
Physics implications of shape on biological function
Pomp, W.

Citation
Pomp, W. (2017, December 5). Physics implications of shape on biological function. Casimir
PhD Series. Retrieved from https://hdl.handle.net/1887/57789
 
Version: Not Applicable (or Unknown)

License: Licence agreement concerning inclusion of doctoral thesis in the
Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/57789
 
Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/57789


 
Cover Page 

 
 

 
 
 

 
 
 

The handle http://hdl.handle.net/1887/57789 holds various files of this Leiden University 
dissertation 
 
Author: Pomp, Wim 
Title: Physics implications of shape on biological function 
Date: 2017-12-05 

https://openaccess.leidenuniv.nl/handle/1887/1
http://hdl.handle.net/1887/57789


Chapter 4

Cytoskeletal anisotropy
controls geometry and forces
of adherent cells†

We introduce a simple mechanical model for adherent cells that quantitatively
relates cell shape, internal cell stresses and traction forces as generated by
an anisotropic cytoskeleton. Using a combination of analytic work and ex-
periments on micropillar arrays, we demonstrate that the shape of the cell
edge is accurately described by elliptical arcs, whose eccentricity expresses the
degree of anisotropy of the internal cell stresses. Our work highlights the strong
interplay between cell mechanics and geometry and paves the way towards the
reconstruction of cellular forces from geometrical data.

†This chapter is based on: W. Pomp, K.K. Schakenraad et al. “Cytoskeletal anisotropy
controls geometry and forces of adherent cells”. In: ArXiv.org.
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64 CHAPTER 4. CYTOSKELETAL ANISOTROPY

4.1 Introduction

Cell behavior and fate crucially depend on mechanical cues from outside the
cell [1–5]. Examples include rigidity-dependent stem cell differentiation [6,
7], protein expression regulated by internal stresses [8], and durotaxis [9, 10].
Whether at rest on a substrate [11] or migrating [12, 13], cells rely on their shape
to gauge the mechanical properties of their microenvironment [14] and control
the traction force exerted on their surroundings. The physical mechanisms
behind these spectacular forms of bio-mechanical adaptation are, however,
poorly understood.

Many animal cells spread and develop transmembrane adhesion receptors
when coming into contact with an adhesive substrate. This induces the actin
cytoskeleton to reorganize into cross-linked networks and bundles (i.e. stress
fibers), whereas adhesion becomes limited to a number of sites, distributed
mainly along the cell contour (i.e. focal adhesions). At this stage, cells are
essentially flat and assume a typical shape characterized by arcs which span
between the sites of adhesion, while forces are mainly contractile [15]. On
timescales much shorter than those required by a cell to change its shape (i.e.
minutes), the cell is in mechanical equilibrium at any point of its interface.

4.2 Model

We model adherent cells as two-dimensional contractile films [16], and we
focus on the shape of the cell edge connecting two consecutive adhesion sites.
Mechanical equilibrium requires the difference between the internal and external
stresses acting on the cell edge to balance the contractile forces arising in the
cortex:

dFcortex

ds
+ (Σ̂out − Σ̂in) ·N = 0 . (4.1)

Here Σ̂out and Σ̂in are the stress tensors outside and inside the cell and Fcortex

is the stress resultant along the cell cortex. The latter is parametrized as a
one-dimensional curve spanned by the arc-length s and oriented along the
inward pointing normal vector N . A successful approach, initially proposed
by Bar-Ziv et al. in the context of cell pearling [17] and later expanded by
Bischofs et al. [11, 18], consists of modelling bulk contractility in terms of an
isotropic pressure Σ̂out − Σ̂in = σÎ, with Î the identity matrix, and peripheral
contractility as an interfacial tension of the form Fcortex = λT , with T a
unit vector tangent to the cell edge. The quantities σ and λ are material
constants that embody the biomechanical activity of myosin motors in the
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actin cytoskeleton. This competition between bulk and peripheral contractility
along the cell boundary results in the formation of arcs of constant curvature
1/R = σ/λ, through a mechanism analogous to the Young-Laplace law for fluid
interfaces. The shape of the cell boundary is then approximated by a sequence
of circular arcs, whose radius R might or might not be uniform across the cell,
depending on how the cortical tension λ varies from arc to arc. The case of
shape-dependent λ values was elaborated by Bischofs et al [11, 18] to account
for an apparent correlation between the curvature and length of the cellular
arcs. Both models successfully describe the geometry of adherent cells in the
presence of strictly isotropic forces.

