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Conclusions & perspectives

Introduction and objectives

The leading cause of cellular dysfunction in neurodegenerative diseases is the accumula-
tion of protein aggregates inside or outside of neurons. These aggregates are phenotypi-
cally different but biochemically similar across neurodegenerative diseases suggesting a
conserved molecular mechanism of pathogenesis. This is consistent with the observation
that neurodegenerative disorders as Alzheimer’s disease (AD), Parkinson’s disease (PD),
Huntington’s disease (HD) and motor disorders such as amyotrophic lateral sclerosis
(ALS) present the same pattern of progression of neuronal death, nervous system deterio-
ration and cognitive impairment. Presumably these pathological changes are driven by
an error in protein conformation followed by abnormal aggregation to form pathogenic
assemblies ranging from small oligomers to large amyloid masses. The amyloid cas-
cade hypothesis of AD provides a framework for protein misfolding neurodegenerative
diseases.

AD is presently incurable, as the loss of neurons is irreversible and none of the
currently available treatments attenuates the progression of the pathological cascade.
According to the amyloid hypothesis, proteolytic processing of amyloid precursor protein
(APP) to form the amyloid-beta (Aβ) peptides plays a central role in the pathophysiol-
ogy of AD. Aβ levels are increased early in the disease process, forming toxic soluble
Aβ oligomers (AβO) and plaques. AβO are considered to be a primary driver of the
neurodegeneration in AD brain. In the APP processing and clearance pathways, APP is
cleaved sequentially by β-secretase (BACE1) and γ-secretase (GS) to produce Aβ.

The drug effects on the individual attributes of the APP pathway are difficult to pre-
dict, because of the complexity of the underlying biochemical network that governs the
formation and elimination of the individual components. As a consequence also, the
effect on AβOs and on the Aβ equilibrium after inhibiting Aβ production or enhancing
Aβ clearance is largely unknown. A systems pharmacology modelling approach, describ-
ing the interactions in the underlying biochemical network, will provide a mechanistic
understanding of the behaviour of the APP pathway, enabling the prediction of therapeutic
effects on Aβ and indirectly also on AβO concentrations (Chapter 2).

The objectives of the investigations described in this thesis were: (1) To establish a
systems pharmacology model to describe in a strictly quantitative manner the biochemi-
cal network of APP processing; (2) to predict and evaluate the effect of Aβ production
inhibitors, acting at different sequences in the APP processing pathway, on AβO con-
centrations; (3) to explore other therapeutic strategies which may aid the reduction of
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AβO burden.

Development of a systems pharmacology model to predict the oligomer
response following secretase inhibition

The effects of Aβ production inhibitors were characterized in conscious cisterna-magna-
ported (CMP) rhesus monkeys. In these CMP rhesus monkeys a permanent catheter was
implanted into the cisterna-magna enabling repeated sampling of cerebrospinal fluid (CSF)
collection in conscious monkeys (Figure 8.1)1. With this animal model, detailed studies
on the pharmacokinetics (PK) and pharmacodynamics (PD) of potential APP modifying
drugs in the central nervous system can be performed, which is difficult to achieve in
humans.

Table 8.1: Summary overview model structures

Model Inhibitors Included biomarkers Chapter

β-APP model BACE1i (MBi-5) sAPPβ, sAPPα, Aβ40, Aβ42 3

β-13C-APP model BACE1i (MBi-5)
sAPPβ, sAPPα, Aβ40, Aβ42, fraction labeled Aβ,

4
fraction labeled sAPPα, fraction labeled sAPPβ

β-γ-APP model
BACE1i (MBi-5) sAPPβ, sAPPα, Aβ40, Aβ42

5
GSi (MK-0752) Aβ40, Aβ42

β-O-APP model BACE1i (MBi-5) sAPPβ, sAPPα, Aβ40, Aβ42, Aβ38, AβO 6

β-γ-O-APP model
BACE1i (MBi-5) sAPPβ, sAPPα, Aβ40, Aβ42, Aβ38, AβO

7
GSi (MK-0752) sAPPβ, sAPPα, Aβ40, Aβ42, Aβ38, AβO

In a series of investigations, we have developed a systems pharmacology model for
the APP processing pathway. The various steps in the development of this model are
summarized in Table 8.1 and presented in Figure 8.2-Figure 8.6. First, we established a
systems pharmacology model of the APP processing pathway to characterize the influence
of BACE1 inhibition on the concentrations of the APP metabolites sAPPβ, sAPPα, Aβ40,
Aβ42 (Figure 8.2) (Chapter 3). In this so called β-APP model, the effect of the BACE1
inhibitor MBi-5 was described by inhibition of the formation of sAPPβ out of APP,
where sAPPβ was used as surrogate of C99, to drive the Aβ formation. This analysis
showed that upon BACE1 inhibition the concentration of the metabolite sAPPα increased
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present a vector for bacterial meningitis and would therefore be
treated as a true positive as well. This situation generally was
determined by evaluating the total protein and glucose levels of
the CSF. The total protein also is known as microprotein, as a
result of the low values relative to the serum resulting from the
bidirectional active transport mentioned previously. A bacterial
or viral meningitis would increase the intracranial pressure re-
sulting in increased permeability at the capillary cell walls. This
increased permeability would allow larger proteins to begin en-
tering the CSF, thus increasing the total protein concentration
(18). The increased permeability would begin to override the
bidirectional active transport mechanism and could be observed
as CSF protein profile begins to equilibrate with the blood pro-
teins. A bacterial meningitis also may present with a decreased
glucose value. This situation would be the result of the bacteria
using the glucose present as an energy source, alterations of glu-
cose transport, and increased brain cell utilization of glucose
(17). A viral meningitis would not effect the glucose concentra-
tion. Confirmation of a bacterial or viral meningitis was done
through cytologic examination. An increased total white blood
cell count along with differential allowed discernment between
viral and bacterial meningitis. A viral meningitis would produce
an increase in the lymphocytic series versus an increase in the
neutrophilic series for bacterial (17). If there were no changes
noted in the chemistry, there could still reside a possibility of
biofilm contamination within the implant lumen. Follow-up cul-
tures were necessary to ascertain possibility of a biofilm.

If an animal had three cultures in a row that were positive for
contamination, the port and catheter were surgically removed. The

animal also would be placed on an antibiotic regime that would
be specific to the particular bacteria cultured and able to pen-
etrate into the CSF (19). After completing the antibiotic therapy
the animal would be anesthetized and a CSF tap performed at the
site of the cisterna magna to collect for a follow-up culture.

