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Chapter 2

Retention of neuronal
receptors induced by
spine-morphology†

Here we show that the morphology of the dendritic spine can be a significant
determinant for regulating memory and learning. Using an artificial system
that models the dendritic spine in a giant unilamellar vesicle, we experimentally
confirmed the significance of spine-morphology on the escape of membrane-
bound receptors from the spine, a process called ’the narrow escape problem’.
Our results show that retention within the spine scales with spine-size beyond
the predicted quadratic dependence reflecting the surface area. We show that
the morphology of some dendritic spines can slow down the escape of receptors
enough to give other biochemical processes a significant time-window to be
set in motion. Furthermore, our analysis yields that the size of the spine-head
determines receptor retention, rather than the length of the spine-neck.

†This chapter is based on: W. Pomp, R. P. T. Kusters, C. Storm and T. Schmidt “The
narrow-escape problem revisited experimentally in an artificial system”. In preparation.

17



18 CHAPTER 2. MORPHOLOGY OF DENDRITIC SPINES

2.1 Introduction

The brain is arguably the most complex organ in humans. It consists of
almost 100 billion neurons which are interconnected by approximately 1000
connections each. Those connections, the synapses, are at the base of the brain’s
processing capabilities and its memory. Signals are transmitted between neurons
by neurotransmitters which are released from the pre-synaptic neuron and
detected by specialized transmembrane receptors on the post-synaptic neuron
(figure 2.1). The processes of learning and memory are encoded by a change in
the coupling strengths between synapses. This coupling strength is governed by
the receptor density at the post-synaptic side. An increase in receptor density
strengthens, while a decrease in receptor density weakens the coupling [1].
Hence, for memory, a constant receptor density in the synapse is required.
One way to achieve a constant density would be to capture and immobilize all
receptor molecules at the synapse. Yet, to a surprise, it was found, initially
by fluorescence recovery after photobleaching experiments [2], and since firmly
confirmed by single-molecule tracking [3–7] and superresolution microscopy
[6], that receptors are mobile within the post-synaptic space, contradicting the
earlier believe.

Simultaneously with the change in connection strength and receptor den-
sity, the postsynaptic neuron changes shape [8, 9]. Extensive studies using
state-of-the-art electron microscopy [10] established a sequence of particular
morphological changes at the location of the synaptic connection described
by the formation of the so-called synaptic spine. With increasing coupling
strength the spine changes morphology. From what is initially a small pro-
trusion, it grows into a fully developed mushroom-shaped mature spine with
a head typically a few tens of micrometers in diameter, being connected to
the postsynaptic neuron through a very narrow membrane tube, or neck, of
about ten to hundred nanometer diameter [11, 12]. Recently, the morphological
change on learning has been followed directly in live cells [13] and in a live
animal [14].

Those two observations have led to a unifying model for learning and
memory that allows for the observed receptor mobility within the spine, which
is required for short-term synaptic variability and likewise preventing swift
loss of receptor density. The narrow neck slows down the escape of receptors
from the dendritic spine, allowing other biochemical processes to kick in and
ultimately keep the number of receptors in a dendritic spine at a constant
level. One structure which is known to hinder the escape of receptors is the
presence of a septin meshwork in the dendritic spine neck [15]. This model
unites the seemingly mutually exclusive observations of receptor mobility and
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Figure 2.1: The synapse. Upon arrival of an action potential in the axon
terminal, neurotransmitters are released into the synaptic cleft and are sensed
by receptors in the membrane of the dendritic spine. In turn voltage channels
are opened creating a new action potential in the dendrite.

receptor confinement. Theoretically, the geometric problem has been described
in terms of the "narrow escape problem" [16]. Analytical studies [16], together
with a recent simulation approach [17], have predicted that the change of
morphology can, at least partially, explain how mobile receptors are restricted
to the spine and thereby guarantee a stable strength of the synapse [18]. It
is worth mentioning, that the narrow neck might also lead to a reduction in
dimensionality for receptor diffusion, which can lead to unexpected behavior in
biological processes [19]. Here, we set out for an experimental verification of
the narrow-escape model.

