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A single systems pharmacology approach to unravel Aβ oligomer modulation

Abstract

Accumulation of toxic soluble Aβ oligomers (AβO) is the primary event driving the
pathological changes in Alzheimer’s Disease (AD). Inhibition of β-amyloid precursor
protein (APP) cleavage enzymes has been proposed as an approach to reduce AβO con-
centrations. Due to the complexity of the underlying biochemical network, the effects of
these interventions on AβO are difficult to predict.

The aim of this investigation was to develop a single systems pharmacology model to
predict the change in AβO following administration of inhibitors of multiple APP cleavage
enzymes (i.e. β-secretase (BACE1) and γ-secretase (GS) inhibition). A novel systems
pharmacology model, the β-γ-O-APP model, which is an extension of a previously
proposed β-O-APP model, was successfully applied to describe the pharmacokinetics and
the time course of the changes in APP metabolite (sAPPβ, sAPPα, Aβ42, Aβ40, Aβ38)
and AβO concentrations.

A differential effect of BACE1 versus GS inhibition on the APP metabolite profiles
was observed, which was reflected in the ratio Aβ42:Aβ40:Aβ38. The analysis shows
that this may be explained by stepwise successive cleavage of C99 by GS, wherein part
of Aβ38 is converted from Aβ42. Both BACE1 and GS inhibition resulted in similar
maximum reduction of the AβO and monomeric Aβ. The β-γ-O-APP model suggests
that GS inhibition may enhance the non-amyloidogenic processing of APP via homeo-
static feedback exerted by C99. Understanding the mechanisms that underlie the APP
processing pathway through the APP systems pharmacology model aids the optimization
of therapeutic intervention to reduce AβO burden.
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Chapter 7

Introduction

The amyloid cascade hypothesis for Alzheimer’s Disease (AD) posits that the deposition of
the amyloid peptides (Aβ) in the brain is a central event in the pathophysiology. Aβ s are
elevated early in the disease, before clinical symptoms manifest and this leads to a series
of pathophysiological changes1. The most toxic species of Aβ are soluble Aβ oligomers
(AβO), which are believed to be the initial drivers of neurodegeneration2,3

Aβ is the final product of proteolytic cleavage of the transmembrane β-amyloid pre-
cursor protein (APP) and the precursor of AβO. In the amyloidogenic pathway, Aβ is
produced by sequential cleavage of APP by β-secretase 1 (BACE1) and γ-secretase (GS)4.
Cleavage by BACE1 creates the soluble β-amyloid precursor protein (sAPPβ) and C99,
a C-terminal fragment which remains membrane bound. Aβ is derived from the GS
cleavage of C99, generating Aβ peptides of various amino acid chain lengths, of which
the most common are 38, 40 or 42 amino acids long (Aβ38, Aβ40, or Aβ42, respec-
tively)5. An alternative pathway is driven by α-secretase cleavage, which generates the
non-amyloidogenic soluble sAPPα and the C-terminal membrane-bound 83-amino acid
fragment C83. This occurs within the Aβ sequence, and thus precludes Aβ generation6.

Aβ peptide accumulates in stages into amyloid plaques. The Aβ peptides first form
AβO, which are soluble disordered clusters. Then, protofibrils are formed, which are
prefibrillar insoluble high molecular weight AβO (50-1500 kDa) consisting of spherical,
annular, and curvilinear assemblies7,8,9. Next, chains of agglomerates called fibrils are
generated, followed by an interwoven mass of fibrils called β-sheets and in the final stage
plaques are developed10.

Targeting AβO may prove to be an effective treatment for AD by halting their accu-
mulation and preventing their neurotoxic effect. One of the main therapeutic strategies for
AD aims at Aβ reduction through inhibition of Aβ production. Due to the complexity of
the underlying biochemical network, the effects of these interventions on the individual
moieties of the APP processing pathways and AβO are difficult to predict.

Systems pharmacology abstracts our understanding of biochemical/pathological path-
ways into mathematical constructs, in combination with the application of pharmacokinetic
(PK) and pharmacodynamic (PD) principles. In this approach, the drug effect is considered
to be the result of the interactions of the drug and the biological system.

Recently, we have proposed a systems pharmacology model of the APP process-
ing pathway characterizing APP metabolite (sAPPα, sAPPα, Aβ40, Aβ42, Aβ38) and
AβO responses to BACE1 inhibition, the so called β-O-APP model 11. In that inves-
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tigation Aβ oligomerization was identified to display second order kinetics and Aβ42
was found to be the major contributor to the AβO pool. This model was based on an
analysis of the data of the effect of a BACE1 inhibitor from a 4-way crossover study in
cisterna-magna-ported rhesus monkeys on the effects of a BACE1 (MBi-5) and a GS
(MK-0752) inhibitor on the biomarker concentrations in CSF. In the current investigation,
we have included the GS inhibitor response data from the same study and investigated
differences in biomarker responses between BACE1 and GS inhibition.

In an earlier analysis with the β-γ-APP model, both BACE1 and GS inhibition
were predicted to lower AβO levels, which was at that point derived from monomeric
Aβ dynamics12. The prediction suggested a lower oligomerization rate of Aβ42 after GS
and BACE1 inhibition. Now, the effect of BACE1 and GS inhibition on the time course
of the changes in AβO measurements is determined and can be compared. Also, to our
knowledge for the first time, sAPPβ and sAPPα levels following GS inhibition have been
measured.