Results and Discussion
Model success. To date, 36 surgeries have been performed

with variable model success; success being defined as consistent
patency for CSF collection for longer than 2 weeks postopera-
tively and completion of a single study. There have been
successful implantations in 21 monkeys (16 male, 5 female) out
of the 36 surgeries performed (58% success rate).

(i) Patency and flow rate. The duration of patency for the 21
successful surgeries ranges from 25 to 542 days (average, 230 days).
From this original number, there are 11 animals (9 male, 2 fe-
male) remaining with functional ports. The duration of patency
in this remaining colony ranges from 178 to 542 days (average,
334 days).

The flow rates on the colony of successful animals was quite
variable between animals and even within an individual animal
from day to day. The flow rate observed ranged between 0.1 to
2.0 ml/min, with averages between 0.47 and 0.98 ml/min (See
Table 1 for average flow rates).

(ii) Implant failures. There were 13 animals (9 male, 4 female)
from the group of 21 successful models whose implants eventu-
ally failed due to minor complications and/or loss of patency
(Table 2). Two animals displayed mild neurological signs, in

Figure 3. Schematic of rhesus monkey head, lateral view of implant placement. Note figure is artist’s depiction of implant placement and is not to
scale. Skull is not removed during implantation procedures.

Figure 8.1: Schematic of lateral view of implant placement in rhesus monkey head.
The rhesus monkeys were surgically implemented with a catheter system which was placed 1.0
cm into the cisterna, facilitating direct access to CSF outflow from the cisterna magna. The
catheter was attached to a titanium port placed subcutaneously between the shoulder blades to
allow easy access for sampling CSF in a conscious, chaired rhesus monkey. Figure from Gilberto
et al. 1 .

and while the concentrations of the metabolites Aβ40, Aβ42 and sAPPβ decreased in a
dose-proportional manner. Analysis of the changes in the monomeric Aβ species with
the β-APP model enabled prediction of a reduction of the putative neurotoxic AβO pool.
Also, the findings indicated that decreases in monomeric Aβ responses resulting from
BACE1 inhibition were partially compensated for by dissociation of AβO.

The next step in the model development was the interfacing of the β-APP model with
tracer kinetic data obtained with the so-called stable-isotope-labeling kinetics (SILK)
protocol (Chapter 4). The SILK protocol was originally used to quantify differences in
the Aβ kinetics between patients with AD and their cognitively normal controls. Here the
SILK protocol was applied for the first time to examine the effect of BACE1 inhibition
on the fraction labelled Aβ, fraction labelled sAPPα and fraction labelled sAPPβ after
13C6-Leucine infusion, which was started at 1 hour after the administration of MBi-5.
Interfacing of the tracer kinetic data with the β-APP model yielded the next version of the
systems pharmacology model of the APP pathway, the β-13C-APP model (Figure 8.3).

The β-13C-APP model distinguished labelled and unlabelled species and also sepa-
rated steps in the biotransformation and the distribution of APP peptides to CSF. This
improved the understanding of the dose-proportionality of the effect on the fraction
labelled sAPPβ and the lack of such a dose-proportional response in fraction labelled
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sAPPα. A disconnect between Aβ response measurements that were obtained with the
data from the enzyme-linked immunosorbent assay (ELISA) and SILK was found, that
may be explained by on the one hand the formation of an unknown APP fragment with
differing kinetics or, on the other hand an unknown process that influenced the result of
the SILK assay. In the modelling this effect was accounted for by inclusion of the model
component FactorX.

A limitation of the β-APP model was that the influence of γ-secretase cleavage step
could not be separated from an effect on sAPPβ elimination. Therefore, in Chapter 5
the β-APP model was extended to describe Aβ40 and Aβ42 response to GS inhibition.
This led to the third version of the model, the β-γ-APP model, which contains separate
descriptions to characterize the sequential cleavage steps of APP by BACE1 and GS
while the elimination of sAPPβ is described by a separate parameter (Figure 8.4). The
β-γ-APP model was identified on the basis of a simultaneous analysis of APP metabolite
response data following the administration of the BACE1 inhibitor MBi-5 (1 study; effects
on the metabolites Aβ40, Aβ42, sAPPβ and sAPPα) and the GS inhibitor MK-0752 (2
studies; effects on Aβ40 and Aβ42), respectively. This analysis revealed a difference in
Aβ dynamics after BACE1 versus GS inhibition, which was reflected in a different value of
the Aβ40 formation rate constant. Further, the model based prediction of AβO suggested a
lower oligomerization rate of Aβ42 after GS then after BACE1 inhibition. Unfortunately,
in this investigation, the identified differences in Aβ dynamics after BACE1 or GS
inhibition could not be separated from study differences, as levels of CSF biomarkers can
vary between studies (vide infra).

Application of the systems pharmacology model to
characterize oligomer modulation following secretase inhibition

In the previous studies we have obtained indirect information on the formation of AβO,
through the analysis of the effects of secretase inhibitors on the monomeric species. This
was necessary, because no direct measurements of the AβO were available. In this respect
it should be realized that it is extremely difficult to measure the low concentrations of
the Aβ species2,3. In the meantime however an assay had become available for direct
measurement of AβO

4. It was therefore of great interest to compare the model based
prediction of AβO response to BACE1 and GS inhibition with the observed AβO response
measurements. In the fourth study therefore the effects of MBi-5 and MK-0752 on
the CSF concentrations of five APP metabolites (sAPPβ, sAPPα, Aβ40, Aβ42, Aβ38)
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and AβO were determined. The study was designed in a 4-way full crossover design.
The APP systems model was extended to describe the effect of BACE1 inhibition on an
additional Aβ isoform (Aβ38) and to capture AβO response measurements (Chapter 6;
β-O-APP model). The model was advanced further to describe GS inhibitor response
data (sAPPβ, sAPPα, Aβ40, Aβ42, Aβ38, AβO), which ultimately led to the β-γ-O-APP
model (Chapter 7).