2.2 Results

2.2.1 Mimetic system of the synaptic spine

We created an artificial system that mimics the mushroom-like morphology of
the dendritic spine. This artificial system allowed us to set and vary the leading
parameters defining the morphology in a large range, embracing those found in
the brain. Our mimetic system consists of giant unilamellar vesicles (GUVs),
from which membrane tubes were pulled. For the generation of GUVs, we used
the process of electroswelling from pure phospholipids [20]. The size-range
of GUVs was varied from 4 to 20 µm. Such size-span of almost one order of
magnitude has been reported for the heads of dendritic spines in vivo [12].
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The spine neck we realized by pulling a membrane patch from the GUV by
a fine pipette. Slight suction with simultaneous retraction of the pipette from
the GUV using a micromanipulator allowed us to form a membrane tube of
variable length. The resulting shape is depicted in figure 2.2 as a cross-section.
It has been shown that the radius r of the tube depends on the square root of
the ratio of the bending modulus and the surface tension of the membrane [21].
Whereas the bending modulus is a characteristic of the phospholipids used,
the tension is determined by the method by which the GUVs were produced.
The latter varied for each of our preparations. Hence the tube radius was
determined experimentally in each experiment. It varied in a narrow window
centered at 200 nm (Supplementary figure 2.10).

Figure 2.2: Cross-section of the experimental system. The dendritic
spine head was mimicked by a giant unilamellar vesicle of radius R. The spine
neck was simulated by a membrane nanotube of radius r. Lipid-anchored
quantum dots served as surrogate of membrane receptors. Receptor escape was
monitored by observation of quantum-dots that crossed a virtual finish-line at
distance L0 = 2 µm (red arrows) up to L = 10 µm (other arrows) into the tube.

Lastly, receptor proteins were imitated by lipids which were labeled by
individual fluorescent quantum-dots. Trajectories of individual lipid-anchored
quantum dots undergoing diffusion on the membrane were followed at high
spatial (20 nm) and temporal (30 ms) resolution on a wide-field single-molecule
microscope (figure 2.3). For comparison of results obtained in our biomimetic
system with those in vivo, the higher mobility of lipids with respect to trans-
membrane receptors had to be considered. Given the about hundred-fold higher
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values of the diffusion constants for the mimetic with respect to the in vivo
situation (0.5µm2/s vs. 0.01µm2/s [22]), in combination with the about ten
times lager size R of the mimetic versus the in vivo systems (2 - 50µm vs. 0.1
- 1µm [23]), we predicted that the timescales we found are about similar in the
in vivo systems given the scaling of diffusion processes R2/D .

Figure 2.3: Example of an escape event in an artificial dendritic spine.
A quantum dot mimicking a receptor in a GUV/tube system (marked by the
red line) was followed in time. Initially, the quantum dot (bright signal) was
outside the depth of focus. At t = 0.5 s, it appeared in focus (marked by the
blue circle) on the membrane of the GUV. After about 2.5 s it entered the tube
in which it diffused further. After about 3.5 s it is passed the finish line at
L0 = 2 µm and was counted as escaped.
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2.2.2 Diffusion constant

We were interested in the rate at which receptors, i.e. lipid-anchored quantum-
dots, escaped the dendritic spine. Therefore we used single-molecule microscopy
to follow individual lipid-anchored quantum dots on the membrane in the
vesicle/tube mimetic. Individual quantum dots were followed at high spatial
(20 nm) and temporal (30ms) resolution for an extensive time-scale (up to 10 s)
in an axial slice of ∼ 1 µm thickness through the GUV. The imaging plane
contained the plane of the membrane tube (figure 2.3). A selection of typical
trajectories is shown in figure 2.4. The observed trajectories were split into
several modes which encompass all our observations: (i) quantum dots which
diffused on the membrane of the GUV within our observation slice, (ii) quantum
dots that diffused on the membrane of the GUV and left the observation slice
in axial direction, (iii) quantum dots that diffused up and down the membrane
tube, (iv) quantum dots that diffused out of the GUV into the tube or vice
versa. The latter were the events that we further analyzed in terms of the
escape problem.

1 m

Figure 2.4: Selection of trajectories of quantum dots on the surface
of an artificial dendritic spine. The selection includs the trajectory of the
quantum dot tracked in figure 2.3. Colors denote different trajectories.
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An example of a quantum dot (encircled in blue) that escaped the artificial
spine (outlined in red) is shown in figure 2.3. The sequence was recorded at
9.5Hz, such that the imaging kept up with the movement of the quantum
dot. Initially, the quantum dot was not visible. At t = 0.5 s, the quantum dot
appeared in the image plane of the GUV (bottom) that contained the long
membrane tube (top). After 2.5 s the quantum dot entered the tube. 1 s later
it passed the virtual finish line we defined at L0 = 2 µm into the tube and was
counted as having escaped the system. L0 was chosen such that it’s location
on the tube was clearly separated from the membrane of the giant vesicle.