The objectives of this investigation were: (1) to extend a systems pharmacology model
of the APP processing pathway, describing the effects of both BACE1 and GS inhibitors on
its individual attributes and its interrelationships; (2) to elucidate the relationship between
the AβO and monomeric Aβ further, which is imperative to improve the prediction of
therapeutic effects on Aβ; (3) to understand the difference in Aβ dynamics following
BACE1 versus GS inhibition.

Materials and Methods

Animals

In this study, six male rhesus monkeys, weighing between 8.6 kg and 11.8 kg (mean,
9.7 kg), age at 9 years to 13 years (mean, 11 years) at time of the study were included.
They were individually housed and captive-bred in a closed colony. The rhesus monkeys
are chronically implanted with catheters in the cisterna magna, as described by Gilberto
et al. 13 . This facilitated repeated sampling of CSF and plasma in conscious rhesus
monkeys. All animal studies were reviewed and approved by the MSD Institutional
Animal Care and Use Committee. The NIH Guide to the care and use of Laboratory
Animals and the Animal Welfare act were followed in the conduct of the animal studies
(Institute of Laboratory Animal Resources, National Research Council, 1996).
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Drug administration and sampling
In a four-way full crossover study, a single oral dose of MBi-5 at 30 and 125 mg/kg,
MK-0752 at 240 mg/kg (5 mL/kg) or vehicle (0.4% methylcellulose) was administered.
Plasma and CSF drug concentrations were collected at 0 (predose) and 3, 5, 7, 9, 13, 14.5,
16, 19, 22, 25, 28, 31, 49, 55, 58, 73 and 96 h postdose, resulting in 18 plasma and CSF
PK samples for each rhesus monkey per treatment group. 2 mL of blood and 1 mL of
CSF were collected at each time point. The concentration of MBi-5 and MK-0752 in
the plasma and CSF samples was determined using LC-MS/MS. The concentrations
of sAPPα, sAPPβ, Aβ40, Aβ42, Aβ38 and AβO were determined from CSF samples,
collected at the same time points as PK samples, by established and validated ELISA-
based assays (Meso Scale Diagnostics ”sAPPα/sAPPβ Kit” (Catalog No. K15120E) and
”Human (6E10) Abeta Triplex Assay” (Catalog No. K15148E)), giving 18 measurements
of each biomarker for each monkey per treatment. To determine AβO concentrations, a
two-site ELISA assay was used, that was previously described by Savage et al. 14 .

PK-PD analysis
A non-linear mixed effects modelling approach was used to analyze the PK and PD data.
This approach takes structural (fixed) effects and both intra- and interindividual variability
into account. Typical values of structural model parameters (population parameters, which
define the average value for a parameter in a population) (θ), the variance and covariance
of the interindividual variability (ω2) and the variance of the residual error (σ2) are
estimated. The population approach described individual profiles relative to the overall
population trend.

The β-γ-O-APP model was implemented in the software package NONMEM (version
7.2.015). The models were compiled using Compaq Visual Fortran (version 6.6, Compaq
Computer Corporation, Houston, Texas, USA) and executed on a PC equipped with
an an Intel QuadCore (Intel R© CoreTM i7 CPU860, 2.80 GHz, 3.24 GB RAM). Data
management and model assessment was done using the statistical software package S-
PLUS for Windows (version 8.0 Professional, Insightful Corp., Seattle, USA). Based on
the analysis of their obtained minimum value of the objective function (defined as minus
twice the log-likelihood), the precision of parameter estimates, and visual inspection of
goodness-of-fit plots the best models were selected. A more detailed description of the
modelling procedure was described in van Maanen et al. 16 .

The performance of the β-γ-O-APP model was evaluated with a visual predictive
check (VPC), in which the median and the 90% inter-quantile range of the data simulated

206



A single systems pharmacology approach to unravel Aβ oligomer modulation

with the final parameter estimates were plotted together with the observations. A validated
result would have close resemblance of median observed and predicted line with 90% of
the observations that fall within the 90% prediction interval.

Berkeley MadonnaTM version 8.3.18 (Macey and Oster, University of California,
Berkeley) was used for simulations to illustrate the characteristics of the β-γ-O-APP
model.

Model description

The APP systems pharmacology model was developed by sequential analysis of PK and PD
data following administration of MBi-5 and MK-0752. The PK model of MBi-5 was based
on simultaneous analysis of plasma and CSF PK data and has been described elsewhere by
van Maanen et al. 16 . The PK model for MK-0752 was reported previously17,12. The PK
models adequately described the plasma and CSF concentration time profiles of MBi-5 and
MK-0752, respectively, thus the models could serve as input for PD model analysis.