Before analysing the data on the basis of the β-O-APP model, a subset of the data
(the effects on the peptides sAPPβ, sAPPα, Aβ40 and Aβ42) was analysed on the basis
of the original β-APP model. This was necessary, because due to changes in the sample
pre-treatment and the analytical methodology the absolute values of the concentrations in
these studies differed from those in previous investigations, leading to different values of
the model parameters. Using a within-study comparison, it was shown that the onset and
maximum observed AβO response was underpredicted by the β-APP model. As a next
step therefore, the monomeric Aβ (Aβ38, Aβ40, Aβ42) and AβO response measurements
were incorporated in the fourth version of the model (Figure 8.5). This analysis showed
that the Aβ oligomerization follows second order kinetics. Furthermore, the model also
provided evidence that dissociation of AβO, restoring the balance with Aβ monomers
(homeostatic adaptation), contributes to the ultimate treatment effect. This analysis also
showed that, of the various peptides, Aβ42 is the main monomeric Aβ species that
drives the Aβ oligomerization, which is in line with the general belief that Aβ42 is the
Aβ species prone to toxic aggregation.

In Chapter 7, the β-O-APP model was extended to simultaneously describe the
effect of BACE1 and GS inhibition and to capture AβO response data to inhibitors of
both enzymes (Figure 8.6). In the β-γ-O-APP model the sequential cleavage steps by
BACE1 and GS were described separately, in a manner that is similar to the β-γ-APP
model. With this analysis, information on the sAPPβ, sAPPα, Aβ38, and AβO response
to GS inhibition was included. Quite unexpectedly, this revealed that upstream of the
GS cleavage step in the APP pathway, changes in sAPPβ and sAPPα concentrations
in response to GS inhibition were present. The systems analysis of the decrease of
sAPPβ and the increase of sAPPα in response to GS inhibition revealed a homeostatic
feedback loop regulated via C99: the increase in C99 following GS inhibition stimulated
α-secretase processing of APP.

A difference in the ratio Aβ42:Aβ40:Aβ38 between BACE1 versus GS inhibition was
found, which was explained by stepwise successive cleavage of C99 by GS, wherein part
of Aβ38 is converted from Aβ42. Further, due to the cross-over study design using both
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Figure 8.2: β-APP model (Chpt. 3).
The model comprised nine compartments: Five
biomarker compartments in brain (yellow circles)
and four transit compartments from brain to CSF
(white circles). Four biomarkers were measured in
CSF (sAPPα, sAPPβ, Aβ40 and Aβ42),
indicated by the blue boxes. The model included
an AβO compartment (dashed circle). The drug
effect of the BACE1 inhibitor (EFF) inhibited
Rinβ. sAPPβ was used in the model structure as a
surrogate substrate of C99 in the
γ-secretase cleavage step.
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Figure 8.3: β-13C-APP model (Chpt. 4).
The model comprised two times thirteen
compartments: Six biomarker compartments in
brain (yellow circles), one oligomer compartment
and six transit compartments from brain to CSF
(white circles), wherein each compartment was
duplicated to track labeled and unlabeled species.
Seven biomarkers were measured in CSF (sAPPα,
sAPPβ, Aβ40 and Aβ42 (ELISA); fraction
labeled sAPPα, fraction labeled sAPPβ and
fraction labeled total Aβ (SILK)).The drug effect
(EFF) inhibited Rinβ. sAPPβ was used in the
model structure as a surrogate substrate for C99 in
the γ-secretase cleavage step. The tracer PK
model of label enrichment of the Leucine pool
informed label incorporation into the APP
pathway. Model extensions compared to the
β-APP model are indicated in blue.
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Figure 8.4: β-γ-APP model (Chpt. 5).
The model comprised eleven compartments: Six
biomarker compartments in brain (yellow), one
oligomer pool (blank dashed) and four transit
compartments from brain to CSF (blank). Four
biomarkers were measured in CSF (sAPPα,
sAPPβ, Aβ40 and Aβ42), indicated by the blue
boxes. The model included a C99 compartment,
which was not present in the β-APP model.
Model extensions compared to the β-APP
model are indicated in blue. The drug effect of the
BACE1 inhibitor (BACEi EFF) inhibited Rinβ.
The drug effect of the GS inhibitor (GSi EFF)
inhibited Kin42 and Kin40.
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+ Figure 8.6: β-γ-O-APP model (Chpt. 7.
The model comprised fourtheen compartments:
Eight biomarker compartments in brain (yellow
circles) and six transit compartments from brain to
CSF (white circles). Six biomarkers were
measured in CSF (sAPPα, sAPPβ, Aβ40, Aβ42,
Aβ38 and AβO), indicated by the blue boxes.
The drug effect of the BACE1 inhibitor (BACEi
EFF) inhibited Rinβ. The drug effect of the GS
inhibitor (GSi EFF) inhibited Kin40, Kin40,
Kin38 and Kin382. The tick blue arrow indicates
the homeostatic feedback on α-secretase through
the action of C99. Model extensions compared to
the β-O-APP model are indicated in blue.

Figure 8.2 - Figure 8.6:
Advancement of the systems pharmacology model in a series of models (β-APP model (Figure

8.2), β-13C-APP model (Figure 8.3), β-γ-APP model (Figure 8.4), β-O-APP model (Figure 8.5),

β-γ-O-APP model (Figure 8.6) to characterize drug effects on the APP pathway. As driver of

biomarker responses Ctarget was used in all models, which was derived from the PK models of

the BACE1 inhibitor and GS inhibitor, respectively.
APP: Aβ -precursor protein; Aβ : amyloid-β-peptide; Ctarget: drug concentration target site; Kin38: Aβ38 formation rate
from C99; Kin382: Aβ38 formation rate from Aβ42; Kin40: Aβ40 formation rate; Kin42: Aβ 42 formation rate; Kinx: Fac-
torX formation rate; Kout: Aβ38, Aβ40 and Aβ42 degradation rate; KoutC99: C99 degradation rate; Koutx: FactorX degra-
dation rate; Krev: Oligomer dissociation rate; KtAP: transit rate sAPPα and sAPPβ from brain to CSF; Kpl: Oligomerization
rate; KtAβ : transit rate Aβ from brain to CSF; KtAβ O : transit rate AβO from brain to CSF; KtX: transit rate FactorX from
brain to CSF; RinAPP: source of APP; Rinβ: sAPPβ formation rate; Rinα: sAPPα formation rate; Routb: sAPPβ degrada-
tion rate; Routa: sAPPα degradation rate.
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inhibitors, variation between studies could be accounted for, revealing the true differences
in the systems behaviour. Identical values of the systems parameters after BACE1 versus
GS inhibition were obtained. Specifically, the lower value of the oligomerization rate
constant after GS inhibition that had been observed after the analysis on the basis of the
β-γ-APP model could now be explained by the fact that that model did not account for
stepwise successive cleavage of C99 by GS.

