane.

The two slices are defined as followsA(i) = ((y(t), y
(l2)
2 , y

(i)
3 ), (y

(u1)
1 , y

(i)
2 ,∞)) whereas

1The coordinate value of y3 is hidden for action of inserting and discarding, but y3 value
still exist.
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Figure 3.4: Boundary search for slices in 3-D case.

y
(l2)
2 is either y(r)

2 if no points are dominated by y(i) in the y1y2-plane or y(d[1])
2 ,

otherwise. Moreover, S(i)
3 = ((y

(i)
1 , y

(r)
2 , y

(s)
3 ), (y

(u)
1 , y

(s)
2 ,∞)), and y(u) denotes ei-

ther the right neighbour among the newly dominated points in the y1y2-plane,
or y(s) if y(i) is the rightmost point among all newly dominated points. In this
way, each slice can be attributed to exactly one point in P, except for the slice
that is created in the final iteration. In the final iteration one additional point
y(n+1) = (∞,∞,∞) is added in the y1y2-plane. This point leads to the creation
of a slice when it is added, but it adds only a single slice, because it is never
discarded. Therefore, 2n+ 1 slices are created in total.

As opposed to previous techniques, which required grid decomposition of the non-
dominated subspace into O(n3) integration slices, the new integration technique
can make use of efficient partitioning of the dominated space into only 2n + 1
axis-aligned integration slices. In practice, the new computation scheme will be
of great advantage to making the EHVI and related integrals applicable in multi-
objective optimization with three objectives, especially in Bayesian Optimization
and surrogate-assisted multi-objective evolutionary algorithms.
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3.3 Non-dominated Space Partitioning Algorithm

Algorithm 4: Integration slices aquiring in 3-D Case
Input: (y(1), · · · ,y(n)): mutually non-dominated R3-points sorted by third

coordinate (y3) in descending order
Output: S(1)

3 , · · · , S(i)
3 , · · · , S(N3)

3

1: y(n+1) = (∞,∞, r3) ;
2: Initialize AVL tree T for 3-D points

Insert y(1), (∞, r2,∞)T and (r1,∞,∞)T into T;
3: Initialize the number of integration slices nb = 1;
4: Initialize EHV I = 0;
5: for i = 2 to n+ 1 do /* Main loop */
6: Retrieve the following information from tree T:
7: r: index of the successor of y(i) in x-coordinate (right neighbour);
8: t: index of the successor of y(i) in y-coordinate (left neighbour);
9: d[1], · · · , d[s]: indices of points dominated by y(i) in y1y2-plane,

sorted ascendingly in the first coordinate(y1);
10: S

(nb)
3 .l3 = y

(i)
3 , S

(nb)
3 .u2 = y

(i)
2 , S

(nb)
3 .u3 =∞ ;

11: if s == 0 then /* Case 1 */
12: S

(nb)
3 .l1 = y

(t)
1 , S

(nb)
3 .l2 = y

(r)
2 , S

(nb)
3 .u1 = y

(i)
1 ;

13: nb = nb + 1 ;

14: else /* Case 2 */
15: for j = 1 to s+ 1 do
16: if j == 1 then
17: S

(nb)
3 .l1 = y

(t)
1 , S

(nb)
3 .l2 = y

(d[1])
2 , S

(nb)
3 .u1 = y

(d[1])
1 ;

18: else if j == s+ 1 then
19: S

(nb)
3 .l1 = y

(d[s])
1 , S

(nb)
3 .l2 = y

(r)
2 , S

(nb)
3 .u1 = y

(i)
1 ;

20: else
21: S

(nb)
3 .l1 = y

(d[j-1])
1 , S

(nb)
3 .l2 = y

(d[j])
2 , S

(nb)
3 .u1 = y

(d[j])
1 ;

22: nb = nb + 1 ;

23: Discard y(d[1]), · · · ,y(d[s]) from tree T;
24: Insert y(i) in tree T.

25: Return S(1)
3 , · · · , S(i)

3 , · · · , S(N3)
3
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3.3.2 High Dimensional case

In higher dimensional cases, the non-dominated space can be partitioned into axis
aligned hyperboxes, similar to 3-D case. In d dimensional case, the hyperboxes
can be denoted by S(1)

d , . . . , S
(i)
d , . . . , S

Nd
d with their lower bound (l(1), . . . , l(Nd))

and upper bound (u(1), . . . ,u(Nd)). Here, Nd is the number of hyperboxes. The
hyper-integral box S(i)

d is defined as:

S
(i)
d = (l

(i)
d ,u

(i)
d ) =

(
(l

(i)
1 , · · · , l(i)d )T , (u

(i)
1 , · · · ,∞)T

)
i = 1, . . . , Nd (3-6)

An efficient algorithm for partitioning high-dimensional non-dominated space is
proposed in this chapter. This new proposed algorithm is based on two state-of-
the-art algorithms DKLV17 [70] by Dächert et al. and LKF17 [71] by Lacour et
al. Here, algorithm DKLV17 is an efficient algorithm to locate the local lower
bound points in a dominated space for maximization problem, based on a spe-
cific neighborhood structure among local lower bounds. Meanwhile, LKF17 is
an efficient algorithm to calculated hypervolume improvement by partitioning
the dominated space. In other words, LKF17 is also efficient to partition the
dominated space and provides the boundary information for each hyerbox in the
dominated space.

Algorithm 5: Partitioning non-dominated space for high dimen-
sional cases

Input: Pareto-front approximation P (maximization problem), a reference
point r

Output: Hyperboxes Sd
1: Locate local lower bound points L: L = DKLV 17(P, r);
2: Set new Pareto front P′ using L: P′ = L ;
3: Set a reference point r

′ : r
′
= {∞}d ;

4: Get local lower bound points L
′ and local upper bound points U

′ :
(L
′
,U

′
) = LKF17(P

′
, r
′
) ;

5: Sd = (L
′
,u
′
) ;

6: Return Sd

The basic idea of the proposed algorithm to partition high-dimensional non-
dominated space is transforming the problem of partitioning non-dominated space
into the problem of partitioning the dominated space by introducing an interme-
diate Pareto-front approximation P

′ . This transforming is done by the following
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3.3 Non-dominated Space Partitioning Algorithm

steps. Suppose that we have a current Pareto-front approximation P and we want
to partition the non-dominated space of P. Firstly, DKLV17 is applied to locate
the local lower bound points (L) of P in dominated space. If we regard the local
lower bound points L as a new Pareto-front approximation P

′ , the dominated
space of P′ is exact the non-dominated space of P. The pseudo code of parti-
tioning non-dominated space for high dimensional cases is shown in Algorithm
5.
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Figure 3.5: The illustration of partitioning non-dominated space for high dimen-
sional case. Above left: Pareto-front approximation P. Above right: Locating
L points using DKLV17. Below left: Partition the dominated space of P′ using
LKF17. Below right: The partitioned non-dominated space of P.

Example 3.3 Figure 3.5 illustrates Algorithm 5. For the 2-D maximization case,
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suppose the Pareto-front approximation is P, which is composed by y(1) = (1, 2.5),
y(2) = (2, 1.5) and y(3) = (3, 1). The reference point is r = (0, 0), see Figure
3.5 (above left). Use DKLV17 to locate the local lower bound points l, which
consist of l(1) = (0, 2.5), l(2) = (1, 1.5), l(3) = (2, 1) and l(4) = (3, 0), see Figure
3.5 (above right). Regard all the local lower bound points l as the elements of
a new Pareto-front approximation set P′ = (l(1), · · · , l(4)). Set a new reference
point r

′
= (∞,∞) and utilize LKF17 to partition the dominated space of P

′,
considering minimization case, see Figure 3.5 (below left). Then the partitioned
non-dominated space of P is actually the partitioned dominated space of P′, see
Figure 3.5 (below right).

3.4 Computing the integrals

Before introducing the EHVI formula deviation, it is useful to define an important
function ϑ:

Definition 3.4 (ϑ function) Let φ(s) = 1/
√

2πe−
1
2
s2(s ∈ R) denote the prob-

ability density function (PDF) of the standard normal distribution. Moreover,
let Φ(s) = 1

2

(
1 + erf

(
s√
2

))
denote its cumulative probability distribution func-

tion (CDF), and erf is Gaussian error function. The general normal distribution
with mean µ and standard deviation σ has as PDF, φµ,σ(s) = φµ,σ(s) = 1

σ
φ( s−µ

σ
)

and its CDF is Φµ,σ(s) = Φ( s−µ
σ

), the integration box (or hyper-box) Bi con-
sist of a lower bound point l(i) and a upper bound point u(i). Then the function
ϑ(l

(i)
k , u

(i)
k , σk, µk) is defined as:

ϑ(l
(i)
k , u

(i)
k , σk, µk) : =

∫ ∞
yk=u

(i)
k

λ1[Bi ∩∆(yk)] · PDFµk,σk(yk)dyk

=

∫ ∞
yk=u

(i)
k

(u
(i)
k − l

(i)
k ) · PDFµk,σk(yk)dyk

= (u
(i)
k − l

(i)
k ) · (1− Φ(

u
(i)
k − µk
σk

)) where k = 1, · · · , d− 1

(4-7)

In the definition of ϑ function, λ1[Bi ∩ ∆(yk)] is the Hypervolume Improvement
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of the ith integration box in dimension k, i.e., a 1-D Hypervolume Improvement.
Considering the partitioning methods in Chapter 3.3, λ1[Bi∩∆(yk)] = |[l(i)k , u

(i)
k ]∩

[l
(i)
k , yk]| = min{u(i)

k , yk} − l
(i)
k , where k = 1, · · · , d. The idea of introducing the

ϑ function is that the improvement for
∫∞
yk=u

(i)
k
λ1[Bi ∩∆(yk)] · PDFµk,σk(yk)dyk,

where k = 1, · · · , d− 1, is a constant, that is ϑ itself. This is very useful during
the calculation process of EHVI, because ϑ function for each integration box Bi

can be calculated once and reused to save calculation time.

3.4.1 2-D EHVI

According to the definition of the 2-D integration slice in Equation 3.3.1, the
Hypervolume Improvement y ∈ R2 for the 2-D case is:

HVI2(P,y, r) =

N2∑
i=1

λ2[S
(i)
2 ∩∆(y,P, r)] (4-8)

This gives rise to the compact integral for the original EHVI:

EHVI(µ,σ,P, r) =

∫ ∞
y1=−∞

∫ ∞
y2=−∞

N2∑
i=1

λ2[S
(i)
2 ∩∆(y)] · PDFµ,σ(y)dy (4-9)

Here y = (y1, y2), the intersection of S(i)
2 with ∆(y1, y2) is non-empty if and only

if (y) dominates the lower left corner of S(i)
2 . In other words, if and only if y is

located in the rectangle with lower left corner (l
(i)
1 , l

(i)
2 ) and upper right corner

(∞,∞). See Figure 3.2 (right) for an illustration. Therefore:

EHVI(µ,σ,P, r) =

N2∑
i=1

∫ ∞
y1=l

(i)
1

∫ ∞
y2=l

(i)
2

λ2[S
(i)
2 ∩∆(y)] · PDFµ,σ(y)dy (4-10)

In Equation (4-10), the summation is done after integration. This is allowed,
because integration is a linear mapping. Moreover, the integration interval

∫∞
y1=l

(i)
1

can be divided into (
∫ u(i)1

y1=l
(i)
1

+
∫∞
y1=u

(i)
1

), because the Hypervolume Improvement

λ1[S
(i)
2 ∩ ∆(y1)] differs in these two integration intervals. Then Equation (4-10)
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is expressed by:

EHVI(µ,σ,P, r) =

N2∑
i=1

∫ u
(i)
1

y1=l
(i)
1

∫ ∞
y2=l

(i)
2

λ2[S
(i)
2 ∩∆(y)] · PDFµ,σ(y)dy+ (4-11)

N2∑
i=1

∫ ∞
y1=u

(i)
1

∫ ∞
y2=l

(i)
2

λ2[S
(i)
2 ∩∆(y)] · PDFµ,σ(y)dy (4-12)

Here λ1[Bi ∩∆(yk)] is the Hypervolume Improvement in dimension k, i.e., a 1-D
Hypervolume Improvement. According to the definition of Hypervolume Improve-
ment, λ1[Bi ∩ ∆(yk)] is constant and it is (u

(i)
1 − l

(i)
1 ). Therefore, the Expected

Improvement in dimension y1 is also a constant and it is: ϑ(l
(i)
1 , u

(i)
1 , σ1, µ1). Recall

Ψ∞ function, then the Equation (4-11) and (4-12) are:

Cp.(4− 11) =

N2∑
i=1

(
Ψ∞(l

(i)
1 , l

(i)
1 , µ1, σ1)−Ψ∞(l

(i)
1 , u

(i)
1 , µ1, σ1)

)
·Ψ∞(l

(i)
2 , l

(i)
2 , µ2, σ2)

(4-13)

Cp.(4− 12) =

N2∑
i=1

ϑ(l
(i)
1 , u

(i)
1 , µ1, σ1) ·Ψ∞(l

(i)
2 , l

(i)
2 , µ2, σ2) (4-14)

3.4.2 3-D EHVI

Given a partitioning of the non-dominated space into integration slices S(1)
3 , . . . ,

S
(i)
3 , . . . , S(2n+1)

3 , the part of the integral related to each of the integration slices
can be computed separately. To see how this can be done, the Hypervolume
Improvement of a point y ∈ R3 is rewritten as:

HVI3(P,y, r) =

N3∑
i=1

λ3[S
(i)
3 ∩∆(y)] (4-15)

where ∆y is the part of the objective space that is dominated by y. The HVI
expression in the definition of EHVI in Equation (1-2) can be replaced by HVI3
in Equation (4-15):

EHVI(µ,σ,P, r) =

N3∑
i=1

∫ ∞
y1=l

(i)
1

∫ ∞
y2=l

(i)
2

∫ ∞
y3=l

(i)
3

λ3[S
(i)
3 ∩∆(y)] · PDFµ,σ(y)dy

(4-16)
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Similar to the 2-D case, we can divide the integration interval
∫∞
y1=l

(i)
1

and
∫∞
y2=l

(i)
2

into (
∫ u(i)1

y1=l
(i)
1

+
∫∞
y1=u

(i)
1

) and (
∫ u(i)2

y2=l
(i)
2

+
∫∞
y2=u

(i)
2

), respectively. Based on this divi-

sion, Equation (4-16) can be expressed by:

Cp.4− 16 =

N3∑
i=1

∫ u
(i)
1

y1=l
(i)
1

∫ u
(i)
2

y2=l
(i)
2

∫ ∞
y3=l

(i)
3

λ3[S
(i)
3 ∩∆(y)] · PDFµ,σ(y)dy+ (4-17)

N3∑
i=1

∫ u
(i)
1

y1=l
(i)
1

∫ ∞
y2=u

(i)
2

∫ ∞
y3=l

(i)
3

λ3[S
(i)
3 ∩∆(y)] · PDFµ,σ(y)dy+ (4-18)

N3∑
i=1

∫ ∞
y1=u

(i)
1

∫ u
(i)
2

y2=l
(i)
2

∫ ∞
y3=l

(i)
3

λ3[S
(i)
3 ∩∆(y)] · PDFµ,σ(y)dy+ (4-19)

N3∑
i=1

∫ ∞
y1=u

(i)
1

∫ ∞
y2=u

(i)
2

∫ ∞
y3=l

(i)
3

λ3[S
(i)
3 ∩∆(y)] · PDFµ,σ(y)dy (4-20)

Recalling the definition of ϑ function and calculation of λ1[Bi∩∆(yk)], component
(4-17) can be written as follows:

Cp.4− 17 =

N3∑
i=1

(Ψ∞(l
(i)
1 , l

(i)
1 , µ1, σ1)−Ψ∞(l

(i)
1 , u

(i)
1 , σ1, µ1))·

(Ψ∞(l
(i)
2 , l

(i)
2 , µ2, σ2)−Ψ∞(l

(i)
2 , u

(i)
2 , σ2, µ2)) ·Ψ∞(l

(i)
3 , l

(i)
3 , µ3, σ3)

(4-21)

Similar to the derivation of Component (4-17), components (4-18), (4-19) and
(4-20) can be written as follows:

Cp.4− 18 =

N3∑
i=1

(Ψ∞(l
(i)
1 , l

(i)
1 , µ1, σ1)−Ψ∞(l

(i)
1 , u

(i)
1 , σ1, µ1)) · ϑ(l

(i)
2 , u

(i)
2 , σ2, µ2)·

Ψ∞(l
(i)
3 , l

(i)
3 , µ3, σ3) (4-22)

Cp.4− 19 =

N3∑
i=1

ϑ(l
(i)
1 , u

(i)
1 , σ1, µ1) · (Ψ∞(l

(i)
2 , l

(i)
2 , µ2, σ2)−Ψ∞(l

(i)
2 , u

(i)
2 , σ2, µ2))·

Ψ∞(l
(i)
3 , l

(i)
3 , µ3, σ3) (4-23)

Cp.4− 20 =

N3∑
i=1

ϑ(l
(i)
1 , u

(i)
1 , σ1, µ1) · ϑ(l

(i)
2 , u

(i)
2 , σ2, µ2) ·Ψ∞(l

(i)
3 , l

(i)
3 , µ3, σ3) (4-24)

The final EHVI formula is the sum of Components (4-21), (4-22), (4-23) and
(4-24).
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3.4.3 High Dimensional Case

The interval of integration in each coordinate, except the last coordinate, can be
divided into two parts: [l, u] and [u,∞]. Therefore, the equation for EHVI for
each hyperboxes can be decomposed into 2d−1 parts. For the interval of [u,∞],
the improvements (λk[S

(i)
d ∩∆(yk)]) are constant numbers, and the Ψ function can

be simplified by calculating function Φ and the improvement in these coordinate.
For the last coordinate, there is no need to separate the interval, because the
improvement in this coordinate (λm[S

(i)
d ∩∆(ym)]) is a variable in [l,∞].

According to the definition of high dimensional integral boxes in Section 3.3.2,
the formula of EHVI for a high dimensional case(d > 4) can be calculated by the
following equation:
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3.4 Computing the integrals
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3. EFFICIENT EHVI CALCULATION

In the component of (4-25), the integral of each dimension
∫ u(i)k
yk=l

(i)
k

λk[S
(i)
k ∩∆(y1, · · · , yk)]·

PDFµ,σ(y)dy, 1 ≤ k ≤ d−1 has two and only two different expressions (Ψ∞ or ϑ),

except for the last dimension, the expression of
∫ u(i)d
yd=l
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d

λd[S
(i)
d ∩ ∆(y1, · · · , yd)] ·

PDFµ,σ(y)dy is always Ψ∞. The final expression of EHVI is the sum of the
combination of the product of each different expressions. Since the integral of
dimension 1 ≤ k ≤ d− 1 has two different expressions and dimension k = d has
one expression, the final EHVI expression is the sum of 2d−1 terms.

In Equation (4-26), j2 stands for the binary string of j in the integer system.
The length of j2 is d− 1. C(j)2

k is a binary bit and represents the k-th bit of j in
binary string. For example, if d = 5, j = 8 and k = 4, then j2 = (1 0 0 0) and
C

(j)2
k = 1. Still in Equation (4-26), ω(i, k, C
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k ) is defined as:
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(4-27)

Equation (4-26) shows how to calculate EHVI in the case of d objectives, and
based on it, the runtime complexity of the proposed algorithm can be calculated.
The exact EHVI is calculated by the sum of

∏d−1
k=1 ω(i, k, C

(j)2
k )·Ψ∞(l

(i)
d , l

(i)
d , µd, σd)

for 2d−1 times, which performs O(1) for each hyperboxes calculation. Currently,
the minimum number of hyperboxes Nd, d ≥ 4 for a non-dominated space is still
unknown. It is hypothesized by the author that Nd is equal to the number of the
local lower bound points, which can be calculated by DKLV17 algorithm. The
upper bound of runtime complexity is O(nτ), where O(τ) is the computation com-
plexity of the search algorithm. For the case of d = 1, 2, 3, O(τ) ∈ O(log n).

3.5 Other Related Criterion

Probability of Improvement is another important criterion in MOBGO, and it was
first introduced by Stuckman [72], and then generalized by Emmerich et al. [53]
to multi-objective optimization. It was also considered in MOBGO in Couckuyt
et al. [58] and in Keane et al. [55]. It is defined as:

Definition 3.5 (Probability of Improvement) Given parameters of the mul-
tivariate predictive distribution µ, σ and the Pareto-front approximation P, the
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3.6 Empirical Experiments

Probability of Improvement (PoI) is defined as:

PoI(µ,σ,P) :=

∫
Rd
PDFσ,µ(y)dy (5-28)

where PDFµ,σ is the multivariate independent normal distribution for mean val-
ues µ ∈ Rd, and standard deviations σ ∈ Rd

+.

According to the partitioning method in Section 3.4.3, the calculation of PoI can
be achieved by the following expression:

PoI(µ,σ,P) =

∫ ∞
y1=−∞

· · ·
∫ ∞
yd=−∞

PDFµ,σ(y)dy1 . . . dyd

=
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Φ(
u

(i)
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)− Φ(
l
(i)
j − µj
σj

) (5-29)

Here, Nd is the number of integration slices, and N2 = n+ 1, N3 = 2n+ 1 for 2-D
and 3-D cases respectively. Since PoI is a reference-free indicator1, reference point
r = {−∞}d should be set in order to obtain the correct boundary information
(ld,ud).