The sole parameter that controls the relation between displacement and
time-scale in the problem is the diffusion constant, D. D was determined from
the diffusional trajectories in modes (i) and (iii) by fitting the one-dimensional
mean squared displacement along the membrane as a function of the time-lag
between two observations for each vesicle. The diffusion constant had an average
value of D = (0.5± 0.1) µm2/s, (figures 2.8 and 2.9). This value coincides with
diffusion constants of bead- and quantum-dot labelled lipids [24], yet are smaller
than that for fluorophore-labeled lipids reported to be 1 - 4 µm2/s [25]. Next
to the diffusion constant, analysis of trajectories in mode (iii) permitted to
experimentally determine the sub-diffraction sized radius of the tube, r [26].
Trajectories were first split into movements parallel and perpendicular to the
tube-direction before the respective mean-squared displacements MSD‖ and
MSD⊥ were determined. Subsequently the time-dependence of the MSDs was
determined. Where MSD‖(t) increased linearly in time as MSD‖(t) = 2Dt, the
perpendicular component saturated for long timescales to MSD⊥(t→∞) = r2

[26]. From the latter value the tube radius was determined. The tube radii
were in the range r = 150 nm to 300 nm (figure 2.10).

2.2.3 Escape rate

The methodology described in the previous subsection permitted us to directly
determine the time of escape from the GUV for each quantum dot directly.
However, statistics in such an approach was low given that our imaging approach
required that the quantum dots stayed within the depth of focus during the
entire experiment. Yet most of the trajectories we observed fall into mode (ii),
where quantum dots moved out of the observation volume in the axial direction.
Therefore the escape rate was determined statistically. We counted the number
of quantum dots n that passed a virtual finish-line at position L in the tube
within the time-period of observation ∆t. The latter was set to 100 s yielding
sufficient events n in each experiment. Subsequently, the escape rate E was
determined by normalization of n by the total number of particles N on each
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GUV:
E =

n

N∆t
(2.1)

N was determined experimentally for each GUV by counting the total number
of particles visible in the plane of focus and taking into account the depth of
focus of our microscope (see the M&M subsection).

The escape rate is a Kramers’ rate, which is related to the mean first passage
time τ (MFPT) by [27]

1

E
= τ (2.2)

It is worth noting that the escape rate is only dependent on the geometry of
the artificial dendritic spine and the diffusion constant, given that ER2/D is a
unitless quantity. Thus we expected that the escape rate would scale as R−2,
the inverse of the surface area of the GUV.

2.2.4 Dependence of escape rate on GUV radius

We analyzed the escape rate for a range of GUV-tube systems. In order to
reduce broadening of the data due to differences in the diffusion constants for
different vesicles (see figure 2.8), escape rates E were normalized by D. The
results for the ratio E/D are shown in figure 2.5 where the radius R of the GUV
was varied between 4 - 20 µm. Data are shown in blue and include standard
errors represented by blue bars. The range of values of 10−5 - 10−3/µm2

found for E/D translates into mean-first-passage times between 8 min and
1 day, taking into account the diffusion constant of D = 0.5 µm2/s reported
above. A fit to a power-law E/D = ΓR−α (red line) revealed that the escape
rate scaled with an exponent α = 2.6± 0.3 of the vesicle radius. Hence the
dependence was stronger than the quadratic dependence predicted from scaling
with the surface area of the GUV. The mobility factor was determined to
Γ = (0.27± 0.18) µmα− 2.