The biomarker response profiles of MBi-5 and MK-0752 measured in CSF were ade-
quately described by the β-γ-O-APP model containing compartments for eight moieties:
APP, sAPPβ, sAPPα, C99, Aβ40, Aβ42, Aβ38 and AβO (Fig. 7.1). APP production was
assumed to be constant and described by a zero order input rate RinAPP . The production
of the APP metabolites was assumed to be first order, i.e. dependent on its precursor
concentration. The interaction between APP and its metabolites (sAPPβ, sAPPα, C99,
Aβ40, Aβ42 and Aβ38) and AβO is described by Eq. 7.1 - Eq. 7.8:

d

dt
APP = RinAPP −

(
Rinβ × EFFB +Rinα×

(
C99

C99base

)FP)
×APP

(7.1)

d

dt
sAPPα = Rinα×

(
C99

C99base

)FP
×APP −Routa × sAPPα (7.2)

d

dt
sAPPβ = Rinβ × EFFB ×APP −Routb ∗ sAPPβ (7.3)
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d

dt
C99 =Rinβ × EFFB ×APP

− (Kin40 +Kin42 +Kin38) ∗ EFFG ∗ C99−Kout99 ∗ C99
(7.4)

d

dt
Aβ40 = Kin40 × EFFG× C99−Kout×Aβ40 (7.5)

d

dt
Aβ42 =Kin42 × EFFG× C99−Kout42 ×Aβ42

−Kin382 × EFFG×Aβ42 −Kpl × (Aβ42)
ALPH

+Krev ×AβO/

(
MWAβ42

1000
× Factoroligo

) (7.6)

d

dt
Aβ38 =Kin38 × EFFG× C99 +Kin382 × EFFG×Aβ42

−Kout ∗Aβ38
(7.7)

d

dt
AβO = Kpl × (Aβ42)

ALPH × MWAβ42

1000
× Factoroligo −Krev ×AβO

(7.8)

The rate of change of APP with respect to time in the presence of the BACE1 inhibitor
is expressed by Eq. 7.1, in which the BACE1 cleavage inhibition is incorporated by the
factor EFFB. The rate of change of C99 with respect to time in the presence of the GS
inhibitor is described by Eq. 7.4, in which the GS cleavage inhibition is incorporated by
the factor EFFG. EFFB and EFFG are the degrees of inhibition caused by MBi-5 and
MK-0752, respectively. Generally, the degree of inhibition is described by a sigmoidal
Imax function, as shown in Eq. 7.9.

EFF = 1−
CGAMtarget ∗ Imax

CGAMtarget + IC50GAM
(7.9)
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Where Ctarget is the target site concentration of MBi-5 or MK-0752, respectively, IC50

the Ctarget that results in 50% inhibition of BACE1 or GS, Imax is the maximum response
and GAM is the Hill coefficient. Ctarget was derived from the respective PK models as:

Ctarget = Cplasma ∗
AUCCSF
AUCplasma

(7.10)

Where AUCCSF and AUCplasma are the areas under the CSF and plasma concentration
time curves, respectively. Ctarget is assumed to be at a level between CCSF and Cplasma,
following the same profile as Cplasma.
It is assumed that the system is in steady state (SS) when no treatment is given (EFFB=1,

EFFG=1). These steady state conditions were used to derive part of the system parameters.
From SS and Eq. 7.1 it follows that the zero order input rate of APP (RinAPP ) is:

RinAPP = (Rinα +Rinβ) ∗APPbase (7.11)

Where APPbase is the baseline level of APP, assumed to be equal to the sum of the baseline
levels of sAPPα and sAPPβ, as all alternate pathways are represented by the terms for
α-secretase.

Using SS conditions and Eq. 7.2 the sAPPα formation rate (Rinα), equivalent to the
α-secretase cleavage step, can be derived:

Rinα = Routa ×
sAPPαbase
APPbase

(7.12)

Where sAPPαbase is the baseline level of sAPPα.

The sAPPβ and C99 formation rate (Rinβ), equivalent to the BACE1 cleavage step, follows
from SS conditions and Eq. 7.3:

Rinβ = Routb ×
sAPPβbase
APPbase

(7.13)

Where sAPPβbase is the baseline level of sAPPβ.

209



Chapter 7

From Eq. 7.5 and SS, the Aβ degradation rate (Kout), is deduced:

Kout = Kin40 ×
C99base
Aβ40base

(7.14)

Where C99base is the baseline level of C99.

From Eq. 7.4 and SS the baseline level of C99 can be derived:

C99base =
Routb × sAPPβbase ×Aβ40base

Kin40 × (Aβ40base +Aβ38base +Aβ42base) +Aβ40base ×Kout99

(7.15)

Using SS conditions 7.6, 7.7 and 7.15, respectively, the formation rates of Aβ42 (Kin42)
and Aβ38 (Kin38), equivalent to γ-secretase cleavage steps, can be calculated:

Kin42 =
(Kout+Kin382)×Aβ42base

C99base
(7.16)

Kin38 =
Kout×Aβ38base −Kin382 ×Aβ42base

C99base
(7.17)

Where Aβ42base and Aβ38base are the baseline levels of Aβ42 and Aβ38, receptively.

The exchange between the AβO pool and the Aβ42 compartment is described by
Eq. 7.6 and Eq. 7.8, where ALPH is the power of the concentration of Aβ42, Factoroligo
is the conversion factor on AβO and MWAβ42 is the molecular weight of Aβ42. Krev

and Kpl are the dissociation rate and higher-order Aβ42 oligomerization rate constant,
respectively, which are dependent on the baseline values of Aβ42 and the AβO pool
(Aβ42base and AβObase, resp.) according to Eq. 7.18:

Krev =
Kpl × (Aβ42base)

ALPH × MWAB42

1000 × Factoroligo

AβObase
(7.18)

The model structure includes six transit compartments (Fig. 7.1), one for each
biomarker measured in CSF (sAPPα, sAPPβ, Aβ40, Aβ42, Aβ38, AβO), to account for
transport from the target site in the brain to CSF. These transit processes are described, in
general, by Eq. 7.19:
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d

dt
xAxCSF = Ktr ∗ (xAx− xAxCSF ) (7.19)

Where Kt is the transit rate for the particular particular APP metabolite xAx (KtAP for
sAPPα and sAPPβ and KtAB for Aβ40, Aβ42, Aβ38 and AβO).