3.6 Empirical Experiments

3.6.1 Speed Comparison

Three EHVI calculation algorithms, CDD13 [58], IRS_fast [1] and KMAC1 [4, 5],
are compared using the same benchmarks in this experiment. The test bench-
marks from Emmerich and Fonseca [20] are used to generate Pareto-front sets.
The Pareto-front sets and evaluated points were randomly generated based on
convexSpherical and concaveSpherical functions.

The parameters: σd = 2.5, µd = 10, d = 2, · · · , 5 were used in the experiments.
Pareto front sizes |P | ∈ {10, 20, · · · , 200} and the number of predictions (candi-
date points) Batch Size1 ∈ {1} are used together with σd and µd. Ten trials were

1This means that the integration space for PoI is unbounded and covers the entire non-
dominated space.

1KMAC stands for the authors’ given names.
1Batch Size means the number of the evaluated points under the same Pareto-front approx-

imation set.
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3. EFFICIENT EHVI CALCULATION

Figure 3.6: Randomly generated fronts of type convexSpherical, concave-

Spherical, and cliff3D from [20] with |P | = 100 (left, middle and right).

randomly generated by the same parameters, and average runtimes (10 runs) for
whole trails with the same parameters were computed. All the experiments were
performed on the same computer and the hardware were: Intel(R) Xeon(R) CPU
I7 3770 3.40GHz, RAM 16GB. The operating system was Ubuntu 16.04 LTS (64
bit), and software were gcc 4.9.2 with compiler flag -Ofast, except for SUMO
code, MATLAB 8.4.0.150421 (R2014b), 64 bit. The experiments were set to halt
if the algorithms could not finish the EHVI computation within 30 minutes. The
results are shown in Figure 3.7.

The experimental results in Figure 3.7 show that KMAC is much faster than
CDD13, especially when |P | is increased. Sometimes, we need to calculate EHVI
for multiple points under the same Pareto-front set and test whether the algo-
rithms handle this problem efficiently. Since execution time would be increased
dramatically when Batch Size is increased for high dimension (d ≥ 4), here we
only consider the 3-D case. Table 3.1 shows the experimental results with different
Batch Size.

The parameters: σ = (2.5, 2.5, 2.5), µ = (10, 10, 10) were used in the experiments.
Pareto front sizes |P | ∈ {10, 100, 1000} and the number of predictions (candidate
points) or Batch Size ∈ {1, 10, 100, 1000} are used together with σ and µ. Ten
trials were randomly generated by the same parameters, and average runtimes
(10 runs) for the whole 10 trails with the same parameters were computed. The
data for 3-D case with |P | = 100 are visualized in Figure 3.6, and these figures
are originally from [20]. All the experiments were run on the same hardware:
Intel(R) Xeon(R) CPU E5-2667 v2 3.30GHz, RAM 48GB. The operating system
was Ubuntu 12.04 LTS (64 bit), and the compiler was gcc 4.9.2 with compiler
flag -Ofast, except for SUMO code, MATLAB 8.4.0.150421 (R2014b), 64 bit.
The experiments were set to halt if the algorithms could not finish the EHVI
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3.6 Empirical Experiments

computation within 3 hours. The results are shown in Table 3.1.
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Figure 3.7: Speed comparison of EHVI calculation. Above: concave random
Pareto front set; Below: convex random Pareto front set.
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3. EFFICIENT EHVI CALCULATION

Table 3.1: Empirical comparisons of strategies for 3-D EHVI calculation.

Type |P | Batch Size
Time Average (s)

CDD13 [58] IRS_fast [1] KMAC

convex 10 1 0.13785 0.00037 0.00005
convex 10 10 0.14090 0.00056 0.00021
convex 10 100 0.16500 0.00304 0.00095
convex 10 1000 0.69104 0.02778 0.00754
convex 100 1 13.97556 0.05337 0.00038
convex 100 10 17.05551 0.13730 0.00099
convex 100 100 45.90095 0.93196 0.00831
convex 100 1000 422.31263 8.38585 0.06462
convex 1000 1 >3 hours 94.72402 0.00390
convex 1000 10 >3 hours 155.77306 0.01067
convex 1000 100 >3 hours 795.11319 0.06517
convex 1000 1000 >3 hours 2838.31854 0.53801

concave 10 1 0.11209 0.00026 0.00007
concave 10 10 0.12790 0.00054 0.00014
concave 10 100 0.14002 0.00294 0.00077
concave 10 1000 0.36697 0.02597 0.00840
concave 100 1 10.62329 0.04895 0.00031
concave 100 10 12.63582 0.12927 0.00146
concave 100 100 27.51827 0.85124 0.00768
concave 100 1000 314.32314 7.67280 0.06285
concave 1000 1 >3 hours 91.51055 0.00332
concave 1000 10 >3 hours 149.58491 0.01079
concave 1000 100 >3 hours 744.46691 0.06696
concave 1000 1000 >3 hours 2499.29737 0.50981

cliff3D 10 1 0.12514 0.00026 0.00007
cliff3D 10 10 0.13222 0.00055 0.00013
cliff3D 10 100 0.14432 0.00278 0.00075
cliff3D 10 1000 0.44964 0.02725 0.00761
cliff3D 100 1 10.90605 0.04730 0.00029
cliff3D 100 10 12.85031 0.12709 0.00112
cliff3D 100 100 44.79395 0.80735 0.00689
cliff3D 100 1000 679.51368 7.46205 0.06099
cliff3D 1000 1 >3 hours 136.37944 0.00344
cliff3D 1000 10 >3 hours 165.34537 0.01007
cliff3D 1000 100 >3 hours 731.03794 0.06480
cliff3D 1000 1000 >3 hours 2543.16864 0.51032
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3.6 Empirical Experiments

The results show that the proposed algorithm, KMAC, is the fastest one for all
the test problems. Empirical comparisons on randomly generated Pareto fronts
of different shape show that the new algorithm is by a factor of 7 to 3.9 × 104

faster than previously published implementations in the 3-D case.

3.6.2 Benchmark Performance

Five state-of-the-art algorithms are compared in this section, they are: EHVI-
MOBGO, PoI-MOBGO, NSGA-II [25], NSGA-III [73][74] and SMS-EMOA [19].
The benchmarks are DTLZ1, DTLZ2, DTLZ3, DTLZ4, DTLZ5 and DTLZ7. The
parameter settings for all these test algorithms are shown in Table 3.2. Here,
EHVI-EGO and PoI-EGO were only tested with evaluation budget as 300, be-
cause these two algorithms are time-consuming1. The reference points for each
benchmark are shown in Table 3.3. Each setting was repeated ten times.

Table 3.2: Algorithm Parameter Settings.

EHVI-MOBGO PoI-MOBGO NSGA-II NSGA-III SMS-EMOA

µ 30 30 30 / 30
λ 1 1 30 /

Evaluation 300 300 300/2000 300/2000 300/2000
Divisions_outer / / / 12 /

pc / / 0.9 0.9
pm / / 1/6 1/6

Platform MATLAB MATLAB MATLAB Python MATLAB

Table 3.3: Reference Points.

DTLZ1 DTLZ2 DTLZ3 DTLZ4 DTLZ5 DTLZ7

REF (400,400,400) (2.5,2.5,2.5) (1500,1500,1500) (2.5,2.5,2.5) (11,11,11) (1,1,10)

The final Pareto fronts were evaluated by Hypervolume. The empirical experimen-
tal results, with respect to statistical mean and standard deviation, are shown in
Table 3.4 and 3.5. MOBGO based algorithms perform better than EAs (NSGA-
II, NSGA-III and SMS-EMOA), despite the fact that the evaluation budget was
increased to 2000. Among EHVI-MOBGO and PoI-MOBGO, EHVI-MOBGO

1Updating Kriging model and finding the optimal solution using CMA-ES are expensive.
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3. EFFICIENT EHVI CALCULATION

Table 3.4: Empirical Comparisons.

MOBGO EAs EAs
Algorithm EHVI PoI NSGA2 NSGA3 SMS-EMOA NSGA2 NSGA3 SMS-EMOA

Eval. 300 300 300 300 300 2000 2000 2000

DTLZ1

6.38174E+7 6.31810E+7 6.34392E+7 6.36393E+7 6.04776E+7 6.39818E+7 6.39986E+7 6.39985E+7
6.39662E+7 6.33303E+7 6.32707E+7 6.38025E+7 6.18341E+7 6.39958E+7 6.39990E+7 6.39932E+7
6.39672E+7 6.35670E+7 6.31858E+7 6.35901E+7 6.14465E+7 6.39958E+7 6.39991E+7 6.39995E+7
6.39729E+7 6.35214E+7 6.37121E+7 6.36915E+7 6.29733E+7 6.39993E+7 6.39984E+7 6.39995E+7
6.39722E+7 6.36307E+7 6.37121E+7 6.36159E+7 5.99827E+7 6.39840E+7 6.39992E+7 6.39801E+7
6.39833E+7 6.33890E+7 6.30707E+7 6.36498E+7 6.23334E+7 6.39969E+7 6.39999E+7 6.39977E+7
6.39776E+7 6.34682E+7 6.36282E+7 6.32780E+7 6.22081E+7 6.39969E+7 6.39990E+7 6.39951E+7
6.39790E+7 6.28641E+7 6.34714E+7 6.37243E+7 6.18742E+7 6.39919E+7 6.39996E+7 6.39951E+7
6.39723E+7 6.35972E+7 6.34714E+7 6.34629E+7 6.18742E+7 6.39764E+7 6.39928E+7 6.39926E+7
6.39791E+7 6.34263E+7 6.36216E+7 6.32948E+7 6.03677E+7 6.39947E+7 6.39985E+7 6.39946E+7

mean 6.39587E+7 6.33975E+7 6.34583E+7 6.35749E+7 6.15372E+7 6.39914E+7 6.39984E+7 6.39946E+7
std. 4.99505E+4 2.30970E+5 2.22275E+5 1.75929E+5 9.64758E+5 7.78434E+3 2.01767E+3 5.68083E+3

DTLZ2

1.50123E+1 1.49961E+1 1.35131E+1 1.45495E+1 1.28434E+1 1.39116E+1 1.49691E+1 1.47435E+1
1.50293E+1 1.49869E+1 1.35313E+1 1.43761E+1 1.36917E+1 1.35030E+1 1.49737E+1 1.46302E+1
1.50133E+1 1.50001E+1 1.36346E+1 1.44741E+1 1.29611E+1 1.40951E+1 1.49713E+1 1.42623E+1
1.50302E+1 1.50036E+1 1.33895E+1 1.41762E+1 1.31983E+1 1.40951E+1 1.49893E+1 1.47413E+1
1.50178E+1 1.49990E+1 1.33895E+1 1.42859E+1 1.24597E+1 1.38371E+1 1.49763E+1 1.47010E+1
1.50288E+1 1.49972E+1 1.34931E+1 1.43059E+1 1.28168E+1 1.44331E+1 1.49705E+1 1.48084E+1
1.50325E+1 1.50030E+1 1.34931E+1 1.45558E+1 1.29619E+1 1.41515E+1 1.49737E+1 1.46117E+1
1.50263E+1 1.50075E+1 1.28980E+1 1.44279E+1 1.30089E+1 1.34422E+1 1.49844E+1 1.46629E+1
1.50263E+1 1.49913E+1 1.29148E+1 1.44522E+1 1.31828E+1 1.34422E+1 1.49747E+1 1.47318E+1
1.49865E+1 1.49901E+1 1.39749E+1 1.46875E+1 1.34046E+1 1.43841E+1 1.49816E+1 1.47118E+1

mean 1.50203E+1 1.49975E+1 1.34232E+1 1.44291E+1 1.30529E+1 1.39295E+1 1.49765E+1 1.46605E+1
std. 1.02673E-2 5.15545E-3 2.20199E-1 1.14701E-1 2.53151E-1 3.02290E-1 5.18375E-3 9.54696E-2

outperforms PoI-MOBGO in most cases, except for DTLZ4 and DTLZ5. The
reason is that PoI is a reference-free indicator, and it considers all the possibili-
ties of an evaluated point in the subspace which dominates P. Compared to PoI,
however, EHVI only considers the subspace, which is dominated by P and is cut
by a reference point r. In other words, EHVI cannot indicate any improvement of
an evaluated point in the rest of non-dominated space, which is cut by a reference
point.

3.7 Summary

This chapter described the Expected Hypervolume Improvement as the criterion
used in MOBGO. The exact calculation of EHVI in the 2-D and the 3-D cases
was introduced with the computational complexity of O(n log n). Compared to
[1], the computational complexity is improved by the factor n2/ log n for 2-D and
3-D cases. This meets the lower bound for the time complexity of the EHVI com-
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3.7 Summary

Table 3.5: Empirical Comparisons.

MOBGO EAs EAs
Algorithm EHVI PoI NSGA2 NSGA3 SMS-EMOA NSGA2 NSGA3 SMS-EMOA

Eval. 300 300 300 300 300 2000 2000 2000

DTLZ3

3.37465E+9 3.37431E+9 3.35455E+9 3.36011E+9 3.27636E+9 3.37471E+9 3.37498E+9 3.37459E+9
3.37462E+9 3.37188E+9 3.34970E+9 3.35426E+9 3.27336E+9 3.37477E+9 3.37498E+9 3.37494E+9
3.37405E+9 3.36607E+9 3.33783E+9 3.36719E+9 3.26915E+9 3.37446E+9 3.37499E+9 3.37413E+9
3.37433E+9 3.34920E+9 3.35935E+9 3.36343E+9 3.28850E+9 3.37443E+9 3.37498E+9 3.37440E+9
3.37460E+9 3.36956E+9 3.33889E+9 3.36678E+9 3.26551E+9 3.37478E+9 3.37500E+9 3.37469E+9
3.37455E+9 3.37459E+9 3.36864E+9 3.35810E+9 3.34960E+9 3.37471E+9 3.37498E+9 3.37467E+9
3.37466E+9 3.37371E+9 3.35894E+9 3.36364E+9 3.20942E+9 3.37498E+9 3.37499E+9 3.37469E+9
3.37452E+9 3.37278E+9 3.36435E+9 3.36349E+9 3.30056E+9 3.37499E+9 3.37500E+9 3.37496E+9
3.37465E+9 3.36970E+9 3.36268E+9 3.36183E+9 3.30523E+9 3.37361E+9 3.37499E+9 3.37413E+9
3.37443E+9 3.37337E+9 3.36111E+9 3.35554E+9 3.30145E+9 3.37484E+9 3.37498E+9 3.37467E+9

mean 3.37451E+9 3.36952E+9 3.35561E+9 3.36144E+9 3.28391E+9 3.37463E+9 3.37499E+9 3.37459E+9
std. 1.41276E+5 4.75297E+6 8.29054E+6 3.54949E+6 2.51542E+7 2.75889E+5 5.94791E+3 2.20550E+5

DTLZ4

1.38157E+1 1.45550E+1 1.17541E+1 1.08884E+1 9.55215E+0 1.47844E+1 1.49959E+1 1.48530E+1
1.36793E+1 1.44860E+1 9.30831E+0 1.16457E+1 1.08876E+1 1.32053E+1 1.36099E+1 9.33000E+0
1.30832E+1 1.45194E+1 9.33753E+0 1.18060E+1 8.85919E+0 1.47539E+1 1.35738E+1 1.31180E+1
1.38658E+1 1.48104E+1 1.29697E+1 1.28858E+1 9.20911E+0 9.32150E+0 1.49421E+1 1.32434E+1
1.36991E+1 1.45245E+1 1.31589E+1 1.21828E+1 1.06302E+1 1.35101E+1 1.49398E+1 1.48101E+1
1.44512E+1 1.42640E+1 1.42940E+1 1.32904E+1 8.86695E+0 1.45135E+1 1.49798E+1 1.32412E+1
1.42156E+1 1.45332E+1 1.44560E+1 1.19631E+1 8.91678E+0 1.47941E+1 1.35860E+1 1.34922E+1
1.35453E+1 1.38725E+1 1.30766E+1 1.24391E+1 9.20227E+0 9.30187E+0 1.30364E+1 1.33983E+1
1.38884E+1 1.44282E+1 1.30079E+1 1.26858E+1 9.16894E+0 1.48205E+1 1.36039E+1 1.33954E+1
1.37201E+1 1.45676E+1 1.27012E+1 1.29606E+1 1.11599E+1 1.29413E+1 1.49813E+1 1.36090E+1

mean 1.37964E+1 1.44561E+1 1.24064E+1 1.22748E+1 9.64531E+0 1.31946E+1 1.42249E+1 1.32491E+1
std. 2.50980E-1 1.60714E-1 1.36386E+0 5.77561E-1 7.48353E-1 1.60385E+0 7.42880E-1 8.12735E-1

DTLZ5

1.31781E+3 1.31885E+3 1.29108E+3 1.31652E+3 1.28384E+3 1.31670E+3 1.31872E+3 1.31681E+3
1.31609E+3 1.31883E+3 1.31533E+3 1.31687E+3 1.31455E+3 1.31755E+3 1.31888E+3 1.31803E+3
1.31703E+3 1.31885E+3 1.31556E+3 1.31650E+3 1.30785E+3 1.31759E+3 1.31878E+3 1.31815E+3
1.31754E+3 1.31885E+3 1.30788E+3 1.31583E+3 1.28715E+3 1.31804E+3 1.31889E+3 1.31744E+3
1.31741E+3 1.31882E+3 1.31565E+3 1.31663E+3 1.29529E+3 1.31714E+3 1.31887E+3 1.31827E+3
1.31706E+3 1.31883E+3 1.30716E+3 1.31333E+3 1.30770E+3 1.31731E+3 1.31881E+3 1.31844E+3
1.31711E+3 1.31878E+3 1.31571E+3 1.31034E+3 1.30873E+3 1.31675E+3 1.31875E+3 1.31785E+3
1.31802E+3 1.31884E+3 1.31501E+3 1.31654E+3 1.31039E+3 1.31769E+3 1.31876E+3 1.31813E+3
1.31735E+3 1.31882E+3 1.31564E+3 1.31595E+3 1.30349E+3 1.31785E+3 1.31881E+3 1.31832E+3
1.31742E+3 1.31883E+3 1.30992E+3 1.31640E+3 1.29023E+3 1.31760E+3 1.31883E+3 1.31795E+3

mean 1.31728E+3 1.31883E+3 1.31089E+3 1.31549E+3 1.30092E+3 1.31742E+3 1.31881E+3 1.31794E+3
std. 3.69904E-1 1.43867E-2 5.50786E+0 1.46033E+0 9.43520E+0 3.57031E-1 4.52836E-2 3.43975E-1

DTLZ7

5.09516E+0 4.40942E+0 -1.64477E+0 1.94194E+0 -3.70070E+0 -1.36049E+0 4.90652E+0 1.97405E+0
5.17729E+0 4.03866E+0 -2.52335E+0 2.08332E+0 -5.84918E+0 -4.14008E+0 5.08696E+0 4.34746E-2
5.15481E+0 4.28059E+0 -4.49931E+0 2.70067E+0 -4.80969E+0 1.48952E+0 4.66387E+0 2.56120E-1
4.89191E+0 4.02969E+0 -1.46708E+0 1.18938E+0 -4.38641E+0 2.25216E+0 4.71677E+0 1.98754E-1
5.06238E+0 4.42348E+0 -1.54354E+0 2.12846E+0 -4.43218E+0 -4.30157E+0 4.99910E+0 1.60383E+0
4.93139E+0 4.22680E+0 -2.94045E+0 1.27511E+0 -6.29530E-1 -1.04859E+0 5.08663E+0 2.61729E+0
5.16743E+0 4.52667E+0 -3.76357E+0 2.76559E+0 -3.21233E+0 -2.91679E+0 4.95629E+0 1.78240E+0
5.02720E+0 4.16430E+0 -2.93363E+0 2.23855E+0 -4.61563E+0 -9.60784E-1 4.66007E+0 1.01542E+0
5.06158E+0 4.31499E+0 -4.74578E+0 1.94897E+0 -4.83294E+0 -3.53033E+0 4.67642E+0 5.15294E-1
5.08646E+0 4.06894E+0 -5.35736E+0 1.59954E-1 -4.29017E+0 -6.53071E-1 4.91579E+0 1.06682E-1

mean 5.08646E+0 4.06894E+0 -5.35736E+0 1.59954E-1 -4.29017E+0 -6.53071E-1 4.91579E+0 1.06682E-1
std. 7.59397E-2 1.42676E-1 9.78696E-1 5.81027E-1 1.02525E+0 1.76415E+0 1.61886E-1 7.87267E-1
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3. EFFICIENT EHVI CALCULATION

putation for d = 2, 3, shown by reduction of the Hypervolume Indicator problem,
see [1]. Thus, the algorithm is asymptotically optimal and the time complexity of
2-D and 3-D EHVI computation is in Θ(n log n). For the arbitrary dimensional
case when d ≥ 2, the formula for exact EHVI calculation is generalized in this
chapter. In the speed-comparison experiments, the average execution time of
KMAC is compared with that of CDD13. The experimental results show that
KMAC is much faster than CDD13, especially for high dimensional cases.