Actin
Cell edge
Circles

a b

0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

0

c

R
a
d
iu

s 
o
f 

cu
rv

a
tu

re
 (
μ
m

)
Stress fibers

Focal adhesion

Cortical actin

10 μm

Figure 4.1: Relation between stress fibres and curvature of the cell
edge. a A cell with an anisotropic actin cytoskeleton (epithelioid GEβ3) with
circles (white) fitted to its edges (green). The actin cytoskeleton is visualised
with TRITC-Phalloidin (red). Scalebar is 10 µm. b The cell cortex (red line)
is spanned in segments between fixed adhesion sites (blue). The line through
two adhesion sites makes an angle θ with the stress fibres inside the cell. c Arc
radius as a function of sin θ (data show the mean ± standard deviation).
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4.3 The actin cytoskeleton is anisotropic
Yet many cells, including the fibroblastoids (GDβ1, GDβ3) and epithelioids
(GEβ1, GEβ3) studied here (figure 4.1a) [19], develop directed forces by virtue
of the strong anisotropic cytoskeleton originating from the actin stress fibers
[20, 21]. This scenario is, evidently, beyond the scope of models based on
isotropic contractility. Indeed, while the shape of the cell edges in Fig. 1a can
still be approximated by circular arcs, the large variance in the distribution of
R appears unjustified, as it would imply large variations in the cortical tension
λ. Furthermore, a survey of a sample of 285 cells did not reveal a correlation
between the length and the radius of the circular arcs, as predicted by the
tension-elasticity model discussed by Bischofs et al [11, 18]. On the other hand,
our data show a prominent correlation between the radius of curvature of the
cellular arcs and their angle θ with respect to the local orientation of stress
fibers (figure 4.1b). In particular, the radius of curvature decreases as the
stress fibers become more perpendicular to the cell cortex (figure 4.1c). This
correlation is intuitive as the bulk contractile stress focusses in the direction of
the stress fibers.

The anisotropy of the actin cytoskeleton can be incorporated into the
mechanical framework summarised by equation (4.1), by modelling the stress
fibres as contractile force-dipoles. This collectively gives rise to a directed
contractile bulk stress, namely Σ̂out − Σ̂in = σÎ + αnn [22, 23], with α > 0
the magnitude of the directed contractile stress and n the average direction
of the stress fibres. The ratio between isotropic contractility σ and directed
contractility α measures the degree of anisotropy of the bulk stress. With this
stress tensor the force balance equation (4.1) becomes:

dλ

ds
T + (λκ+ σ)N + α(n ·N)n = 0 , (4.2)

where we used dT /ds = κN , with κ the curvature of the cell edge. This implies
that, in the presence of an anisotropic cytoskeleton, the cortical tension λ is
no longer constant along the cell cortex, as long as the directed stress has a
non-vanishing tangential component (i.e. n · T 6= 0).

When the orientation of the stress fibres is approximately constant along a
single cellular arc (figure 4.2a), a general solution of equation (4.2) is straight-
forwardly obtained. Taking without loss of generality n = ŷ, yields the shape
of a cellular arc in implicit form:

σ2

γλ2
−
x2 +

σ2

λ2
−
y2 = 1 , (4.3)
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Figure 4.2: The anisotropic cytoskeleton is reflected in the elliptical
shape of the cell edge. (a) Schematic representation of our model. A force
balance between isotropic stress, directed stress and line tension results in
the description of each cell edge segment (red curve) as part of an ellipse of
aspect ratio b/a =