Rinβ

Kin40

Ctarget
sAPPβ

Target site PK-PD 

response

Aβ40
brain

Kout

Transit
Aβ40

Transit
sAPPβ

KtAP

KtAB

KtAP

KtAB
Observed 

CSF
Aβ40

Observed 
CSF

sAPPβ

Aβ42
brain

Transit
Aβ42

Observed 
CSF
Aβ42

KtAB

Kout

Kin42

APP
Rinα Observed 

CSF
sAPPα

Routa

Transit
sAPPα

KtAP

BRAIN

sAPPα

KtAP

RinAPP

Oligomer
pool 
(AβO)

Kpl Krev

BACEi EFF

Transit
AβO 

Observed 
CSF
AβO

KtABO

Transit
Aβ38

Observed 
CSF
Aβ38

KtAB

Kout

C99

Routb

GSi EFF Kin38

KoutC99

+

Kin382 Aβ38
brain

Figure 7.1: Schematic of β-γ-O-APP model.
The model comprised fourtheen compartments: Eight biomarker compartments in brain (yellow
circles) and six transit compartments from brain to CSF (white circles). Six biomarkers were
measured in CSF (sAPPα, sAPPβ, Aβ40,Aβ42, Aβ38 and AβO), indicated by the blue boxes.
The drug effect of the BACE1 inhibitor (BACEi EFF) inhibited Rinβ. The drug effect of the GS
inhibitor (GSi EFF) inhibited Kin40, Kin40, Kin38 and Kin382. As driver of biomarker response
Ctarget was used, which was derived from the PK models of the BACE1 inhibitor 16 and GS
inhibitor 12, respectively. The red arrow indicates the homeostatic feedback on
α-secretase through the action of C99. Model extensions compared to the β-O-APP model are
indicated with the green shaded area.
APP: Aβ-precursor protein; Aβ: amyloid-β-peptide; Ctarget: drug concentration target site; Kin38: Aβ38
formation rate from C99; Kin382: Aβ38 formation rate from Aβ42; Kin40: Aβ40 formation rate; Kin42:
Aβ42 formation rate; Kout: Aβ38, Aβ40 and Aβ42 degradation rate; KoutC99: C99 degradation rate; Krev:
Oligomer dissociation rate; KtAP: transit rate sAPPα and sAPPβ from brain to CSF; Kpl: Oligomerization
rate; KtAB: transit rate Aβ from brain to CSF; KtABO : transit rate AβO from brain to CSF; RinAPP: source
of APP; Rinβ: sAPPβ formation rate; Rinα: sAPPα formation rate; Routb: sAPPβ degradation rate; Routa:
sAPPα degradation rate.
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Results

APP systems pharmacology model
A systems pharmacology model, incorporating the PK of MBi-5 and MK-0752, CSF
APP metabolite (Aβ38, Aβ40, Aβ42, sAPPα and sAPPβ) concentrations and AβO mea-
surements was developed to quantify APP metabolite and AβO responses to BACE1 and
GS inhibition in monkeys. The model, named the β-γ-O-APP model, is schematically
presented in Fig. 7.1. The model included terms to describe the production and elimination
of each APP metabolite. The oligomerization of Aβ42 was described by higher order
kinetics11.

The drug effect of MBi-5 was incorporated in the model as blocking sAPPβ and C99
production, equivalent to the BACE1 cleavage step. The drug effect of MK-0752 was
implemented as blocking Aβ production, corresponding to the GS cleavage step. Both
drug effects where described by an Imax function12.

Part of Aβ38 is converted from Aβ42
A difference in the ratios of Aβ42, Aβ40 and Aβ38 over total Aβ (Aβ38+Aβ40+Aβ42)
following BACE1 versus GS inhibition was found (see Supplemental Material). This was
described by extending the β-γ-O-APP model to account for subsequent GS cleavage of
part of Aβ42 to Aβ38 (Equation 7.7). This cleavage step is inhibited by the GS inhibitor,
but not blocked if BACE1 is inhibited.

MK-0752 exposure increased sAPPα
A slight decrease in sAPPβ and increase of sAPPα concentrations, as well as a change
in the ratio sAPPβ:sAPPα was observed in response to GS inhibition (see Supplemental
Material). This could be described by implementing a homeostatic feedback loop in the
model structure regulated by C99: The increase in C99 relative to baseline C99 after GS
inhibition stimulates α-secretase processing of APP (Equation 7.2). Then, as result of
substrate competition, BACE1 processing of APP relatively decreases resulting in a slight
decline of sAPPβ following GS inhibition. The strength of this homeostatic feedback
action was quantified by the feedback parameter FP, that was estimated to be 0.438, which
was significantly different from zero (when there would be no feedback).
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Aβ production inhibition decreased AβO

Both BACE1 and GS inhibition reduced the AβO levels, which was adequately de-
scribed by the APP systems model (Figs. 7.3F, 7.4F and 7.5F, respectively). Note that
Aβ monomers were measured in pM and AβO were expressed in pg/mL. For this reason,
a conversion factor needed to be included in the model, which was discussed recently11.
A similar maximum reduction of AβO concentration of 89% was obtained after treatment
with 125 mg/kg MBi-5 and 240 mg/kg MK-0752. However, GS inhibition had a more
prolonged pharmacological effect on AβO levels compared to BACE1 inhibition.