This chapter also compared EHVI-MOBGO with other state-of-the-art multi-
objective optimization algorithms. Multi-objective Bayesian global optimization
algorithms yield better results, compared to evolutionary multi-objective opti-
mization algorithms. Among multi-objective Bayesian global optimization al-
gorithms, the Pareto-front approximation sets generated by EHVI-MOBGO are
usually closer to the true Pareto front. However, PoI-MOBGO is better than
EHVI-MOBGO when dealing with DTLZ4 and DTLZ5 problems. The reason
is that PoI is a reference-free criterion and EHVI is a reference-based criterion,
and EHVI only implies the improvement in the non-dominated space which is
cut above by the reference point. A remedy to this problem can be achieved by
setting a large reference point or using dynamic reference point. The reference
point cannot be too large, otherwise, EHVI at any evaluated points would be
similar, even the same, which is due to the numerical stability.
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Chapter 4

TEHVI Calculation1

In optimization with expensive black box evaluations, the expected improve-
ment algorithm (also called efficient global optimization) is a commonly applied
method. It uses Gaussian Processes (or Kriging) to build a model of the ob-
jective function and uses the expected improvement as an infill criterion, tak-
ing into account both – predictive mean and variance. EI has been generalized
to multi-objective optimization using the expected hypervolume improvement,
which measures the expected gain in the hypervolume indicator of a Pareto front
approximation, as shown in Chapter 3. However, this criterion assumes an un-
bounded objective space even if it is often known a-priori that the objective
function values are within a prescribed range, e.g., lower bounded by zero. Tak-
ing advantage of such a-priori knowledge, this chapter introduces the truncated
expected hypervolume improvement and a multi-objective efficient global opti-
mization method that is based on TEHVI. This chapter shows how to compute
the truncated expected hypervolume improvement exactly and efficiently. Then
it is tested as an infill criterion in efficient global optimization. It is shown that
it can effectively make use of a-priori knowledge and achieve better results in
cases where such knowledge is given. The usefulness of the new approach is
demonstrated on benchmark examples. The empirical studies in this chapter are
confined to the bi-objective case.

This chapter is structured as follows: Section 4.1 introduces the motivations of the
TEHVI research; Section 4.2 provides the definition of TEHVI and the formula to
calculate exact TEHVI, including asymptotic complexity analysis and CPU time
assessment; Sections 4.3 and 4.4 show the experimental settings and empirical

1This chapter only considers minimization problems.
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4. TEHVI CALCULATION

experimental results, respectively.

4.1 Motivations

Many algorithms exist in the multi-objective optimization field. For the evolu-
tionary algorithm class, NSGA-II [75] and SMS-EMOA [19] are two well-known
algorithms. Surrogate-model based optimization strategies, which replace exact
evaluations by approximations learned from past evaluations, are another im-
portant branch. Compared to evolutionary algorithms, surrogate-model based
algorithms need a small budget of function evaluations. Because of this, they are
often used in the real world design optimization with expensive evaluations.

A simple and common sequential optimization scheme is to sequentially update
the surrogate model by evaluations the points that are promising due to the pre-
diction. The prospects of a new point are assessed by the so-called infill criterion.
In the context of Gaussian process models, the expected improvement criterion
is a commonly applied infill criterion. It takes into account both the predictive
mean and the predictive variance of the surrogate model. Therefore it promotes
evaluations in less explored regions that have a higher predictive variance. In
single-objective optimization the expected improvement was introduced in 1978
by Mockus et al. [37], and became more popular due to the work of Jones et al.
[41]. It was generalized to the expected hypervolume improvement (EHVI) for
multi-objective optimization by Emmerich [56].

There are alternative generalizations of the expected improvement in the filed of
multi-objective optimization. Among them, EHVI has a good convergence to a
diverse approximation of the Pareto front, however, exact calculation of EHVI
used to be time-consuming [69]. Recently, new algorithms for computing EHVI in
the bi-objective EHVI-EGO have been found. Hupkens et al. improved the time
complexity to O(n2) [1]. More recently, Emmerich et al. devised an asymptot-
ically optimal algorithm with time complexity O(n log n) [2] in the bi-objective
case, where n is the number of non-dominated points in the archive. This makes
EHVI-EGO competitive with other techniques that use fast computable infill
criteria, in particular SMS-EGO.

Besides its time consumption, EHVI does not take into account some known do-
main information of the objective function. Expected hypervolume improvement
(EHVI) is the expected increment of the hypervolume indicator, which is related
to the current approximation of the Pareto front and a predictive multivariate
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4.2 TEHVI Definition

Gaussian distribution of a new point [10]. That is to say, EHVI is based on the
assumption that the objective values follow a normal distribution, and prediction
of the objective values are from minus infinity to plus infinity. However, in some
cases, we already know an approximation range of the objective value. For in-
stance, in a PID parameter tuning problem, the rising time is always a positive
value. In this case, we assumed surrogate-model based algorithms could converge
to true Pareto front faster, if the multivariate Gaussian distribution in EHVI is
truncated to the objective function’s co-domain.

For using the co-domain information, this chapter introduces the truncated ex-
pected hypervolume improvement (TEHVI) based on EHVI. TEHVI is based
on the normal distribution, which is truncated by the objective value domain.
In terms of Bayesian reasoning, it uses the conditional distribution given the
a-priori knowledge. This knowledge is about the true output of the objective
function within a prescribed range. Practically speaking, the idea behind TEHVI
is to focus sampling on more relevant parts of the search space by taking into
account a-priori knowledge on objective function value ranges. It is hypothesized
that this will speed up the convergence of the Pareto front.

This section mainly discusses the formula to calculate truncated expected hyper-
volume improvement. It will also have asymptotically optimal time Θ(n log n),
and empirical validation and speed comparison between Monte Carlo method and
the TEHVI exact method.

4.2 TEHVI Definition

Definition 4.1 (Truncated Expected Hypervolume Improvement) 2 Given
parameters of the multivariate predictive distribution µ, σ and the Pareto-front
approximation P, a preferred multidimensional range [A,B] = [A1, B1]×· · · [Ad, Bd] ⊂
Rd in the objective space. Suppose an objective value vector y follows the trun-
cated normal distribution and lies within an interval y ∈ (A,B), where −∞ ≤
A < B ≤∞, then the truncated expected hypervolume improvement (TEHVI) is
defined as:

TEHV I(µ,σ,P, r,A,B) :=

∫
y∈[A,B]

HVI(P,y) · TPDFµ,σ(y)dy (2-1)

2The prediction of µ and σ depends on a Kriging model and a target point x in the search
space. Explicitly, TEHVI is dependent on the target point x.
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4. TEHVI CALCULATION

where TPDFµ,σ is the truncated multivariate independent normal distribution
with mean values µ ∈ Rd and standard deviations σ ∈ Rd

+.

Here, TPDFµ,σ is the probability density function for the event that y is the
result of the function evaluation, given function evaluations that are not within
the range [A,B] would be rejected. Due to rejection of values outside the range,
in Bayesian reasoning we could use the information y ∈ [A,B] (after acceptance)
as a Bayesian prior.

Example 4.1 An illustration of the EHVI is shown in Figure 4.1. The light
gray area is the dominated subspace of P = {y(1) = (3, 1)>, y(2) = (2, 1.5)>,

y(3) = (1, 2.5)>} cut by the reference point r = (0, 0)>. The bivariate Gaussian
distribution has the parameters µ1 = 2, µ2 = 1.5, σ1 = 0.7, σ2 = 0.6. The trun-
cated probability density function (TPDF) of the bivariate Gaussian distribution
is indicated as a 3-D plot, with truncated domains [A,B] = [1,∞]. Here y is a
sample from this distribution and the area of improvement relative to P is indi-
cated by the dark shaded area. The variable y1 stands for the f1 value and y2 for
the f2 value.

4.2.1 Formula Derivation

For the aim of calculating the truncated expected hypervolume improvement,
we need to define the truncated PDF (φT ) and truncated CDF (ΨT ) functions
first. Suppose the co-domain of a truncated normal distribution is [A, B], where
−∞ ≤ A < B ≤ ∞. From the definition of truncated normal distribution, φT
and ΦT functions are defined as follows[76]:

φT (x) =

{
0 if x ≤ A or x ≥ B

Z(A,B) · φ(x−µ
σ

)

σ
if A < x < B

(2-2)

ΦT (x) =


0 if x ≤ A

Z(A,B) · [Φ(x−µ
σ

)− Φ(A−µ
σ

)] if A < x < B

1 if x ≥ B

(2-3)

where: Z(A,B) = 1/[Φ(
B − µ
σ

)− Φ(
A− µ
σ

)] (2-4)

Due to the independence of the multivariate Gaussian distributions for each ob-
jective, the product of the truncated distributions can be computed using Fubini’s
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Figure 4.1: TEHVI in 2-D (cf. Example 4.1).

law. What needs to be done is to replace Φ by ΦT and Ψ by ΨT in the original
computation, with interval boundaries chosen according to the interval bound-
aries. Based on Θ(n log n) 2-D EHVI formula (minimization case) in A.4, the
TEHVI formula can be written as:

TEHVI(µ,σ,Y, r, A,B)

=

∫ ∞
y1=−∞

∫ ∞
y2=−∞

n+1∑
i=1

λ2[Si ∩∆(y1, y2)] · PDFµ,σ(y)dy

=
n+1∑
i=1

(y
(i−1)
1 − y(i)

1 ) · ΦT

(
y

(i)
1 − µ1

σ1

)
·ΨT (y

(i)
2 , y

(i)
2 , µ2, σ2)+

n+1∑
i=1

(
ΨT (y

(i−1)
1 , y

(i−1)
1 , µ1, σ1)−ΨT (y

(i−1)
1 , y

(i)
1 , µ1, σ1)

)
×

ΨT (y
(i)
2 , y

(i)
2 , µ2, σ2) (2-5)

According to the definition of truncated normal distribution and the formula of
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normal exipsi function (Ψ), the truncated exipsi function (ΨT ) for minimization
problems can be derived by the following procedure:

ΨT (a, b, µ, σ, A,B)min =

∫ b

A

(a− z)
1

σ
φT (

z − µ
σ

)dz

=

∫ b

A

(a− z) · Z(A,B) · 1

σ
φ(
z − µ
σ

)dz

= Z(A,B) ·
∫ b

A

(a− z)
1

σ
φ(
z − µ
σ

)dz

= Z(A,B) · [(σφ(
b− µ
σ

) + (a− µ)Φ(
b− µ
σ

)−

(σφ(
A− µ
σ

) + (a− µ)Φ(
A− µ
σ

))] (2-6)

In some cases, it is difficult to transform maximization problems to minimization
problems. For solving it, the truncated exipsi function for maximization problems
is necessary and it is:

ΨT (a, b, µ, σ, A,B)max =

∫ B

b

(a− z)
1

σ
φT (

z − µ
σ

)dz

= Z(A,B) · [(σφ(
b− µ
σ

) + (µ− a)(1− Φ(
b− µ
σ

))−

(σφ(
B − µ
σ

) + (µ− a)(1− Φ(
B − µ
σ

))] (2-7)

4.2.2 Computational Speed Test

In this subsection the computational speed of TEHVI computation is assessed
when there are different population sizes. For validation purposes, the results are
compared with results from Monte Carlo integration. The acceptance-rejection
method [77] was used as the sampling strategy in Monte Carlo method. Samples
out of the feasible interval range were rejected. The Monte Carlo method was
allowed to run for 100,000 iterations. All the experiments were performed on the
same computer: Intel(R) i7-3770 CPU @ 3.40GHz, RAM 16GB. The operating
system was Ubuntu 14.04 LTS (64 bit), complier was gcc 4.9.2 with flag ’-Ofast’
for exact method, and platform was MATLAB 8.4.0.150421 (R2014b), 64 bit for
Monte Carlo method.

Fig 4.2, the left subfigure is the randomly generated Pareto fronts with the type
of convexSpherical and concaveSpherical in the 2-D case from [20]. The
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Figure 4.2: Left: Randomly generated fronts with |P | = 100. Right: TEHVI
comparison of Monte Carlo method and exact method.

right subfigure shows the convergence of Monte Carlo integration to the Pareto
fronts. The evaluated points are (9.9955, 0.3001) and (8.4149, 0.1264) for ex-
periment 1 (convex Pareto front) and experiment 2 (concave Pareto front), re-
spectively. The reference point for both experiments was (15,15). It shows that
the TEHVI value based on Monte Carlo method is similar to exact method after
50,000 iterations. However, the Monte Carlo method needs more iterations to
generate a sufficiently accurate TEHVI value.

Table 4.1 shows the empirical speed experiments between exact TEHVI calcula-
tion method and Monte Carlo method. The parameters: σm = 2.5, µm = 10 and
m = 2 were used to randomly generate Pareto fronts in the experiments. Pareto
front sizes |P | ∈ {10, 100, 1000} and different number of predictions (candidate
points) of Batch Size are used together with σm and µm. In the experiments,
batch mode means that the Pareto front population does not change and compu-
tations of transcendental functions (erf, exp) on grid coordinates can be re-used.
This results in a significant speed-up in the empirical performance, although the
time complexity is not affected. 10 trials were randomly generated by the same
parameters, and average runtimes (10 runs) for the whole trails with the same
parameters were computed. It shows that the exact and efficient TEHVI cal-
culation method is fast, even for large population sizes of 1000 points it can be
computed in ca. 1 second. It is also fast when compared to an imprecise Monte
Carlo method. Note that this study should not be used as a speed comparison,
as the Monte Carlo method is not precise. However, it indeed shows that the
time consumption of the Monte Carlo method increases quickly.
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Table 4.1: TEHVI computation speed experiments results.

Type |P | Batch Size
Time_average (s)

Exact Monte Carlo

convex 10 1 0.00005 3.82615
convex 10 10 0.00019 37.56125
convex 10 100 0.00166 379.19625
convex 10 1000 0.02030 > 10 min
convex 100 1 0.00022 13.34105
convex 100 10 0.00165 140.10564
convex 100 100 0.01654 > 10 min
convex 100 1000 0.16084 > 10 min
convex 1000 1 0.00208 203.11692
convex 1000 10 0.01644 > 10 min
convex 1000 100 0.16746 > 10 min
convex 1000 1000 1.69174 > 10 min

concave 10 1 0.00006 3.89077
concave 10 10 0.00016 39.15924
concave 10 100 0.00142 389.16426
concave 10 1000 0.01585 > 10 min
concave 100 1 0.00023 13.95431
concave 100 10 0.00150 138.14462
concave 100 100 0.01457 > 10 min
concave 100 1000 0.14779 > 10 min
concave 1000 1 0.00203 204.58791
concave 1000 10 0.01494 > 10 min
concave 1000 100 0.14657 > 10 min
concave 1000 1000 1.53391 > 10 min

4.3 Experimental Setup

In the comparison, nine test problems are used. They are: BK1 [78], SSFYY1
[79], ZDT1, ZDT2, ZDT3, ZDT4, ZDT6[80], generalized Schaffer problem (GSP)
[81] and PID parameter tuning problem.
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4.4 Empirical Results

The parameters for the algorithms are shown in Table 4.2.

Table 4.2: Parameter settings.

Algorithm µ/Initial Population λ iteration pc pm

EHVI-EGO 30 / 200 / /
TEHVI-EGO 30 / 200 / /
NSGA-II 30 30 200 0.9 1/N

SMS-EMOA 30 / 200 0.9 1/N

The TEHVI-EGO boundary (A,B) for all the experiments are (0,∞), except
for the ZDT3 problem. Since the lower bound of ZDT3 is close to −1, the
TEHVI-EGO boundary for ZDT3 was set to (−1,∞). For the generalized Schaffer
problem, the parameter γ was set as γ = 0.4. All the experiments were repeated
5 times.

4.4 Empirical Results

Table 4.3 shows the results for all the test problems. TEHVI-EGO and EHVI-
EGO are better than the other two algorithms. Among the EGO based algo-
rithms, TEHVI-EGO performs slightly better than EHVI-EGO. The reason for
these results is that all the fitness values for all the problems are positive, except
for the ZDT3, and the truncation forces the optimization algorithm to focus on
the fitness spaces in the positive domain. Figure 4.3 shows the Pareto fronts gen-
erated by 4 different algorithms for generalized Schaffer problem (GSP) in the left.
The Pareto fronts generated by TEHVI-EGO and EHVI-EGO are much closer to
true Pareto front than the other two algorithms. Compared to the performance
of EHVI-EGO with respect to HV, HV of TEHVI-EGO Pareto front is slightly
bigger than that of EHVI-EGO. The interval boundaries for TEHVI-EGO are set
to A = 0, B = ∞ in Figure 4.3 (right). This is based on the assumption that
only the lower bound of the fitness value is known.

However, the strategy for setting the interval boundary is tricky. In Figure 4.3,
the right plot shows the Pareto fronts generated by TEHVI-EGO with different
interval boundary. In this case, the (red) squared Pareto front focuses on the
knee points with more points but can not explore the extreme boundary of the
true Pareto front well, when compared to the (blue) triangle one. Meanwhile,
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Table 4.3: Empirical comparison of different algorithms for test problems.

Test Function Methods reference point
Pareto front size HV

max min mean std max min mean std

BK1 EHVI-EGO [60 60] 126 118 121.6 3.5071 3176.3411 3175.8606 3176.0758 0.2057
BK1 TEHVI-EGO [60 60] 131 120 124.6 4.6690 3176.4359 3175.8961 3176.1843 0.2451
BK1 NSGA-II [60 60] 58 53 55.6 2.0736 3132.1585 3126.3921 3129.2289 2.3525
BK1 SMS-EMOA [60 60] 51 50 50.8 0.4472 3035.8162 2889.2727 2964.0079 65.9014

SSFYY1 EHVI-EGO [5 5] 99 91 93.8 3.1145 20.7376 20.7308 20.7345 0.0027
SSFYY1 TEHVI-EGO [5 5] 100 88 95 5.0990 20.7431 20.7269 20.7355 0.0062
SSFYY1 NSGA-II [5 5] 57 53 55.6 1.6733 20.3667 20.1943 20.2895 0.0662
SSFYY1 SMS-EMOA [5 5] 51 43 47.4 4.0373 18.5052 16.2884 17.6106 0.8399

ZDT1 EHVI-EGO [15 15] 64 43 56.2 8.0436 224.6547 224.6409 224.6468 0.0064
ZDT1 TEHVI-EGO [15 15] 71 40 52.6 11.4149 224.6569 224.6461 224.6502 0.0044
ZDT1 NSGA-II [15 15] 45 39 43.2 2.4900 224.6172 220.7671 222.7442 1.7513
ZDT1 SMS-EMOA [15 15] 51 48 49.4 1.1402 218.6193 217.7475 218.2609 0.3504

ZDT2 EHVI-EGO [15 15] 27 24 26 1.2247 224.3152 224.2933 224.3099 0.0093
ZDT2 TEHVI-EGO [15 15] 29 27 28.2 1.0954 224.3168 224.3151 224.3161 0.0008
ZDT2 NSGA-II [15 15] 57 44 47.8 5.4037 224.0502 210.1391 213.4889 5.9302
ZDT2 SMS-EMOA [15 15] 22 10 16 5.6569 189.7940 176.3485 184.7327 6.0880

ZDT3 EHVI-EGO [15 15] 20 12 17.8 3.4928 235.8485 235.8015 235.8328 0.0196
ZDT3 TEHVI-EGO [15 15] 32 15 21 6.8191 235.8495 235.8039 235.8359 0.0183
ZDT3 NSGA-II [15 15] 47 42 44.2 1.9235 235.7032 221.2648 228.3704 5.3756
ZDT3 SMS-EMOA [15 15] 31 16 24 5.7879 207.4997 202.1116 204.0837 2.1858

ZDT4 EHVI-EGO [15 15] 7 3 4.4 1.6733 224.3295 204.4661 217.2593 8.0295
ZDT4 TEHVI-EGO [15 15] 11 6 7.4 2.0736 224.5959 217.9858 221.3740 2.9304
ZDT4 NSGA-II [15 15] 47 37 43.2 4.1473 215.6850 184.2184 203.9832 12.6032
ZDT4 SMS-EMOA [15 15] 20 5 13 5.3385 145.3309 116.0149 127.4335 36.2023

ZDT6 EHVI-EGO [15 15] 25 16 19.6 3.7815 218.7974 218.7442 218.7843 0.0228
ZDT6 TEHVI-EGO [15 15] 32 19 23.3 6.1305 218.8301 218.7871 218.8095 0.0178
ZDT6 NSGA-II [15 15] 41 25 35.2 7.2938 218.6877 155.9356 198.5166 26.2609
ZDT6 SMS-EMOA [15 15] 22 7 11.6 6.0249 145.3309 116.0149 127.4335 11.8642

GSP EHVI-EGO [5 5] 167 140 161.4 11.9708 24.9066 24.9063 24.9065 0.0001
GSP TEHVI-EGO [5 5] 169 154 166 6.7082 24.9066 24.9066 24.9066 <0.0001
GSP NSGA-II [5 5] 60 56 58 2.0000 24.8933 24.8838 24.8903 0.0040
GSP SMS-EMOA [5 5] 51 50 50.8 0.4472 24.8605 24.6154 24.7519 0.1140

the HV value of the red squared Pareto front is smaller than blue triangle one.
The reason for the difference is that the precise integration domain (0, 1) is much
smaller than (0,∞). This could lead to the low probability of exploration at the
extreme boundary, which is close to infinity, and high probability of sampling the
area on the Pareto front, which is closer to the minimization point (in this case,
this point is (0, 0)).
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Figure 4.3: Left: The results of one trial experiment for GSP in Table 4.3. Right:
TEHVI-EGO with different interval boundary.

4.5 Summary

In this chapter, we introduced an exact method for the calculation of the trun-
cated expected hypervolume improvement and investigated different multi-objective
optimization algorithms for the benchmarks and the optimization of a controller.
In particular, the two state-of-the-art evolutionary algorithms (NSGA-II and
SMS-EMOA) were compared with multi-objective efficient global optimization
algorithms (EHVI-EGO and TEHVI-EGO), which utilize a surrogate model of
the objective function. Among the 9 test problems, TEHVI-EGO yielded better
results than the other three algorithms, with respect to HV.