√
γ, unique to each cell. The cell exerts forces F0 and

F1 on the adhesion sites (blue) with magnitude λ(ϕ0) and λ(ϕ1). (b) An
epithelioid cell (same cell as in Fig. 1a) with a unique ellipse (yellow) fitted to
its edges (green). The orientations of the major axes (yellow lines) are parallel
to the local orientations of the stress fibers. Scalebar is 10 µm. (c) Histogram
of θellipse − θSF, with θellipse the orientation of the fitted ellipse and θSF the
measured orientation of the stress fibres. The mean of this distribution is 0◦

and the standard deviation is 36◦.

where γ = σ/(σ+α) and λ− is a constant that characterises the cortical tension
and will be discussed in more detail later. Equation (4.3) describes an ellipse
of aspect ratio √γ and major semi-axis λ−/σ, as illustrated in figure 4.2a. The
dimensionless quantity γ highlights the interplay between the forces experienced
by the cell edge and its shape: on the one hand, γ characterises the anisotropy
of the bulk stress, while on the other hand it determines the anisotropy of the
cell shape. Furthermore, as 0 ≤ γ ≤ 1, it follows from equation (4.3) that the
major axis of the ellipse is oriented parallel to the stress fibres (figure 4.2a).
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The key prediction of our model is illustrated in figure 4.2b and in figure 4.4,
where we have fitted the contour of the same cell shown in figure 4.1a with
ellipses. Whereas large variations in the circles’ radii were required in figure 4.1a,
a unique ellipse (γ = 0.52, λ−/σ = 13.4µm) faithfully describes all the arcs in
the cell. While fitting, the directions of the major axes were fixed to be parallel
to the local orientations of the stress fibers. To test the accuracy of this latter
choice, we fitted unconstrained and independent ellipses to all cellular arcs
in our database. The distribution of the difference between the orientation
θellipse of the fitted ellipse and the measured orientation θSF of the stress fibers
is shown in Fig. 2c. The distribution peaks at 0◦ and has a width of 36◦,
demonstrating that the orientation of the ellipses is parallel, on average, to the
local orientation of the stress fibers as predicted by our model.

Figure 4.3: Analysis of the shape of a cell allows to predict the ori-
entations of traction forces. a Zoom-in on one adhesion site of the cell
in the previous figures. Actin is shown in red, the cell edge in green and the
tops of the micropillars in blue. Additionally, the fitted ellipses (yellow) and
circles (white) and the measured force (green) on the adhesion site, as well
as the orientations of the forces calculated using the tension-elasticity model
(white) [11], and the model presented in this chapter (yellow) are shown. Scale-
bar is 2 µm. b Histogram (shown as a probability density) of θforce − θshape for
our anisotropic model (red) and the isotropic tension-elasticity model (black).
Both the distributions are centered around 0◦, the standard deviations are 60◦

and 40◦ for the isotropic and anisotropic models respectively.
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Equation (4.2) further allows to analytically calculate the cortical tension
λ. Namely,

λ(ϕ) = λ−

√
1 + tan2(ϕ)

1 + γ tan2(ϕ)
, (4.4)

where ϕ is the orientation of the tangent vector T with respect to an axis
perpendicular to the stress fibres (Fig. 2a). The function λ attains its minimum
value at the point along the cellular arc where ϕ = 0 and λ(0) = λ−. Here, the
cortical tension has no contribution from the directed stress (i.e. n · T = 0),
thus λ− can be interpreted as the intrinsic tension along the cell cortex and,
together with σ and α, represents a material parameter of our model.

Equation (4.3) and equation (4.4) are used to predict the traction force
exerted by the cell at a specific adhesion site by adding the cortical tension λT
along the two cellular arcs joining at the adhesion site. We emphasize that this
analysis yields information on cellular forces solely based on the analysis of cell
shape. For example, the direction of the traction forces is calculated without
additional fitting parameters. We compare the result with the direction of
the traction force measured with a micropillar array technology [24–26]. An
example is shown in figure 4.3a for one of the adhesion points of the cell in
figure 4.2b, more examples are shown in figure 4.4 and figure 4.5. The arrows
mark the direction of the measured traction force (green) and that calculated by
approximating the cell shape with ellipses (yellow). As a comparison figure 4.3a
also shows a prediction based on circles from the isotropic tension-elasticity
model (white) [11, 18].