Identical values of the system specific parameters were observed for the two different
interventions (BACE1 versus GS inhibition). This confirms that a true system specific
model characterizing the interactions in the APP biochemical network has been obtained.
The structure of the final systems pharmacology model of the APP pathway, the so called
β-γ-O-APP model, is depicted in Figure 8.6.

In conclusion, a systems pharmacology model of APP processing has been developed
which constitutes a basis for the prediction of the influence of therapeutic interventions on
the exposure to AβO. The systems pharmacology model is based on a network structure.
Specific features of the model are i) the AβO formation is a second-order process, ii)
the treatment effect is influenced by AβO dissociation restoring the equilibrium with
Aβ monomers and iii) GS inhibition can trigger a homeostatic feedback mechanism
promoting the non-amyloidogenic pathway.

Extrapolation of the systems APP model from rhesus monkeys to hu-
mans – some preliminary results

An important question is how the model of the APP pathway in monkeys could be adapted
to predict, in a quantitative manner the effects of drugs targeting the APP pathway in
humans. Here we present some preliminary results of the interspecies scaling of BACE1
inhibition between rhesus monkeys and humans. In this context, first the APP pathway
homology of rhesus monkeys to humans is discussed. Next, the considerations in the
interspecies translation of drug effects in the β-γ-O-APP model are outlined. Finally,
the systems APP model is used to predict CSF response data in humans after BACE1
inhibition.

APP is highly conserved between humans and rhesus monkeys5. The 695 amino
acid isoform of APP (APP695) is completely homologous between humans and rhesus
monkeys, whereas the common longer isoform APP770 differs in only four amino acids6.
APP is quite exceptional in having across mammals a totally conserved length and a very
high degree of interspecies sequence identity, indicating that the proteolytic processing is
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important for the physiological APP function7. BACE1, GS and α-secretase sequences
are also highly similar between humans and rhesus monkeys with respectively a 99%, 97%
and 99% match in amino acids (NCBI homoloGene). Quantitative ELISAs have shown
that the concentrations of cerebral Aβ are comparable in patients with AD and aged rhesus
monkeys8. However, binding assays with radiolabelled Pittsburgh Compound B have
shown significant differences in the ligand affinity for Aβ rich cortical extracts from aged
nonhuman primates compared to patients with AD. This may be explained by differences
in the Aβ aggregates or endogenous cofactors6. With the selective Aβ oligomer ELISA
assay that was used in the current rhesus studies, oligomers could also be quantified in
human CSF4.

The β-γ-O-APP model consists of eight linked turnover equations for APP, C99,
sAPPα, sAPPβ, Aβ38, Aβ40, Aβ42 and AβO. The values of physiological turnover rate
constants in species other than rhesus monkeys can in principle be predicted based on
allometric scaling principles9. Therefore, allometric scaling principles were applied to
scale the values of the first order rate constants Rinβ and Rinα from rhesus monkeys to
humans on the basis of body weight using the allometric exponent of -0.25 (Eq. 8.1)10.
The baseline values of APP, C99, sAPPα, sAPPβ, Aβ38, Aβ40, Aβ42 and AβO are
considered species independent and were therefore not scaled. The feedback parameter
(FP) was dependent on the baseline C99, which is the same in both species. Therefore, FP
was also not scaled. This means that intrinsically the values of the zero-order production
rate of APP are scaled (Eq. 8.2 and 8.3).

Rhuman = Rrhesus ·
(
BWhuman

BWrhesus

)−0.25

(8.1)

d

dt
APP = RinAPP −

(
Rinβ +Rinα×

(
C99

C99base

)FP)
×APP (8.2)

RinAPP = (Rinα +Rinβ) ∗APPbase (8.3)

Because of the linkage of the turnover equations in the model, other parameters of
the model (Routa, Routb, Kin40, Kin42, Kin38, Kin382, Kout99, Kout, Kpl, Krev) are also
intrinsically scaled. However, due the linkage of the turnover equations and derived
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parameters, the allometric scaling of the system of equations is cancelled out and the
values of the system parameters remain unchanged. For the herein reported prediction of
APP metabolite responses in human, the values of the system parameters were therefore
kept the same as established in rhesus monkey.

Another factor that needs to be taken into account in the scaling is the fact that in the
rhesus monkey CSF samples were taken from the cisterna magna, whereas in humans CSF
is obtained by a lumbar puncture. A transit compartment model, consisting of a series of
transit compartments, was included to account for the delay between the cisterna magna
and lumbar CSF biomarker responses, in manner that is similar as previously reported by
Kleijn et al. 11 . Thus to translate the β-γ-O-APP model from rhesus monkey to human the
following assumptions were made:

(1) APP processing pathway is identical in humans and rhesus monkeys. It is assumed
that the identified homeostatic feedback mechanism applies also in humans.

(2) Values of the system parameters are the same in rhesus monkeys and humans.

(3) Values of the drug effect parameters (Imax, IC50) are similar across species.

(4) The delay between the cisterna magna and lumbar CSF biomarker responses can be
described by a series of transit compartments.

To evaluate if the β-γ-O-APP model can be translated from rhesus monkeys to humans,
with the above mentioned assumptions, the human predictions for the BACE1 inhibitor
verubecestat (MK8931) were compared to experimentally determined values that had been
reported in the literature12. The population PK parameters of verubecestat13 and reported
IC50 in healthy subjects12 were used to predict the response of the APP metabolites
(Aβ40, Aβ42, Aβ38, sAPPβ, sAPPα) and AβO in healthy non-elderly subjects and AD
patients. System and drug parameters were assumed to be the same for healthy subjects
and AD patients, although this is a simplification of the likely non-homogeneous systems
conditions during disease. An empirical drift model component was used to correct for the
upward drift in CSF concentrations over the sampling period observed in healthy subjects
(see Supplemental Material).

The model adequately predicted the response of Aβ40, Aβ42 and sAPPβ after a single
dose in healthy volunteers (Figure 8.7 left panels). After 14 days of once-daily dosing
of verubecestat in healthy volunteers, the response of Aβ40, Aβ42 and sAPPβ for the
highest dose groups was slightly underpredicted (Figure 8.7 middle panels). In AD, the
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model yielded a reasonable prediction of the observed biomarker response after 7 days of
once-daily dosing (Figure 8.7 right panels).