As the TEHVI only calculates the EHVI in a particular domain, and can force the
algorithm on exploring in this domain, TEHVI-EGO exhibits poor performance
of exploring the extreme boundaries for the Pareto fronts, when the interval co-
domain is set as the boundary of the fitness. However, in this case, TEHVI-EGO,
compared to EHVI-EGO, can focus on the knee point of the Pareto fronts, which
could be used when a particular domain of a Pareto front is attractive.
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To summarize, based on the result of this study, we recommend using TEHVI-
EGO when boundaries of domain regions are known, because it shows a good
performance more consistently when compared to the other algorithms. In ad-
dition, it can focus on the Pareto front in a particular domain. For the further
work, it is recommended to research the gradient of TEHVI.
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Chapter 5

Preference-Based Multi-Objective
Optimization

The ultimate goal of multi-objective optimization is to provide potential solu-
tions to a decision maker. Usually, what concerns a decision maker concerns is
a Pareto front in an interesting/preferred region, instead of the whole Pareto
front. In this chapter, a method for effectively approximating a Pareto-front ap-
proximation set in the preferred region, based on multi-objective efficient global
optimization (EGO), is introduced. EGO uses Gaussian processes (or Kriging)
to build a model of the objective function. Our variant of EGO uses truncated
expected hypervolume improvement (TEHVI) as an infill criterion, which takes
into consideration predictive mean, variance and preference region in the objective
space. Compared to expected hypervolume improvement (EHVI), the probability
density function in TEHVI follows a truncated normal distribution. This chapter
proposes a TEHVI method that makes it possible to set a region of interest on
the Pareto front and focuses the search effectively on this preferred region. An
expression for the exact and efficient computation of the TEHVI for truncation
over a two dimensional range is derived, and benchmark results on standard bi-
objective problems for small budget of evaluations are computed, which confirms
that the new approach is more effective.
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5.1 Background

Most optimization problems involve multiple objectives that need to be consid-
ered simultaneously and under certain constraints. Unlike single objective opti-
mization, the result consists of multiple trade-off solutions called Pareto front.
Over the last 20 years, Evolutionary Multi-objective Optimization (EMO) has
demonstrated a great success in approximating the whole Pareto front. How-
ever, the ultimate goal of multi-objective optimization is to assist the decision
maker to choose the most suitable solution in a preferred region. Therefore, the
preference-based multi-objective optimization is a hot topic recently. It utilizes
the preference information offered by the DM, such as weights, reference points,
trade-off constraints, to guide the search towards the Region of Interest (ROI) on
a Pareto front. The overview of existing approaches has already been provided
in [82, 83, 84]. Depending on when the DM can participate in the optimization
process, preference-based EMO can be categorized into three types: an a-priori,
a-posteriori, interactive. In a-priori method, preference information from DM is
provided before the search process, on the other hand in a-posteriori approaches;
DM preferences are incorporated after the search. Interactive approaches make
it possible to adapt the preference during optimization by having an interaction
between the DM and EMO algorithms. The method proposed in this chapter
belongs to the interactive methods.

According to the preference information offered by the DM, Bechikh et al. clas-
sified existing methods into weight-based approaches, solution ranking-based ap-
proaches, objective ranking-based approaches, reference point-based approaches,
trade-off-based approaches, and outranking-based approaches [85]. There are
also other methods to express preference, for example, utility function [86], lexi-
cographic order [87], and preference region [88]. In the following, we restrict the
summary of the state-of-art to approaches that use objective space region (or
preferred region) as preference articulation.

Desirability Functions (DFs) is widely used to specify the preferences by trans-
forming the objective values into a decision maker’s satisfaction level, considering
its simple and intuitive meaning. DFs can nonlinearly map the objectives in a
desired region into the domain [0,1], based on the DFs’ values of exemplary objec-
tive levels. Thus, an increasing desirability of the solution can reflect an increase
of objective quality. By changing the values of objectives corresponding to 0
(least favored) and 1 (most favored), the DF can focus on different regions of the
PF. It has already been successfully combined with NSGA-II [89], MOPSO [90],
SMS-EMOA [91] on both benchmark problems and practical tuning problems
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from machining. Karahan and Köksalan devised a territory defining steady-state
elitist evolutionary algorithm (TDEA) [92], which defines a territory around each
solution to prevent crowding. They also proposed a preference-based approach,
called prTDEA, to assign different sizes of territories for preferred regions and
non-preferred regions. Preferred regions have smaller territories so that a denser
coverage could be achieved. An interactive version of this method has been pro-
posed in [93].

In [94], an interactive decision-making approach is embedded in the preference-
inspired co-evolutionary algorithm (PICEA-g). The DM can easily brush his/her
preferred region in the objective space without specifying any parameters. Goal
vectors are generated according to this region and co-evolved with solution vec-
tors, in order to achieve solutions in the ROI brushed by the DM. Other methods
include weighted hypervolume [95] and hyperplane construction [96], all of which
can be used to specify preferred regions.

Among the existing preference-based multiobjective optimization methods, surrogate-
assisted optimization is rarely used. Moreover, the combination of TEHVI is
meaningful and feasible when a DM has a vague idea about his/her preference
region in the objective space, because TEHVI has an inherent ability to explore
a certain region in the objective space. Specifying an interval region for each
objective is also referred to as brushing or zooming, and it has already been ap-
plied in the context of interactive multicriteria optimization with non-expensive
function evaluations by decision makers [94]. Here we introduce such techniques
to surrogate assisted multiobjective optimization.

5.2 Algorithms

5.2.1 TEHVI-EGO for Preference-based Multi-Objective
Optimization

For the aim of obtaining a preferred Pareto front, TEHVI-EGO is used in this
chapter to solve this problem. The details of TEHVI calculation can be found in
Chapter 4. Truncated domains [A,B] are chosen according to a preferred region
in objective space. The definition of preferred region is:

Definition 5.1 (Preferred region) Given an objective space and two vectors,
say A ⊂ R2 and B ⊂ R2, a preferred region (PR) is the area bounded by A and
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B in the objective space:

PR =

[(
A1

A2

)
,

(
B1

B2

)]
(2-1)

An example of preferred region is shown in Figure 5.1. The yellow region is a
preferred region, and the boundary of this region is set for the truncated region
for each objective function.
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Figure 5.1: A preferred region for 2-D case.

The pseudocode for TEHVI-EGO with a preferred region is shown in Algorithm 6.
It is important to compute a preliminary approximation of the Pareto front (line
3-6) before the preference region is set. This way the probability is increased and
new non-dominated points can be found in this region. The interaction approach
could be compared to ’zooming in’ the preferred region or seen as a kind of
brushing technique.

5.2.2 Preferred region with EAs

The concept of a preferred region can be integrated to the pre-selection criterion
in Bayesian Global Optimization, and works well in Evolutionary Multi-objective
Optimization. Our preferred region based Evolutionary Multi-Objective Algo-
rithm model works reliably when the DM wants to concentrate only on those re-
gions of the P which really interests him/her. For algorithms in this model, which
include T-SMS-EMOA, T-R2-EMOA and T-NSGA-II (where T stands for pre-
ferred region), three ranking criteria (1. non-dominated sorting; 2. performance
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Algorithm 6: TEHVI-EGO
Input: initialization size µ, termination criterion Tc, truncated boundary

[A,B], parameter ap
Output: Preferred Pareto front PF

1: Initialize µ points and Pareto front PF;
2: g = 1;
3: while g <= ap do
4: Set infill criterion as EHVI ;
5: Find the optimal point using CMA-ES;
6: Update PF and g = g + 1;

7: DM interaction: Set [A,B] as truncated boundary;
8: while ap < g <= Tc do
9: Set infill criterion as TEHVI (A,B);

10: Find the optimal point by maximizing TEHVI (e.g., using CMA-ES);
11: Update PF and g = g + 1;

12: Return PF

indicator (Hypervolume in T-SMS-EMOA or R2 in T-R2-EMOA) or crowding
distance in T-NSGA-II; 3. the Chebyshev distance to the preferred region) work
together to achieve a well-converged and well-distributed set of Pareto optimal
solutions in the preferred region using preference information provided by the
DM. Non-dominated sorting is used as the first level ranking criterion, perfor-
mance indicator or crowding distance as the second and the Chebyshev distance
as the third level ranking criterion. The Chebyshev distance speeds up evolution
toward the preferred region and is computed as the distance to the center of the
preferred region.

The hypervolume, R2 indicator or crowding distance is chosen as the second level
ranking criterion, which is used as a diversity mechanism and is measured based
on coordinate transformations using desirability functions (DFs). The concept of
desirability was introduced by Harrington [97] in the context of multi-objective
industrial quality control and the approach of expressing the preferences of the
DM using DFs is suggested by Wagner and Trautmann [91]. DFs map the ob-
jective values to desirabilities, which are normalized values in the interval [0,1],
where the larger the value, the more satisfying the quality of the objective value.
The Harrington DF [97] and Derringer-Suich DF [98] are two most common types
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of DFs and both of them result in biased distributions of the solutions on the P

through mapping the objective values to desirabilities based on preference infor-
mation. In our algorithm model, we use a simple type of DFs, which classifies
the domain of the objective function into only two classes, "unacceptable" and
"acceptable". In this approach we have:

D(x) =

{
1 x is in the preferred region,
0 x is not in the preferred region.

The desirability here is for a solution, it is not necessary to consider desirability
by each objective because the goal of our algorithm is to zoom in the preferred
region. Therefore, we treat solutions out of the preferred region as unacceptable
solutions and assign their desirabilities to be 0; at the same time, we assume that
all solutions inside the preferred region are of equal importance, (i.e. acceptable)
and assign their desirabilities to be 1. There is no further bias on the points in
the preferred region, however, if other types of DFs are integrated into the new
algorithms, it is possible to generate solutions of different distributions in the
preferred region concerning the specified preferences.

For solutions with desirability 0, their second level ranking criterion is assigned
to be 0. For solutions with desirability 1, their second level ranking criterion
needs to be calculated further. Because only solutions in the preferred region
are retained, a way is derived to simplify the calculation of the indicator values
or to realize a reference point free version of indicators [99], which is based on
coordinate transformation. The preferred region is treated as a new coordinate
space of which the origin being the lower bound. For the maximization problem
in T-SMS-EMOA or the minimization problem in T-R2-EMOA, a coordinate
transformation is performed for the i-th objective as:

Cti(x) = fi(x)− LB(fi)

For the minimization problems in T-SMS-EMOA or the maximization problems
in T-R2-EMOA, coordinate transformation is performed for the i-th objective
as:

Cti(x) = UB(fi)− (fi(x)− LB(fi))

where LB(fi) and UB(fi) are the lower bound and upper bound of the i-th
objective in the preferred region, which is predefined by the DM.
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The reason for distinguishing the maximization from the minimization problems
when performing coordinate transformation is that the origin of the new coordi-
nate space (i.e., the lower bound of the target region) is used as the reference point
when calculating the indicator values. In T-SMS-EMOA, the worst point in the
target region is chosen as the reference point when calculating hypervolume. On
the other hand, the ideal point is chosen as the reference point when calculating
R2 indicator in T-R2-EMOA. After coordinate transformation, the calculation
of the second-ranking criterion is implemented only in the target region instead
of the whole coordinate system. It does make sense because the target region is
the desired space to the DM. No reference point is needed in the calculation of
crowding distance, and therefore, both formulas of coordinate transformation can
be chosen in T-NSGA-II.

The shape of the target region is not necessarily rectangular; it could be a circle,
an ellipse or any other shape, as long as the shape can sufficiently reflect whether
a solution is in the target region or not. For instance, if the DM wants the
solutions to be restricted to a sphere, he/she can specify the center point and
radius of the sphere and our algorithms can obtain the approximation set of the
P in the sphere.

T-SMS-EMOA The details of T-SMS-EMOA are given in Algorithm 7.
The framework of T-SMS-EMOA is based on SMS-EMOA. However, after fast
non-dominated sorting, all the solutions in the worst ranked front are seperated
into two parts (acceptable and unacceptable) by the DF. Solutions in part 1 have
desirability 0 and their hypervolume contributions are assigned to be 0; solu-
tions in part 2 have desirability 1 and coordinate transformation is conducted
on each objective of each solution in this part. After that, their hypervolume
contributions are calculated in the new coordinate system and the origin in the
new coordinate system is adopted as the reference point. The other difference
between T-SMS-EMOA and SMS-EMOA is the involvement of the Chebyshev
distance. In the early iterations, it is unlikely to exists individuals in the pre-
ferred region, the Chebyshev distance works on attracting solutions towards the
preferred region.

T-R2-EMOA The details of T-R2-EMOA are given in Algorithm 8. R2-
EMOA is extended to T-R2-EMOA in the same way as SMS-EMOA is extended to
T-SMS-EMOA. The formula of coordinate transformation used in T-R2-EMOA,
however, is opposite to the formula used in T-SMS-EMOA for the same problem,
since the origin of the new coordinate system is used as the reference point in
the measure of both hypervolume indicator in T-SMS-EMOA and R2 indicator
in T-R2-EMOA.
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Algorithm 7: T-SMS-EMOA
P0 ← init( ) /∗Initialise random population∗/
t← 0

repeat
qt+1 ← generate(Pt) /∗generate offspring by variation∗/
Pt = Pt ∪ {qt+1}
{R1, ..., Rv} ← fast-nondominated-sorting(Pt)
∀x ∈ Rv : compute DCh(x)/∗ Chebyshev distance ∗/
Rv = Rv1 ∪Rv2 /∗separate acceptable and unacceptable parts:
∀x ∈ Rv1 : D(x) = 0; ∀x ∈ Rv2 : D(x) = 1 ∗ /
∀x ∈ Rv1 : HC(x) = 0

Rv2 ← Coordinate Transformation(Rv2)
∀x ∈ Rv2 : HC(x) = HV (Rv2)−HV (Rv2\x)

if unique argmin{HC(x) : x ∈ Rv} exists
x∗ = argmin{HC(x) : x ∈ Rv}

else
x∗ = argmax{DCh(x) : x ∈ Rv}/∗in case of tie, choose randomly∗/

Pt+1 = P\{x∗}
t← t+ 1

until termination condition fulfilled

T-NSGA-II The details of T-NSGA-II are given in Algorithm 9. In T-
NSGA-II, the size of the offsping population is the same as the size of the parent
population. The next population is generated by choosing the best half solutions
from the merged parent and offspring population: starting with points in the first
non-domination front, continuing with points in the second non-domination front,
and so on. Picking points in the descending order of crowding distance when all
points in one non-domination front cannot be fully accommodated in Pt+1 and
picking points in the descending order of the Chebyshev distance when all the
points with the same crowding distance can not be accommodated in Pt+1. Unlike
T-SMS-EMOA and T-R2-EMOA, no reference point is needed in T-NSGA-II.
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Algorithm 8: T-R2-EMOA
P0 ← init( ) /∗Initialise random population∗/
t← 0

repeat
qt+1 ← generate(Pt) /∗generate offspring by variation∗/
Pt = Pt ∪ {qt+1}
{R1, ..., Rv} ← fast-nondominated-sorting(Pt)
∀x ∈ Rv : compute DCh(x)/∗ Chebyshev distance ∗/
Rv = Rv1 ∪Rv2 /∗separate acceptable and unacceptable parts:
∀x ∈ Rv1 : D(x) = 0; ∀x ∈ Rv2 : D(x) = 1 ∗ /
∀x ∈ Rv1 : r(x) = 0

Rv2 ← Coordinate Transformation(Rv2)
∀x ∈ Rv2 : r(x) = R2(P\{x}; Λ; i)/ ∗ i: ideal point∗/
if unique argmin{r(x) : x ∈ Rv} exists

x∗ = argmin{r(x) : x ∈ Rv}
else

x∗ = argmax{DCh(x) : x ∈ Rv}/∗in case of tie, choose randomly∗/
Pt+1 = P\{x∗}
t← t+ 1

until termination condition fulfilled

5.3 Empirical Experiments

5.3.1 TEHVI assisted EGO

Experimental Setup All the experiments were based on the same computer
and the hardware were: Intel(R) i7-3770 CPU @ 3.40GHz, RAM 16GB. The op-
erating system was Ubuntu 14.04 LTS (64 bit), and software were gcc 4.9.2 with
compiler flag -Ofast for exact TEHVI calculation, and MATLAB 8.4.0.150421
(R2014b), 64 bit for EGO. The benchmarks were: ZDT1, ZDT2 and the general-
ized Schaffer problem (GSP) [81], with the parameter of γ = 0.4. Each experiment
was repeated once. The preference regions were set as in Table 5.1: The number
of initial points for all the experiments was set to 30, and the iteration number
was set to 300. After initialization, 30 iterations based on TEHVI with prefer-
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Algorithm 9: T-NSGA-II
P0 ← init( ) /∗Initialise random population∗/
t← 0

repeat
Qt ← generate(Pt) /∗generate offsprings by variation∗/
Pt = Pt ∪Qt

∀x ∈ Pt : compute DCh(x)/∗ Chebyshev distance ∗/
{R1, ..., Rv} ← fast-nondominated-sorting(Pt)
for i = rank 1,...,v do
Ri = Ri1 ∪Ri2 /∗separate acceptable and unacceptable parts∗/
∀x ∈ Ri1 : Dc(x) = 0/ ∗Dc: crowding distance∗/
Ri2 ← Coordinate Transformation(Ri2)
∀x ∈ Ri2 : compute Dc(x)

Pt+1 ← half of Pt based on rank, Dc and then DCh

t← t+ 1

until termination condition fulfilled

Table 5.1: Parameter settings.

Benchmark
rg. 1 rg. 2 rg. 3 rg. 4

[A1, B1] [A2, B2] [A1, B1] [A2, B2] [A1, B1] [A2, B2] [A1, B1] [A2, B2]

GSP [0,∞] [0,∞] [0, 0.1] [0.5, 1] [0, 0.5] [0, 0.5] [0.5, 1] [0, 0.1]

ZDT1 [0,∞] [0,∞] [0, 0.5] [0.5, 1] [0, 0.5] [0, 0.5] [0.5, 1] [0, 0.5]

ZDT2 [0,∞] [0,∞] [0, 0.5] [0.5, 1] [0, 0.5] [0, 0.5] [0.5, 1] [0, 0.5]

ence region of A = (0, 0)T and B = (∞,∞)T were performed for obtaining a
preliminary Pareto front approximation. Then the rest of 240 iterations results,
which based on the truncated domain with the precise preferred regions, is shown
in Table 5.2.

Empirical Results The experimental results for GSP, ZDT1 and ZDT2
problems are shown in Figure 5.2, 5.3 and 5.4 respectively. Each upper left
subfigure is a Pareto front without preferred region (or, a preferred region is
set as (A,B) = (0T ,∞T ). The yellow region in each figure ((b),(c) and(d))
represents the preference region.

The experiments show that most elements in a Pareto front concentrate on the
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(a) rg. 1: A = (0, 0), B = (∞,∞).
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(b) rg. 2: A = (0, 0.5), B = (0.1, 1).
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(c) rg. 3: A = (0, 0.5), B = (0, 0.5).
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(d) rg. 4: A = (0.5, 0), B = (1, 0.1).

Figure 5.2: The preferred Pareto front for GSP problem.
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(a) rg. 1: A = (0, 0), B = (∞,∞).
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(b) rg. 2: A = (0, 0.5), B = (0.5, 1).
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(c) rg. 3: A = (0, 0.5), B = (0, 0.5).
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(d) rg. 4: A = (0.5, 0), B = (1, 0.5).

Figure 5.3: The preferred Pareto front for ZDT1 problem.
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(a) rg. 1: A = (0, 0), B = (∞,∞).
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(b) rg. 2: A = (0, 0.5), B = (0.5, 1).
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(c) rg. 3: A = (0, 0.5), B = (0, 0.5).
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(d) rg. 4: A = (0.5, 0), B = (1, 0.5).

Figure 5.4: The preferred Pareto front for ZDT2 problem.

Table 5.2: The size of Pareto front analysis.

Benchmark
n

rg. 1 rg. 2 rg. 3 rg. 4

GSP 112 64 115 70
ZDT1 77 78 58 80
ZDT2 112 64 115 70

corresponding preferred region, and they are adjacent to the true Pareto front.
Moreover, the Pareto front approximation in a preferred region also covers the
extreme boundary in this area. Since the truncated probability density function
is not zero only in the truncated domain, TEHVI is not zero only in a preferred
region and zero outside of the preferred region. Because of this, EGO can inten-
sively explore the preferred region in the objective space. Some solutions exist
in the outside preferred region. This is reasonable, considering the initialization
and only 30 precise evaluations. Moreover, all these procedures are explorations
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in the whole objective space. In the case of ZDT1 problem, the Pareto front with
the preferred region in Figure 5.3 (b) can not explore the extreme boundary in
the preferred region. This is probably caused by a failure of the CMA-ES [100]
to locate points in this narrow part. It might be advisable to widen the interval
range in such cases.

5.3.2 Preferred region based on EAs1

Experimental Settings In this section, simulations are conducted to demon-
strate the performance of the algorithms, namely T-SMS-EMOA, T-R2-EMOA,
and T-NSGA-II. In all simulations, we use the SBX operator with an index of
15 and polynomial mutation with an index 20 [101]. The crossover and mutation
probabilities are set to 1 and 1/N , respectively.

We conduct experiments on some benchmark problems, including ZDT, DTLZ
and knapsack problems, to investigate the performance of the new algorithms.
All experiments were run on a personal laptop with i5-5257U @ 2.7 GHz and 8G
RAM. The population size and the number of evaluations are chosen to be depen-
dent on the complexity of the test problem. Table 5.3 shows the population size
and the number of evaluations (NOEs) we use on different test problems.

