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Scope and outline

Scope

The misfolding and abnormal assembly of proteins is the hallmark of various patholo-
gies, including neurodegenerative diseases such as Alzheimer’s Disease (AD)1. The
amyloid cascade hypothesis posits that abnormal amyloid-β (Aβ) peptide processing,
resulting in the deposition of Aβ in the brain parenchyma, initiates a sequence of events
ultimately leading to the development of AD dementia2. The amyloid hypothesis provides
a framework for all amyloid disorders, in which protein misfolding and different stages of
aggregation are the drivers of pathological changes.

Aβ is believed to exist as a mixture of monomers, oligomers and fibrils, which are
in a constant equilibrium3. Within this mixture, toxic soluble Aβ oligomers (AβO) are
considered to be the primary drivers of the neurodegeneration in AD brain3,4. One of the
main therapeutic strategies for AD aims at Aβ reduction in the central nervous system
(i.e. CSF and brain) through the inhibition of secretases responsible for its production5.
Therapeutic strategies aimed at reducing the Aβ burden have the potential for eliciting a
disease modifying effect, inhibiting disease progression and subsequently the prevention
of the development of Aβ associated pathologies. When targeting the disease in its
earliest stages, a biomarker related to the pathophysiology is needed to detect AD before
symptoms as mental decline and brain damage occur. AβO is a potential biomarker for
disease progression of AD.

To date, despite decades of research, there is no treatment that halts or slows progres-
sion of the pathological cascade in AD. The development of disease-modifying therapies,
such as anti-Aβ treatments, has lead to several failures. Multiple studies on the pharma-
cokinetics (PK) and the pharmacodynamics (PD) of Aβ production inhibitors have been
reported6,7,8,9,10,11,12. A limitation of these studies is that they focused on the behaviour
of monomeric Aβ and not at the pathologically relevant species AβO. Moreover, these
investigations focused on specific aspects of the pathology without considering the func-
tional behaviour of the system as a whole. In this respect it is important that the amyloid
cascade has the structure of a biochemical network as the rate of formation of AβO is
not determined by the activity of a single enzyme. This complicates the prediction of the
behaviour of a single component, without considering the dynamic equilibrium of multiple
pathways in the system, where all kinds of mechanisms contribute to the resilience of
the system. Further, it may be necessary to deploy combination therapy which targets
multiple parts of the biochemical network to obtain sufficient suppression of AβO. In this
respect, systems analysis is essential in order to gain insight into the expected response of
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Chapter 1

such a therapeutic intervention.
Biological and preclinical research are constantly adding new pieces of the puzzle

of the amyloid cascade. The integration of pharmacological and biological informa-
tion through a systems pharmacology approach has the potential to bring us closer to
optimizing the therapeutic intervention to reduce AβO burden. A further advantage
of a systems approach is that the model can be extended when new information be-
comes available, thereby building up and integrating the knowledge available for the
β-amyloid precursor protein (APP) pathway. Such an approach will provide an adequate,
mechanistic understanding of the behaviour of the APP pathway as a whole and its re-
silience, as opposed to the behaviour of its individual attributes, which is imperative to
improve the prediction of therapeutic effects on Aβ and their reflection on AβO levels.

The aim of the proposed investigation is the development of a systems pharmacology
model describing the functioning of the APP processing pathway, with emphasis on the
dynamics of the AβO during pharmacotherapy aimed at reduction of Aβ monomers.
Therefore, the objectives of the proposed investigation are:

[1] To establish a systems pharmacology model to describe in a strictly quantitative
manner the biochemical network of APP processing.

[2] To predict and evaluate the effect of Aβ production inhibitors, acting at different
sequence in the APP processing pathway, on AβO concentrations.

[3] To explore other therapeutic strategies which may aid the reduction of AβO burden.
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Outline

In section I the amyloid cascade hypothesis for Alzheimer’s disease is presented as a
theoretical framework for the modeling of drug effects in protein misfolding neurodegen-
erative diseases. Moreover, the use of Aβ as biomarker for disease progression and as the
scientific basis of therapy leading to a decrease in Aβ production is considered. In addi-
tion, the use of systems pharmacology modeling to provide a quantitative understanding
of the modulation of the amyloid cascade is discussed (Chapter 2).

In section II a systems pharmacology model is presented describing the changes
of the β-amyloid precursor protein (APP) pathway in response to relevant β- and γ-
secretase inhibitors, in cisterna magna ported rhesus monkeys13. In (Chapter 3) a
systems pharmacology model is presented that describes the changes in APP metabo-
lites to β-secretase (BACE1) inhibition14. Based on monomeric APP metabolite data
an Aβ oligomer pool was identified through modeling, suggesting that Aβ production
inhibition may have the ability to reduce Aβ oligomeric forms as well.

Next, the systems pharmacology model was extended to account for tracer dynamics
in response to BACE1 inhibition throughout the APP pathway (Chapter 4). In the past, a
stable isotope labeling kinetic (SILK) platform to measure Aβ was developed by Bateman
and colleagues15. As both SILK data and absolute concentration measurements of APP
metabolites from an enzyme linked immunosorbant assay (ELISA) were available from
the same study, and both were measurements of the same biological system, it was
of interest to compare these. The systems model was able to integrate the two types
of data and describe seven biomarkers successfully, which facilitated a comparison of
absolute concentrations of APP metabolites with the tracer kinetic data. In addition, the
combined analysis confirmed the biological system that was identified based on absolute
concentrations of APP metabolites only.

Concurrently, the systems pharmacology model was extended to describe the Aβ re-
sponses to include γ-secretase (GS) inhibition (Chapter 5)16. This extension is consid-
ered to be an essential addition as it enabled the separation of BACE1 and GS sequen-
tial cleavage steps. Furthermore, differences in Aβ response and anticipated effect on
Aβ oligomers (AβO) between BACE1 and GS inhibition were assessed. The predicted
effect on AβO was explored which was quantified at a later stage (vide infra).

In section III the developed systems pharmacology model was applied to Aβ oligomer
data. In a cross-over study, changes in Aβ oligomer levels in CSF were quantified in
response to BACE1 and GS inhibition. This enabled the verification of the systems
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model predictions of AβO response to BACE1 (Chapter 6) and GS inhibition (Chapter
7). Using this data, it could be determined that BACE1 inhibition is equivalent to GS
inhibition with regards to oligomer response. In addition, in this study, for the first
time APP metabolite responses to GS inhibition upstream of the GS cleavage step were
measured. This facilitated the identification of a homeostatic feedback mechanism in the
APP pathway (Chapter 7).

In section IV the summary and general discussion are provided. In Chapter 8 the
results of the presented research are summarized. The systems pharmacology model was
used to simulate the effects of Aβ elimination enhancers on AβO, as well as combination
therapy. In addition, future perspectives are addressed. The final goal would be to utilize
the systems pharmacology model in translational pharmacology to anticipate Aβ response
of new drug candidates in human. Hence, the scaling-up of the systems pharmacology
model developed in rhesus monkeys for application in humans is discussed. Additionally, a
number of potential applications of the model in the design and development of therapeutic
interventions for AD are considered.
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Introduction

Accumulation of protein aggregates inside or outside of neurons is the leading cause
of cellular dysfunction in neurodegenerative disorders. The common cause of protein
deposition and the trigger of degenerative signals in the neurons is an unusual folding of
proteins, such as α-synuclein in Parkinson’s disease (PD) and Huntingtin in Huntington’s
disease (HD) (Table 2.1). Through folding, proteins obtain a tertiary structure needed to
take on their biological functions. To ensure correct folding, multiple chaperone systems
are required as well as degradation pathways to destroy misfolded proteins1. Due to the
complexity of this process, an error can disrupt protein folding causing the protein not to
achieve its functional conformation, and the misfolded protein may be toxic or aggregation-
prone. These early aggregates are believed to instigate toxicity in neurodegenerative
disorders. The phenotypically different but biochemically similar aggregates across
protein misfolding neurodegenerative diseases indicate a highly conserved molecular
mechanism of pathogenesis2. Moreover, the same progression of neuronal death, nervous
system deterioration and cognitive impairment is presented in Alzheimer’s disease (AD),
PD, HD, Prion disease and motor disorders, such as amyotrophic lateral sclerosis3. Even
though major progress has been made in the unraveling of the pathogenesis of protein
misfolding neurodegenerative diseases, effective treatments are still lacking.