Model parameters
The analysis of the variability of model parameters due to interanimal variation resulted
in a random-effects structure including interanimal variability for the baselines of sAPPβ,
sAPPα, Aβ38, Aβ40, Aβ42 and AβO, with the same random-effect parameter used for
Aβ40 and Aβ42 (Table 7.2). All were included as exponential in nature, which reflects
lognormal distributions of the individual parameters.

It was not possible to obtain a successful completion of the Covariance Step in
NONMEM using the model including interanimal variability. Furthermore, because
of long model minimization times it was not feasible to perform a bootstrap to obtain
parameter precision. Therefore, the precision of the model parameters from the model
without interanimal variability is reported in Table 7.1, which was adequate.

To take caution against over parameterization of the model, the formation rate constant
of Aβ40 Kin40 was fixed to the value from the β-O-APP model11.

When estimated, the Hill coefficients of the concentration response relationships of
MBi-5 and MK-0752 were not significantly different from 1. Therefore, the sigmoid-
Imax concentration response relationships could be simplified to Imax relationships by
fixing the Hill coefficients to 1. For MBi-5, a potency (IC50) of 0.0251 µM (95% CI,
0.02-0.0302) was identified, which was similar to the previously reported IC50 of 0.0256
µM (95% CI, 0.0137–0.0375) from another CMP rhesus study16, and is also near the in

vitro inhibition constant (Ki) of 10 nM for MBi-5 inhibition of purified BACE1 and the
IC50 of 24 nM for inhibition of Aβ production in intact cells18. An IC50 of 0.0468 µM
(95% CI, 0.0154–0.0782) was identified for MK-0752 . This value was 10 fold lower than
reported earlier for CMP rhesus monkeys12 and also 10 fold lower than the brain IC50 of
MK-0752 in guinea-pigs of 440 nM19.
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Table 7.1: Population parameter estimates including coefficient of variation (CV%)

PARAMETER DESCRIPTION VALUE UNIT CV%

Structural parameters

sAPPβbase baseline sAPPβ 382 pM 17
Aβ38base baseline Aβ38 411 pM 16
Aβ40base baseline Aβ40 1330 pM 10.5
Aβ42base baseline Aβ42 107 pM 12.1
sAPPαbase baseline sAPPα 457 pM 13.3
Kin40

a formation rate Aβ40 1.29 h−1

Kin382 Aβ38 formation rate from Aβ42 0.162 h−1 17.5
Routa degradation rate sAPPα 1.11 h−1 12.7
Routb degradation rate sAPPβ 1.46 h−1 11.8
Kout99 degradation rate C99 0.496 h−1 34.9
KtAP transit rate sAPPα and sAPPβ 0.122 h−1 3.09
KtABa transit rate Aβ 10 h−1

ImaxBa maximal inhibition (Imax) MBi-5 1
IC50B median inhibition concentration MBi-5 0.0251 µM 10.4
GAMBa Hill coefficient MBi-5 1
ImaxGa maximal inhibition (Imax) MK-0752 1
IC50G median inhibition concentration MK-0752 0.0468 µM 34.2
GAMGa Hill coefficient MK-0752 1
Kpl oligomerization rate 5.46e-4 pM−1 h−1 40.1
AβObase baseline AβO 2.03 pg/mL 13.6
ALPHa order oligomerization 2
FP feedback parameter 0.496 20.8
Factoroligo conversion factor on oligomers 0.00994 20.6

Residual error

σ2
Aβ40

b Residual variability Aβ40 0.157 21.5
σ2

Aβ42
b Residual variability Aβ42 0.146 26.9

σ2
sAPPβ

b Residual variability sAPPβ 0.269 42.8
σ2

sAPPα
b Residual variability sAPPα 0.175 34.9

σ2
oligo

b Residual variability AβO 1.01 18.2
σ2

Aβ38
b Residual variability Aβ38 0.247 27.1

a Fixed.
bResidual variability is assumed to follow a normal distribution with mean zero and variance σ2.
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Table 7.2: Population parameter estimates

PARAMETER DESCRIPTION VALUE UNIT

Structural parameters
sAPPβbase baseline sAPPβ 349 pM
Aβ38base baseline Aβ38 373 pM
Aβ40base baseline Aβ40 1250 pM
Aβ42base baseline Aβ42 98 pM
sAPPαbase baseline sAPPα 423 pM
Kin40

a formation rate Aβ40 1.29 h−1

Kin382 Aβ38 formation rate from Aβ42 0.145 h−1

Routa degradation rate sAPPα 1.08 h−1

Routb degradation rate sAPPβ 1.54 h−1

Kout99 degradation rate C99 0.386 h−1

KtAP transit rate sAPPα and sAPPβ 0.129 h−1

KtABa transit rate Aβ 10 h−1

ImaxBa maximal inhibition (Imax) MBi-5 1
IC50B median inhibition concentration MBi-5 0.0255 µM
GAMBa Hill coefficient MBi-5 1
ImaxGa maximal inhibition (Imax) MK-0752 1
IC50G median inhibition concentration MK-0752 0.0488 µM
GAMGa Hill coefficient MK-0752 1
Kpl oligomerization rate 6.45e-4 pM−1 h−1