As noted earlier, the system under study is an example of the narrow-
escape problem. An analytical solution for the MFPT of the narrow-escape
problem has been derived for particles diffusing on a spherical shell attached
to a cylindrical tube [28]. The solution for an arbitrary starting point on the
GUV, as defined by the the polar angle θ with respect to the plane of the
membrane tube is given by [28]:

E(θ,R, L) = D

[
2R2 log

(
sin θ/2

sin δ/2

)
+
L2

2
+

2R2L

r

]−1

(2.3)
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Figure 2.5: Ratio of escape rate and diffusion constant (E/D) for
changing GUV-radius. Data-points and standard errors are shown in blue.
The red line follows a power-law fit to the data yielding an exponent of
−2.6± 0.3. The prediction interval for this fit is shown as red-shaded re-
gion. The green line displays the full theoretical prediction for a vesicle/tube
geometry [28], with tube-radius r = 200 nm, and tube-length L0 = 2 µm

The opening of the attached membrane tube δ = arcsin (r/R) defines the
minimum possible angle in θ. Integration of equation (2.3) with respect to all
starting positions on the sphere leads to an expression for the total escape rate
as measured in our experiments (see supplementary section 2.6.1):

E(R,L)

2Dr−2
=

4R2

r2

 log

(
2

1−
√

1−r2/R2

)
1+
√

1− r2/R2
+
L

r
−1

+
L2

r2


−1

(2.4)

The result of equation (2.4) for a mean tube radius r = 200 nm and
L = L0 = 2 µm was added to figure 2.5 (green line). The analytical curve
follows the experimental data within experimental uncertainty. It should be
stressed that the analytical curve does not contain any free parameter.



26 CHAPTER 2. MORPHOLOGY OF DENDRITIC SPINES

2.2.5 Dependence of the escape rate on tube length

Besides the size of the head R, a second shape parameter determining the
escape rate is the length of the tube L. In contrast to the GUV radius, L was
modified by repositioning the virtual finish-line on the tube. Whereas, in the
experiments referred to in the last subsection we kept L = L0 = 2 µm constant,
here L was varied between 2 and 6 µm.

In order to retrieve the scaling behavior of the escape rate on L, we rescaled
all results by the power-law dependence R−α, α = 2.6, that we experimentally
determined in the last subsection. After this rescaling, all data fall onto a
single master curve (figure 2.5), which allowed us to analyze all experiments
globally, and independent of R. It should be noted, that the rescaled data also
includes the linear term L/r in equation (2.4) which accounts for molecules
that returned into the GUV before crossing the finish line defined by L [28].
The inverse of the rescaled ratio of escape-rate to diffusion constant is well
approximated by a second-order polynomial in L, reading[

E(R,L)

D ΓR−α

]−1

= 1 + p (L− L0)2 (2.5)

As predicted for diffusion, the inverse escape-rate increases quadratically
with the tube length. All data closely followed the behavior predicted from
equation (2.5) (figure 2.6). Each data point (blue line) in figure 2.6 is the
average scaled inverse escape-rate DΓR−α/E at a given position L on the tube.
The red line represents a free fit of the data to equation (2.5), yielding values
for the parameter p = (1.84± 0.03)/µm2.

2.3 Discussion & Conclusion

The system described here is a very simplified model for a real dendritic spine,
yet it is complex enough to display some of the essential ingredients. Our data
demonstrate the dependence of the escape rate on morphology. The escape-rate
from the head of a dendritic spine into the tube decreases about a hundred-fold
when the size of the head is increased five-fold. This shows that the dependence
exceeds the scaling that would be predicted solely by the quadratic increase
in surface area. In addition, increasing the length of the tube that connects
the head of the dendritic spine to the axon, decreases the escape rate further.
The quadratic dependence of the escape rate E on the length of the tube L
is recovered from our data. Increasing the length of the tube L three-fold
decreases the escape rate thirty-fold.
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Figure 2.6: Escape-rate versus tube length. Inverse of the ratio of the
rescaled escape-rate to the diffusion constant with increasing tube length.

A quantitative comparison between the influence of the neck- vs. the head-
region is given in figure 2.7. From the figure it becomes apparent that the size
of the head is dominant with respect to retention of receptors out of the spine.
The dashed lines represent geometries for which the mean first-passage time is
1 s, 1 min, 1 h, and 12 h, respectively. The timescales we determined for lipid
escape on the model system of 8 min - 1 day are about one order of magnitude
longer than we would predict in the spine, since the model system is larger
than typical structures observed in vivo by about two orders of magnitude,
and the diffusion constant in the mimetic system (D = 0.5 µm2/s) is about one
order of magnitude higher than the receptor diffusion constant reported in the
spine (D = 0.02 µm2/s, [15]).
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Figure 2.7: A quantitative comparison between the influence of the
neck- vs. the head-region. is given in figure 2.7. The blue region indicates
the morpholgy of the system where the radius of the head is the dominant
determiner for the retention of receptors. The yellow region indicates the
morpholgy of the system where the radius of the neck is the dominant determiner
for the retention of receptors. The dashed lines represent geometries for which
the mean first-passage time is 1 s (black), 1 min (red), 1 h (blue), and 12 h
(green), respectively.