Table 5.3: Population Size and Number of Evaluations.

Problems Population Size NOEs
ZDT1 100 10000
ZDT2-3 100 20000
DTLZ1-2 100 30000

knapsack-250-2
knapsack-500-2

200 200000

knapsack-250-3
knapsack-500-3

250 500000

Experimental Results

Two-Objective ZDT Test Problems In this section, we consider three ZDT
test problems. First, we consider the 30-variable ZDT1 problem. This problem

1This part of work is mainly done by Yali Wang.
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has a convex Pareto optimal front which is a connected curve and can be de-
termined by f2(x) = 1 −

√
f1(x). The true P spans continuously in f1 ∈ [0, 1].

Four different preferred regions are chosen to observe the performance of T-SMS-
EMOA, T-R2-EMOA and T-NSGA-II in Figure 5.5, Figure 5.6 (a) and Figure
5.6 (b), respectively. The first preferred region covers the entire P with the lower
bound (0,0) and the upper bound (1,1). The second preferred region restricts
preferred solutions to the central part of the P and its lower bound is (0.1,0.1),
and upper bound is (0.5,0.5). The third and fourth preferred regions take two
ends of the P, respectively and have their lower bounds to be (0,0.6) and (0.6,0),
upper bounds to be (0.3,1) and (1,0.3), respectively.

Figure 5.5: Representative P approximations of T-SMS-EMOA on ZDT1. The
different preferred regions are highlighted by gray boxes and their lower and upper
bounds are: upper left graph: (0,0)(1,1), upper right graph: (0.1,0.1)(0.5,0.5), lower
left graph: (0,0.6)(0.3,1), lower right graph: (0.6,0)(1,0.3).

Figure 5.5 and Figure 5.6 ((a) and (b)) show P approximations obtained from
the algorithms on the four different preferred regions in a random single run. It
is observed that all three algorithms can find well-distributed and well-converged
solutions on the P in the preferred regions and no outliers exist. The solution
set obtained by T-SMS-EMOA is more uniform than the solution sets obtained
by the other two algorithms. It is also observable that R2 indicator has a bias
towards the center of the PF.
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(a) Representative P approximations of T-R2-EMOA on ZDT1. The different pre-
ferred regions are highlighted by gray boxes and their lower and upper bounds are:
upper left graph: (0,0)(1,1), upper right graph: (0.1,0.1)(0.5,0.5), lower left graph:
(0,0.6)(0.3,1), lower right graph: (0.6,0)(1,0.3).

(b) Representative P approximations of T-NSGA-II on ZDT1. The different preferred
regions are highlighted by gray boxes and their lower and upper bounds are: upper left
graph: (0,0)(1,1), upper right graph: (0.1,0.1)(0.5,0.5), lower left graph: (0,0.6)(0.3,1),
lower right graph: (0.6,0)(1,0.3).

Figure 5.6: The preferred Pareto fronts for ZDT1 problem.
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We examine the performance of new algorithms using the hypervolume metric.
The hypervolume is calculated within the preferred region by normalizing the
values of each objective to the values between 0 and 1 and using the lower bound
of the preferred region as the reference point for the maximization problem and
the upper bound of a preferred region as the reference point for the minimiza-
tion problem. Table 5.4 shows the median of hypervolume over 30 runs. The
statistical results correspond to the observation that T-SMS-EMOA outperforms
T-R2-EMOA and T-NSGA-II slightly. The original SMS-EMOA, R2-EMOA and
NSGA-II are also involved in the comparison, and the results of the original
MOEAs are obtained by presenting constraints in the description of a prob-
lem. Although the results of our algorithms are not better than those of original
MOEAs with constraints on the range of objectives, experiments show that our
algorithms can reduce computation time dramatically.

Table 5.4: The median of hypervolume and average computation time (Sec.) on
ZDT1 with respect to different preferred regions.

New Algorithms
T-SMS-EMOA T-R2-EMOA T-NSGA-II

preferred region Metric
(0,0) HV 0.6580 0.6566 0.6425
(1,1) Time 24.99 74.01 0.21

(0.1,0.1) HV 0.1640∗ 0.1638∗ 0.1543
(0.5,0.5) Time 10.30 23.61 0.19
(0,0.6) HV 0.8110 0.8097 0.7936
(0.3,1) Time 12.86 31.78 0.20
(0.6,0) HV 0.6255∗ 0.6233∗ 0.6079
(1,0.3) Time 11.45 27.92 0.21

Original Algorithms SMS-EMOA R2-EMOA NSGA-II
(0,0) HV 0.6621 0.6610 0.6609
(1,1) Time 108.57 314.99 0.25

(0.1,0.1) HV 0.1694 0.1693 0.1690
(0.5,0.5) Time 106.32 274.05 0.23
(0,0.6) HV 0.8197 0.8185 0.8191
(0.3,1) Time 105.73 271.00 0.21
(0.6,0) HV 0.6364 0.6348 0.6356
(1,0.3) Time 101.82 283.3 0.22
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In the table, the symbol of “∗” on the values for the same preferred region means
the medians of these algorithms are significantly indifferent. The Mann-Whitney
U test (also called the Mann-Whitney-Wilcoxon (MWW), Wilcoxon rank-sum
test, or Wilcoxon-Mann-Whitney test) is used to determine whether the medians
of different algorithms for the same problem are significantly indifferent.

Next, we consider the 30-variable ZDT2 and ZDT3 problems. ZDT2 has a non-
convex Pareto optimal front, and ZDT3 has a disconnected Pareto optimal front,
which consists of five non-contiguous convex parts. Circle preferred regions are
adopted in the case of ZDT2 and ZDT3 problems. A circle with a center point
(1,0) and radius 0.5 intersects the whole P of ZDT2 at its one end, and a circle
with a center point (0.6,0.5) and radius 0.3 intersects the whole P at its central
part. The two different circles are chosen as examples for preferred regions on the
ZDT2 problem. Experiments for a circle with a center point (0.3,0.1) and radius
0.3 as the preferred region are conducted on the ZDT3 problem.

Figure 5.7 shows PF approximation of T-SMS-EMOA in these preferred regions.
Similar figures can also be achieved by T-R2-EMOA and T-NSGA-II. Orange
points denote the results obtained by means of T-SMS-EMOA on provided pref-
erence information. Approximated optimal P of ZDT2 problem for 100 blue
points are from [102]. Statistical results of the median of hypervolume for three
algorithms (T-SMS-EMOA, T-R2-EMOA and T-NSGA-II) for 30 independent
runs in each preferred region are shown in Table 5.5.

Table 5.5: The median of hypervolume on ZDT2 and ZDT3 with respect to
different circle preferred regions.

MOEA
T-SMS-EMOA T-R2-EMOA T-NSGA-II

preferred region
ZDT2 (1,0) 0.5 0.3168 0.3167 0.3159

ZDT2 (0.6,0.5) 0.3 0.3257 0.3256 0.3234
ZDT3 (0.3,0.1) 0.3 0.3377 0.3375 0.3365

5.4 Summary

This chapter introduced two main approaches to solve the preference-based multi-
objective optimization problems. The first approach is using TEHVI as the pre-
selection criterion in MOBGO. The basic idea behind TEHVI-EGO is straightfor-
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Figure 5.7: Representative P approximations of T-SMS-EMOA on ZDT2 and
ZDT3. The preferred regions are purple circles and center points are red points.

ward: using the lower and upper bounds in THEIV to define the preferred region
in the objective space, TEHVI can lead the algorithm to explore more solutions
in this preferred region. TEHVI-EGO for solving the problem of preference-based
multiobjective optimization is introduced. The concept of a preferred region is
introduced by means of the corresponding truncated domain in TEHVI (interval
range in objective space). Then, EGO can intensively explore the preferred re-
gion in objective space, and obtain preferred parts of the Pareto front. Empirical
experiments were based on GSP, ZDT1 and ZDT2 problems, and show that a
Pareto front can effectively converge to a preferred region through the proposed
method. Compared to non-preference method, the population of the points in a
preference region is larger, which means more choices are provided in this pref-
erence region. The computational cost remains small – O(n log n) for a current
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5.4 Summary

Pareto front consisting of n points. In summary, TEHVI-EGO shows a robust
capability to search Pareto front segments in a particularly preferred region.

Inspired by the definition of TEHVI, preferred region based EAs are proposed and
introduced in the second approach. In this chapter, a region-based multi-objective
evolutionary algorithm model is also proposed. Three algorithms named T-SMS-
EMOA, T-R2-EMOA and T-NSGA-II have been instantiated when combining the
algorithm model with original SMS-EMOA, R2-EMOA and NSGA-II algorithms.
These new algorithms have been applied to some continuous benchmark problems
with two objectives. Experimental results show that our algorithms can guide the
search toward the preferred region on the Pareto optimal front. No outlier appears
on a reasonable number of function evaluations. Although our new algorithms
presented similar performance with the original MOEAs on tested problems by
integrating accessorial constraints in the problem description, our algorithms save
computational efforts by guiding the search towards the preferred region without
exploring the whole set of Pareto optimal solutions. On the contrary, in the case of
original MOEAs, the increase in the number of constraints leads to the decrease
of the search ability. Moreover, the proposed algorithms exhibit the trend of
behaving better with the increase in the number of objectives, compared to the
original MOEAs. The experiments on many-objective problems (i.e., problems
with four or more objectives) should be conducted in future work.
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Chapter 6

EHVI Gradient Calculation

The Expected Hypervolume Improvement (EHVI) is a frequently used infill cri-
terion in Multi-Objective Bayesian Global Optimization (MOBGO), due to its
good ability to lead the exploration. Recently, the computational complexity of
EHVI calculation is reduced to O(n log n) both in 2-D and 3-D cases. However,
the maximization of EHVI, which is carried out in each iteration of the algorithm,
still requires a significant amount of time. This chapter introduces a formula for
the Expected Hypervolume Improvement Gradient (EHVIG) and proposes an ef-
ficient algorithm to calculate EHVIG. The new criterion (EHVIG) is utilized by
two different strategies in this chapter. Firstly, it enables gradient ascent meth-
ods to be used in MOBGO. Moreover, since the EHVIG of an optimal solution
should be a zero vector, it can be regarded as a stopping criterion in global op-
timization, e.g., an Evolution Strategy. Empirical experiments are performed on
seven benchmark problems. The experimental results show that the second pro-
posed strategy, using EHVIG as a stopping criterion, can outperform the normal
MOBGO on the problems, where the optimal solutions are located in the interior
of the search space. For the remaining test problems, EHVIG can still perform
better when gradient projection is applied.

This chapter mainly discusses the computation of the 2-D EHVIG and how to
apply EHVIG in MOBGO by two approaches: using EHVIG in gradient ascent
algorithm for local search and using EHVIG as a stopping criterion in an evo-
lutionary algorithm. The chapter is structured as follows: Section 6.1 describes
the motivations of the EHVIG research; Section 6.2 introduces the definition of
the EHVIG and proposes an efficient algorithm to calculate 2-D EHVIG, includ-
ing a computational performance assessment between the proposed efficient exact
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calculation method and numerical calculation method in 2-D EHVIG case; Sec-
tion 6.3 introduces the gradient method using EHVIG in MOBGO; Section 6.4
illustrates how to utilize EAs (CMA-ES in this chapter) assisted by the stop-
ping criterion EHVIG in MOBGO; Section 6.5 shows the empirical experimental
results.

6.1 Motivations

Compared to EAs, MOBGO still performs much slower using the infill criterion
EHVI, because EHVI needs to be called many times in the process of searching for
the optimal point based on the Kriging models. Since the calculation of the EHVI
can be formulated in a closed form, it is possible to analyze its differentiability.
It is easy to see, that all components of the EHVI expression are differentiable.
However, a precise formula of the EHVIG has not been derived until now. Once
the formula of EHVIG is derived, it could speed up the MOBGO in the process
of searching for the optimal point by using the gradient ascent algorithm to
maximize EHVI or using it as a stopping criterion in EAs.

6.2 Expected Hypervolume Improvement Gradi-
ent (EHVIG)

Considering the definition of the EHVI in Equation (2-1) and the efficient al-
gorithm to calculate 2-D EHVI (minimization case) in A.4, the EHVI is dif-
ferentiable with respect to the predictive mean and its corresponding standard
deviation, which are again differentiable with respect to the input vector (or tar-
get point) in the search space. The EHVIG is the first order derivative of the
EHVI with respect to a target point x under consideration in the search space.
It is defined as:

Definition 6.1 (Expected Hypervolume Improvement Gradient) 1 Given
parameters of the multivariate predictive distribution µ, σ at a target point x in
the search space, the Pareto-front approximation P, and a reference point r , the

1The prediction of µ and σ depends on a Kriging model and a target point x in the search
space. Explicitly, EHVIG is dependent on the target point x.
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expected hypervolume improvement gradient (EHVIG) at x is defined as:

EHV IG(x,µ,σ,P, r) =
∂
(∫

Rd HVI(P,y) · PDFµ,σ(y)dy
)

∂x
=
∂ (EHV I(µ,σ,P, r))

∂x
(2-1)

According to the definition of EHVIG in Equation (2-1) and the efficient algorithm
to calculate EHVI in Equation (A-12), we can substitute the Equation (A-12) into
Equation (2-1), say that the formula of EHVIG for 2-D case can be expressed
as:

EHV IG(x,µ,σ,P, r) =
∂(EHV I(µ,σ,P, r))

∂x

=
∂
(∑n+1

i=1 (y
(i−1)
1 − y(i)

1 ) · Φ(
y
(i)
1 −µ1
σ1

) ·Ψ(y
(i)
2 , y

(i)
2 , µ2, σ2)

)
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+ (2-2)

∂
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(
Ψ(y
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1 , y

(i−1)
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(i)
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)
·Ψ(y

(i)
2 , y

(i)
2 , µ2, σ2)

)
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(2-3)

For the Terms (2-2) and (2-3), the prerequisite of calculating these two Terms is
to calculate the gradient of the Ψ function and of the Φ(y−µ

σ
) function. The final

expressions for ∂Ψ(a,b,µ,σ)
∂x

and ∂Φ( y−µ
σ

)

∂x
are shown in Equation (2-4) and Equation

(2-5), respectively. For detailed proofs, please refer to the Appendix (A.3) in this
dissertation.

∂Ψ(a, b, µ, σ)

∂x
=
(b− a

σ
· φ(

b− µ
σ

)− Φ(
b− µ
σ

)
)
· ∂µ
∂x

+

φ(
b− µ
σ

) ·
(
1 +
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σ2
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(2-4)

∂Φ(y−µ
σ

)

∂x
= φ(

y − µ
σ

) · (µ− y
σ2
· ∂σ
∂x
− 1

σ
· ∂µ
∂x

) (2-5)

By substituting Equations (2-4) and (2-5) into Term (2-2) with applying the chain

88



6.2 Expected Hypervolume Improvement Gradient (EHVIG)

rule, Term (2-2) can be expressed by:

∂
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Similar to the derivation of Term (2-2), Term (2-3) can be expressed by:
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Then, the EHVIG is the sum of Terms (2-6) and (2-7). In these two Terms, ∂µi
∂x

and ∂σi
∂x

(i = 1, 2) are the first order derivatives of the Kriging predictive means
and standard deviations at a target point x, respectively. These parameters can
be precisely calculated by means of a Kriging model. For the details of the
formulas and how to calculate these parameters, please refer to [103].

Performance Assessment The performance assessment of the EHVIG will be
illustrated by a single numerical experiment. The bi-criteria optimization prob-
lem is: y1(x) = ||x−1|| → min, y2(x) = ||x+1|| → min, x ∈ [−1, 6]×[−1, 6] ⊂ R2

[2]. Figure 6.1 shows the landscape of EHVIG, in which the evaluated points are
marked by blue circles. The EHVIG calculated by the exact method is indicated
by the black arrow in the left figure. The EHVIG calculated by the numerical
method is indicated by the red arrows in the right figure. The landscapes of
EHVIG in both figures are very similar, however, there exist some slight differ-
ences between them, while very small and caused by numerical errors.

6.3 Gradient Ascent Algorithm

Previously, the optimizer opt in Algorithm 3 was chosen as CMA-ES [104], which
is a state-of-the-art heuristic global optimization algorithm. Since the formula of
2-D EHVIG is derived in this chapter, a gradient ascent algorithm can replace
CMA-ES to speed up the process of finding an optimal point x∗.

Many gradient ascent algorithms (GAAs) exist. The conjugate gradient algorithm
is one of the most efficient algorithms among them. However, it cannot solve the
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Figure 6.1: The landscape of EHVIG. Left: computed using exact calculation
algorithm, Right: computed using numerical calculation method.

constrained problems, and this is the reason why we exclude it in this chapter.
For the other GAAs, the general formula of computing the next solution is:

x(t+1) = x(t) + s · ∇F (x(t)) (3-8)

where x(t) is the current solution, x(t+1) is the updated solution, s is the stepsize,
and ∇F (·) is the gradient of the objective functions or of the infill criterion. In
this chapter, ∇F is EHVIG.

Another important aspect is that the starting point is very important to the
performance of GAAs. In order to improve the probability of finding the globally
optimal point, CMA-ES was used to initialize the starting points in this chapter.
The structure of gradient ascent based search algorithm is shown in Algorithm
10.

6.4 Stopping Criterion – EHVIG

Traditionally, when EAs are searching for the optimal point x∗, convergence ve-
locity and some other statistical criteria are used to determine whether the EAs
should stop/restart or not. These criteria can balance the quality of the per-
formance and efficiency of the execution time to some degree, but not optimally.
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6. EHVI GRADIENT CALCULATION

Algorithm 10: Gradient Ascent Based Search Algorithm
Input: Kriging Models M1, · · · ,Md, Pareto-front approximation P,

reference point r, number of clusters Nc

Output: Optimal solution x∗

1: Initialize λ points using CMA-ES with 15 iterations;
2: Cluster λ points into Nc clusters G1, · · · , GNc ;
3: for i = 1 to i <= Nc do
4: Update starting point xs, xs = mean(Gi) ;
5: Calculate the optimal point x∗i using simple gradient ascent algorithm

and the starting point xs;
6: Calculate the corresponding EHVI value EHV I i

7: Find the optimal point x∗ among x∗1, · · · ,x∗Nc ;
8: Return x∗;

Because all these criteria are blind to whether an individual is already the optimal
or not.

Considering the gradient of the optimal point in the search space should be a
zero vector and EHVIG can be exactly calculated, EHVIG can be used as a stop-
ping/restart criterion in EAs when they are searching for the optimal point with
the EHVI as the infill criterion. Theoretically speaking, the EHVI should be
maximized during the procedure, therefore, this strategy should also be required
to check the negative value of the second derivative of EHVI at this point. How-
ever, this is omitted due to the complexities. The structure of CMA-ES assisted
by EHVIG is shown in Algorithm 11.

6.5 Experimental Results

Experimental Settings The benchmarks were well-known test problems:
BK1 [78], SSFYY1 [79], ZDT1, ZDT2, ZDT3 [80] and the generalized Schaffer
problem [81] with different parameter settings for γ. All these benchmarks were
employed by using different searching strategies in MOBGO, as shown in Table
6.1. Each trail was repeated for 10 times. All the experiments were finished on the
same computer: Intel(R) i7-3770 CPU @ 3.40GHz, RAM 16GB. The operating
system was Ubuntu 16.04 LTS (64 bit) and platform was MATLAB 8.4.0.150421
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(R2014b), 64 bit.

Algorithm 11: CMA-ES Assisted by EHVIG
Input: Kriging Models M1, · · · ,Md, Pareto-front approximation P,

reference point r, restart number Nr

Output: Optimal solution x∗

1: for i = 1 to i <= Nr do
2: Initialize parameters in CMA-ES;
3: flag = 1 ;
4: for flag ≥ ε do
5: Get offspring by normal CMA-ES with default parameters ;
6: Select the best individual x∗i from the offspring ;
7: Predict the mean value µ∗ and the standard deviation σ∗ at x∗i ;
8: flag = Sum(|EHV IG(x∗i,µ∗,σ∗,P, r)|) ;

9: Find the optimal point x∗ among x∗1, · · · ,x∗Nr ;
10: Return x∗;

Table 6.1: CMA-ES Parameter Settings.

ε Nr Stopping Criterion Max Iter. Gradient Decent Nc

Alg. 1 / 3 Default 2000 No /
Alg. 2 10−5 3 EHVIG 2000 No /
Alg. 3 / 0 Default 15 Yes 4
Alg. 4 / 0 Default 15 No /
Alg. 5 10−5 3 EHVIG projection 2000 No /

Table 6.2 shows the final experimental results. The final performance on each
algorithm is evaluated by HV and execution time. The highest value of HV on
each test problem is indicated in bold, and the smallest value of the standard
deviation of HV is also shown in bold. For the execution time, both the least
execution time and smallest standard deviation of time, among Alg. 1, Alg. 2
and Alg. 3 are indicated in bold.

Here, Alg. 4 (original CMA-ES with no restart mechanism and with a max
iteration of 15) is a control group for Alg. 3 to test whether the GAA works as
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6. EHVI GRADIENT CALCULATION

predicted or not. Since there is no new mechanism added to Alg. 4 and max
iteration is too small, the performance of Alg. 4 is indeed worse than the other
three algorithms. Hence, there is no need to compare the execution time of Alg.
4 with others.