AβObase baseline AβO 1.75 pg/mL
ALPHa order oligomerization 2
FP feedback parameter 0.438
Factoroligo conversion factor on oligomers 0.00667
Interanimal variability
ω2

BSAPb
b Interanimal variability sAPPβ baseline 0.194

ω2
BSAPa

b Interanimal variability sAPPα baseline 0.105
ω2

AB4.
b Interanimal variability Aβ40 and Aβ42 0.0681

ω2
AB38

b Interanimal variability Aβ38 0.119
ω2

ABO
b Interanimal variability AβO 0.116

Residual error
σ2

Aβ40
c Residual variability Aβ40 0.117

σ2
Aβ42

c Residual variability Aβ42 0.0705
σ2

sAPPβ
c Residual variability sAPPβ 0.109

σ2
sAPPα

c Residual variability sAPPα 0.0783
σ2

oligo
c Residual variability AβO 0.785

σ2
Aβ38

c Residual variability Aβ38 0.0934
a Fixed.
b Interanimal variability is assumed to follow a normal distribution with mean zero and variance ω2.
c Residual variability is assumed to follow a normal distribution with mean zero and variance σ2.
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Figure 7.2: Placebo. Visual predictive check of biomarker response vs. time profile of placebo
in the rhesus with 90% confidence interval. Predictions were performed with extended model
((A), (B), (C), (D), (E), (F)). Observation sample size: n=108 for each APP metabolite from 6
monkeys collected over 4 days.
Plus-symbols represent observed measurements. Dotted blue line corresponds to the median observed profile.
Solid lines show the median simulated profiles. The long-dashed lines correspond to the 90% prediction
intervals obtained from 1000 individual simulated profiles.
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Figure 7.3: Dose 30 mg/kg MBi-5. Visual predictive check of biomarker response vs. time
profile of MBi-5 in the rhesus with 90% confidence interval. Predictions were performed with
model with extended model ((A), (B),(C), (D), (E),(F)). Observation sample size: n=108 for each
APP metabolite from 6 monkeys collected over 4 days.
Plus-symbols represent observed measurements. Dotted blue line corresponds to the median observed profile.
Solid lines show the median simulated profiles. The long-dashed lines correspond to the 90% prediction
intervals obtained from 1000 individual simulated profiles.
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Figure 7.4: Dose 125 mg/kg MBi-5. Visual predictive check of biomarker response vs. time
profile of MBi-5 in the rhesus with 90% confidence interval. Predictions were performed with
extended model ((A), (B),(C), (D), (E),(F)). Observation sample size: n=108 for each APP
metabolite from 6 monkeys collected over 4 days.
Plus-symbols represent observed measurements. Dotted blue line corresponds to the median observed profile.
Solid lines show the median simulated profiles. The long-dashed lines correspond to the 90% prediction
intervals obtained from 1000 individual simulated profiles.
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Figure 7.5: Dose 240 mg/kg MK-0752. Visual predictive check of biomarker response vs. time
profile of MK-0752 in the rhesus with 90% confidence interval. Predictions were performed
with extended model ((A), (B),(C), (D), (E),(F)). Observation sample size: n=108 for each APP
metabolite from 6 monkeys collected over 4 days.
Plus-symbols represent observed measurements. Dotted blue line corresponds to the median observed profile.
Solid lines show the median simulated profiles. The long-dashed lines correspond to the 90% prediction
intervals obtained from 1000 individual simulated profiles.

219



Chapter 7

β-γ-O-APP model described all biomarker responses
The β-γ-O-APP model simultaneously described APP metabolite and AβO responses
to both BACE1 and GS inhibition. In general, the data were adequately captured across
biomarkers for both MBi-5 (Figs. 7.2, 7.3, 7.4) and MK-0752 (Fig. 7.5) treatment. The
description of the Aβ responses after MBi-5 treatment was marginally improved compared
to the description obtained with the β-O-APP model11. The raise in sAPPα after GS
inhibition was slightly underpredicted (Fig. 7.5A).

β-γ-O-APP model predicts APP metabolites interrelations
The β-γ-O-APP model could be used to predict APP metabolites interrelations and
responses to BACE1 and GS inhibition and foresee the response of APP and C99 in brain
(Fig. 7.6).

APP increases after inhibition of BACE1 (Fig. 7.6A), as result of the blocked BACE1
pathway. APP is then shunted down the α-secretase pathway, resulting in an upsurge of
sAPPα product. The sAPPβ level reduces after BACE1 inhibition, as it is a direct product
of BACE1 cleavage of APP. The increase in sAPPα and decrease in sAPPβ results in a
decline in the ratio of sAPPβ:sAPPα and net rise in the sum of sAPPα and sAPPβ (Fig.
7.6E). The C99 level is predicted to decline after BACE1 inhibition. The loss of C99 after
BACE1 inhibition results in reduced Aβ levels.

After GS inhibition APP slightly reduces due to the increased α-secretase processing
of APP (Fig. 7.6B). As a result of substrate competition sAPPβ also slightly declines. The
accumulation of C99 through GS inhibition stimulates the α-secretase pathway, resulting
in an upswing of sAPPα levels and changing the ratio of sAPPβ:sAPPα and net sum of
sAPPα and sAPPβ (Fig. 7.6F).

Both BACE1 and GS inhibition lower the monomeric Aβ concentrations (Fig. 7.6C,
7.6D), though the respective inhibition results in different Aβ ratios (Fig. 7.6E, 7.6F). Both
BACE1 and GS inhibition reduce the AβO level, although the effect is more prolonged
after GS inhibition.