The model predicted a decrease in the human AβO concentrations in CSF at the
lumbar region (Figure 8.8 middle row). After a single 100 mg dose of verubecestat in
healthy volunteers an 84% reduction in the predicted concentration of AβO was observed.
This value is close to the 94% reduction at day 7 following repeated administration of
once daily doses in the range of 40-150mg that was predicted by the model.

These simulations show that the translated model holds promise for use in the dose
selection for clinical trials and to determine what dose level is needed to reach a predefined
target % reduction in AβO concentrations. When clinical AβO concentration data from
Aβ production inhibitors would become available, the proposed model for the interspecies
extrapolation could be verified.
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Figure 8.7: Model based prediction of verubecestat effects on CSF Aβ40, Aβ42 and
sAPPβ after a single dose (SD) in healthy volunteers (HV) (left), multiple dose (MD) in HV
(middle) and MD in AD patients (right). Predictions are expressed as percentage relative to
baseline. Symbols represent the median of observed percentage relative to baseline.
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Figure 8.8: Model based prediction of verubecestat effects on CSF Aβ38, AβO and
sAPPα after a single dose (SD) in healthy volunteers (HV) (left), multiple dose (MD) in HV
(middle) and MD in AD patients (right). Predictions are expressed as percentage relative to
baseline. CSF Aβ38, AβO and sAPPα were not measured in these studies.
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Perspectives in clinical studies in AD

The systems pharmacology model of the APP pathway in monkeys can be of value in
the design and development of therapeutic interventions for AD in many ways. Here we
briefly discuss a number of potentially useful applications.

Optimization of clinical study designs
Assessment of disease severity and treatment effect in clinical trials in AD constitutes
a major challenge, due the lack of meaningful biomarkers reflecting disease severity,
or predicting treatment effect. Moreover, frequently highly invasive techniques such as
repeated sampling of CSF must be applied to obtain meaningful data. As a result, there is
little room to optimize study protocols experimentally. Here we propose that modelling
and simulation offers an informative approach to the optimization of the designs of clinical
trials on the effects of novel drugs following single dose and repeated administration. This
is exemplified in the optimization of the so-called SILK protocol. A number of years ago
the protocol has been developed to determine kinetics of low-abundance proteins such
as Aβ 14. In this protocol, a primed bolus of 13C6-Leucine is infused intravenously, at
2 mg/kg over 10 minutes, followed by 2 mg/kg/hours continuous infusion for 9 hours.
The proportion of synthesized and secreted Aβ labelled with 13C6-Leucine at amino
acid 17 and 34 is measured, and the fraction of labelled Aβ in CSF is monitored for a
number of hours after the end of the infusion14. As was mentioned earlier, the method
has been successfully applied to assess differences in Aβ kinetics in cognitively normal
persons versus symptomatic AD patients15. Recently, this SILK protocol has been used
to assess the effect of drugs such as GS inhibitors on Aβ production16. Here, it is
important to optimize the design of the SILK protocol, particularly in relation to the time
of administration of the 13C6-Leucine infusion relative to the time of administration of
the drug and the interpretation of the signal.

Our studies on the effects of MBi-5 on the APP pathway in monkeys, using chemical
assays (ELISA) for the quantification of the peptides showed a clear dose dependency for
the effect on all APP metabolites (Chapter 4). However, in the same study such a dose
dependency was not detected by the SILK protocol for the fraction labelled sAPPα. For
sAPPβ and Aβ the sensitivity to detect dose proportionality appears to depend on, among
other factors, the timing of administration of the 13C6-Leucine infusion. An important
question is how the design of the SILK protocol can be further optimized. Here, we use
the β-13C-APP model to investigate in a series of simulations the effect of study design
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features on the 13C6-signal. These simulations focus specifically on i) the sensitivity
to detect a treatment effect and ii) the possibility of identifying the exposure response
relation. The details of the simulated scenarios are reported in the Supplemental Material.

These simulations showed that the timing of the 13C6-Leucine infusion relative the
drug dose and dose frequency affects the magnitude of the 13C6-signal and the possibility
to observe a dose proportionality in the signal. For the fraction labelled sAPPα signal, the
protocol cannot be optimized further. This is caused by the fact that this APP metabolite
is upstream of BACE1 inhibition. As a result of the inhibition of this enzyme unlabelled
sAPPα accumulates, diluting the signal, independent of the timing of the 13C6-Leucine
infusion.

To investigate the effect of drugs, the SILK protocol should be optimized based on
the best timing of the 13C6-Leucine infusion for an endpoint which is closest to the
target AβO, which is fraction labelled Aβ. The optimal time of the 13C6-leucine infusion
depends on a number of factors, such as i) the PK of the drug under investigation, ii)
the delay between the PK and BACE1 inhibition, iii) the delay between the kinetics of
effects on Aβ relative to the kinetics of BACE1 inhibition and iv) the delay between start
of 13C6-Leucine infusion and sufficient enrichment at the target site. These factors can
only be investigated simultaneously using an integrated model approach. Our simulations
show that the greatest signal in terms of clear dose proportionality in fraction labelled
Aβ is obtained when the 13C6-Leucine infusion starts immediately after administration of
the BACE1 inhibitor. The signal is already diminished when 13C6-Leucine infusion starts
at 1 hour post drug dose.

Early diagnosis

Initiating treatment early in the course of the disease is likely to be important when the
aim is to slow or alter disease progression. The early diagnosis of preclinical AD is
challenging, because patients do not display any symptoms presumably as result of a large
resilience in the functioning of the biological system (Chapter 2). An important question
is whether, and if so how, metabolites of the APP pathway might serve as biomarkers for
the early detection of AD. It is well established that metabolite concentrations in CSF can
reflect some of the pathophysiological changes that occur in the brain17. According to
amyloid cascade hypothesis, the first step in the pathological cascade is accumulation of
Aβ (Figure 2.3). CSF Aβ has therefore potential as a biomarker for (early) diagnosis and
may provide clue of preclinical AD18.

The development of biomarkers for the early detection of AD that are predictive of
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preclinical AD constitutes a major challenge for a variety of reasons. First, the quantitation
of metabolites of the APP pathway in CSF is technically difficult. As a result the reported
values of CSF concentrations of Aβ can vary between different research centres and
laboratories. This has led to a large initiative for the standardization of pre-analytical
aspects of CSF biomarkers: The ”Alzheimer’s Association Cerebrospinal Fluid (CSF)
Quality Control Program” brings together laboratories across the globe with the aim of
standardizing the measurement of potential Alzheimer’s biomarkers19. There has also
been intensive research of aggregate-based biomarkers, including AβO in CSF. However,
to date, no biomarkers have been identified that can reliably diagnose AD in the early
disease stage in an individual patient20,21.