Table 2.1: Examples of protein misfolding neurodegenerative diseases and their disease
specific proteins

DISEASE PROTEIN FEATURED Reference

Alzheimer’s disease Amyloid-β 4

Parkinson’s disease α-Synuclein 5

Parkinson’s disease dementia α-Synuclein, Amyloid-β 6

Transmissible spongiform encephalopathy (Prion disease) Scrapie prion protein (PrPSc) 7

Huntington’s disease Huntingtin 8

Familial amyloid polyneuropathy Transthyretin 9

Cerebral amyloid angiopathy Amyloid-β 10

Amyotrophic lateral sclerosis Superoxide dismutase 1 (SOD1) 11

One of the most studied protein misfolding neurodegenerative disorders is AD (vide

infra). Amyloid-β peptide (Aβ) is the main component of the amyloid plaques in the
brain of AD patients. Soluble monomeric Aβ does not cause the reduced neuroviability;
the issue begins when the Aβ peptide self-aggregates. The ’amyloid cascade hypothesis’
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poses that this Aβ aggregation is the initiating mechanistic event, in which the different
stages of aggregation, from soluble Aβ oligomers (AβO) to insoluble fibrils in plaques, are
believed to impair synaptic function and ultimately damage neurons, resulting in chronic
neurodegeneration leading to cognitive impairment and finally dementia12. The amyloid
cascade hypothesis provides a framework for other protein misfolding neurodegenerative
diseases, in which pathological changes are driven by an error in protein conformation
followed by abnormal assemblies.

One of the main therapeutic strategies for AD aims at Aβ reduction through either
inhibition of Aβ production or enhancing of Aβ clearance. Due to the complexity of
the underlying biochemical network, the effects of these interventions on the individual
attributes of the APP processing pathways are difficult to predict. Furthermore, the
effect on AβO after inhibiting Aβ production or enhancing Aβ clearance is not fully
understood. This step is essential in view of the development of disease-modifying
treatments: AβO concentrations in cerebrospinal fluid (CSF) may be considered as tool to
monitor the effects of disease-modifying drugs.

This thesis focuses on drugs aimed at Aβ production inhibition and the potential
for subsequent reduction of AβO levels. In this chapter, the pathophysiology of AD is
described first. Next, the amyloid cascade hypothesis and the production of Aβ through
the amyloid-β precursor protein (APP) pathway are outlined. Then, the diagnosis and
pharmacological treatment of AD is discussed. After that, generally used methods to detect
and quantify Aβ are summarized. Finally, the use of systems pharmacology modelling
to provide a quantitative understanding of the effects of drugs on the APP pathway is
outlined.

Alzheimer’s Disease

AD is the most prevalent form of dementia. The World Health Organization estimates that
in 2015 46.8 million people worldwide were living with AD, or related dementia, and that
this number will almost double every 20 years, making it the major chronic health issue
of this century13. The prevalence of AD is rising due to the ’double ageing’ process: there
are relatively more and more elderly who are individually living longer.

Although AD mainly affects older people, it is not a normal part of ageing It is a
chronic and progressive neurodegenerative disorder, impairing higher brain functions
such as memory, thinking and personality. The neuropathology of AD involves massive
neuronal cell loss and atrophy, which is especially prevalent in the cortex and hippocam-
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Figure 2.1: Illustration of neurofibrillary tangles within neurons and amyloid plaques 14.
Green cloud: Disruption of synaptic efficacy by diffusible, low-n AβO, depicted as a decrease in normal
transmission at synapses; Red: Aβ species; Ck: Cytokines, released as result of activation of astrocytes; O2:
Superoxide radicals, generated by microglia.

pus, and ventricle enlargement15,16. Pathologically, the disease is characterized by the
misfolding and abnormal assembly of two proteins, tau and a short fragment of APP, the
42-amino acid long peptide Aβ42, causing abnormal structures that cover the brains of
AD patients. Hyperphosphorylated tau protein appears in neurofibrillary tangles within
neurons, whereas Aβ is deposited in extracellular neuritic plaques that consist of neuron
fragments surrounding a core of Aβ (Figure 2.1)17,18,19. The progressive accumulation of
neurofibrillary tangles in neurons and amyloid fibers in neuritic plaques are two of several
brain changes believed to contribute to the development of AD.

The two basic types of AD are sporadic and familial. AD generally occurs sporadic in
patients over the age of 60, but there is also an early-onset phenotype afflicting patients
in the 4th or 5th decade of life that develops as result of autosomal dominant inheri-
tance21. Both forms of AD show similar neuropathology and altered Aβ42 kinetic rates
(Figure 2.2).

21



Chapter 2

Ab peptides by ANCOVA after adjusting for age

(Table 3). FTRs were significantly faster in Ab42 (57%

faster), and to a lesser extent for Ab40 (17% faster) and

Ab38 (22% faster), in the cognitively normal and

amyloid-positive group, compared to the cognitively nor-

mal amyloid-negative group, or the cognitively impaired

participants regardless of amyloid status (Table 3). There

was no interaction between cognitive status and amyloid

status for Ab42 exchange (kex42; Table 3).

In order to evaluate this interaction, the active

fibrillar amyloid deposition rate (calculated as the change

in PET PIB MCBP score over time) was examined in

participants as a function of CDR and amyloid status

(initial PET PIB MCBP score; Fig 6). In participants

who received initial and follow-up PET PIB scans, the

change in PET PIB per year was greater in the cogni-

tively normal PET PIB1 group than the cognitively nor-

mal PET PIB– group (0.049 6 0.011 vs. 0.003 6 0.025),

and the change in PET PIB per year in the cognitively

impaired, PET PIB1 group (20.002 6 0.064) was simi-

lar to the cognitively normal PET PIB– group. Substan-

tial increases in the rate of PET PIB increase were

present in all cognitively normal PET PIB1, but

decreased after participants were cognitively impaired

(Fig 6A). There was a positive correlation between FTR

Ab42 and the rate of PET PIB increase in PET PIB1

participants of R 5 0.75, p 5 0.002 (Fig 6B) and in both

PET PIB1 and PET PIB– participants, R 5 0.56,

p 5 0.0002 (Fig 6C). Thus, the increase in PET PIB per

year (Fig 6) and the FTRs of Ab (predominantly Ab42;

Table 3) are both elevated in cognitively normal partici-

pants with evidence of amyloidosis, compared to other

groups.

ApoE4 Effects
We evaluated the effect of ApoE4 allele for Ab kinetic

alterations. The majority of participants with ApoE4 had

clear evidence of amyloidosis: of the 42 participants with

one or more ApoE4 alleles, 34 (81%) were characterized

as amyloid positive; 33 (79%) had CSF Ab42/Ab40 con-

centration ratio <5 0.12; and 30 (71%) had cognitive

impairment (CDR-SB >0). PET PIB score was available

in 21 ApoE4 carriers; 17 (81%) of these had PET PIB

MCBP >0.18. Thus, when one-way ANOVA was per-

formed using ApoE4 status, outcomes were generally

consistent with the presence of amyloid plaques in partic-

ipants carrying the ApoE4 allele (Table 2). No significant

effects of ApoE4 on the exchange of Ab42 or Ab kinetic

rates were observed by ANCOVA when amyloid status

was included as a factor in the analysis. Thus, given the

high association between ApoE4 and the presence of

amyloid plaques, we could not determine ApoE4 effects

independent of amyloid status in this study.

Discussion

We report on the first comprehensive analysis of Ab iso-

form kinetics in humans by age and amyloidosis. To our

knowledge, these findings are the first to link soluble Ab
kinetics with age, which is the single largest risk factor

for AD.2,22,23 Ab turnover rate was highly correlated

with age and is an excellent biomarker for chronological

age (Pearson correlation of 0.77; Fig 1).24 The remarkable

FIGURE 7: Biological model for increased Ab42 exchange and increased irreversible loss. Faster irreversible loss and exchange
are present in amyloidosis (regardless of age, apolipoprotein E allele type, or cognitive impairment), suggesting that amyloid
plaques or associated higher-order Ab structures (e.g., protofibrils or oligomers) underlie altered Ab42 kinetics. The fractional
turnover rate may represent irreversible loss resulting from Ab42 deposition on plaques, whereas Ab42 exchange may repre-
sent interactions of newly generated soluble Ab42 with higher-order Ab structures, such as oligomeric forms and amyloid pla-
ques. Ab 5 amyloid-beta; CSF 5 cerebrospinal fluid.

ANNALS of Neurology

450 Volume 78, No. 3

Figure 2.2: Biological model for increased Aβ42 exchange and increased irreversible loss in
the presents of amyloidosis 20.
Faster irreversible loss (red arrows) and exchange (blue arrows) are present in amyloidosis.

Familial AD (FAD) mutations are found in APP as well as in the presenilin genes PS1
and PS2, genes encoding for the catalytic subunit of γ-secretase, a protease that cleaves
APP and generates the Aβ peptides22. The FAD mutations increase the production of
Aβ42, which is more neurotoxic compared to the shorter Aβ40, leading to elevated total
amounts of Aβ and altering Aβ peptide ratios23,24,22. No mutations in the tau gene have
been linked to AD18.

In AD patients, decreased CSF Aβ42 concentrations have been consistently found.
Postmortem investigations have established inverse correlations between CSF Aβ42 and
neuritic plaque burden indicating that low concentrations of CSF Aβ42 are resulting from
its deposition in brain parenchyma 25,26.