Data for all 285 cells are summarised in figure 4.3b, where we show the
distribution of the orientation difference between the force direction predicted
by our model θshape and its experimentally obtained value θforce. Across the
cell types used, the predicted distribution is centered at 0◦ and has a width of
40◦. As a comparison, we plot also the result for the earlier isotropic model
which displays a significantly larger width of the distribution of 60◦. This
significant improvement shows that not only cell shape, but also adhesion forces
are profoundly affected by the anisotropy of the cytoskeleton.

γ λ− (nN) σ (nN/µm) α (nN/µm)
0.33± 0.20 7.6± 5.6 0.87± 0.70 1.7± 1.7

Table 4.1: Survey of the average material parameters in a sample of 285
fibroblastoid and epithelioid cells.
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Finally, our model permits to obtain quantitative information on the value
and importance of the isotropic and anisotropic stresses generated by the
cells. We combine the shape parameters γ and λ−/σ with the value of λ−
that we obtain from the magnitudes of the measured forces. In table 4.1 and
table 4.2 we report a survey of the parameter values over a sample of 285 cells.
Despite the large variability among the cell population, the directed stress α is
consistently larger than the isotropic stress σ, reflecting the high anisotropy of
the adherent cell types used here.

4.4 Discussion & Conclusion
In conclusion, we have investigated the geometrical and mechanical properties of
adherent cells characterized by an anisotropic actin cytoskeleton, by combining
experiments on micropillar arrays with simple mechanical modeling. We have
predicted and verified that the shape of the cell edge consists of arcs that are
described by a unique ellipse, whose major axis is parallel to the orientation of
the stress fibers. The model allowed us to obtain quantitative information on
the values of the isotropic and anisotropic contractility of cells.

Our work highlights the strong interplay between cell mechanics and ge-
ometry. Our model represents a step toward estimating cellular forces from
simple imaging data without the need for sophisticated direct force readout.
Furthermore, it provides a starting point to study dynamics and explore the
role of anisotropy in multicellular environments like tissues [27–30].

4.5 Materials & Methods

4.5.1 Cell culture and fluorescent labeling

Epithelioid GE11 and fibroblastoid GD25 cells [19] expressing either α5β1
or αvβ3 (GDβ1, GDβ3, GEβ1 and GEβ3) have been cultured as described
before [14]. GDβ1, GDβ3, GEβ1 and GEβ3 are approximately equally repre-
sented among the 285 cells in the data presented here. Cells have cultured in
medium (DMEM; Dulbecco’s Modified Eagle’s Medium, Invitrogen/Fisher Sci-
entific) supplemented with 10% fetal bovine serum (HyClone, Etten-Leur, The
Netherlands), 25 U/ml penicillin and 25 µg/ml streptomycin (Invitrogen/Fisher
Scientific cat. # 15070-063). Cells were fixed in 4% formaldehyde and then per-
meabilized with 0.1% Triton-X and 0.5% BSA in PBS. Tetramethylrhodamine
(TRITC)-Phalloidin (Fisher Emergo B.V. cat. # A12380, Thermo Fisher) was
subsequently used to stain F-actin [14].



4.5. MATERIALS & METHODS 71

4.5.2 Micropillar arrays

Micropillar arrays were made out of a soft elastomeric material (PDMS) using
a negative silicon wafer as a mask as described before [25, 26]. Briefly, the 2
µm diameter micropillars are arranged in a hexagonal pattern with a 4 µm
centre-to-centre distance. The micropillars have a height of 6.9 µm, resulting in
a stiffness of 16.2 nN/µm. The pillar tops were fluorescently labeled using an
Alexa 405-fibronectin conjugate (Alexa Fluor R©, Invitrogen/Fisher Scientific,
Breda, The Netherlands; Fibronectin cat. #1141, Sigma Aldrich, Zwijndrecht,
The Netherlands). Pillar deflections were determined with ∼30 nm precision
using a specifically designed Matlab script resulting in a ∼0.5 nN precision in
force [26].