Although our analysis clearly shows the influence of spine morphology on the
escape rate, the retention times up to a few hours in our mimetic system, which
translates to minutes in a real dendritic spine, would be clearly insufficient for
the long-term memory capability of our brain. It is obvious that our simple
mimetic system lacks the large number of proteins which cells have, some
of which are known to inhibit diffusion on the spine membrane and through
the spine neck [7, 15, 29]. Hence, certainly for memory and learning these
mechanisms together with active transport of receptors towards the synapse
will be the main determinants.
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Yet, the reduction of the escape rate due to morphology may play a role in
the initial formation of neuronal connections, leaving sufficient time that other
structural rearrangements like those mentioned above can be built up. It is
known that developing dendritic spines start out as a protrusion, without a
restricting neck region, reducing passage times to probably far under a second.
In these young spines, therefore, it is very easy to adapt the number of receptors
as is required for learning. Conversely, the restricting behavior of specialized
proteins and active transport of new receptors into the dendritic spine, aided
by the minutes-long passage times in dendritic spines with large heads and
long necks, achieve a life-long memory or long-term potentiation (LTP).
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2.5 Materials and Methods

2.5.1 GUV preparation

Giant unilamellar vesicles (GUVs) were prepared using electroswelling
[20]. 20 µl lipids (1,2-dioleoyl-sn-glycero-3-phosphocholine (Avanti Polar
Lipids 850375C, DOPC) and 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-N-
(biotinyl) (Avanti Polar Lipids 870282C, bioDOPE)) dissolved in chloroform
(2 g/L) were deposited on top of two indium tin oxide (ITO) coated glasses
(total covered area about 10 cm2). The chloroform was evaporated for two
hours using a desiccator. Subsequently the coated glasses were placed parallel,
coated sides facing each other in a teflon enclosure with about 3mm separation
between them. The space between the glasses was filled with 230mOsmol/kg
sucrose. Swelling was done for two hours at 10Hz, 4Vpp sinusoidal excitation.
After that the sucrose solution containing the GUVs was extracted from the
chamber.
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2.5.2 Receptor mimicry

Quantum dots (Qdot705 Streptavidin Conjugate; Q10163MP, Life Technologies)
were gently mixed with GUVs after electroswelling. Then GUVs were diluted
40× in 300mOsmol/kg phosphate buffered saline (PBS). The streptavidin-
coated quantum dots bound to the biotinylated lipids of the GUV membranes
(about 1% bioDOPE. The microscope coverglass was treated with 1mL, 1 g/L
BSA-biotin (Sigma) and 1mL, 60µg/L neutravidin (Sigma), for fifteen minutes
each, and washed with PBS after and in between, to enable the GUVs to bind
to the glass.
A membrane nanotube was pulled out of the GUV with a micromanipulator
(Narishige MW3) equipped with a glass microneedle (Harvard glass) pulled
into a tip with an opening less than 1µm in diameter (Sutter Puller P90).
GUVs were gently punched with the needle until the membrane was stuck to
the needle. Subsequently, the needle was retracted and a membrane nanotube
was formed.

2.5.3 Imaging

Imaging was performed on an epi-fluorescence microscope. Illumination was
performed using a 488 nm, 100mW laser (Coherent Sapphire 488-100 CW
CDRH). The laser beam was modulated by an acousto-optical tunable filter (AA-
OptoElectronic, AOTFnC-VIS) to illuminate the sample only when the camera
was in exposure mode. Via a tube-lens, the laser beam was coupled into a Zeiss
Axiovert 100 microscope fitted with a Zeiss 100× NA 1.4 oil immersion objective
resulting in Köhler illumination of the sample. The excitation and emission
paths were split using a dichroic mirror (Semrock Di01-R405/488/561/635)
and an emission filter (Chroma ZET405/488/561/640m). Detection was done
using a CCD camera (Roper Scientific/Princeton Instruments 1340B combined
with an ST133 controller and WinView32 software), cooled to −90 ◦C using
liquid nitrogen.