Second, due to the resilience in the biological system, changes in biomarkers may
not be observed until advanced stages of the disease. An intriguing question is whether
the sensitivity could be enhanced on the basis of a challenge test, analogous to the use
of the glucose tolerance test for the detection of glucose intolerance as a precursor of
type II diabetes mellitus22. For the APP pathway, the system could be challenged by
the administration of a modulator such as a secretase inhibitor. The design of such a
challenge test could be optimized on the basis of the systems pharmacology model of the
APP network. Furthermore, the model-based analysis of the system response could yield
estimates of system parameters that may serve as novel biomarkers which are indicative for
the disease severity, and possibly predictive of the treatment response to APP modulating
drugs.

Personalized treatment solutions

In most of the clinical trials in AD the molecular heterogeneity of the disease has not
been taken into account. Because of such heterogeneity of AD, treatment may need to
be stratified as, dependent on the genotype, response to potentially disease modifying
therapeutics such as secretase inhibitors and Aβ clearance enhancers may be different.

In recent years important progress has been made in delineating genetic factors in the
pathophysiology of AD related to changes in APP processing. Familial AD mutations
in APP and in the presenilin genes PS-2 and PS-2 and at-risk gene polymorphisms
responsible for late-onset AD all point to a unambiguous and early role of Aβ in the
pathogenesis of AD23,24,25. In early-onset AD genetic variations were found on the APP
gene as well as in the presenilin genes PS1 and PS2, encoding for the catalytic subunit of
GS, causing altered APP processing26,27,28. In sporadic, late-onset AD the epsilon4 allele
of the apolipoprotein E gene (APOE) was identified as a major risk factor contributing
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to the pathogenesis of AD in about 20% of the cases29,25. Mechanistically, this can be
understood by the fact that APOE is involved in the clearance and the aggregation of the
Aβ peptide.

The current general thinking is that susceptibility for late-onset AD involves various
genetic risk factors, as up to 60%-80% of the late-onset AD is genetically determined27,30.
The genetic heterogeneity of the disease is high, and a large number of genetic risk factors,
with relatively low penetrance but high prevalence must be involved. Also, genes with
a modest contribution to the risk of AD may operate interactively24. A few risk factors,
supporting the amyloid hypothesis, are discussed in the Supplemental Material. It is
important that genetic information is considered in future clinical trials with drugs acting
at the APP pathway.

The genetic information may be utilized in various ways. Firstly, this may hint
to system parameters that need to be adjusted to describe the disease state. Secondly,
an individual’s genetic susceptibility may serve as a preselection criterion for further
diagnostic tests as well as personalized treatment of interventions targeting the APP
pathway.

Prediction of the long term treatment effect

Future treatments for AD are likely to be interventions that modify the progression of
the disease17. Demonstration of a drug effect on disease progression is notoriously dif-
ficult due to the slow progression of the disease and the typically wide inter-individual
variation in the rate of progression. An additional complicating factor is that the statis-
tical techniques that are applied in the evaluation of clinical trials (such as analysis of
variance) are not valid in the case of a chronically progressive disease. Moreover, they
do not differentiate between symptomatic and disease modifying effects. To meet these
challenges, the concept of disease progression analysis has been introduced31,32. Disease
progression analysis utilizes regression models to estimate the rate of disease progression.
Using a simple linear regression model and the Alzheimer Disease Assessment Scale –
Cognition subscale (ADAS-Cog) score as a pharmacodynamic endpoint it was found that
AD progresses at a rate of 8.2 units per year33.

It remains to be determined however whether disease severity progresses linearly with
time. Here it is of interest that the rate of progression was slower at earlier stages of the
disease34. Moreover, the ADAS-Cog score can only be used as a disease status marker
when cognitive changes have commenced. Therefore, in the early phases of the disease
and for the design of pre-emptive studies other biomarkers and a more complex disease
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progression model are needed. To overcome these and other complexities, the concept
of disease systems analysis has been introduced as a mechanistic alternative to disease
progression analysis Post et al. 35 .

In ”disease systems analysis” the disease progression is modelled on the basis of
a cascade of turnover models to describe the biomarker responses. This opens the
possibility to connect changes in biomarker responses at the early stages of the disease
to changes in behavioural endpoints (i.e. rating scales such as the ADAS-Cog score) at
later stages. The systems pharmacology models that have been introduced in this thesis
are based on the same concept of cascading turnover models and constitute therefore
a basis for disease systems analysis models in AD. These models can be extended to
comprise also the effects on further downstream biomarkers. The next biomarker to
become abnormal is amyloid-PET, reflecting accumulation of cortical Aβ fibrils, followed
by CSF tau, indicative for neurofibrillary tangles (NFT), followed by biomarkers for
neurodegeneration (fluorodeoxyglucose [FDG]-PET and structural magnetic resonance
imaging [MRI]). Cognitive impairment is the last event in the progression of the disease
(2.3). New biomarkers to measure disease progression in AD may became available over
the years.

To integrate these biomarkers in a disease systems model, the correlations between
these biomarkers need to be considered, firstly, between the biochemical markers CSF
Aβ and tau, secondly between fluid and imaging biomarkers, and ultimately with ADAS-
Cog scores. Most of these correlations are investigated in clinical-autopsy correlation
studies. In order to be able to capture disease progression longitudinal data in the same
subjects are needed. However, this type of data in the same subjects is rare and new
initiatives are needed in this respect. One of the first initiatives currently ongoing is the
’Alzheimer’s Disease Neuroimaging Initiative’ (ADNI). The ADNI is studying the rate of
cognition decline, change is brain structures and fluid biomarkers among volunteers over
55 years, who are healthy, as well as those who have been diagnosed with mild dementia
due to AD.

Alternative interventions targeting the APP pathway

We have developed a systems pharmacology model of the APP pathway on the basis of
Aβ production inhibitors (BACE1 and GS inhibition) and quantified their effects on AβO.
In theory, to reduce Aβ burden the functioning of the APP pathway can be modified in
many different ways: (1) inhibition of Aβ production; (2) enhancement of Aβ clearance;

256



Conclusions & perspectives

(3) blocking AβO toxicity through interactions with the AβO target site.