4.5.3 Imaging

High-resolution imaging was performed on an in-house constructed spinning
disk confocal microscope based on an Axiovert200 microscope body with a Zeiss
Plan-Apochromat 100× 1.4NA objective (Zeiss, Sliedrecht, The Netherlands)
and a CSU-X1 spinning disk unit (CSU-X1, Yokogawa, Amersfoort, The
Netherlands). Imaging was done using an emCCD camera (iXon 897, Andor,
Belfast, UK). Alexa405 and TRITC were exited using 405 nm (Crystalaser,
Reno, NV) and 561 nm (Cobolt, Stockholm, Sweden) lasers, respectively.

4.5.4 Image analysis

All image analysis and ellipse fitting are performed using Matlab R©, except the
determination of the stress fiber orientation for which ImageJ with the Orienta-
tionJ plugin (http://bigwww.epfl.ch/demo/orientation/) was used. The
micropillar array allows measuring forces that the cell exerts on the substrate.
The forces used in calculations were selected manually when sufficiently large
and close to the cell edge. The cell edge is found using a custom script that
filters background using a lowpass filter and selects the cell based on a threshold.
Then the contour of the cell is divided into parts at the locations of the selected
forces. Segments whose straight end-to-end distance is less than 50 pixels
(6.9µm) are discarded, the rest of the segments is used for fitting ellipses.

The orientation of cell edge segments as used in figure 4.1c was calculated
by measuring the angle of a line through the two adhesions at either end of the
segment. We then defined θ as the angle between this line and the stress fibers.

http://bigwww.epfl.ch/demo/orientation/
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4.5.5 Ellipse fitting

Ellipses are defined in our experiments with five parameters each: the coordi-
nates of the center of the ellipse, the lengths of the short and long axes, and the
angle that the long axis of the ellipse makes with the x-axis of the coordinate
system of the image. We use fixed lengths for long and short axes for the
N ellipses in the same cell. The optimal ellipse size per cell and positions
for each ellipse are found using a 2(N + 1) parameter fit which minimises
the distance between fitted ellipses and cell edge by calculating χ2. Initial
parameters for this fit are obtained from fitting each ellipse separately and
averaging the lengths of the axes of the ellipses. Ellipses whose χ2 is greater
than 10 are discarded, which occurs in case of membrane ruffling and other
out-of-equilibrium events.

In the global fit, the orientations of the ellipses are fixed to the local
orientations of stress fibers. Orientations are measured from the channel with
TRITC-Phalloidin (Actin) using the OrientationJ plugin for ImageJ. The
average orientation per cell edge segment is calculated over all pixels between
15 and 50 pixels (2.07µm and 6.9µm) away from the cell edge whose coherency
is greater than 0.15.

4.5.6 Force analysis

For both the circle and ellipse models, forces on the intersections of circles or
ellipses are calculated. For circles, these forces are the vector sum of two forces
whose direction is on the tangent to the circle and whose relative magnitude
is the radius of the circle. For the ellipse case, the position of the single force
on the intersection of two ellipses is first mapped to two forces on a single
ellipse. While doing this the short and long axes of the ellipse are rotated and
translated such that they coincide with the x and y-axes of the coordinate
system. Then two forces F1 and F0 are calculated by combining equation (4.3)
and equation (4.4), and defined in such a way that they are pointing clockwise
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and counter-clockwise around the ellipse:

F0

λ−
= (β sinφ+ ζ cosφ) x̂ +

(
−β
γ

cosφ+ ζ sinφ

)
ŷ

F1

λ−
= (β sinφ− ζ cosφ) x̂ +

(
−β
γ

cosφ− ζ sinφ

)
ŷ

β =
d

2a

ζ =

√
1 + tan2 φ

1 + γ tan2 φ
− β2

γ
.

(4.5)

Here d is the distance between the positions of both forces on the ellipse, a is
the length of the long axis of the ellipse and φ is the angle that the line through
both points makes with the x-axis. After this F0 and F1 are rotated back to
the coordinate system of the image and summed to give the force, scaled by
λ−, acting on the cell edge on the location of a particular intersection of two
ellipses.