From Table 6.2, it can be seen that Alg. 3, using GAA for searching an optimal
point and CMA-ES for the initialization of the starting points, can improve the
final performance a little bit, compared to Alg. 4. However, it can not outperform
the original CMA-ES (Alg. 1). The reason is related to the starting points in
the GAA, that is: GAA is very sensitive to the starting point and the starting
points generated by CMA-ES with 15 iterations are located at the local optimal
area.

Compared to original CMA-ES (Alg. 1), Alg. 2 (CMA-ES using EHVIG as
the stopping criterion) outperforms Alg. 1 on BK1, SSFYY1, GSP, and GSP12.
Among these four test problems, the execution time of Alg. 2 is much faster than
Alg. 1 in the cases of the SSFYY1 and GSP problems. When applying EHVIG
as a stopping criterion in Alg. 2, algorithm CMA-ES can terminate the loop
earlier when the EHVIG of one individual is a zero vector, and therefore some
execution time can be saved. In other words, while original CMA-ES does not
know whether a current individual is already the optimal solution or not, EHVIG
can be used as a criterion to check this individual. For the BK1 and GSP12
problems, Alg. 2 needs more time, but the performance of Alg. 2 is better than
Alg. 1.

On ZDT series problems, however, the performance of Alg. 2 is worse than Alg. 1.
An explanation of this phenomenon is that the optimal solutions for ZDT series
problems are located on the boundary of the search space. According to the
definition of the gradient, EHVIG would be infeasible at these boundaries, and
thus EHVIG would mislead CMA-ES to search the optimal solution. A remedy to
improve the performance of Alg. 2 is applying the projection of EHVIG to check
whether an individual is optimal or not on the boundaries, instead of EHVIG.
Here, the projection of EHVIG is the orthogonal projection of EHVIG onto the
active constraint boundary. Since we are only dealing with box constraints, all
the components of the gradient that correspond to active boundaries in the same
dimension are set to zero. In Table 6.2, compared to Alg. 2 in ZDT series
problems, Alg. 5 is assisted by the projection of EHVIG and can reach Pareto
front approximations closer to the true ones with less execution time. For ZDT1
and ZDT2 problems, the average HV values of Alg. 5 are even better than Alg.
1 with less execution time.
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Table 6.2: Experimental Results.

Benchmark Ref. Alg. 1 Alg. 2 Alg. 3 Alg. 4 Alg. 5

BK1 (60,60)

Time(mins)
mean 6.2817 13.4433 8.0933 0.4350 /

std. 0.6480 1.0280 0.8803 0.0166 /

HV
mean 3175.7582 3175.9683 3166.4668 3133.8960 /

std. 0.3620 0.2940 3.6840 6.0266 /

SSFYY1 (5,5)

Time(mins)
mean 13.1067 4.7667 7.2550 0.4233 /

std. 5.4001 0.3306 0.3705 0.0117 /

HV
mean 20.7096 20.7098 20.5474 20.0187 /

std. 0.0069 0.0035 0.0361 0.1284 /

ZDT1 (11,11)

Time(mins)
mean 82.9317 76.9400 15.0667 6.6133 34.8383

std. 38.5988 12.1167 8.2437 4.2966 14.7293

HV
mean 120.6491 120.6488 120.6268 120.6275 120.6498

std. 0.0055 0.0052 0.0069 0.0066 0.0063

ZDT2 (11,11)

Time(mins)
mean 40.3233 39.6800 6.8889 2.0983 33.8407

std. 7.1394 6.1038 0.1332 0.1628 2.3391

HV
mean 120.3025 120.2965 120.1151 119.2155 120.3159

std. 0.0130 0.0067 0.3474 2.9890 0.0127

ZDT3 (11,11)

Time(mins)
mean 53.6267 45.9850 8.5450 2.8550 13.3067

std. 8.5955 8.8638 0.5120 0.4217 9.0423

HV
mean 128.7486 128.4772 127.7556 127.4168 128.6857

std. 0.0079 0.7747 1.2385 1.2383 0.1029

GSP (5,5)

Time(mins)
mean 46.4850 7.5017 13.3167 0.5283 /

std. 40.2517 0.3572 0.7771 0.0112 /

HV
mean 24.9066 24.9066 24.9055 24.9050 /

std. 0.0001 0.0000 0.0001 0.0001 /

GSP12 (5,5)

Time(mins)
mean 20.3167 20.6650 13.7200 4.6867 /

std. 0.4215 0.7123 0.4407 0.1403 /

HV
mean 24.3914 24.3930 24.3883 24.3848 /

std. 0.0034 0.0019 0.0016 0.0013 /
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6.6 Summary

This chapter introduced an efficient algorithm to exactly calculate the 2-D EHVIG
and applied EHVIG in Multi-Objective Bayesian Global Optimization using two
different strategies in the process of searching for the optimal solution: using
EHVIG as a stopping criterion in the original CMA-ES and using gradient ascent
algorithm (CMA-ES used here to initialize the starting points).

The empirical experimental results show that the gradient ascent based algorithm
is much faster than original CMA-ES, but it has an obvious drawback: it gets
easily stuck at a locally optimal point. Another strategy, taking EHVIG as the
stopping criterion in CMA-ES, can improve the quality of the final Pareto front
and reduce some execution time, compared to original CMA-ES on the problem
whose optimal points are not at the boundaries in the search space. This strategy
does not work on ZDT series problems because EHVIG cannot be calculated at
the boundaries in the search space. However, a useful remedy to this strategy is
the projection of EHVIG.
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Chapter 7

Applications

This chapter presents and analyses an engineered expected hypervolume improve-
ment (EHVI) algorithm, which aims to solve the problem of PID parameter tun-
ing and the optimization problem of controlling the substrate feed of a bio-gas
plant. The EHVI is the expected value of the increment of the hypervolume
indicator given a Pareto front approximation and a predictive multivariate Gaus-
sian distribution of a new point. To solve this problem, S-metric selection-based
efficient global optimization (SMS-EGO), EHVI based efficient global optimiza-
tion (EHVI-EGO) and SMS-EMOA are used and compared in both the PID
parameter tuning problem and for bio-gas plant feed optimization. The results
of the experiments show that surrogate model based algorithms perform better
than SMS-EMOA, and the performance of EHVI-EGO is slightly better than
SMS-EGO.

This chapter is structured as follows: Section 7.1 describes the backgrounds of the
bio-plant and PID parameter tuning problems. Section 7.2 introduces the PID
parameter tuning task, the multi-objective nonlinear model predictive control
approach as well as, the biogas process model. Section 7.3 and Section 7.4 discuss
experimental studies and results.

7.1 Backgrounds

Based on REN21’s (Renewable Energy Policy Network for the 21st Century)
2014 report, renewable energy contributed 19 percent to worldwide energy con-
sumption and 22 percent to worldwide electricity generation in 2012 and 2013,
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respectively. Among renewable energy, the use of renewable energy in the form
of biogas grew at a rapid pace in the past decade. Biogas is produced in bio-gas
plants, where an anaerobic degradable substrate is decomposed by anaerobic bac-
teria in an oxygen-free environment. The main ingredient of biogas is methane,
which can be used for further utilization, such as energy production.

Maximizing the yield and maintaining the bio-gas plant stability are crucial for
commercial use. To this ends, bio-gas plants should work at optimal operating
points. This can be achieved by adjusting the substrate mixture and by tracking
the optimal setpoints [105]. However, due to the high dimensional nonlinearity of
the anaerobic digestion process and due to lacking reliable measurement sensors
on most full-scale bio-gas plants [106], predicting the biogas throughput and de-
signing the optimal feedback control are challenging tasks in the field of anaerobic
digestion.

Batstone et al. [107] proposed the Anaerobic Digestion Model No.1 (ADM1)
in 2002, and we use it as dynamic simulation model in multi-objective nonlin-
ear model predictive control (MONMPC). In MONMPC, there is an upper-level
controller which generates the optimal methane setpoint and the corresponding
optimal substrate feed that is passed through to a lower-level controller, which
tracks a directly measurable process value (or setpoint). MONMPC is chosen due
to the multi-objective nature of bio-gas plant operation, maximizing the profits
and minimizing the ecological footprint [43].

For multi-objective black-box optimization, many algorithms exist. Evolutionary
algorithms for solving these problems exist, e.g., NSGA-II [75] and SMS-EMOA
[19], which, however, typically require many function evaluations (� 1000) to find
good approximations to Pareto fronts. In controller optimization, expensive eval-
uations of black-box objective functions pose typical challenges. In this chapter,
we focus, therefore, on optimization with a small budget of function evaluations
and use surrogate-model based optimization strategies [108], which replace exact
evaluations by approximations learned from past evaluations. Recently, this idea
has been generalized to multi-objective optimization (e.g. [109, 110, 111]). Algo-
rithms that generalize efficient global optimization are S-Metric Selection EGO
(SMS-EGO) [50] and Expected Hypervolume Improvement-based EGO (EHVI-
EGO) [42, 60, 61]. Recently, the runtime efficiency of the exact infill criterion in
the bi-objective EHVI-EGO was improved from O(n3 log n) to O(n2) [42], where
n is the number of points in the archive. This makes it competitive with other
techniques that use computable infill criteria, in particular, SMS-EGO.

The specific contributions of this chapter are as follows: In this chapter, we
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will compare algorithms in the application domain of controller optimization. In
this chapter, we will provide a first application study with the new Fast EHVI-
EGO. The contribution of this chapter is also to discuss concisely the definition
of multi-objective model-predictive control optimization in bio-gas plant – more
precisely for minimizing stage cost and terminal cost of a bio-gas plant – and of
multi-objective parameter tuning of PID controllers.

7.2 Problem Definition

7.2.1 PID Parameter Tuning

This benchmark on PID parameter tuning is taken from [112]. The three param-
eters in PID controller are: proportionality Kp, integral Ki and derivative Kd.
The transfer function of PID controller for a continuous system can be defined
as: Y (s) = U(s)

E(s)
= Kp + Ki

s
+ Kds, where E(s) and U(s) represent error signal

and control signal, respectively. The basic idea of PID controller is attempting
to minimize an error (E(s)) by adjusting the process control inputs. The process
of PID controller can be described as follows: when a setpoint is set or E(s)
exists, E(s) will be calculated by the difference between the setpoint and actual
output, and a PID controller will generate a new control signal (U(s)) based on
E(s). Then the new control signal U(s) is applied to the plant model, and the
new actual output and E(s) are generated again. The structure of a PID control
is shown in Figure 7.1.

Plant

i
p d

K
K K s

s
 

PID Controller

( )G s
( )R s ( )E s ( )U s ( )Y s



Setpoint Control SignalError Actual Output

Figure 7.1: The structure of PID control.

Problem and Fitness function The chosen transfer functions modelling
the plant in this chapter are:
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G1(s) =
25.2s2 + 21.2s+ 3

s5 + 16.58s4 + 25.41s3 + 17.18s2 + 11.70s+ 1
(2-1)

G2(s) =
4.228

(s+ 0.5)(s2 + 1.64s+ 8.456)
(2-2)

The step response of these two plants is analyzed with the criteria of settling
time (ts) and percentage overshoot (PO). Settling time (ts) is defined as time
elapsed from the application of an ideal instantaneous step input to the time, at
which the output has entered error band with 2% in this chapter, while percentage
overshoot (PO) refers to the percentage of an output exceeding its final steady-
state value.

7.2.2 Robust PID Tuning

+R(s) ∑ E(s) C(s) U(s) P (s)(I +4P (s))
+

+

d

Y (s)

−

Figure 7.2: Feedback control system with plant perturbation and external distur-
bance.

The structure of the feedback controller is shown in Fig 7.2, where R(s) is the
reference input signal, E(s) represents error signal, C(s) is the transfer function
of the controller, U(s) is control signal, P (s) stands for controlled plant, 4P (s)
is the plant perturbation, d(t) is the external disturbance and Y (s) is the output
of the system. For PID controller, three parameters are consisted in C(s): pro-
portionality B2, integral B1 and derivative B0, and the transfer function of PID

controller for a continuous system can be defined as: C(s) =
B2s

2 +B1s+B0

s
.

The basic idea of PID controller is to attempt to minimize an error (E(s)) by
adjusting the process control inputs.

The benchmark for PID tuning is taken from [113] [114]. The transfer function
of the plant is given as follows:

P (S) =

( −33.98

(98.02s + 1)(0.42s + 1)

32.63

(99.6s + 1)(0.35s + 1)
−18.85

(75.43s + 1)(0.30s + 1)

34.84

(110.5s + 1)(0.03s + 1)

)
(2-3)
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Objective functions Two criteria were used here: balanced performance
criterion J∞ = (J2

a + J2
b )1/2 [115] and interval squared error J2 =

∫∞
0
eT (t)e(t)dt.

For J∞, Ja and Jb are defined as follows: J2
a = ||W1(s)T (s)||∞, J2

b = ||W2(s)S(s)||∞.
Here, W1(s) is the assumed boundary of plant perturbation 4P (s), W2(s) is a
stable weighting function matrix and they are defined in [115]:

W1(s) =
100s+ 1

s+ 1000
× I2×2, (2-4)

W2(s) =
s+ 1000

1000s+ 1
× I2×2. (2-5)

T (s) and S(s) are the sensitivity and complementary sensitivity functions of the
system, respectively, and they can be calculated by:

S(s) = (I + P (s)C(s))−1, (2-6)
T (s) = P (s)C(s)(I + P (s)C(s))−1. (2-7)

7.2.3 Bio-gas Plant Optimization

Consider a bio-gas plant fed with nu ∈ N substrates. Its ns ∈ N dimensional
system state is symbolized by x : R+

0 → S and its substrate feed by u : R+
0 → U,

with S ⊆ Rns and U ⊆ Rnu denoting the state and input space, respectively.
In multi-objective nonlinear model predictive control, a time dependent (t ∈
R+

0 ) optimization problem that is defined over a prediction horizon Tp ∈ R+

is solved at every discrete time instant tk := k · δ, with sampling time δ ∈
R+ and k = 0, 1, 2, . . . , [116]. The objective is to minimize a two-dimensional
objective function J : S × U → R2, which depends on the open loop state os :
R+

0 → S and the open loop substrate feed ou : R+
0 → U of the controlled bio-

gas plant, approximately modeled by a set of nonlinear differential equations
os′(t) = f (os(t),u(t)), called the bio-gas plant model f : S × U → Rns . The
optimization problem is solved by choosing the optimal substrate feed ou over a
control horizon Tc ∈ R+, δ ≤ Tc ≤ Tp. The MONMPC problem can be stated as
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follows:
For each k = 0, 1, 2, . . . set tk = k · δ and solve:

min
ou(·)∈U

J (os(τ), ou(τ))

s.t. os′(τ) = f (os(τ), ou(τ)) ,
os (tk) = x (tk) ,
os(τ) ∈ S,∀τ ∈ [tk, tk + Tp] ,
ou : [tk, tk + Tc]→ U,
ou(τ) = ou (tk + Tc) ,∀τ ∈ (tk + Tc, tk + Tp] .

(2-8)

Since the objective function, i. e. J := (J1, J2)T , is vector valued, there is not one
single optimal solution, but rather many trade-off solutions, which are all Pareto
optimal with respect to (2-8) and collected in the so-called Pareto optimal set
P∗k ⊂ U, [117]. The trade-off solution applied to the plant, ou∗k, is given by a
weighted sum, $1, $2 ∈ R:

ou∗k := arg min
ou∈P∗k

2∑
io=1

$io · Jio (os, ou) , (2-9)

and then applied for the duration of the sampling time δ:

u(t) = ou∗k(t), t ∈ [tk, tk + δ) . (2-10)

Objective functions The objective function components J1 and J2 are de-
fined as follows. The first component of the objective function is defined as:

J1 :=
1

Tp
·
∫ tk+Tp

tk

F1(τ) dτ + Tp,1, (2-11)

It is the average of the negative financial profit Eplant := (benefit− cost) ob-
tained by operating the bio-gas plant over the prediction horizon Tp, with the
first component of the stage cost defined as:

F1(τ) := −Eplant (os(τ), ou(τ)) . (2-12)

The cost function is defined by the sum of the substrate and energy costs and
the benefit function is defined by the profit obtained after selling the produced
electrical and thermal energy, which, in Germany, is determined by the Renewable
Energy Sources Act - EEG [118]. The minus sign in eq. (2-12) is added because
the optimization problem in eq. (2-8) is formulated as a minimization problem.
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In eq. (2-11) the first component of the terminal cost Tp,1 is used, which is defined
as:

Tp,1 := κT,1 · F1 (tk + Tp) , (2-13)

with the weighting factor κT,1 ∈ R+.

The second component of the objective function J2,

J2 :=
1

Tp
·
∫ tk+Tp

tk

F2(τ) dτ +∫ tk+Tp

tk

∥∥ou′(τ)
∥∥2

2
dτ + Tp,2

, (2-14)

contains a weighted sum of all nc ∈ N0 boundary conditions that are active over
the prediction horizon Tp, defined in the second component of the stage cost
F2:

F2(τ) :=
nc∑
ic=1

κic · boundic (os(τ), ou(τ)) . (2-15)

Furthermore, J2 contains the integral over the change of the open loop control
input ou and the terminal penalty term Tp,2 with the weighting factor κT,2 ∈
R+:

Tp,2 := κT,2 · F2 (tk + Tp) . (2-16)

In eq. (2-15) the weights κic ∈ R+ are normalized,
∑nc

ic
κic = 1, and the boundary

conditions are defined as:

boundic : S× U→

0 < · · · ≤
(
1 or 4.68512

6

)
if active,

0 else.
(2-17)

Such that all constraints are smooth, some of the them are implemented using
the Tukey biweight function ρT : R→ R+, which is defined as, with CT := 4.6851
[119]:

ρT (uT) :=


C2

T
6

[
1−

(
1−

(
uT
CT

)2
)3
]
|uT| ≤ CT,

C2
T
6 else.

(2-18)

In eq. (2-18), uT ∈ R must be replaced by the difference between the constrained
value and its boundary condition.

Examples for the nc constraint functions boundic , ic = 1, . . . , nc, are upper and
lower boundaries for VFA/TA, COD degradation rate, pH value, OLR, HRT,
NH4-N and VFA (for details see [43]).
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Bio-gas Process:

In the simulation experiments performed in this chapter, a model of a bio-gas
plant is used. This model and the real plant are described here. The modeled
bio-gas plant is a full-scale agricultural bio-gas plant with an electrical power
of 500 kW, located in Germany. The plant is configured as a two-stage system
with a primary digester (1st) (Vliq = 1977 m3) and a secondary (or post) digester
(Vliq = 4182 m3), whereas the secondary digester also serves as a final storage
tank. A pumping station offers the possibility of interchanging sludge between
both digesters. The first digester is mainly fed with maize silage, swine, and
cattle manure as well as grass silage. The secondary digester is not fed. The
produced biogas is burned in two CHPs with an electrical power of 250 kW each.
The produced electrical power is injected into the local grid, which is enumerated
by the EEG 2009. Both digesters are heated with the thermal energy produced
by the CHPs and are operated at about 40 oC.

The simulation model is implemented in MATLAB R© in a self-developed toolbox,
which is freely available under the terms of the GNU GPL.

7.3 Experimental Settings

PID Parameter Tuning For the PID controller problem, the following
parameters were used. The search space for the three parameters (Kp, Ki and
Kd) in G1(s) [120] and G2(s) [112] is shown in Table 7.1.

Table 7.1: Parameter setting.

G1(s) G2(s)

SMS-EMOA SMS-EGO EHVI-EGO SMS-EMOA SMS-EGO EHVI-EGO
Kp [0,10] [0,10] [0,10] [0,10] [0,10] [0,10]
Ki [0,13] [0,13] [0,13] [0,6] [0,6] [0,6]
Kd [0,18] [0,18] [0,18] [0,6] [0,6] [0,6]
npop 30 32 32 30 32 32
neval 90 50 50 90 50 50

Robust PID tuning The parameters for the algorithms are shown in Table
7.2.
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Table 7.2: Parameter settings.

Algorithm µ/Initial Population λ iteration pc pm

EHVI-EGO 30 / 200 / /
TEHVI-EGO 30 / 200 / /
NSGA-II 30 30 200 0.9 1/N

SMS-EMOA 30 / 200 0.9 1/N

The TEHVI-EGO boundary ((A,B)) for all the experiments are (0,∞), except for
ZDT3 problem. Since the lower bound of ZDT3 is close to −1, the TEHVI-EGO
boundary for ZDT3 was set to (−1,∞). For the generalized Schaffer problem,
the parameter γ was set to γ = 0.4. All the experiments were repeated five
times.

Bio-gas Plant Optimization The simulation of biogas is composed by two
stages: intermediate process and steady state. In the first stage, the objective
functions are J1 and J2 described in section 7.2. For steady state, the objective
functions are F1 and F2 described in section 7.2. Three different initial substrate
feeds, as shown in Table 7.3, were set to test whether the MONMPC is robust
against initial substrate feed. SMS-EGO and EHVI-EGO were used and com-
pared, the parameters of these two algorithms can be found in Table 7.3, where
Tp, Tc and δ are the control parameters and represent prediction horizon, control
horizon, and control sampling time, respectively.

7.4 Experimental Results

7.4.1 PID Parameter Tuning

For PID parameter tuning, the final best and average non-dominated Pareto
fronts in the 20 runs are shown in Figures 7.3 and 7.4, where g1 and g2 represent
settling time (ts) and percentage overshoot (PO), respectively. The search space
for G1(s) and G2(s) are described in Table 7.1.

Figures 7.3 and 7.4 refer to the best and the average Pareto fronts in all runs
respectively, and these are generated by using attainment curves of toolbox plot-
atta [34, 36].
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Table 7.3: Parameter sets for all experiments.