Until now, clinical trials of Aβ production inhibitors (i.e. BACE1 and GS inhibitors)
could not demonstrate clinical efficacy at tolerated doses in patients36,37,38. Moreover,
the anti-Aβ monoclonal antibodies, developed to enhance Aβ clearance, bapineuzumab
(Pfizer Inc.) and solanezumab (Eli Lilly & Co.) could not demonstrate efficacy in AD
patients large Phase III clinical trials39,40. In general, for amyloid-targeted therapy there
is now a tendency to move towards clinical trials with prodromal AD or in subjects at
preclinical stage of familial hereditary AD variants.

The primary endpoints for efficacy in the clinical AD studies were measures of
cognitive performance by changes in ADAS-Cog score and in the AD Cooperative Study
– Activities of Daily Living (ADCS-ADL) score. There are several possible explanations
for the lack of efficacy. A particularly important question is whether target engagement
as reflected in the exposure to AβO has been achieved. The β-γ-O-APP model could be
used to predict this.

In this section, the β-γ-O-APP model is used to perform simulations to investigate
interventions targeting the APP pathway. The behaviour of the individual moieties of the β-
γ-O-APP model was evaluated by simulating the responses after Aβ production inhibition
(BACE1 or GS inhibition) and by triggering the system with a hypothetical compound
enhancing Aβ clearance (Figure 8.9). The hypothetical Aβ clearance enhancer was
assumed to have similar PK properties as the BACE1 inhibitor. An Emax concentration
effect relationship was simulated assuming a maximal increase of the Aβ clearance rate
constant (Kout) by 5 fold.The simulation showed that the effect of the Aβ clearance
enhancer yielded less reduction in AβO concentration (83.4%) than production inhibition
(86.8% and 87.4% for BACE1 and GS inhibitor, respectively). Furthermore, Aβ clearance
enhancement does not affect APP, sAPPβ, C99 and sAPPα concentrations.

The β-γ-O-APP model offers the opportunity to investigate the net system’s responses
to combined intervention acting at different targets. Therefore, the system was triggered by
combined administration of two compounds: a combination of a BACE1 and GS inhibitor,
a combination of a GS inhibitor and Aβ clearance enhancer and a combination of a BACE1
inhibitor and Aβ clearance enhancer (Figure 8.10). The effects of the different treatments
were assumed to be additive and no PK interactions were taken into consideration.

Combined administration of MBi-5 and MK-0752 would further reduce Aβ monomers
and AβO concentrations compared to monotherapy: a reduction of 97% in AβO was
achieved with combined administration. Combining two drugs with similar action (Aβ pro-
duction inhibition), provided less reduction in AβO concentrations than a combination
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of GS inhibition and Aβ clearance enhancement (98.5%), although differences are small.
These simulations showed an additive response on AβO concentrations of combined inter-
vention. Further pharmacodynamic drug interaction studies may be required to investigate
a possible synergistic effect, in which response surface analysis may be used to elucidate
the drug interactions fully41.

A promising strategy seems to be the prevention of toxicological effects by prevent-
ing the interaction of toxic AβO species with target receptors. Such novel therapies
pharmacologically compete with AβO with critical receptor targets, thereby preventing
synapse loss and improving memory. An example of such receptor targets are the sigma-
2/PGRMC1 receptors that mediate AβO binding to the synaptic puncta on neurons42.
One such candidate compound targeting these receptors is the small molecule therapeutic
CT1812 (Cognition Therapeutics, Inc.), which is in clinical testing in AD patients. Adding
information from CT1812 study data would provide the opportunity to extend the β-γ-O-
APP model with a receptor interaction model component for AβO-receptor interactions.
Then, it would be of interest to investigate what happens to the Aβ equilibrium when
AβO concentrations rise as result of receptor blockage. The increase of AβO in the brain
may lead to redistribution of AβO into the CSF and more effective elimination. Or it
could lead to the undesirable effect of increased fibril formation. In that respect, extension
of the model to describe the higher ordered agglomerated species as fibrils and plaques
would be essential. For an effective suppression of the AβO concentrations and it’s toxic
effects if probably necessary to use rational combinations of drugs targeting multiple
targets in the system. Once the β-γ-O-APP model is extended, the combined intervention
of an Aβ production inhibitor and prevention of the interaction of AβO species with it’s
receptor target can be investigated such that therapy may be optimized.

The APP systems pharmacology model can bring us closer to optimizing the therapeutic
intervention to reduce oligomer burden in AD. This thesis shows that systems pharmacol-
ogy models provide a powerful tool for integrated analysis of biology and pharmacology
to assess system-drug interactions that is difficult to study in other ways. Further, the
model constitutes the basis for the development of a disease systems model for AD to
investigate the effect of disease modifying treatments on disease progression. Because
of a common pathological principle, this approach can also be applied to other protein
misfolding neurodegenerative disease such as PD, HD and ALS. An ultimate objective
would be to combine disease system models to investigate common pathological paths as
well as disease-specific signatures in protein misfolding neurodegenerative diseases.
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Figure 8.9: Different moieties of β-γ-O-APP model in response to 125 mg/kg MBi-5 (left
panels), 240 mg/kg MK-0752 (middle panels) and hypothetical compound (Aβ clearance
enhancer) (right panels).
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Figure 8.10: Different moieties of β-γ-O-APP model in response to combination of 125 mg/kg
MBi-5 and 240 mg/kg MK-0752 (left panels), the combination of 240 mg/kg MK-0752 and
hypothetical compound (Aβ clearance enhancer) (middle panels) and the combination of 125
mg/kg MBi-5 and hypothetical compound (Aβ clearance enhancer) (right panels).
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26. Chávez-Gutiérrez, L., et al. The mecha-

nism of γ-Secretase dysfunction in familial

Alzheimer disease. EMBO J. 2012;31(10):

2261–74.

27. Bertram, L., Lill, C.M., & Tanzi, R.E. The

genetics of alzheimer disease: Back to the

future. Neuron. 2010;68(2):270–281.