The magnitude of the traction forces is required for the calculation of the
minimal line tension λ− and the isotropic and directed stresses σ and α. We
get this from the micropillar array. A measured force usually is the sum of
two forces exerted by two different cell edge segments. Therefore, we first
decompose the traction force into two forces pointing along tangents to the two
cell edge segments adjacent to the position of the force. Then, per cell, we take
any combination of two clockwise and counter-clockwise forces and calculate:

λ− =

√
F 2

1xF
2
0y − F 2

0xF
2
1y

F 2
0y − F 2

1y

σ =
|F0 − F1|

d

F0x + F1x

F0y − F1y

α = σ

(
1

γ
− 1

)
.

(4.6)

Here F0 and F1 are defined in the coordinate system where the x and y-axes
are the short and long axes of the ellipse. Furthermore, Fnx and Fny are the
components of Fn in the x and y-directions respectively. To calculate values
for these quantities, we average all the different tensions and stresses we get
for all possible combinations in all cells, taking the errors on these values into
account as weights while averaging.
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4.6 Supplementary data

Table 4.1 gives the material parameters γ, λ−, σ and α for a set of 285 cells.
These cells, in fact, come from a pool of two different cell types [14, 19].
The GE11 cells used, exhibit an epithelioid morphology whereas the GD25
cells exhibit a fibroblastoid morphology. Both cell types are deficient of the
fibronectin receptor integrin β1. In both cell types, then either α5β1 was
reexpressed, or αvβ3 was expressed. These cells are designated GEβ1, GEβ3,
GDβ1 and GDβ3. The differing cell and integrin types result in a different
cell-substrate coupling leading to different material parameters for each cell
and integrin expression type. It is outside the scope of this chapter to examine
these differences in detail, therefore initially only the average of each parameter
over all 285 cells are given. For completeness, we give the same parameters per
cell type in table 4.2. As can be expected [14], cells expressing β1 exert higher
traction forces than cells expressing β3, which is reflected in a lower λ− for the
latter.

Cell type number
of cells γ λ− (nN) σ (nN/µm) α (nN/µm)

GEβ1 59 0.32± 0.14 9.8± 6.9 1.4± 1.0 2.6± 2.2
GEβ3 112 0.31± 0.19 5.5± 3.4 0.62± 0.41 1.3± 1.1
GDβ1 56 0.38± 0.26 10.6± 9.4 0.92± 0.78 1.5± 1.7
GDβ3 58 0.34± 0.25 7.9± 6.0 1.0± 0.8 2.0± 2.2
All 285 0.33± 0.20 7.6± 5.6 0.87± 0.70 1.7± 1.7

Table 4.2: Survey of the average material parameters per cell type in a sample
of 285 fibroblastoid and epithelioid cells. Shown are the mean and standard
deviation. Whereas γ does not vary significantly, there is some variance observed
in especially λ−, which appears larger for cells expressing β-integrin.
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Figure 4.4: Six examples of cells with circles fitted to the cell edges.
The actin, cell edge, and micropillar tops are in the red, green and blue channels
respectively. Circles (white) are fitted to the edge of the cells. Orientations
of forces calculated on intersections of either circle from the tension-elasticity
model [11, 18] (white arrows) and the model presented in this chapter (yellow
arrows) are shown as well as the forces measured with the micropillar array
(green arrows). Panels (a) to (c) show epithelioid cells and (d) to (f) show
fibroblastoid cells.
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Figure 4.5: Six examples of cells (same as in Fig. 4) with ellipses
fitted to the cell edges. The actin, cell edge and micropillar tops are in the
red, green and blue channels respectively. Ellipses (yellow, including the long
axis) are fitted to the edge of the cells. Orientations of forces calculated on
intersections of either circles form the tension-elasticity model [11, 18] (white
arrows) and the model presented in this chapter (yellow arrows) are shown as
wel as the forces measured with the micropillar array (green arrows). Panels (a)
to (c) show epithelioid cells and (d) to (f) show fibroblastoid cells. Fit values
for the ellipses in panels (a) to (f) respectively: γ: 0.52; 0.25; 0.75; 0.40; 0.95;
0.46, λ−/σ (µm): 13.4; 15.7; 12.6; 14.7; 10.8; 18.0.
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