Component Test A Test B Test C LB UB unit

Qmaize 15 5 40 0 30 m3/d
Qmanure 10 5 30 5 15 m3/d
Qgrass 2 0 10 0 30 m3/d

Exp. no. Tp/d Tc/[d] δ/[d] npop neval Method

1 150 10 10 32 50 SMS-EGO
2 150 10 10 32 40 SMS-EGO
3 150 10 10 32 60 SMS-EGO
4 150 10 10 32 50 EHVI-EGO
5 150 10 10 32 40 EHVI-EGO
6 150 10 10 32 60 EHVI-EGO
7 150 10 10 20 60 SMS-EMOA
8 150 10 10 25 75 SMS-EMOA
9 150 10 10 20 80 SMS-EMOA
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Figure 7.3: Best Pareto fronts.
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Figure 7.4: Average Pareto fronts.

Comparing the best Pareto fronts generated by surrogate-model-based algorithms
and model-free algorithm in Figure 7.3, almost all the elements in SMS-EMOA
best Pareto front are dominated by those generated by SMS-EGO and EHVI-
EGO, and surrogate model based algorithms (EHVI-EGO and SMS-EGO) out-
perform model-free algorithm (SMS-EMOA). Comparing the best Pareto front
generated by the EHVI-EGO and SMS-EGO in G1(s) and G2(s), EHVI-EGO is
slightly more robust to reach the “ideal“ Pareto front as close as possible than the
SMS-EGO.

The difference between best and average Pareto fronts in EHVI-EGO and SMS-
EGO are not obviously. This means that when compared to model-free opti-
mization algorithms, surrogate-model-based algorithms can faster converge to
the “ideal“ Pareto front with fewer evaluations, and EHVI-EGO is more robust
to converge than SMS-EGO within a certain number of evaluations.

For statistic analysis, hypervolume in all the experiments are analysed in Table
7.4. The reference points for G1(s) and G2(s) in Table 7.4 are [5 5] and [10,5],
respectively.
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Table 7.4: HV Comparison.

G1(s) G2(s)

AVG MIN MAX σ AVG MIN MAX σ

EHVI-EGO 23.38 23.33 23.40 0.02 27.34 26.87 27.62 0.25
SMS-EGO 21.26 14.03 23.37 3.45 27.23 26.04 27.48 0.32
SMS-EMOA 18.95 13.11 22.50 2.81 19.01 3.08 27.49 7.26

From Table 7.4, surrogate-model-based algorithms are more robust compared to a
model-free algorithm (SMS-EMOA). EHVI-EGO provides a higher average value
of HV and lower value of corresponding standard deviation than those of the
other two algorithms. Therefore, in the case of PID parameter tuning problem,
EHVI-EGO is more robust and performs better than SMS-EGO and SMS-EMOA.

Figures 7.5 and 7.6 show the step response forG1(s) andG2(s). In Figure 7.3, each
set of PID parameters corresponds to the first suggested point sorted by NSGA-II
[75]. The computation time ts, corresponds with EHVI-EGO is faster than that
of SMS-EGO and SMS-EMOA, and PO using EHVI-EGO is also smaller than
the other two algorithms.

7.4.2 Robust PID Tuning

Table 7.5: Robust PID parameter tuning.

Test Function Methods reference point
Pareto front size HV

max min mean std max min mean std

PID EHVI-EGO [30 2] 6 3 4.6 1.1402 53.7859 32.5078 47.4223 8.6584
PID TEHVI-EGO [30 2] 5 3 4.2 0.8367 53.9046 38.6312 49.0419 6.3154
PID NSGA-II [30 2] 54 36 45 8.3066 28.0222 27.9868 28.0054 0.0142
PID SMS-EMOA [30 2] 9 1 5.2 3.0332 53.3783 27.4147 36.8671 11.8578

Table 7.5 shows the result of the robust PID parameter tuning problem. Figure
7.7 shows the best Pareto fronts of each method for this problem. It shows
that TEHVI-EGO can explore more non-dominated candidates than the other
algorithms, and almost all the other Pareto fronts are dominated by the (red)
squared Pareto front of EHVI-EGO.
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Figure 7.5: G1(s) step response. For EHVI-EGO Kp = 1.95, Ki = 3.07, Kd =

4.61, for SMS-EGO Kp = 2.25, Ki = 2.92, Kd = 4.20, and for SMS-EMOA Kp =

2.00, Ki = 4.04, Kd = 4.48.
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Figure 7.7: The best Pareto fronts for PID problem.
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Figure 7.6: G2(s) step response. For EHVI-EGO Kp = 2.71, Ki = 1.05, Kd =

2.13, for SMS-EGO Kp = 1.99, Ki = 0.98, Kd = 1.35, and for SMS-EMOA Kp =

2.35, Ki = 0.96, Kd = 1.97.

Table 7.6: PID parameters in Figure 7.8.

Algorithm B2 B1 B0

EHVI-EGO

[
−146.8052 −183.1330

−39.5844 38.28307

] [
−58.8757 −39.9390

39.1692 164.6072

] [
−29.1297 168.1379

11.2049 148.3339

]

THEIV-EGO

[
−110.9551 197.8837

198.4738 199.5100

] [
45.5191 194.3873

80.6678 −188.7033

] [
−30.7334 151.2778

76.1469 35.5006

]

NSGA-II

[
−68.0186 199.9837

83.4419 21.5003

] [
−15.0820 199.8181

117.6667 200

] [
74.1652 139.4757

58.1943 94.3620

]

SMS-EMOA

[
−44.6694 198.9674

113.6318 198.1877

] [
−123.9725 69.6727

−44.6645 149.6474

] [
−34.5741 158.8530

−10.7696 116.9635

]

Figure 7.8 shows the step response with plant perturbation, and the PID param-
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eters are shown in Table 7.6. The objective values for each method are: EHVI-
EGO= (2.1264, 0.5646), TEHVI-EGO= (2.1391, 0.1023), NSGA-II = (2.1722, 0.9990)
and SMS-EMOA=(2.1707, 0.9991). It is clear that the EGO-based controller out-
puts are slightly better than those generated by the other two algorithms. For
output y2, the overshoot of the TEHVI-EGO step response is bigger than the other
three responses. This is acceptable, considering that the objective functions do
not have the overshoot criterion, and the overshot is also less than 20%.

7.4.3 Bio-plant Optimization

For the bio-gas plant, two strategies of setting reference point are used: fixed and
dynamic reference points. The fixed reference point is always (0.1, 1.6), while,
the dynamic reference point is determined on the fly by the algorithm and is
calculated by adding one to the maximum value of the existing Pareto fronts.
The initial substrate feeds and parameters in the experiments are represented in
Table 7.3. Bio-gas plant simulation costs a lot of time (about 15-24 hours), and
thereby, we did the experiments only once.

Figure 7.9 illustrates the final intermediate Pareto fronts with dynamic reference
point and initial substrate feeds of experiments A and C, respectively.

In Figure 7.9, nearly all elements in the SMS-EGO and SMS-EMOA intermediate
Pareto fronts are dominated by those in EHVI-EGO intermediate Pareto fronts.
When compared the performance of SMS-EGO with that of SMS-EMOA, SMS-
EMOA is a little bit better than SMS-EGO at the cost of 150, 525 and 300 more
evaluations in Exp. 1&7, 2&8 and 3&9, respectively. The choice of the reference
point is very important in these experiments. The HV differs a lot when choosing
different reference points. Take an example in Figure 7.9 (a). When compared
the red and blue Pareto fronts in the right subfigure, only one element in EHVI-
EGO Pareto front is dominated by that of SMS-EGO, and HV for A3 and A6
are 0.1381 and 0.1584, respectively with the same reference point of (-1.8, 0.7).
However, HV for A3 and A6 are 3.3995 and 3.3758 using the reference point of
(0.1, 1.6). Hence, the criterion of HV is very sensitive to the reference point, and
the bad choice of reference point can mislead the final decision, even when the
results are very clear.

Figure 7.10 shows the steady Pareto front in Exp. A and C. The performance gap
between all the three algorithms is not obvious. Even some few elements in the
Pareto front, generated by EHVI-EGO, are dominated by those of SMS-EMOA
and SMS-EMOA. When compared the intermediate with steady Pareto fronts us-
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Figure 7.8: Step responses.
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ing a dynamic reference point, the performance gap of the three algorithms dimin-
ished for steady state. That is to say, the predictions by surrogate-model-based
algorithms still process a slight difference to the real data, for steady state.

Figure 7.10 (a) and (b) are both the intermediate Pareto fronts using a fixed
reference point with different initial substrate feed strategies (A and B). Figure
7.10 (c) and (d) are the steady Pareto fronts based on fixed reference point.

For the fixed reference point strategy, the performance of EHVI-EGO is similar to
SMS-EGO. The reason of this could be the bad choice of the reference point. Some
actual better Pareto fronts are regarded as the worse ones in process optimization,
due to the improper reference point. However, it still needs more experiments to
verify this assumption.

Comparing all the intermediate Pareto fronts with a dynamic and fixed reference
point, EHVI-EGO outperforms SMS-EGO when using a dynamic reference point,
while SMS-EGO is better than EHVI-EGO when using a fixed reference point.
This means that SMS-EGO is more robust against the choice of a reference point
than EHVI-EGO. Another evidence of this conclusion can be found in Table
7.7: the number of elements in EHVI-EGO intermediate Pareto front is always
smaller than that of SMS-EGO, and EHVI-EGO standard deviation is larger than
SMS-EGO’s.

Table 7.7: Number of elements in intermediate Pareto fronts.

EHVI-EGO SMS-EGO
Ref. Exp. AVG MIN MAX σ AVG MIN MAX σ

Dynamic A 14.51 6 23 4.04 20.49 7 27 5.09
Dynamic C 16.71 5 28 5.86 21.87 11 35 5.34
Fixed A 19.29 7 33 8.15 22.53 11 31 4.50
Fixed B 16.04 9 24 3.38 20.73 8 29 6.45

Contrary to PID parameter tuning, the Pareto fronts in a bio-gas plant are more
similar. This is because the total function evaluations numbers within the sim-
ulation in the bio-gas plant are much larger than the corresponding ones in PID
parameter tuning. For the bio-gas plant, Tp = 150, Tc = 10 and neval is the
function evaluation number in each control period. Therefore, the total function
evaluations number in the whole simulation period is 15 times neval.
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7. APPLICATIONS

7.5 Summary

In this chapter, we investigated different evolutionary multi-criterion optimiza-
tion algorithms for the optimization of PID controllers and bio-gas plants opti-
mization. The focus of our study was hypervolume based methods for problems
that allow only a small (≈ 100) number of exact objective function evaluations.
In particular, a state-of-the-art evolutionary algorithm (SMS-EMOA) was com-
pared to multi-objective efficient global optimization algorithms, SMS-EGO and
EHVI-EGO, which utilize a surrogate model of the objective functions. In the
problem domain of PID controller tuning, the results were, as expected, that the
surrogate model assisted strategies yielded better results than the SMS-EMOA.
Among them, the EHVI-EGO performs slightly better than the SMS-EGO, but
it is more sensitive to the change of the reference point.

However, in the case of the optimization of the bio-gas plant, the result seems to
be less consistent. While also in this case, for intermediate control optimization
the EHVI-EGO shows the best performance, there is no big gap between all
the algorithms performances. Also the SMS-EMOA, which uses no surrogate
model, manages to produce a diverse Pareto-front that in terms of convergence is
only slightly worse than that of EHVI-EGO. More surprisingly, the gap between
the algorithms performances almost diminishes when it comes to applying the
optimized control in steady state. The consistency of the results by the three
algorithms shows that the solution is probably close to the true Pareto front.

Between EHVI-EGO and TEHVI-EGO, TEHVI-EGO outperforms EHVI-EGO
in the case of robust PID tuning problem, as the TEHVI only considers the
EHVI in a certain domain, and therefore, it can force the algorithm on exploring
in this domain. Summarizing, based on the result of this study we recommend
using TEHVI-EGO when the a-priori knowledge of the objective functions is
available. Otherwise, we recommend to use EHVI-EGO, because it shows a good
performance more consistently as compared to the other algorithms. For further
work, it is recommended to research the robust setting for the reference point.
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Chapter 8

Conclusions and Outlooks

Multi-objective Bayesian global optimization is an effective method when the
objective functions cannot be directly measured or evaluation of the objective
functions is too expensive. The basic concept behind MOBGO is using Krig-
ing/Gaussian Process to build the independent models based on the relationship
between inputs and outputs of a real problem. After this step, an optimization
algorithm is applied to find an optimal solution based on the Kriging models and
an infill criterion. Then, the optimal solution will be evaluated by the real objec-
tive functions to update the Kriging models. This loop will be repeated until it
meets the stop criterion.

Compared to evolutionary algorithms, Bayesian global optimization is more effi-
cient when dealing with expensive function evaluation problems. However, there
still exists much space to improve the efficiency of MOBGO. The efficiency of
MOBGO is mainly determined by three aspects: the computational complexity
of updating a Kriging model, the computational complexity of infill criteria, and
efficiency of a single objective optimization to find the optimal solution based on
the Kriging models. Targeting at reducing the computational complexity of EHVI
calculation and improving the performance of MOBGO in this dissertation, an ef-
ficient EHVI calculation algorithm, two new infill criterion (TEHVI and EHVIG)
were proposed, and a thorough research on them was conducted.

Section 8.1 provides the conclusions drawn from works in this dissertation and
Section 8.2 discusses an outlook and directions of the future research.
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8. CONCLUSIONS AND OUTLOOKS

8.1 Conclusions

During the process of searching the optimal solution, the infill criterion in MOBGO
acts as a pre-selection criterion and the maximizing of the infill criterion is equiv-
alent to achieving an optimal Pareto front set. The infill criterion in MOBGO is
very crucial, considering that it merges each objective into a single value. Then,
according to the value of this infill criterion, the optimization algorithm can select
the optimal solution by choosing the solution which has the maximum/minimum
infill criterion value. Among the infill criteria, EHVI performs much better than
the other criteria, because it can balance the exploration and exploitation well
in the objective space. However, EHVI is rarely applied in real applications for
its high computational complexity. An efficient EHVI calculation algorithm is
proposed. The computational complexity of EHVI is decreased to Θ(n log n), for
both 2-D and 3-D cases, by an efficient non-dominate space partitioning method
and a new EHVI calculation formula. It is also proven that the number of parti-
tioned slices in non-dominated space is always n+ 1 and 2n+ 1 for 2-D and 3-D,
respectively. For the high dimensional cases (d ≥ 4), the proposed algorithm is
much faster than the previous methods. Moreover, the proposed algorithm can
also be extended to other integral-based criteria calculation, like PoI, TEHVI and
EHVIG.

The inherent assumption of EHVI is that each objective function follows a nor-
mal distribution and ranges from −∞ to ∞. However, the rough range of an
objective function is obtained from experts in some real applications, and this
a-prior knowledge was not utilized in EHVI. To solve this problem, a new crite-
rion, TEHVI derived from EHVI, was proposed in this dissertation. Compared
to EHVI, TEHVI follows a truncated normal distribution within a lower bound
and an upper bound for each objective function. The experimental results show
that TEHVI outperforms EHVI on benchmarks and PID robust parameter tuning
problems.

Moreover, TEHVI can also be used to solve the preference-based multi-objective
optimization problems, since the boundary information is related to the objec-
tive space and can be set by a decision maker according to his/her preferences.
Inspired by TEHVI, THV is proposed and applied to solve preference-based multi-
objective optimization problems. Compared to TEHVI, THV can be used to any
evolutionary algorithms, while TEHVI can only be utilized in BGO. The experi-
mental results that show both of two approaches are effective.

Based on parts of the works in this dissertation, the computation of EHVI and
TEHVI is considered to be efficient, as illustrated in Chapter 3 and Chapter
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8.2 Outlooks

4. However, the maximization of EHVI still requires significantly amount of
time in MOBGO, because EHVI needs to be calculated for many times in each
iteration. Since the landscape of a Kriging model is continuous, and considering
the definition of EHVI that the integral of hypervolume improvement times its
corresponding probability density function, EHVI should be differentiable at a
target point, and EHVIG is proposed to speed up the convergence of the optimizer
in MOBGO by using GAA. However, compared to other optimizers (CMA-ES,
GA), GAA is much faster, but it is very easy to be stuck at a local optimal
point. To improve the convergence of the optimizer, EHVIG is applied as a
stopping criterion in EAs, as the gradient of EHVI at an optimal point should be
a zero vector and EHVIG can force an EA to stop earlier when an EA find the
optimal solution. The experimental results show that using EHVIG as a stopping
criterion needs less execution time and improves the quality of the final Pareto
front approximation on the benchmarks.

8.2 Outlooks

This dissertation aims to improve the efficiency and effectiveness of MOBGO
by reducing the computational complexity of integral-based infill criterion and
proposing two new infill criteria. Some open questions related to this dissertation
for future research are:

Improving the efficiency of EHVI calculation for d ≥ 4 case: The par-
titioning algorithm of EHVI for high dimensional case (d ≥ 4) is based on two
state-of-the-art algorithms, DKLV17 and LKF17. These two algorithms are very
efficient to partition the dominated space, but not non-dominated space. There-
fore, the research of efficient partitioning non-dominated space is highly recom-
mended.

Multivariate surrogate models with output dependence assumption:
Currently, Kriging/Gaussian processes build a surrogate model for each objective
function and surrogate models are independent. However, in some real appli-
cations, the objective functions are dependent. This can lead to inappropriate
representations of joint uncertainty. The potential solutions could be achieved
by principal component analysis (PCA) and borrowing the idea of decoupling
method in control theory.

Reference point free in infill criteria: Setting a reference point for hypervolume-
based criteria is very tricky. For a minimization problem, a big reference point
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8. CONCLUSIONS AND OUTLOOKS

can more easily lead an algorithm to focus on the extreme points. On the other
hand, the optimization algorithm would omit the extreme points if the reference
point is small. Recently, a dynamic reference point strategy, which uses a big ref-
erence point in the early iteration and decreases the reference point in the later
iterations, is applied in some papers. This strategy is useful but will also lead
to another question: how to set the dynamic reference point strategy effectively?
Actually, the most effective solution to this problem is to remove the concept of
a reference point of an infill criterion theoretically, and this will be an interesting
research topic in the future.
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Appendix A

A.1 Symbols
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APPENDIX

Table A.1: Notations.

Symbol Type Description Ref.
m N+ Dimension of a search space Eq. (2.1)
d N+ Dimension of an objective space Eq. (2.1)
S Rm Search space Eq. (2.1)
X ⊆ S Feasible set in S Eq. (2.1)
x ∈ X Decision vector Eq. (2.1)
X ⊂ X Decision vector set Eq. (2.2)
yi R The i-th objective function Eq. (2.1)
y Rd The objective functions Def. (2.1)

yi(x) R The i-th objective value of x Def. (2.1)
P∗ (Rd)n Pareto front Def. (2.3)
P (Rd)n Pareto front approximation Def. (2.4)
n N+ Number of the points in P or P∗ Def. (2.5)
r Rd Reference point Def. (2.5)
yi N+ The i-th objective space Fig. 2.2
µ N+ Population size Alg. 1
pm 0 < pm < 1 Mutation rate Alg. 1
pc 0 < pc < 1 Crossover rate Alg. 1
Ri R+ Branch resistance Def. 4-8
floss R+ Active power loss Def. 4-8
Pi R+ Active power Def. 4-8
Qi R+ Inactive power Def. 4-8
Vi R+ Node voltage Def. 4-8
Ii R+ Branch current Def. 4-8

fV DI R+ Voltage deviation Def. 4-11
µ Rd Mean values of predictive distribution Alg. 3
σ (R+

0 )d Standard deviations of predictive distribution Alg. 3
y(1), . . . ,y(n) Rd The vectors in P, where P = (y(1), . . . ,y(n)) Fig. 2.2

Sd (Rd)2 Integration slices for d dimension Def. 3.3.1
l
(1)
d , . . . , l

(Nd)
d Rd Lower bound of integration boxes Def. 3.3.1

u
(1)
d , . . . ,u

(Nd)
d Rd Upper bound of integration boxes Def. 3.3.1

Nd N+ Number of integration boxes Def. 3.3.1
x∗ Rd An optimal point in search space Alg. 3
D R(m+d) Training data set Alg. 3
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A.2 Abbreviations

A.2 Abbreviations

Table A.2: Abbreviations-I.

Abb. Full Name
AVL Adelson-Velskii and Landis
BGO Bayesian Global Optimization
CDF Cumulative Density Function

CMA-ES Covariance Matrix Adaptation Evolution Strategy
DKLV Dächert, Klamroth, Lacour and Vanderpooten
LKF Lacour, Klamroth and Fonseca
DF(s) Desirability Function(s)
DM Decision Maker

DNRP Distribution Network Reconfiguration Problem
EA(s) Evolutionary Algorithm(s)
EGO Efficient Global Optimization
EHVI Expected Hypervolume Improvement
EHVIG Expected Hypervolume Improvement Gradient

EI Expected Improvement
EMOA(s) Evolutionary Multi-objective Optimization Algorithm(s)

GA Genetic Algorithm
GAA Gradient Ascent Algorithm
GSP Generalized Schaffer Problem
HV Hypervolume Indicator
HVI Hypervolume Improvement
HVC Hypervolume Contribution
LCB Lower Confidence Bound
MLI Most Likely Improvement

MONMPC Multi-Objective Nonlinear Model Predictive Control
MOO Multi-objective Optimization

MOPSO Multi-Objective Particle Swarm Optimization
NOEs Number of Evaluations

NSGA-II Non-dominated Sorting Genetic Algorithm II
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Table A.3: Abbreviations-II.