There are three recognized disease stages of AD: preclinical, mild cognitive im-
pairment (MCI) and AD dementia27 (Figure 2.3). In the preclinical stage subjects are
asymptomatic and cognitively normal, but some have AD pathological changes such
as Aβ accumulation and neuronal injury and dysfunction. This will eventually lead to
clinical symptoms, but accumulation of Aβ begins years before the onset of clinical symp-
toms. The second, prodromal, stage of AD, MCI, is defined by noticeable dysfunction
in memory and impairments related to cognitive function that do not meet the criteria
for dementia. The patients have elevated CSF tau or signs of neuronal injury on imaging
methods (positron emission tomography [PET] imaging, magnetic resonance imaging
[MRI] of the brain). The final stage, dementia, is characterized by unresponsiveness, loss
of mobility and control of body functions. The disease course can last 2-20 years, leading
to death.
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Figure 2.3: Schematic of biomarkers of the pathological cascade and clinical disease stages in
AD. Adapted from Jack et al. (2013).
Cognitive impairment is illustrated as a green area with low-risk and high-risk borders.

The amyloid cascade hypothesis
The amyloid cascade hypothesis poses that Aβ levels are increased early in the disease
process, forming toxic oligomers and plaques (Figure 2.4)30,31,32,33,12,34. These accumu-
late over time, interfering with the neuron-to-neuron communication at synapses and
contributing to cell death, ultimately leading to cognitive and functional decline. It is
generally believed that aggregated Aβ is the primary influence that is responsible for
disease progression12. Soluble toxic Aβ oligomers have been proposed to account for
the neurotoxicity of Aβ peptide29. Tau protein, aggregating to tangles, accumulate later
than Aβ 35,36. The AD biomarkers become abnormal sequentially, while people remain
clinically asymptomatic (Figure 2.3). The amyloid cascade hypothesis is a framework for
all amyloid disorders, in which protein misfolding and different stages of aggregates are
the drivers of pathological changes.

APP processing pathway
Aβ exists in both soluble and fibrillar forms. Soluble Aβ is a normal metabolic product,
present in cerebrospinal fluid (CSF), sera of normal individuals and patients with AD.
Aβ peptide is the final product of proteolytic cleavage of the transmembrane protein APP,
which is synthesized in the brain as well as in the periphery. The physiological role of
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Figure 2.4: Aβ exists in various aggregation states 28.
Aβ monomers can misfold to form β-sheet structures. From the misfolded Aβ, soluble AβO and insoluble
amyloid fibrils are generated. These form amyloid plaques and cerebrovascular deposits in the AD brain.
Aβ monomers, AβO and fibrils exist in a complex equilibrium 29.

Aβ is yet to be fully elucidated. Aβ fragments have been associated with neurogenesis,
anti-viral functions and pro-inflammatory response37,38,39.

In the APP processing pathway, APP is cleaved sequentially by β-secretase (BACE1)
and γ-secretase (GS) resulting in Aβ (Figure 2.5). A third secretase, α-secretase cleaves
APP within the Aβ sequence generating non-amyloidogenic sAPPα and precluding
Aβ generation.

In the non-amyloidogenic pathway, γ-secretase releases the so called P3 peptide. At
the γ-site, APP can be cleaved at different positions, creating Aβ peptides of different
amino acid forms (Aβ38-42), of which the 40-residue β peptide (Aβ40) accounts for
80-90% of the total. Aβ42 appears to be the most pathogenic, as it is more prone to
aggregation and the predominant Aβ form found in amyloid plaques.

A new APP processing pathway was recently reported by Willem et al. (2015), in
which sequential cleavage of APP by η-secretase and BACE1 or α-secretase leads to the
formation of Aη − α and Aη − β, respectively. There may be other alternate pathways
unknown at this time.
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Figure 2.5: Schematic of the APP processing pathway.
In the APP processing pathway, full length APP is cleaved by BACE1 (β-sec) or α-secretase (α-sec) to form
sAPPβ and C99 or sAPPα and C83. C99 is then cleaved by γ-secretase (γ-sec) to form Aβ. The amyloid
hypothesis states that an imbalance in production and clearance of Aβ can result in aggregation of
Aβ42 fragments into amyloid plaque. In an alternative path, APP is sequentially cleaved by η-secretase
(η-sec) and BACE1 or α-secretase leading to the formation of Aη − α and Aη − β.
blue circles: APP metabolites measured in CSF.

Pharmacological treatment of AD

AD is presently incurable, as the loss of neurons is irreversible and none of the currently
available treatments slow down the progression of the pathologic cascade let alone halt
the disease. The FDA has only approved a few drugs to alleviate the symptoms associated
with AD. The primary treatment goals of these symptomatic treatments are to enhance the
quality of life and to maximize function by improving cognition, mood and behaviour.
These treatments are aimed at improving processes at the end of AD’s pathologic cascade.
FDA approved AD medications include antidepressants, antipsychotics, cholinesterase
inhibitors (e.g. Exelon (rivastigmine41), weak NMDA receptor antagonists (e.g. me-
mantine), acethylcholinesterase inhibitors (e.g. Aricept (donepezil)) and other cognitive
enhancers such as estrogen and vitamin E42. None of the treatments available slows or
stops the damage to neurons that causes AD symptoms and ultimately makes the disease
fatal.

Brain changes associated with AD begin before symptoms such as memory loss appear.
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The dementia phase in AD may be prevented from ever developing, by treating AD early
with disease modifying treatments. Disease modifying treatments are expected to be most
effective during preclinical and MCI stages of AD. It is theorized that all downstream
pathological processes may be prevented by lowering the levels of Aβ peptides prone to
toxic aggregation, e.g. Aβ42.

Lower Aβ42 levels can be achieved by increasing Aβ42 clearance and/or decreasing
Aβ42 production. The latter requires modulation of the APP processing pathway. Exam-
ples of such are immune-based therapies, designed to remove Aβ peptide from the brain21

and inhibitors of secretases of the APP processing pathway, designed to decrease Aβ42
production42.

To date, no disease-modifying treatment has demonstrated therapeutic benefit and to be
safe43. Several promising BACE1 inhibitors (BACEi) have recently entered human clinical
trials44. Given the complex pathophysiology of AD, combination disease-modifying
treatment, targeting more than one pathophysiological pathway, may be necessary for
effective intervention45. Furthermore, the appropriate target(s) may depend on the disease
stage.

Diagnosing AD

Presently, AD is diagnosed after the onset of clinical manifestations. There is no single
test that can verify whether a person has AD. It may be difficult to determine the exact
cause of a person’s dementia. Current diagnosis of AD relies on a combination of a
thorough medical history, mental status checking, a physical and neurological exam, CSF
biomarkers and imaging techniques such as positron emission tomography (PET) and
magnetic resonance imaging (MRI)46. Blood tests and brain imaging are also used to
eliminate other causes of dementia-like symptoms. However, the definite diagnosis of AD
can only be made after the patient has died, by histological examination of brain tissue at
autopsy to confirm the presence of plaques and tangles.

Three cerebrospinal fluid (CSF) biomarkers have been well established and validated:
Aβ42, total Tau and phospho-Tau-181 47. The diagnostic validity significantly increases
by the combination of these three CSF biomarkers 4. CSF biomarkers have the potential
to improve the diagnostic accuracy at the early stages of AD 48. This is essential when
treating AD early with disease-modifying treatments, to monitor the effects of drugs
before clinical symptoms occur. Novel biomarkers to monitor important pathological
mechanisms in AD are constantly sought. CSF AβO has the potential to be a biomarker

26



Introduction

of disease pathogenesis of AD, as it is related to toxicity and synaptic dysfunction.

Aβ as a biomarker

As Aβ is a central factor in AD pathogenesis, reliable detection and quantification of this
peptide in biological samples is important for understanding disease progression as well
as for the evaluation of therapeutic intervention targeting Aβ. Clinically and generally in
in vivo animal work we can only measure the response in CSF. CSF is in contact with the
brain and by that provides a reflection of cerebral processes. Thus, CSF Aβ serves as key
biomarker for disease progression and Aβ targeted therapy.

Concentrations of Aβ peptides are typically determined using direct or sandwich
enzyme linked immunosorbant assay (ELISA) systems49. Some of these assays are
specifically constructed to measure both the first and last amino acid of the Aβ isoform of
interest (e.g., Aβ1-40, Aβ1-42)50. There are also assays that are C-terminally end-specific
but use N-terminal antibodies to capture the N-terminally truncated Aβ fragments, in
addition to the full Aβ peptide51,52.