The diurnal oscillations observed in the simulated biomarker responses after GS
inhibition are induced by the enterohepatic recirculation which MK-0752 exhibits12 17.
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Figure 7.6: Simulation absolute biomarker responses ((A), (B)), biomarker change from
baseline (%) ((C), (D)) and biomarker ratios ((E), (F)) using the β-γ-O-APP model. The
biomarker responses were simulated after a single dose of 125 mg/kg MBi-5 (left) and 240 mg/kg
MK-0752 (right), using the typical parameter estimates.
sAPPα red solid line; sAPPβ yellow solid line; Aβ40 green solid line; Aβ38 light blue solid line; Aβ42 dark
blue solid line; AβO black solid line; C99 grey dot-dashed line; APP grey dashed line.
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Discussion

One of the main therapeutic strategies is to delay AD onset and progression is reducing
Aβ aggregation through the decrease of Aβ monomeric levels by means of Aβ production
inhibition. Therefore, the dynamics of AβO after Aβ production inhibition needs to be
elucidated. The β-γ-O-APP model described APP metabolites (sAPPβ, sAPPα, Aβ38,
Aβ40, Aβ42) and AβO responses and their interrelations after GS and BACE1 inhibition
successfully.

The reduction of AβO concentration after inhibition of BACE1 with 125 mg/kg
MBi-5 was equivalent to the AβO decline obtained after 240 mg/kg MK-0752. The
pharmacological effect of GS inhibition was prolonged by the enterohepatic recirculation
of MK-0752. The enterohepatic recirculation of MK-0752 was previously discussed by
Shou et al. 17 .

The simultaneous analysis of BACE1 and GS inhibitor Aβ response data revealed
a shift in the relative formation of Aβ38, Aβ40 and Aβ42 after GS blockage. This
was explained by stepwise successive cleavage of C99 by GS, in which part of Aβ38 is
converted from Aβ42. This pathway is blocked after GS, but not after BACE1 inhibition.
Matsumura et al. 20 reported that most of Aβ38 is converted from Aβ42 and Aβ43. Our
results indicate that almost a third of Aβ38 originates from Aβ42 cleavage.

sAPPβ and sAPPα are upstream in the APP pathway of the GS cleavage path. To
our surprise, sAPPα increased in response to GS inhibition. This could be character-
ized by a homeostatic feedback loop regulated by C99, where an increase in C99 via
GS inhibition stimulates α-secretase processing of APP. This suggests that an increase
of membrane bound C99 may affect cellular control of APP α-secretase cleavage or
alter APP trafficking to the cell surface, directly or through α-secretase, therefore in-
creasing α-secretase cleavage at the plasma membrane. Enhanced processing of APP by
α-secretase after GS inhibition has also been observed in in vitro experiments performed
in model cell lines reported by Siegenthaler et al. 21 . They suggested that GS activity
could influence α-secretase levels or activity. However, the regulation of the activity of
α-secretase is not fully understood6,22.

The observed increase in sAPPα generation was accompanied by a modest reduction
of sAPPβ after GS inhibition. This is due to less full-length APP remaining as substrate
for BACE1 when α-secretase cleavage is raised. The idea of substrate competition for
APP between α-secretase and BACE1 is well accepted6. However, here the decrease
in sAPPβ is not as strong as would be expected purely based on substrate competition
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following the upsurge of α-secretase activity. That is why the model underpredicted the
raise in sAPPα. There appears to be an increase in the sum of sAPPβ and sAPPα after GS
inhibition (see Supplemental Material, Figure S7.2A). This suggests an increase in pro-
duction of APP. There may be an autoregulation mechanism of APP production, induced
by GS inhibition, compensating for the loss of sAPPβ as result of α-secretase stimulation.
This was investigated during model development, and there were indications that including
autoregulation of APP would improve the description of the data. However, with the
current data, the process of autoregulation could not be characterized adequately. Further
investigation is warranted.

Because α-secretase cleaves APP within the Aβ sequence, pharmacological activation
of α-secretase, and thereby reducing Aβ production may be a therapeutic intervention in
AD. Further, sAPPα plays a role in neuroprotection and is downregulated in familial and
sporadic AD patients22.

Tian et al. 23 proposed a feedback mechanism initiated by the α-secretase cleavage
path, in which Aβ production is lowered by increased C83 which negatively modulate
GS activity. sAPPα and C83 are products of the same cleavage step by α-secretase. The
model predicted increased C83 concentrations as result of BACE1 and GS inhibition.
Therefore, this inhibitory effect on GS through C83 is expected to occur after both BACE1
and GS inhibition. The feedback mechanism as proposed by Tian was investigated in the
β-γ-O-APP model, but could not be distinguished from the interaction of the inhibitors
on the system as both work to lower Aβ levels.

In a series of investigations we have explored the development of a systems phar-
macology model for the APP processing pathway. In the first of these investigations,
a systems pharmacology model was developed of the APP processing pathway based
on CSF concentrations of APP metabolites (Aβ40, Aβ42, sAPPβ, sAPPα) after expo-
sure to the BACE1 inhibitor MBi-5 in CMP rhesus monkeys 16. With this so called
β-APP model, AβO were predicted to reduce after BACE1 inhibition, which was in-
formed from monomeric Aβ species.