2.5.4 Particle tracking

Images were analyzed using home-made Matlab software as described before
[30]. Briefly, because the size of a single quantum dot was in the range of
10 nm, the photons emitted were spread on the pixels of the CCD sensor by
the point spread function of the microscope. These signals were fit to two-
dimensional Gaussians, resembling the point-spread function. In this way,
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we were able to determine the center-of-mass position of the quantum dots
with up to 20 nm-precision. Tracking the quantum dots was done as described
earlier [31], by calculating the probability that a particle in frame n is the same
particle in frame n+ 1 and maximizing this probability with respect to other
connectivities.

2.5.5 Escape rate
After obtaining the tracks, the number of particles that escaped the system per
unit of time was counted. In most experiments a particle was counted when it
crossed a virtual plane perpendicular to the tube at L = L0 = 2 µm from the
edge of the GUV (figure 2.2). In other experiments the distance L was varied.
This number was subsequently normalized to the total number of particles N
on the GUV. In this way the escape rate E was calculated:

E = f
n

N
= f

n

nvis

lz

4πR2
(2.6)

Here n is the total number of particles that escaped during the whole experiment.
f = 9.5 Hz is the frame-rate of the camera. The total number of particles N
on the GUV was estimated using the visible number of particles in all frames
and the fraction of the GUV surface area that is visible in the field of view
lz/A, with l the length of the contour in the field of view, z the depth of focus,
and 4πR2 the surface area of the GUV. In this definition the escape rate E
is a Kramers’ rate. Therefore the escape rate E is related to the mean first
passage time τ (MFPT) frequently referred to in literature [32]:

τ =
1

E
(2.7)

2.6 Supplementary information

2.6.1 Angular average of the escape rate
The equation for the escape rate equation (2.3) in general contains a term that
describes escape from the head to the tube, and a term for escape from the
tube. Here we will focus just on the first:

τhead(θ) =
2R2

D
log

(
sin θ/2

sin δ/2

)
=

2R2

D
(log(sin θ/2)− log(sin δ/2))

(2.8)
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The earlier escape rate contains the starting position of the diffusing object in
terms of its azimuthal angle θ with respect to the line defined by the membrane
tube. To obtain an average escape rate equation (2.8) must be averaged for all
angles:

〈τhead〉θ =

∫ 2π

0

∫ π
δ
τhead(θ)R2 sin θ dθ dφ∫ 2π

0

∫ π
δ
R2 sin θ dθ dφ

=

∫ π
δ
τhead(θ) sin θ dθ∫ π
δ

sin θ dθ

(2.9)

Using the definitions

A = cos δ =
√

1− r2/R2

B = cos θ ; sin θ dθ = − dB
(2.10)

Equation (2.9) becomes

〈τhead〉θ =

∫ A
−1
τhead(θ) dB∫ A
−1

dB

=
R2

D(1 +A)

A∫
−1

log

(
1−B

2

)
− log

(
1−A

2

)
dB

=
R2

D(1 +A)

 A∫
−1

log

(
1−B

2

)
dB −

A∫
−1

dB log

(
1−A

2

)
(2.11)

Integration yields,

〈τhead〉θ =
R2

D(1 +A)

([
(B − 1) log

(
1−B

2

)
−B

]A
B=−1

− (1 +A) log

(
1−A

2

))

=
R2

D(1 +A)

(
(A− 1) log

(
1−A

2

)
−A− 1− (1 +A) log

(
1−A

2

))

=
R2

D

2 log
(

2
1−A

)
1 +A

− 1


(2.12)

which finally leads to the expression used in equation (2.3) for the angle-
averaged escape rate from a spherical object of Radius R into a tube of radius
r
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2.6.2 Diffusion constants

Figure 2.8: Diffusion constant distribution on the GUV from 320
trajectories. The average diffusion constant was DGUV = (0.5± 0.4) µm2/s.

Figure 2.9: Diffusion constant distribution on the tube from 34 tra-
jectories. The average diffusion constant was Dtube = (0.4± 0.3) µm2/s.
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2.6.3 Tube Radius

Figure 2.10: Radii of 22 tubes estimated from the perpendicular dif-
fusion of 212 quantum dots. The average radius was r = (200± 50) nm.
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