Bateman et al. (2007) reported a method to quantify Aβ protein production and
clearance rates in the CNS based on in vivo stable isotope labelling kinetics (SILK),
immunoprecipitation of Aβ from cerebrospinal fluid, and quantitative liquid chromatogra-
phy electrospray-ionization tandem mass spectrometry (LC-ESI-tandem MS). The SILK
protocol has also been used to assess the effect of drugs on Aβ production. However,
questions have been raised about the interpretation of the findings of the SILK protocol54.

Modeling in Alzheimer’s disease

The relationship between Aβ concentrations in CSF and the pharmacokinetics (PK) of
Aβ lowering agents is complex. Preclinical selection of AD’s drug candidates is based
on an evaluation of the PK, pharmacodynamics (PD) and safety in in vitro assays and
preclinical animal models. This requires a understanding of the in vivo pharmacology
and the relevant biological system. In that respect drug development efforts for AD can
benefit from modelling approaches.

PKPD modelling
PKPD modelling can be used to describe and understand the time-course of drug expo-
sure and response after the administration of different doses or formulations of a drug
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to individuals, based on the use of mathematical and statistical models. A PK model
describes the relationship between the dose of a drug and the time profile of drug concen-
tration. A PD model describes the relationship between the drug concentration and the
pharmacological efficacy. An PKPD model describes the dynamics of exposure-response
relationship(s) of a drug. The PD variable(s) in a PKPD model is usually a biomarker
related to either efficacy or toxicity of the drug. Several studies on the PK and the PD of
BACE1 and GS secretase inhibitors have been reported,55,56,57,58,59,60,61. Liu et al. (2013)
proposed a mechanistic PKPD model of BACE1 inhibition in monkeys. They identified
the β-secretase cleavage step as the rate limiting step for Aβ formation. However, their
model is a simplification of the underlying system as no distinction is made between
the β-secretase and γ-secretase steps and Aβ was modelled as a direct product of APP.
Also, the transport of APP metabolites from brain to CSF, which may differ per species,
was not taken into account. Therefore, their identified β-secretase cleavage rate reflects
both transport and cleavage by sequentially β-secretase and γ-secretase. What’s more, all
parameters were estimated by fitting the PK and PD models to the average of the observed
data at each time point, not taking into account the variability in drug concentrations and
drug effects among individuals. Das et al. (2011) reported a two-compartment model
describing Aβ response to GS inhibition, as observed in plasma and CSF in rhesus mon-
keys. Their model postulates an inhibitory mechanism of Aβ clearance by GS inhibition.
However, in their model aspects of the Aβ production, transport and clearance processes
were simplified. A model-based meta-analysis of published and in-house (pre-)clinical
GS inhibitors data was performed by Niva et al. (2013). The production and clearance of
Aβ was described with a turnover model, with a drug effect on the production rate. Tai
et al. 59 also used turnover models to describe Aβ levels following GS inhibition in brain,
CSF and plasma in wild type rat. They propose a quasi-static Aβ pool in the brain which
does not change after short drug exposure.

It has been demonstrated that mechanism-based PKPD models have much improved
properties for extrapolation and prediction62,63. However, the mechanistic detail of most
PKPD models remains relatively limited compared to full systems biology models.

Systems biology

Systems biology is the study of biological systems, based on the understanding that
these are composed of interacting parts, resulting in characteristics not found in the
individual parts alone. These systems include signalling, gene regulatory, and metabolic
networks64. An example of a signalling network is the AlzPathway, reported by Mizuno
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et al. (2012). The AlzPathway is a comprehensive map of intra-, inter- and extracellular
signalling pathways in AD, consisting of 1347 molecules and 1070 reactions in neuron,
brain blood barrier, presynaptic, postsynaptic, astrocyte, and microglial cells and their
cellular localizations (Figure 2.6). It was based on a collection of 123 review articles
involving AD. The key molecules of the AlzPathway are presented in Figure 2.7, in which
each reaction is decomposed into a binary relation between reactant(s) and product(s), and
modifier(s) and product(s). The molecules Aβ, apolipoprotein-E, microtubule-associated
protein-τ and γ-secretase were considered central in the AD-signalling network. The
model was developed for both clarification of the pathogenic mechanisms of AD and
identifying drug targets. In general, these type of models are used to explore and identify
drug targets and potential biomarkers of disease and drug response.

Figure 2.6: Overview of the AlzPathway map 65
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Figure 2.7: Key molecules in the AlzPathway in binary-relation notation 65.

Systems pharmacology modelling

The above mentioned reported PKPD models looked solely at the behaviour of Aβ and
not at the behaviour of the APP system as a whole. The intricacy of the underlying
biochemical network makes it difficult to predict the effects of drug interventions on the
individual attributes of the APP processing pathway. Therefore, the understanding of the
APP system is imperative to translate drug concentrations to APP pathway inhibition and
to improve the prediction of drug effects on Aβ levels. Systems biology models are not
concerned with pharmacology and general principles of PKPD modelling.

Systems pharmacology (SP) models integrate the best available understanding of the
biology and pharmacology of the system responses. This involves computational analysis
of the time course of the changes in treatment associated biomarkers on the basis of a
structural mathematical model that describes the underlying biological processes, while
making a strict distinction between drug-specific and systems specific parameters. In
essence, SP models are mechanism-based models embedded in a systems biology
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Figure 2.8: Schematic of the evolutionary process of systems pharmacology (SP) model
building

framework. No SP models have been developed or applied to the pharmacological action
of drugs in the APP processing pathway.

The development and implementation of a SP model is an evolutionary process, as
presented in Figure 2.8. The model facilitates the integration of prior knowledge of
biological systems, assumptions about the pathology and pharmacology with emerging
data. In Figure 2.8, the spiral represents the iterative approach of model development. An
iterative model development approach has the benefit that model updates are foreseen:
before going into the first cycle of model building, it is know that another round will
follow, but on a higher level, in terms of more knowledge and understanding of the system
than the first time. Thus, we obtain an evolutionary improvement of the SP model and
consequently of the (model based) understanding of the system.

By recognizing that building a SP model is an evolutionary process, it acknowledges
the fact that at the beginning, there are knowledge gaps and that the specifications and
requirements of the final SP model are not known. There could be hidden behaviours
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of the systems, e.g. feedback loops, which cannot be predicted until the SP model is
assembled together and parametrized. It could also be that, presuming a mechanism of
action, the systems model does not fit the data. In case the model does not capture the
data adequately, we can learn something. Then, the only question we need to ask is why?

As such, a SP model is a hypothesis generating tool.
How many iteration cycles are necessary depends on how long one cycle takes, and

how much time is available in order to set the SP model up to answer relevant questions
that are as concise and directed as possible. A SP model is a framework for asking
questions about the pharmacology of the drug in the context of the system and the disease.
The scope of the model must be tailored to answering the question at hand. For some
questions, it may be enough to capture the main trend of the behaviour of the system, but
for other situations a more detailed model is needed. SP models can also identify the data
needs and be reapplied to follow-up questions. Thus, SP models act as a central repository
of (novel) hypotheses, knowledge and data.

A SP model of the APP pathway will provide a quantitative understanding of the
effects of drugs on the APP processing pathway to improve the prediction and magnitude
of Aβ reducing effects. Perturbing the APP system through drug interactions acting at
different sequence in the APP pathway (BACE1 and GS inhibition) and not looking solely
at the behaviour of a single biomarker, but in the context of the system, is expected to
provide valuable biological insights into the APP pathway and the chances to modify AD.
By using a systems model, we can learn more on the biological complexity of the APP sys-
tem (e.g. resilience), and by understanding its complexity make more informed decisions
concerning pharmacological intervention and support challenges in drug development.
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Systems pharmacology analysis of the APP pathway

Abstract

The deposition of amyloid-β oligomers in brain parenchyma has been implicated in the
pathophysiology of Alzheimer’s disease. Here we present a systems pharmacology model
describing the changes in the amyloid precursor protein (APP) pathway following admin-
istration of three different doses (10, 30 and 125 mg/kg) of the β-secretase (BACE1) in-
hibitor MBi-5 in cisterna magna ported rhesus monkeys. The time course of the MBi-
5 concentration in plasma and cerebrospinal fluid (CSF) was analysed in conjunction
with the effect on the concentrations of the APP metabolites Aβ42, Aβ40, sAPPα and
sAPPβ in CSF. The systems pharmacology model contained expressions to describe the
production, elimination and brain-to-CSF transport for the APP metabolites. Upon the
administration of MBi-5 a dose dependent increase of the metabolite sAPPα and dose
dependent decreases of sAPPβ and Aβ were observed. Maximal inhibition of BACE1 was
close to 100% and the value of the IC50 was 0.0256 µM (95% CI, 0.0137-0.0375). A
differential effect of BACE1 inhibition on Aβ40 and Aβ42 was observed, with the Aβ40
response being larger than the Aβ42 response. This enabled the identification of an Aβ42
oligomer pool in the systems pharmacology model. These findings indicate that decreases
in monomeric Aβ responses resulting from BACE1 inhibition are partially compensated
by dissociation of Aβ oligomers and suggest that BACE1 inhibition may also reduce the
putatively neurotoxic oligomer pool.
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Introduction

The amyloid cascade hypothesis posits that amyloid-β protein (Aβ) peptide levels are
increased early in Alzheimer’s Disease (AD) leading to the formation of toxic soluble
Aβ oligomers (AβO) and plaques1. According to this hypothesis, a series of causal
events initiated by abnormal Aβ levels leads to neuronal cell death and cognitive and
functional decline over time2. Toxic AβO are considered to be the drivers of the neurode-
generation3,4. Such soluble forms of multimeric Aβ peptides are intermediate of soluble
Aβ monomers and insoluble Aβ fibrils and likely consist of a mixture of oligomeric
species. Aβ dimers, trimers, larger AβO and structures such as soluble protofibrils have
been isolated from AD brain5,6,7,8. AβO are in a constant equilibrium with Aβ monomers
and other Aβ aggregates3.