In the second investigation, the systems model was validated using tracer kinetic data
(fraction labeled sAPPα, fraction labeled sAPPβ and fraction labeled total Aβ). This
β-13C-APP model accounted for the tracer 13

6 C-Leucine dynamics throughout the systems
model 24. In the third investigation, separate descriptions to characterize the sequential
cleavage steps of APP by BACE1 and GS were included in the systems model. This
was based on the simultaneous investigation of APP metabolite response data from
dedicated studies for the BACE1 inhibitor MBi-5 (Aβ40, Aβ42, sAPPβ, sAPPα) and
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the GS inhibitor MK-0752 (Aβ40, Aβ42), respectively 12. The investigation with this
β-γ-APP model implied a difference in Aβ dynamics after BACE1 versus GS inhibition,
which was reflected in a different Aβ40 formation rate constant. Further, the model based
prediction of AβO suggested a lower oligomerization rate of Aβ42 after GS then after
BACE1 inhibition. However, in that investigation, the difference in Aβ dynamics between
BACE1 versus GS inhibition could not be separated from study differences.

In the fourth investigation the β-APP model was extended to describe the effect
of an additional Aβ isoform (Aβ38) and capture AβO response measurements. This
β-O-APP model, was based on simultaneous analysis of CSF APP metabolites (Aβ38,
Aβ40, Aβ42, sAPPβ, sAPPα) and AβO concentration measurements after MBi-5 expo-
sure 11. In this investigation, Aβ oligomerization was characterized to be a second order
process. Further, Aβ42 was identified to be the Aβ species that drives the Aβ oligomer-
ization

In the current, and hence fifth investigation, the β-O-APP model was extended
to describe the effect of BACE1 and GS inhibition on the APP pathway simultane-
ously and capture AβO response data to both inhibitors. With the current analysis, the
β-γ-APP model could advance further, as information on the sAPPβ, sAPPα, Aβ38, and
AβO response data to GS inhibition could be added. Further, seeing the cross-over study
design of the current study using both inhibitors, true differences could be separated from
study differences. In the current analysis, no differences in systems parameters after
BACE1 versus GS inhibition could be identified, which indicated a correct simultaneous
characterization of the inhibitor-system interactions. Also, the Hill coefficients shifted
to unity, which is the theoretical value for a simple receptor-target interaction, indicating
that the β-γ-O-APP model provided a more accurate representation of the inhibitors
interaction with the system.

Conclusions & Perspectives

The current and prior series of investigations illustrate that systems pharmacology mod-
elling is work in progress and that various processes in the biological network have to
be considered. With each turning, the APP systems model is progressed and biological
insights are gained or questions raised that can get the model to an improved or more
advanced state.

Here, the β-γ-O-APP model revealed a feedback mechanism by downstream com-
ponents on a upstream path: blockage of the GS cleavage path promotes the non-
amyloidogenic processing of APP by homeostatic feedback, proposed to be exerted

224



A single systems pharmacology approach to unravel Aβ oligomer modulation

by C99. In addition, the stepwise successive cleavage of C99 by GS, wherein part of
Aβ38 is converted from Aβ42 was characterized by the model. Furthermore, the effects
of Aβ production inhibition on AβO concentrations were quantified.

A next step in the advancement of the APP systems model could be the extension of
the model to include higher order agglomerated species, such as fibrils. It would be of
interest to know if Aβ production inhibition can bring down the fibril concentrations as
well, which may dissociate to AβO to restore the balance between these species.

To further evaluate the proposed feedback mechanism, sAPP (sAPPβ and sAPPα) data
following a dose range of the GS inhibitor may be informative. Also, sAPP response
measurements after an α-secretase stimulator could provide information on a possible
autoregulation mechanism of APP production.

The developed β-γ-O-APP model can be used to perform simulations to investigate
other interventions, such as inhibition of Aβ oligomerization or Aβ clearance enhancers.
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Differences in Aβ ratios after BACE1 versus GS inhibition
The sum of Aβ38, Aβ40 and Aβ40 in the treatment arms of the cross-over study is
presented in Fig. S7.1A. Both BACE1 and GS inhibition resulted in a reduction of total
Aβ. The ratios of Aβ38, Aβ40 and Aβ40 over total Aβ is depicted in Fig. S7.1B. GS
inhibition resulted in a bigger change in the ratios of each Aβ species over total, compared
to BACE1 inhibition, with the investigated dosages. The difference is most pronounced
for the ratio Aβ42 over total Aβ.

Differences in the sum and ratio of sAPPβ and sAPPα after BACE1 versus GS inhi-
bition
The sum of sAPPβ and sAPPα and the ratio of sAPPβ over sAPPα in the treatment arms
of the cross-over study is depicted in Fig. S7.2A and S7.2B, respectively. Both BACE1
and GS inhibition reduce the ratio of sAPPβ over sAPPα.
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Figure S7.1: Observed differences in the treatment arms of the sum of Aβ38, Aβ40 and Aβ42
(A) and the ratio of each Aβ species over total Aβ (B). The lines are smoothers through the
observed data.
Black: sum of Aβ; Green: ratio Aβ40 over total Aβ; Blue: ratio Aβ38 over total Aβ; Red: ratio Aβ42 over
total Aβ.
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Figure S7.2: Observed differences in the treatment arms of the sum of sAPPα and sAPPβ (A)
and the ratio of sAPPβ over sAPPα (B). The lines are smoothers through the observed data.
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