Abb. Full Name
OK Ordinary Kriging
PCA Principal Component Analysis
PDF Probability Density function

PICEA-g Preference-Inspired Co-Evolutionary Algorithm
PID Proportional Integral Derivative
PMX Partial-Mapped Crossover
PO Percentage Overshoot
PoI Probability of improvement
PR Preferred Region

REN21 Renewable Energy Policy Network for the 21st Century
ROI Region of Interest

SMS-EMOA S-metric Selection Evolutionary Multi-Optimization Algorithm
SMS-EGO S-metric Selection Efficient Global Optimization
TCDF Truncated Cumulative Density Function
TEHVI Truncated Expected Hypervolume Improvement
THV Truncated Hypervolume
TPDF Truncated Probability Density Function
λ Lebesgue Measure

124



A.3 EHVIG Formula Derivation

A.3 EHVIG Formula Derivation

1. φ′(x) = −xφ(x) (A-1)

2. Φ′(x) = φ(x) (A-2)

3.
∂Φ(y−µ

σ
)

∂x
= φ(

y − µ
σ

) · (µ− y
σ2
· ∂σ
∂x
− 1

σ
· ∂µ
∂x

) (A-3)

Using the chain rule and quotient rule, considering that y does not depend
on x, we get the statement in (A-3):

∂Φ(y−µ
σ

)

∂x
= φ(

y − µ
σ

) · ∂(y−µ
σ

)

∂x
= φ(

y − µ
σ

) · ( ∂y
∂x
− ∂µ

∂x
)σ − (y − µ)∂σ

∂x

σ2

After tidying up, we get a statement in (A-3):

∂Φ(y−µ
σ

)

∂x
= φ(

y − µ
σ

) · (µ− y
σ2
· ∂σ
∂x
− 1

σ
· ∂µ
∂x

)

4.
∂Ψ(a, b, µ, σ)

∂x
=
(b− a

σ
· φ(

b− µ
σ

)− Φ(
b− µ
σ

)
)
· ∂µ
∂x

+

φ(
b− µ
σ

) ·
(
1 +

(b− µ)(b− a)

σ2

)
· ∂σ
∂x

Using the product rule and considering a and b do not depend on x, we get
the statement:

∂Ψ(a, b, µ, σ)

∂x
=
∂Ψ(a, b, µ, σ)

∂µ
· ∂µ
∂x

+
∂Ψ(a, b, µ, σ)

∂σ
· ∂σ
∂x

(A-4)

Substituting Equation (A-7) into ∂Ψ(a,b,µ,σ)
∂µ

and ∂Ψ(a,b,µ,σ)
∂σ

, using the chain
rule, quotient rule, and product rule, the statements of ∂Ψ(a,b,µ,σ)

∂µ
and ∂Ψ(a,b,µ,σ)

∂σ

are:
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∂Ψ(a, b, µ, σ)

∂µ
=
∂[σ · φ( b−µ

σ
) + (a− µ) · Φ( b−µ

σ
)]

∂µ

= σ · ∂φ( b−µ
σ

)

∂µ
+ (−1) · Φ(

b− µ
σ

) + (a− µ) · ∂Φ( b−µ
σ

)

∂µ

=
b− µ
σ
· φ(

b− µ
σ

)− Φ(
b− µ
σ

) + [−a− µ
σ
· φ(

b− µ
σ

)]

=
b− a
σ
· φ(

b− µ
σ

)− Φ(
b− µ
σ

) (A-5)

∂Ψ(a, b, µ, σ)

∂σ
=
∂[σ · φ( b−µ

σ
) + (a− µ) · Φ( b−µ

σ
)]

∂σ

= φ(
b− µ
σ

) + σ · ∂φ( b−µ
σ

)

∂σ
+ (a− µ) · ∂Φ( b−µ

σ
)

∂σ

= φ(
b− µ
σ

) + (
b− µ
σ

)2 · φ(
b− µ
σ

) +
(
−(a− µ) · (b− µ)

σ2
· φ(

b− µ
σ

)
)

= φ(
b− µ
σ

) +
(b− µ) · (b− a)

σ2
· φ(

b− µ
σ

)

= φ(
b− µ
σ

)
(
1 +

(b− µ) · (b− a)

σ2

)
(A-6)

After substituting Equations (A-5) and (A-6) into (A-4), then we get state-
ment in (A-4):

∂Ψ(a, b, µ, σ)

∂x
=
(b− a

σ
· φ(

b− µ
σ

)− Φ(
b− µ
σ

)
)
· ∂µ
∂x

+

φ(
b− µ
σ

) ·
(
1 +

(b− µ)(b− a)

σ2

)
· ∂σ
∂x
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A.4 2-D EHVI Formula (Minimization Case)

Definition A.1 (Ψ function) Let φ(s) = 1/
√

2πe−
1
2
s2 , s ∈ R denote the PDF

of the standard normal distribution and Φ(s) = 1
2

(
1 + erf

(
s√
2

))
denote its cu-

mulative probability distribution function (CDF). The general normal distribu-
tion with mean µ and variance σ has the PDF φµ,σ(s) = 1

σ
φ( s−µ

σ
) and the CDF

Φµ,σ(s) = Φ( s−µ
σ

). Then the function Ψ is defined as:

Ψ(a, b, µ, σ) =

∫ b

−∞
(a− z)

1

σ
φ(
z − µ
σ

)dz

= σφ(
b− µ
σ

) + (a− µ)Φ

(
b− µ
σ

)
. (A-7)

It partitions the integration domain into n + 1 disjoint rectangular stripes S1,
. . . , Sn+1, see Figure A.1 for an illustration. For this, we augment the set P by
two points y(0) = (r1,−∞) and y(n+1) = (−∞, r2). The stripes are now defined
by:

Si =

((
y

(i)
1

−∞

)
,

(
y

(i−1)
1

y
(i)
2

))
, i = 1, . . . , n+ 1. (A-8)

Suppose Y are the sorted non-dominated vectors of the current Pareto front
approximation P. A formula will be derived that consists of n + 1 integrals, as
indicated in Figure A.1. The HVI of a point y ∈ R2 can be expressed by:

HVI(y,Y, r) =
n+1∑
i=1

λ2[Si ∩∆(y)]. (A-9)

This gives rise to the compact integral for the original EHVI, y = (y1, y2):

EHVI(µ,σ,Y, r) =∫ ∞
y1=−∞

∫ ∞
y2=−∞

n+1∑
i=1

λ2[Si ∩∆((y1, y2))] · PDFµ,σ(y)dy (A-10)

It is observed that the intersection of Si with ∆((y1, y2)) is non-empty if and only
if y = (y1, y2) dominates the upper right corner of Si. In other words, if and only
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y1

y2
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Figure A.1: Partitioning of the integration region into stripes. Right: New
partitioning of the reduced integration region after first iteration of the algorithm.

if y is located in the rectangle with lower left corner (y
(i)
1 ,−∞) and upper right

corner (y
(i−1)
1 , y

(i)
2 ). Therefore:

EHVI(µ,σ,Y, r)

=
n+1∑
i=1

∫ y
(i−1)
1

y1=−∞

∫ y
(i)
2

y2=−∞
λ2[Si ∩∆((y1, y2))] · PDFµ,σ(y)dy (A-11)

=
n+1∑
i=1

∫ y
(i)
1

y1=−∞

∫ y
(i)
2

y2=−∞
λ2[Si ∩∆((y1, y2))] · PDFµ,σ(y)dy+

n+1∑
i=1

∫ y
(i−1)
1

y1=y(i)

∫ y
(i)
2

y2=−∞
λ2[Si ∩∆((y1, y2))] · PDFµ,σ(y)dy

=
n+1∑
i=1

(y
(i−1)
1 − y(i)

1 ) · Φ
(
y

(i)
1 − µ1

σ1

)
·Ψ(y

(i)
2 , y

(i)
2 , µ2, σ2)+

n+1∑
i=1

(
Ψ(y

(i−1)
1 , y

(i−1)
1 , µ1, σ1)−Ψ(y

(i−1)
1 , y

(i)
1 , µ1, σ1)

)
×

Ψ(y
(i)
2 , y

(i)
2 , µ2, σ2) (A-12)

Since integration is a linear mapping, it is allowed to do the summation after
integration in Eq. (A-11). The integrals are now over a rectangular region and
can be solved using the function Ψ as detailed in [2].
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English Summary

Evolutionary algorithms (EAs) and Bayesian Global Optimization (BGO) are
two main branches in the field of multi-objective optimization. The first is
based on the paradigm of encoding natural evolution for computational obser-
vation; the latter uses statistical models in optimization. However, in the field
of multi-objective optimization, evolutionary multi-objective optimization algo-
rithm (EMOA) approach as commonly used requires a large number of objec-
tive function evaluations and therefore is inefficient when dealing with expensive
function evaluation problems. This problem can be solved by using the efficient
method of Bayesian Global Optimization. When applying this method in multi-
objective optimization, we have a new challenge to meet: the execution time of
multi-objective Bayesian Global Optimization (MOBGO) itself is still too long,
even though it only requires a few function evaluations. The reason for the high
cost of MOBGO is two-fold: on the one hand, MOBGO requires an infill crite-
rion to be calculated many times, but the computational complexity of an infill
criterion has so far been very high. Another reason is that the optimizer, which
aims at searching for an optimal solution according to the surrogate models, is
not sufficiently effective.

For the aim of improving the performance of one of the most common infill cri-
teria, Expected Hypervolume Improvement (EHVI), a new efficient algorithm is
proposed in this thesis. This new efficient algorithm is based on an efficient par-
titioning algorithm for the non-dominated space and on a newly derived EHVI
calculation formula. The computational complexity of the proposed algorithm
for exact EHVI calculation is O(n log n) both in the cases of two and three ob-
jectives. It is shown that this time complexity can no longer be improved. In
the case of three objectives, the execution time of the new algorithm is nearly
forty thousand times faster than that of the previous algorithm. Moreover, this
algorithm can also be extended for other exact calculations of infill criteria, for
instance, Probability of Improvement (PoI) and Truncated Expected Hypervolume
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Improvement (TEHVI).

To make full use of a-priori knowledge of objective functions, whenever it is avail-
able, TEHVI is proposed as a new infill criterion in this thesis. In the definition
of TEHVI, the probability density function follows a truncated normal distribu-
tion, where the truncated domain is determined by the range of the objective
functions. The exact calculation of TEHVI is derived from that of EHVI and the
computational complexity of TEHVI is O(n log n) in the case of two objectives.
Since the TEHVI is non-zero only in the valid truncated domain, it can lead the
optimizer to the valid domain in the objective space for the aim of searching for
the optimal solution. Therefore, compared to EHVI, the TEHVI can generate a
better Pareto-front approximation. Moreover, the TEHVI can be utilized to solve
the preference-based multi-objective optimization problems, when the truncated
domain is set to be the preferred-region in the objective space.

To improve the effectiveness of the optimizer in MOBGO, another infill criterion,
namely, Expected Hypervolume Improvement Gradient (EHVIG), is introduced
in this thesis. EHVIG is the gradient of EHVI, which makes it possible to apply
a gradient ascent algorithm, instead of an EA, in MOBGO as the optimizer.
However, a well-known drawback of a gradient ascent (descent) algorithm is that
it can easily get stuck at a local optimal solution. This problem is solved in this
thesis by introducing the EHVIG as a new stopping criterion in an EA. The basic
idea of this method is straightforward: once the EHVIG of one individual in an
EA is very close to or even equal to a zero vector, this individual can be regarded
as the optimal solution and it becomes unnecessary to continue the following
iterations in the EA.

In this thesis, both state-of-the-art EMOAs (NSGA-II and SMS-EMOA) and
MOBGO based algorithms are implemented and compared in different practical
applications. These applications include the PID parameter tuning problems, the
robust PID parameter tuning problems with disturbance, and the bio-gas plant
optimization problems. In view of the better performance of the MOBGO based
algorithms, it is recommended to use TEHVI-EGO and EHVI-EGO in practical
applications.
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Evolutionaire algoritmen (EAs) en Bayesiaanse Globale Optimialisatie (BGO)
zijn de twee hoofdtakken op het gebied van optimalisatie voor meerdere doel-
stellingen. De eerstgenoemde tak is gebaseerd op het idee om berekeningen te
beschrijven als natuurlijke evolutie, de twee de tak maakt gebruik van statisti-
sche modellen voor optimalisatie. Echter, op het gebied van optimalisatie voor
meerdere doelstellingen, maken evolutionaire meerdere doelstellingen optimalisa-
tie algoritmen (EMOA) in hun standaard vorm vaak gebruik van een groot aantal
evaluaties van de doel-functies, waardoor deze aanpak inefficiënt is in het geval
van dure evaluaties. Dit probleem kan worden verholpen door middel van de
efficiënte Bayesiaanse Globale Optimalisatie methode. Bij het gebruik van deze
methode in optimalisatie voor meerdere doelstellingen is er een nieuwe uitdaging:
de executie tijd van meerdere doelstellingen Bayesiaanse Globale Optimalisatie
(MOBGO) zelf is nog steeds te lang, ondanks dat er maar een klein aantal eva-
luaties nodig is. Er zijn twee redenen dat MOBGO duur is: ten eerste, voor
MOBGO is het noodzakelijk dat een zogeheten opvul criterium vaak berekend
wordt, maar tot nog toe is de reken complexiteit van een opvul criterium erg
duur. Een tweede reden is dat de optimalisator, die met behulp van surrogaat
modellen de optimale oplossing probeert te vinden, niet effectief genoeg is.

Om de efficiëntie te verbeteren van een van de meest voorkomende opvul crite-
ria, Verwachte Hypervolume Verbetering (EHVI), wordt er in dit proefschrift een
nieuw efficiënt algoritme voorgesteld. Dit nieuwe efficiënte algoritme is gebaseerd
op een efficiënt partitioneerings algoritme voor de niet-gedomineerde ruimte, en
op een nieuw afgeleide formule om de EHVI te berekenen. De reken complexi-
teit van het voorgestelde algoritme voor precieze berekening van de EHVI is
O(nlogn), voor zowel twee als drie doelstellingen. Het wordt aangetoond dat de
tijd-complexiteit niet verder verbeterd kan worden. In geval van drie doelstellin-
gen is de executie tijd van het nieuwe algoritme bijna veertigduizend keer sneller
dan het vorige algoritme. Bovendien kan dit algoritme ook uitgebreid worden voor
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de exacte berekening van andere opvul criteria, bijvoorbeeld Kans op Verbetering
(PoI) en Getrunceerde Verwachte Hypervolume Verbetering (TEHVI).

Om volledig gebruik te kunnen maken van a-priorische kennis van doel-functies,
wanneer beschikbaar, wordt TEHVI in dit proefschrift voorgesteld als nieuw opvul
criterium. In de definitie van TEHVI volgt de waarschijnlijkheidsdichtheidsfunc-
tie een getrunceerde normaalverdeling, waar het getrunceerde deel afhangt van
het bereik van de doel-functies. De precieze berekening van TEHVI is afgeleid van
die van EHVI, en de reken complexiteit van TEHVI is O(nlogn) voor twee doel-
stellingen. Aangezien TEHVI alleen niet-nul is in het valide getrunceerde domein
kan het de optimalisator naar het valide domein in de doel-ruimte leiden, met
het doel de optimale oplossing te vinden. Daardoor kan TEHVI, in verhouding
tot EHVI, een betere Pareto-front benadering vinden. Verder kan TEHVI ook
toegepast worden op voorkeur-gebaseerde meerdere doelstellingen optimalisatie
problemen, wanneer het getrunceerde domein gedefinieerd wordt als de voorkeur
regio in de doel-ruimte.

Om de effectiviteit van de optimalisator in MOBGO te verbeteren wordt er nog
een opvul criterium geïntroduceerd in dit proefschrift, namelijk de Verwachte
Hypervolume Verbetering Gradiënt (EHVIG). EHVIG is de gradiënt van EHVI,
waardoor het mogelijk is een gradiënt stijgingsalgoritme, in plaats van een EA,
als optimalisator te gebruiken in MOBGO. Echter, een bekend nadeel aan het
gradiënt stijgingsalgoritme is dat het gemakkelijk kan blijven hangen in een lokaal
optimum. Dit probleem wordt in dit proefschrift verholpen door EHVIG als een
nieuw stopzettings criterium toe te passen in een EA. De kern van dit idee is
simpel: wanneer de EHVIG van een individu in een EA heel dichtbij, of zelfs
gelijk aan, nul is, kan dit individu als de optimale oplossing beschouwd worden,
waardoor het onnodig wordt om verder te gaan met de iteraties van het EA.

In dit proefschrift zijn zowel state-of-the-art EMOAs (NSGA-II en SMS-EMOA)
en MOBGO gebaseerde algoritmen geïmplementeerd en vergeleken in verschil-
lende praktische toepassingen. Het betreft toepassingen voor het PID parameter
afstellings probleem, het robuuste PID parameter afstellings probleem met ver-
storing, en het bio-gas fabriek optimalisatie probleem. Gezien de betere prestatie
van de MOBGO gebaseerde algoritmen wordt er aanbevolen om TEHVI-EGO en
EHVI-EGO te gebruiken voor praktische applicaties.

145



Curriculum Vitae

Kaifeng Yang was born on December 23rd, 1987 in Fufeng, Shaanxi, People’s
Republic of China. He received his Bachelor degree in Automation at School of
Information Science and Engineering at Central South University in July 2010.
In his bachelor thesis, he investigated fuzzy controller on an intelligent car, which
can navigate by itself, using Freescale and STMicroelectronics microcontroller
unit(s) under the supervision of Dr. Ji Wang.

He was recommended to the same department as a Master student under the
supervision of Dr. Ji Wang in September 2010. During his Master degree, he
won the first prize in Freescale Cup Intelligent Car in 2011. For his master thesis,
he implemented a genetic algorithm to solve the power network reconfiguration
problem for single- and bio- objective optimization. In 2013, he finished his
graduate studies successfully and received his MSc in Control Engineering in
July 2013.

In September 2013, he joined the research group headed by Prof. Thomas Bäck.
He started his Ph.D. research at the Leiden Institute of Advanced Computer Sci-
ence (LIACS), under the supervision of Prof. Thomas Bäck and Dr. Michael Em-
merich. His Ph.D. research was founded by China Scholarship Council (CSC). His
research primarily focuses on hypervolume-based multi-objective Bayesian global
optimization and preference-based multi-objective optimization. He also partic-
ipated in a short project of predictive analytics in LIACS. Besides his research,
he also acted as a teaching assistant for several courses in LIACS, including Evo-
lutionary Algorithms and Natural Computing.

146


	1 Introduction
	1.1 Background
	1.2 Research Questions
	1.3 Dissertation Outline

	2 Continuous Multi-objective Optimization
	2.1 Multi-objective Optimization
	2.2 Terminologies
	2.3 Infill CriteriaThis section only considers maximization problems.
	2.4 Evolutionary Multi-objective Optimization Algorithms
	2.4.1 NSGA-II
	2.4.2 SMS-EMOA
	2.4.3 ExampleThis example is a discrete optimization problem, and all the other parts of this dissertation consider only continuous optimization problems.

	2.5 Multi-objective Bayesian Global Optimization
	2.5.1 Kriging
	2.5.2 Structure of MOBGO
	2.5.3 Example

	2.6 Summary

	3 Efficient EHVI Calculation
	3.1 EHVI Definition
	3.2 State-of-the-art
	3.3 Non-dominated Space Partitioning Algorithm
	3.3.1 Low Dimensional case
	3.3.2 High Dimensional case

	3.4 Computing the integrals
	3.4.1 2-D EHVI
	3.4.2 3-D EHVI
	3.4.3 High Dimensional Case

	3.5 Other Related Criterion
	3.6 Empirical Experiments
	3.6.1 Speed Comparison
	3.6.2 Benchmark Performance

	3.7 Summary

	4 TEHVI Calculation
	4.1 Motivations
	4.2 TEHVI Definition
	4.2.1 Formula Derivation
	4.2.2 Computational Speed Test

	4.3 Experimental Setup
	4.4 Empirical Results
	4.5 Summary

	5 Preference-Based Multi-Objective Optimization
	5.1 Background
	5.2 Algorithms
	5.2.1 TEHVI-EGO for Preference-based Multi-Objective Optimization
	5.2.2 Preferred region with EAs

	5.3 Empirical Experiments
	5.3.1 TEHVI assisted EGO
	5.3.2 Preferred region based on EAsThis part of work is mainly done by Yali Wang.

	5.4 Summary

	6 EHVI Gradient Calculation
	6.1 Motivations
	6.2 Expected Hypervolume Improvement Gradient (EHVIG)
	6.3 Gradient Ascent Algorithm
	6.4 Stopping Criterion – EHVIG
	6.5 Experimental Results
	6.6 Summary

	7 Applications
	7.1 Backgrounds
	7.2 Problem Definition
	7.2.1 PID Parameter Tuning
	7.2.2 Robust PID Tuning
	7.2.3 Bio-gas Plant Optimization

	7.3 Experimental Settings
	7.4 Experimental Results
	7.4.1 PID Parameter Tuning
	7.4.2 Robust PID Tuning
	7.4.3 Bio-plant Optimization

	7.5 Summary

	8 Conclusions and Outlooks
	8.1 Conclusions
	8.2 Outlooks

	A 
	A.1 Symbols
	A.2 Abbreviations
	A.3 EHVIG Formula Derivation
	A.4 2-D EHVI Formula (Minimization Case)

	Bibliography
	English Summary
	Nederlandse Samenvatting
	Curriculum Vitae