Formation of Aβ requires proteolytic cleavage of the transmembrane protein ’β-
amyloid precursor protein’ (APP). Sequential cleavage of APP by the enzymes β-secretase

(BACE1) and γ-secretase leads to the formation of Aβ 9, as schematically depicted
in 3.1. Here cleavage by BACE1 leads to the formation of both the N-terminal secreted
fragment soluble APPβ (sAPPβ) and the C-terminal membrane-bound 99-amino acid
fragment (C99). C99 is subsequent subject to cleavage by γ-secretase yielding Aβ species
of different chain length. The most common Aβ isoforms have 38 (Aβ38), 40 (Aβ40) or
42 (Aβ42) amino acids10. In parallel full length APP is also cleaved by α-secretase leading
to the formation of soluble APPα (sAPPα), which is non-amyloidogenic11.

Aβ production in brain is a target for AD therapy, with the potential for a disease
modifying effect by reducing Aβ levels12. Several BACE1 inhibitors (BACEi) are being
tested in human clinical trials, but the optimum level of BACE1 inhibition required for
the treatment of AD remains to be determined13. A quantitative understanding of the
effects of secretase inhibitors on the APP pathway may provide greater insights into
dose-response pharmacology relationships.

Generally, measures of Aβ response in humans and primates can only be obtained in
CSF and not in brain. However, it is believed that changes in Aβ concentrations in CSF
reflect changes in brain Aβ 14. Thus, CSF Aβ serves as key biomarker for Aβ production
targeted therapies15. The cisterna magna ported (CMP) rhesus monkey model enables
longitudinal sampling in the CSF outflow from the cisterna magna in conscious rhesus.
As APP is completely homologous between human and rhesus, the CMP rhesus monkey
model is used to study the effects of secretase inhibitors16,17,18.

Several studies on the pharmacokinetics (PK) and the pharmacodynamics (PD) of
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Figure 3.1: Schematic representation of the amyloid hypothesis of AD.
In the APP processing pathway, full length APP is cleaved by BACE1 (β-sec) or
α-secretase (α-sec) to form sAPPβ and C99 or sAPPα and C83. C99 is then cleaved by
γ-secretase (γ-sec) to form Aβ. The amyloid hypothesis states that an imbalance in production
and clearance of Aβ can result in aggregation of Aβ42 fragments into amyloid plaque.
blue circles: APP metabolites measured in CSF.

BACE1 and γ-secretase inhibitors have been reported19,14,20,21. Liu et al. 2013 proposed
a mechanistic PK-PD model of BACE1 inhibition in monkeys. They identified the β-
secretase cleavage step as the rate limiting step for Aβ formation. However, their model
is a simplification of the underlying system as no distinction is made between the β-
secretase and γ-secretase cleavage steps and Aβ was modelled as a direct product of
APP. Potter et al. 2013 used compartmental modelling to investigate the APP processing
pathway based on the results from a metabolic tracer study in humans with rare autosomal
dominant AD (ADAD). A model with 18 compartments accounting for the kinetics of
Aβ38, Aβ40 and Aβ42 enrichments, including compartments representing APP and C99
was proposed. However, the reported model is structurally and numerically unidentifiable,
considering that not all APP metabolites were measured.

No systems pharmacology model has been reported that provides an integrated de-
scription of the effects of drugs on the APP metabolites. Systems pharmacology modelling
is an extension of traditional mechanism-based PK-PD modelling, linking the system that
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is affected by the drug to its treatment associated measured biomarkers. This involves
computational analysis of the time course of the changes in biomarkers on the basis of a
structural mathematical model that describes the underlying biological processes, while
making a strict distinction between drug-specific and systems specific parameters. It has
been demonstrated that such mechanism-based PK-PD models have much improved prop-
erties for extrapolation and prediction24,25. Systems pharmacology modelling will provide
a quantitative understanding of the effects of drugs on the APP processing pathway to
improve the prediction and magnitude of Aβ reducing effects.

The objective of this investigation was to characterize the multi-step production of
Aβ in brain and its disposition into CSF in rhesus and obtain an indirect impression of
AβO using information from the monomeric Aβ species. To this end, CSF Aβ dynamic
data from CMP monkeys treated with the BACEi MBi-5 were analysed. APP metabolites
inter-relationships and their responses to MBi-5 were each measured by ELISA and
metabolite responses were then integrated by means of a systems pharmacology modelling
approach. Comprehensive, model-based information from MBi-5 PK and PD is integrated
across time points, doses and endpoints, yielding information on dose response and APP
metabolite (sAPPβ, sAPPα and Aβ) responses and interrelationships. In this manner
invaluable information is obtained on the functioning of the integrated biological system.
The effect of BACE1 inhibition on AβO is anticipated which will be measured in future
studies.

Materials and Methods

Animals

Animal use procedures were conform to the Guide for the Care and Use of Laboratory
Animals (Institute of Laboratory Animal Resources, National Research Council, 1996)
and reviewed and approved by the Institutional Animal Care and Use Committee at Merck
Research Laboratories. The CMP rhesus monkey model was described by17. The rhesus
monkeys are chronically implanted with catheters in the cisterna magna, allowing repeated
sampling of CSF and plasma in conscious rhesus. Six male animals, weighing between
5.2 and 11.7 kg (average, 8.7 kg), age 2 to 10 years (average, 8 years), were included in
the study. These monkeys were captive-bred in a closed colony and individually housed.
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Drug administration and sampling

The study protocol and pharmacological profile of MBi-5 was described previously by
Dobrowolska et al. 26 . The study protocol is summarized here. In a single dose, four-way,
full crossover study, MBi-5 was administrated at 10, 30, 125 mg/kg (5 ml/kg), or vehicle
(0.4% methylcellulose) p.o., with at least two weeks washout between each period. Plasma
and CSF drug concentrations were collected at 0 (predose) and 3, 5, 7, 9, 13, 16, 19,
22, 25, 28, 31, 49, 55, 58, 73 and 145 h postdose, resulting in 17 plasma and CSF PK
samples for each monkey per treatment group. 2 mL of blood and 1 mL of CSF were
collected at each time point. The concentration of MBi-5 in the plasma and CSF samples
was determined using LC-MS/MS.

The concentrations of Aβ40, Aβ42, sAPPα and sAPPβ were determined from CSF
samples collected at -22, -20 and -1 h (predose) and 2, 4, 6, 8, 12, 15, 18, 21, 24, 27, 30,
48, 54, 57, 72 and 144 h postdose, giving 19 measurements of each biomarker for each
monkey per treatment group. 1 mL of CSF were collected at each time point. The assays
used for the concentration measurements were described previously27,28.

PK-PD analysis

The PK-PD model was developed and fitted to the data by means of non-linear mixed
effects modelling using the NONMEM software package version VI level 229. This
approach takes into account structural (fixed) effects and both intra- and interindividual
variability. The following parameters are estimated: typical values of structural model
parameters (population parameters, which define the average value for a parameter in a
population) (θ), the variance and covariance of the interindividual variability (ω2) and the
variance of the residual error (σ2). A step-wise procedure was used to find the model that
best fitted the data. A convergence criterion of three significant digits in the parameter
estimates was used. The obtained minimum value of the objective function was used for
the comparison of nested models. A decrease of 10.8 points in the minimum value of
the objective function by adding an additional parameter, corresponding to p<0.001 in a
χ-squared distribution, was considered significant. The first-order conditional estimation
approximation with η-ε interaction (FOCE interaction) was used for parameter estimation.
Random effects at the individual level were included as exponential (eη), reflecting
lognormal distributions of the individual model parameters:

θi = θ × e(ηi) (3.1)
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in which θi is the value for the ith individual; θ is the typical value for the parameter, and
η is an interindividual random effect, which is assumed to follow a normal distribution
with mean zero and variance ω2.