28. Veugelen, S., Saito, T., Saido, T.C., Chávez-
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SUPPLEMENTAL MATERIAL

Perspectives in clinical studies in AD - Drift behaviour

In the reported human studies on verubecestat1, observed lumbar CSF concentrations
increased over the sampling period of 36 hours (Figure S8.1). It may be related to the
transport to the lumbar region or an artefact of repeated sampling from lumbar region2

and on the volume removed relative to the total CSF in spine. This drift behaviour is
subjected to between-study variation, as result of differences in study procedures and how
the lumbar samples were drawn. If this drift is not accounted for in the model, the drug
effect may be underpredicted. Therefore, the drift was predicted by an empirical drift
model component, similar to the drift model reported by Kleijn et al. 3 .
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Figure S8.1: Comparison observed CSF concentrations of Aβ40 (black), Aβ42 (blue), and
sAPPβ (red) after last placebo administration over the 36-hour sampling period for healthy
volunteers after single dose (dashed line), once-daily doses for 14 days (long-dashed line) and
for AD patients after once-daily doses for 7 days (solid line).
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Optimization of clinical study designs - Simulation scenarios

The β-13C-APP model was used to investigate the effect of study design features on the
13C signal (Chapter 8). The simulated scenarios are presented in Table S8.1.

Table S8.1: Simulation scenarios

Scenario Investigation objective
MBi-5 dose

(mg/kg)

13C6-Leu

administration

timinga

Figure

A

Effect of time of administration of

13C6-Leu primed infusion relative to

the time of administration of MBi-5

125 single dose

(SD)

0, 2, 4, 6, 8, 10 or

12 h post SD
S8.2

B

Effect on the dose proportionality of

MBi-5 with 13C6-Leu primed

infusion at various time points

following the administration of

MBi-5

SD 1, 5, 10, 30,

60, 90, 125

1, 6 or 12 h post

SD
S8.3

C
Effect on 13C6-signal upon repeated

dosing of MBi-5

0, 10, 30, 125

once daily (OD)

for 5 days

1 h post last dose S8.4

D

Effect on the dose proportionality in

the 13C6-signal upon repeated

dosing of a dose range of MBi-5 OD

with 13C6-Leu primed infusions

started 1 h after drug dose on various

days

0, 10, 30, 125

mg/kg OD for 5

days

1 h after drug

dose on day 1, 2,

3, 4 or 5

S8.5

a relative to MBi-5 dose
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Optimization of clinical study designs- Simulation results

Simulation on scenario A showed that the timing of 13C6-Leu primed infusion has an
influence on the magnitude of the 13C6-signal as reflected in the fraction labelled Aβ,
fraction labelled sAPPα and fraction labelled sAPPβ (Figure S8.2). For fraction labelled
Aβ and fraction labelled sAPPβ the highest signal was obtained when starting the infusion
12 hours post drug dose, whereas for fraction labelled sAPPα the signal is maximal when
the infusion starts at the same time as drug dose.

Simulations of scenario B indicated that for the low MBi-5 dose levels (<30 mg/kg),
increase of 13C6-Leucine infusion start time relative to the administration of the drug
results in a loss of dose proportionality. For sAPPα dose proportionality was not evident
at 1 hour post drug and this was worsened at 6 and 12 hours post drug. For sAPPβ, the
dose proportionality of the 13C6-signal diminished with increasing 13C6-Leucine infusion
post drug start time, in particular after low MBi-5 doses (<30 mg/kg) (Figure S8.3).

Simulations of scenario C showed that the dose dependency in the 13C6-signal was
absent after once daily administration of MBi-5 during 5 days, while a dose dependent
response was predicted in the absolute protein concentrations (Figure S8.4).

Scenario D illustrated that the 13C6-signal in fraction labelled Aβ diminished with
time when dosed once daily (Figure S8.5).
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Figure S8.2: Simulation tracer kinetic profiles (fraction labeled Aβ (A), fraction labeled
sAPPα (B), fraction labeled sAPPβ (C)) with the β-13C-APP model.
Simulation scenario A: The start time of the 13C6-Leucine infusion relative to the
MBi-5 administration (125 mg/kg dose) is varied from 0 up to 12 hours post drug.
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Figure S8.3: Simulation tracer kinetic profiles with the β-13C-APP model.
Simulation scenario B: The start time of the 13C6-Leucine infusion relative to the
MBi-5 administration is varied (1, 6 and 12 hours post drug) and a dose range of MBi-5 (1 up to
125 mg/kg) is simulated.
Top panels: fraction labeled Aβ; Middle panels: fraction labeled sAPPα; Bottom panels: fraction labeled
sAPPβ.
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Figure S8.4: Simulation absolute protein concentrations and tracer kinetic profiles of APP
metabolites with the β-13C-APP model.
Simulation scenario C: Once daily dosing MBi-5 for 5 days, varying MBi-5 dose (0, 10, 30, 125
mg/kg). The start time of the 13C6-Leucine infusion relative to the MBi-5 administration is fixed
to 1h after last dose.
Top panels: Absolute protein concentrations; Bottom panels: tracer kinetic profiles.
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Figure S8.5: Simulation tracer kinetic profiles of Aβ with the β-13C-APP model.
Simulation scenario D: Once daily dosing MBi-5 for 5 days, varying MBi-5 dose (0, 10, 30, 125
mg/kg). The start time of the 13C6-Leucine infusion relative to the MBi-5 administration is 1
hour after MBi-5 dose on day 1, 2, 3, 4 and 5.

Personalized treatment solutions- Examples of genetic risk factors

The Triggering Receptor Expressed On Myeloid Cells 2 (TREM2) variant p.R47H and
p.A673T APP variant have been associated with AD risk or protection. TREM2 is
expresses on microglial cells and has a role in regulating the response of the innate
immune system to Aβ pathology and facilitating Aβ phagocytosis4. It binds to anionic
lipids that interact with Aβ fibrils and apoliproteins, such as APOE. The p.R47H TREM2
variant weakens microglial detection of these lipids, thereby decreasing Aβ clearance. The
APP p.A673T variant is close to the BACE1 cleavage site, making APP a less favourable
substrate for the β-cleavage path5.

Association analyses at the gene level have revealed that the loss-of-function in the
sortilin related receptor 1 (SORL1) and ATP-binding cassette transporter A7 (Aβ CA7)
genes are a moderate risk factor of AD. The SORL1 encodes a cargo protein which can
bind APP and direct its processing to non-amyloidogenic pathways. It can also bind
Aβ peptide and direct it to the lysosome, leading to its degradation6. Loss-of-function
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of SORL1 has been linked with increased late onset AD risk5. Several rare variants in
Aβ CA7 have been identified as risk factors of late onset AD, although its precise role in
AD pathogenesis is not well understood. Aβ CA7 is primarily expressed in microglial
cells and has a lipid transport function. It may be involved in Aβ clearance or production
as Aβ CA7 knockout mice showed an increase in amyloid plaques6,5,7.
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