The residual variability was explored with additive (Eq. 3.2) and proportional (Eq.
3.3) error models or a combination of both (Eq. 3.4) .

yijk = f(θij) + εijk (3.2)

yijk = f(θij)× (1 + εijk) (3.3)

yijk = f(θij)× (1 + εijk1) + εijk2 (3.4)

where yijk is the kth observation on the jth occasion for the ith individual; f(θij) is the
corresponding model predicted observation and ε represents the residual departure of the
observed concentration from the predicted concentration, which is assumed to follow a
normal distribution with mean zero and variance σ2.

To evaluate the prediction of the central tendency and distribution of the observed
data by the model a visual predictive check (VPC) was performed in which the median
and the 90% inter-quantile range of the data simulated with the developed model were
plotted together with the observations. A validated result would have close agreement of
median observed and predicted line with ∼90% of the observations falling within the 90%
prediction interval.

The NONMEM software package was implemented on an Intel QuadCore
(Intel R©CoreTM i7 CPU860, 2.80 GHz, 3.24 GB RAM) and Compaq Visual Fortran
(version 6.6, Compaq Computer Corporation, Houston, Texas, USA) was used as compiler.
Data management and model assessment was done using the statistical software package
S-PLUS for Windows (version 8.0 Professional, Insightful Corp., Seattle, USA).

Model description
The systems pharmacology model of MBi-5 was developed by sequential analysis of PK
and PD data. The PK model of MBi-5 was based on simultaneous analysis of plasma and
CSF PK data. The results of the PK data analysis is provided in the Supplemental Material.
The PK profiles of MBi-5 observed in plasma and CSF were adequately described by
a three-compartmental model (Supplemental Figure S3.2) and the PK parameters were
estimated with good precision (Supplemental Table S3.1), thus the model could serve as
input for PD model analysis.

The biomarker response profiles of MBi-5 measured in CSF were adequately described
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by a model containing compartments for five variables: APP, sAPPβ, sAPPα, Aβ40 and
Aβ42 (Figure 3.2). The production of APP was believed to be zero order, i.e. a constant
production of APP. It was assumed that there is no alternative proteolytic enzyme cleaving
full length APP other than α-secretase and BACE1. As both sAPPβ and C99 are products
of APP cleavage by BACE1, sAPPβ and C99 were presumed to follow the same kinetics
and therefore sAPPβ could be used in the model as surrogate precursor for Aβ. The
production of sAPPα, sAPPβ and Aβ were assumed to be first order, i.e. dependent on
the concentration of its precursor. The interaction between APP, sAPPβ, sAPPα, Aβ40
and Aβ42 is described by Eq. 3.5 - Eq. 3.9:

d

dt
APP = RinAPP − (Rinβ × EFF +Rinα)×APP (3.5)

d

dt
sAPPα = Rinα×APP −Routa × sAPPα (3.6)

d

dt
sAPPβ = Rinβ × EFF ×APP − (Kin40 +Kin42)× sAPPβ (3.7)

d

dt
Aβ40 = Kin40 × sAPPβ −Kout×Aβ40 (3.8)

d

dt
Aβ42 = Kin42 × sAPPβ −Kout×Aβ42 (3.9)

The rate of change of APP with respect to time in the presence of the inhibitor is described
by Eq. 3.5, in which the BACE1 cleavage inhibition is incorporated by the factor EFF.
EFF is the degree of inhibition caused by MBi-5, expressed as shown in Eq. 3.10.

EFF = 1−
CGAM

target × Imax

CGAM
target + IC50GAM

(3.10)

Where Ctarget is the target site concentration of MBi-5 , IC50 the Ctarget that results in
50% inhibition of BACE1, Imax is the maximum response and GAM is the Hill coefficient.
Ctarget was derived from the PK model as:
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Ctarget = Cplasma ×
AUCCSF

AUCplasma
(3.11)

Where AUCCSF and AUCplasma are the areas under the CSF and plasma concentration
time curves, respectively. Here, Ctarget is assumed to follow the same profile as Cplasma,
but at a level between CCSF and Cplasma.

It is assumed that the system is in steady state when no treatment is given (EFF=1).
At the treatment free-state, the change of the variables with respect to time is:

d

dt
APP = 0

d

dt
sAPPα = 0

d

dt
sAPPβ = 0

d

dt
Aβ40 = 0

d

dt
Aβ42 = 0

(3.12)

These steady state conditions were used to derive part of the system parameters. From
Eq. 3.12 and Eq. 3.5 it follows that the source of APP (RinAPP) is:

RinAPP = (Rinα+Rinβ)×APPbase (3.13)

Where APPbase is the baseline level of APP, which is assumed to be equal to the sum of
the baseline levels of sAPPα and sAPPβ, as it was assumed that there is no alternative
proteolytic enzyme cleaving full length APP other than α-secretase and BACE1.

Using Eq. 3.12 and Eq. 3.6 the sAPPα formation rate (Rinα), equivalent to the α-
secretase cleavage step, can be derived:

Rinα = Routa ×
sAPPαbase
APPbase

(3.14)

Where sAPPαbase is the baseline level of sAPPα.

The sAPPβ formation rate (Rinβ), equivalent to the BACE1 cleavage step, follows
from Eq. 3.12 and Eq. 3.7:

Rinβ = (Kin40 +Kin42)×
sAPPβbase
APPbase

(3.15)
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Where sAPPβbase is the baseline level of sAPPβ.

From Eq. 3.12 and Eq. 3.8 the Aβ40 formation rate (Kin40), equivalent to a γ-
secretase cleavage step can be calculated:

Kin40 = Kout× Aβ40base
sAPPβbase

(3.16)

Where Aβ40base is the baseline level of Aβ40. sAPPβbase is the baseline level of sAPPβ,
used here as surrogate for the baseline level of C99.

From Eq. 3.9 and Eq. 3.12, with substitution of Kout from Eq.3.16, the Aβ42 formation
rate (Kin42), equivalent to a γ-secretase cleavage step, is deduced:

Kin42 = Kin40 ×
Aβ42base
Aβ40base

(3.17)

Where Aβ42base is the baseline level of Aβ42.

The model structure includes four transit compartments (Fig. 3.2), one for each
biomarker measured in CSF (sAPPα, sAPPβ, Aβ40, Aβ42), to account for transport from
the target site in the brain to CSF. These transit processes are described, in general, by
Eq. 3.18:

d

dt
speciesCSF = Kt× (species− speciesCSF ) (3.18)

Where Kt is the transit rate for the particular species (KtAP for sAPPα and sAPPβ and
KtAB for Aβ40 and Aβ42).

The system defined above can now be extended to incorporate an AβO pool for Aβ42
oligomerization. The addition of the AβO pool to the model structure requires adaptation
of Eq. 3.9, describing Aβ42 dynamics. The exchange between the AβO pool and the
Aβ42 compartment is described by Eq. 3.19 and Eq. 3.20:

d

dt
Aβ42 = Kin42 × sAPPβ −Kout42 ×Aβ42 −Kpl ×Aβ42 +Krev ×AβO

(3.19)

d

dt
AβO = Kpl ×Aβ42 −Krev ×AβO (3.20)
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Where Kpl and Krev are the Aβ42 oligomerization and dissociation rate, respectively,
which are dependent on the baseline values of Aβ42 and the AβO pool (Aβ42base and
AβObase, resp.) according to Eq. 3.21:

Krev =
Kpl ×Aβ42base

AβObase
(3.21)

Results

Separate empiric models described response of each APP metabolite
Initially, empirical PK-PD models were developed to quantify the exposure-response
relationships for each CSF APP metabolite (Aβ40, Aβ42, sAPPα and sAPPβ) of the
BACEi MBi-5 in monkeys. The typical model structure of each APP metabolite-inhibitor
combination consisted of a transit model with 1 or 2 compartments, with the drug effect
modelled relative or subtractive to baseline using an Imax/Emax function. A summary
overview of the results of these models is depicted in Table 3.1. The empirical models
provided consistency of drug effects across APP metabolites (identified potencies Aβ40:
0.0254 µM (95% CI, 0.0246-0.0262); Aβ42: 0.0455 µM (95% CI, 0.0351-0.0559);
sAPPβ: 0.0490 µM (95% CI, 0.0192-0.0788); sAPPα: 0.0265 µM (95% CI, 0.0135-
0.0395)). The mean transit time through the compartments of the models was lower for
Aβ40 and Aβ42 than for sAPPβ and sAPPα. This indicates that the response of Aβ40
and Aβ42 will appear earlier in CSF, even though sAPPβ is a sequentially earlier product
of the amyloidogenic APP pathway.

A systems model to describe APP metabolite responses
A comprehensive compartmental PK-PD model, incorporating MBi-5 PK and CSF APP
metabolites (Aβ40, Aβ42, sAPPα and sAPPβ) concentrations was developed to quantify
APP metabolite responses to BACE1 inhibition in monkeys. The model is schematically
presented in Figure 3.2. The model described production, elimination, and brain-to-
CSF transport of each APP metabolite, as well as their interrelationships (Figure 3.7).
The rate of APP metabolism was assumed to be close to the maximal capacity of the
enzymes involved30. Thus, APP production was approximated to follow zero-order
kinetics. sAPPβ was used in the model structure as a surrogate substrate for C99 in the
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Table 3.1: Summary parameters of the separate empiric model fits for each APP metabolite

PARAMETER DESCRIPTION UNIT APP METABOLITE
Aβ40 Aβ42 sAPPα sAPPβ

baseline Baseline pM 722 24.8 1040 1190

IM/EM Baximal inhibition /
effect 100%a 20.4 pM 167% 100%a

IC50/EC50
median inhibition /
effect concentration µM 0.0254 0.0455 0.0265 0.0490

CV Coefficient of
variation IC50/EC50

% 1.63 11.6 25.0 31.0

GAM Hill coefficient 1a 1a 1a 1a

MTTb Mean transit time h 5.155 3.597 15.873 19.417
a Fixed.
b MTT = 1

Kt
× (n+ 1), where n is the number of transit compartments and Kt is the transit rate.

γ-secretase cleavage step. As both sAPPβ and C99 are products of the APP cleavage by
BACE1, their formation rates should be the same and thus use of sAPPβ as a surrogate
for C99 was justified. To account for transport from the target site in the brain to CSF, the
model included one transit compartment for each APP metabolite. The drug effect was
incorporated in the model as the inhibition of loss of the APP precursor pool, equivalent
to the BACE1 cleavage step.

MBi-5 increased sAPPα and decreased sAPPβ and Aβ in a dose dependent manner

APP metabolite CSF concentrations showed a dose-dependent response in the presence
of the BACEi. The dose-dependent increase of sAPPα and the corresponding decreases
of sAPPβ and Aβ were described by the model with a single drug effect. A potency
(IC50) of 0.0256 µM (95% CI, 0.0137-0.0375) was identified. This value is close to the
in vitro inhibition constant (Ki) of 10 nM for MBi-5 inhibition of purified BACE1 and
also close to the IC50 for inhibition of Aβ production in intact cells of 24±6 nM26. When
estimated, the maximal inhibition (Imax) was close to 1. Therefore Imax could be fixed to
1, indicating 100% inhibition of BACE1 at sufficient high drug concentrations. Figures
3.3 to 3.6 show the model description of each APP metabolite for each dose group.

AβO pool required to account for differential effect on Aβ40 and Aβ42

A differential effect of BACE1 inhibition was observed for Aβ40 and Aβ42: a higher
response is observed in the data for Aβ40 than for Aβ42 (e.g. Figure 3.6E and 3.6G). This
differential effect could be described by extending the model with an AβO pool connected
to the Aβ42 compartment, resulting in an adequate description of sAPPβ, sAPPα, Aβ40
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Figure 3.2: Schematic of systems model of APP processing.
The model comprised nine compartments: Five biomarker compartments in brain (yellow circles)
and four transit compartments from brain to CSF (white circles). Four biomarkers were measured
in CSF (sAPPα, sAPPβ, Aβ40 and Aβ42), indicated by the blue boxes. The extended model
included additionally an AβO compartment (dashed circle). The drug effect (EFF) inhibited
Rinβ. As driver of biomarker response Ctarget was used, which was derived from the PK model
(see Supplemental Material). sAPPβ was used in the model structure as a surrogate substrate of
C99 in the γ-secretase cleavage step.
APP: Aβ-precursor protein; Aβ: amyloid-β-peptide; Ctarget: drug concentration target site; Kin40: Aβ40
formation rate; Kin42: Aβ42 formation rate; Kout: Aβ degradation rate; Kpl: Oligomerization rate; Krev:
AβO dissociation rate; KtAB: transit rate Aβ from brain to CSF; KtAP: transit rate sAPPα and sAPPβ from
brain to CSF; RinAPP: zero order input constant for APP; Rinα: sAPPα formation rate; Rinβ:
sAPPβ formation rate; Rout: sAPPβ degradation rate; Routa: sAPPα degradation rate.

and Aβ42 CSF concentration time profiles for each dose group (Figures 3.3, 3.4, 3.5 and
3.6, respectively). Incorporating the AβO pool in the model improved the description
of Aβ40 response for the 30 and 125 mg/kg dose group (compare Figure 3.5E to Figure
3.5F and Figure 3.6E to Figure 3.6F), as well as the description of the 125 mg/kg dose for
Aβ42 response (compare Figure 3.6G to Figure 3.6H). Furthermore, the description of
sAPPβ response for 125 mg/kg dose (compare Figure 3.6C to Figure 3.6D) was improved.
Exchange of an Aβ40 monomer pool with an AβO pool was evaluated, but could not be
identified.
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Figure 3.3: Placebo. Visual predictive check of biomarker response vs. time profile of placebo
in the rhesus with 90% confidence interval. Predictions were performed with model without
AβO compartment ((A), (B), (C), (D)). Predictions performed with model with AβO pool had
identical results (not shown). Observation sample size: n=114 for each APP metabolite from 6
monkeys collected over 7 days.
Plus-symbols represent observed measurements. Dotted line corresponds to the median observed profile.
Solid lines show the median simulated profiles. The longs-dashed lines correspond to the 90% prediction
intervals obtained from 1000 individual simulated profiles.
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Figure 3.4: Dose 10 mg/kg. Visual predictive check of biomarker response vs. time profile of
MBi-5 in the rhesus with 90% confidence interval. Predictions were performed with model with
((B), (D), (F), (H)) and without ((A), (C), (E), (G)) AβO compartment. Observation sample size:
n=114 for each APP metabolite from 6 monkeys collected over 7 days.
Plus-symbols represent observed measurements. Dotted line corresponds to the median observed profile.
Solid lines show the median simulated profiles. The longs-dashed lines correspond to the 90% prediction
intervals obtained from 1000 individual simulated profiles.
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Figure 3.5: Dose 30 mg/kg. Visual predictive check of biomarker response vs. time profile of
MBi-5 in the rhesus with 90% confidence interval. Predictions were performed with model with
((B), (D), (F), (H)) and without ((A), (C), (E), (G)) AβO compartment. Observation sample size:
n=114 for each APP metabolite from 6 monkeys collected over 7 days.
Plus-symbols represent observed measurements. Dotted line corresponds to the median observed profile.
Solid lines show the median simulated profiles. The longs-dashed lines correspond to the 90% prediction
intervals obtained from 1000 individual simulated profiles.
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Figure 3.6: Dose 125 mg/kg. Visual predictive check of biomarker response vs. time profile of
MBi-5 in the rhesus with 90% confidence interval. Predictions were performed with model with
( (B), (D), (F), (H)) and without ( (A), (C), (E), (G)) AβO compartment. Observation sample size:
n=114 for each APP metabolite from 6 monkeys collected over 7 days.
Plus-symbols represent observed measurements. Dotted line corresponds to the median observed profile.
Solid lines show the median simulated profiles. The longs-dashed lines correspond to the 90% prediction
intervals obtained from 1000 individual simulated profiles.
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Model parameters

The population parameters and intra- and interanimal variability were optimized for the
study population and are depicted in Table 3.2. A sequence of models with interanimal
variability on different parameters was tested and the results compared, in order to select
the best random effects model structure. The final model included interanimal variability
for the baseline of sAPPβ and the IC50 of MBi-5. Both were included as exponential
in nature, reflecting lognormal distributions of the individual model parameters. As the
baselines of the other APP metabolites were modelled as function of the baseline of
sAPPβ, its interanimal variability reflects also on the other baselines. Residual variability
was included for each APP metabolite (sAPPβ, sAPPα, Aβ40, Aβ42), as proportional
error models, assuming that the residual errors are normally distributed. The identified
residual variability was higher for Aβ40 and Aβ42 than for sAPPβ and sAPPα. System
specific parameters could be distinguished from drug specific parameters (all correlations
<0.95).

Incorporating the AβO pool in the model improved the description and did not affect
the parameter estimate of the IC50 significantly: With AβO pool an IC50 of 0.0269 µM
(95% CI, 0.0154-0.0384) was identified and without AβO pool the IC50 was 0.0256 µM
(95% CI, 0.0137-0.0375). The incorporation of the AβO pool affected the Hill coefficient
of the sigmoidal Imax concentration response relationship. The AβO pool resulted in a
Hill coefficient slightly deviating from unity: With the AβO pool a Hill coefficient of
1.53 (95% CI, 1.14-1.92) was identified and without AβO pool the Hill coefficient was
1 (fixed). This mainly improved the description of the APP metabolite concentration
response curves for the higher dose groups (Figure 3.6).

Higher brain-to-CSF transport of Aβ

It was not possible to separate the rate of the γ-secretase cleavage from the brain-to-CSF
transport. The transit rate for Aβ40 and Aβ42 was assumed to be equal and fast. Therefore,
the transit rate from brain to CSF for Aβ40 and Aβ42 was fixed to an arbitrary high value
(10 h−1). Then, the Aβ half-life of 0.7 h reflects delays due to the γ-secretase cleavage
step and brain-to-CSF transfer. For sAPPβ and sAPPα the transit rate was estimated to be
0.0985 h−1. This value should be interpreted relative to the Aβ transit from brain-to-CSF.
For sAPPα the brain-turnover (0.8 h) could be distinguished from the half-life of brain-to-
CSF transfer (7.0 h). Aβ is transported from brain to CSF approximately 102-fold faster
than sAPPα. As a result, the response of Aβ to drug treatment will appear earlier in CSF
than the response of sAPPα, even though sAPPα is a sequentially earlier product of the
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Table 3.2: Population parameter estimates including coefficient of variation (CV%) for the
extended model with AβO pool

PARAMETER DESCRIPTION VALUE UNIT CV%
Structural parameters
sAPPβbase baseline sAPPβ 1.19 × 103 pM 11.6
FbaseAβ40b Aβ40 baseline as fraction of sAPPβbase 0.611 12.3
FbaseAβ42c Aβ42 baseline as fraction of sAPPβbase 0.0210 8.38
FbasesAPPα

d sAPPα baseline as fraction of sAPPβbase 0.894 2.84
Kout degradation rate Aβ40 and Aβ42 0.940 h−1 13.6
Routa degradation rate sAPPα 0.856 h−1 30.8
KtAP transit rate sAPPα and sAPPβ 0.0985 h−1 2.82
KtABa transit rate Aβ 10 h−1

IMa maximal inhibition (Imax) 1
IC50 median inhibition concentration 0.0269 µM 21.8
GAM Hill coefficient 1.53 13.1
Kpl oligomerization rate 0.524 h−1 20.0
AβObase baseline AβO 278 pM 41.0
Interanimal variability
ω2

BSAPb
e Interanimal variability sAPPβ baseline 0.0568 30.1

ω2
IC50

e Interanimal variability IC50 0.279 35.5
Residual error
σ2

Aβ40
f Residual variability Aβ40 0.240 12.7

σ2
Aβ42

f Residual variability Aβ42 0.161 12.4
σ2

sAPPβ
f Residual analysed sAPPβ 0.0621 23.5

σ2
sAPPα

f Residual variability sAPPα 0.0634 10.6
a Fixed.
b Aβ40base=FbaseAβ40× sAPPβbase.
c Aβ42base=FbaseAβ42 × sAPPβbase.
d sAPPαbase=FbasesAPPα × sAPPβbase.
e Interanimal variability is assumed to follow a normal distribution with mean zero and variance ω2.
f Residual variability is assumed to follow a normal distribution with mean zero and variance σ2.

APP pathway.
It was not possible to identify the brain-turnover of sAPPβ as a separate parame-

ter. In the model structure, sAPPβ was used as a surrogate substrate for C99 in the
γ-secretase cleavage step, driving the response of Aβ. Therefore, the γ-secretase cleavage
step could not be separated from sAPPβ elimination.

APP metabolites interrelationships
The proteolytic cleavage rates of APP through the action of BACE1 (Rinβ) and α-
secretase (Rinα) were calculated from the model parameters according to Eq. 5.12 and
Eq. 5.11 to be 0.314 h−1 and 0.404 h−1 indicating that 56% of full length APP is cleaved
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Figure 3.7: Graphical insight into the biomarker responses in brain and CSF, using the
identified systems model of the APP processing pathway.
The biomarker responses in brain and CSF are predicted after a single dose of 125 mg MBi-5,
using the typical parameter estimates.
APP grey dotdashed line; sAPPα red solid line; sAPPβ black solid line; Aβ40 green solid line; AβO grey
dotted line; Aβ42 blue solid line.

by α-secretase and 44% by BACE1. The formation rates of Aβ40 and Aβ42 were
calculated according to S4.27 and 5.15. The higher Kin40 (0.574 h−1) than Kin42 (0.020
h−1) is in line with previously reported findings of the ratio between Aβ42 and Aβ40
of about 1:10 in non-Alzheimer brain31. A difference in Aβ40 and Aβ42 degradation
rate (Kout) was also evaluated during the model development process, but this could not
adequately capture the response profile of Aβ42.

The developed model could be used to predict biomarker interrelationships in response
to BACE1 inhibition and visualize the response of APP and AβO ( 3.7A) in brain. APP
increases after BACE1 inhibition and appears to be shunted down the α-secretase pathway,
resulting in an increase of sAPPα product. The elevation in sAPPα in the data drives the
modelling conclusion that there is some increase in APP in the setting of BACE1 inhibition
but it is fairly modest. The AβO level decreases after BACE1 inhibition, indicating that
there is reduced formation of AβO by reduced levels of monomeric Aβ42 and that
AβO dissociates to monomeric Aβ42. The latter influences the shape of the Aβ42
response curve, which is different than the shape of the Aβ40 response curve.

For sAPPβ, sAPPβ, Aβ40 and Aβ42 the time courses of brain versus CSF responses
were predicted (Figure 3.7A and 3.7B, respectively), showing that the earlier appearance
of Aβ response in CSF relative to sAPPα and sAPPβ arises from the slower brain to CSF
transfer.
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Discussion

A systems model of the APP processing pathway was developed describing the interre-
lationships of Aβ40, Aβ42, sAPPα, and sAPPβ upon inhibition of BACE1 with MBi-5.
All four APP metabolites provided consistent information regarding drug potency. The
MBi-5 concentration-dependent decrease of the APP metabolites could be described by
incorporating a single drug effect in the model: inhibition of the formation rate of sAPPβ,
equivalent to the BACE1 cleavage step. The model supported the notion that MBi-5 can
provide 100% inhibition of BACE1, consistent with a complete blockage of Aβ produc-
tion at high drug concentrations. The fact that MBi-5 can provide 100% inhibition of
BACE1, implies that there are no inherent mechanistic limitations of the APP pathway
to blocking Aβ production. Therefore, reaching complete inhibition largely depends on
drug properties such as having sufficient potency, bioavailability and tolerability.

The relatively large interanimal variability identified on the baseline level of sAPPβ
(also reflecting on the baseline levels of the other APP metabolites) and the IC50 probably
denotes the large intrinsic biological differences in APP processing between subjects.
Residual variability was higher for Aβ40 and Aβ42 than for sAPPβ and sAPPα. Resid-
ual variability represents the uncertainty in the relationship between the concentrations
predicted by the model and the observed concentration and includes any model misspec-
ification error. The higher residual variability for Aβ could be related to the second
cleavage step by γ-secretase, yielding Aβ. In the current analysis, no direct information
was available regarding the γ-secretase cleavage step. This would require data from
a γ-secretase inhibitor study. Such data may explain some of the residual variability
identified for Aβ.

The systems model identified a higher brain-to-CSF transport of Aβ compared to
sAPPα. This results is consistent with the identified lower mean transit time for Aβ40
and Aβ42 compared to sAPPα in the separate empirical models for each APP metabolite.
The potencies identified in the empirical models were consistent with the single potency
of 0.0256 µM (95% CI, 0.0137-0.0375) identified using the systems model.

In the systems model, the APP production was approximated to follow zero-order
kinetics. In reality, APP production is regulated by various factors, above all the synaptic
activity32. In the current analysis, no quantitative data on the factors involved in APP
production was available. It was assumed that the APP production was close to the
maximum. Consequently, subtle changes in APP regulation would have little impact on
APP metabolites formation.
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Our modelling results imply that 56% of full length APP is cleaved by α-secretase and
44% by BACE1. There is no quantitative data available from literature on the ratio of
APP moving down the α-secretase pathway and BACE1 pathway. Dobrowlska et al.
(2014) compared sAPPα and sAPPβ levels in human CSF from the lumbar region from
cognitively normal and AD participants33. They identified a sAPPβ/sAPPα ratio of 0.59
±0.4 (n=15) in cognitively normal healthy controls. Wu et al. (2011) reported sAPPα and
sAPPβ levels in human brain cortex samples from elderly subjects without AD (n=16)
of 37.1 pmol/g and 50.8 pmol/g, respectively27, resulting in a ratio of 0.73. However,
both ratios do not directly reflect the ratio of APP cleaved by α-secretase and BACE1,
as the steady state sAPPβ and sAPPα levels in brain are the result of multiple processes
such as production, degradation and transfer from brain-to-CSF. Levels in CSF are also
affected by transfer through the lumbar region. In the current analysis, the developed
model facilitated the separation of the different processes involved.

The systems analysis points to a difference in biology of Aβ40 and Aβ42. Firstly,
a lower formation rate for Aβ42 than for Aβ40 was identified. This is consistent with
the composition of Aβ species reported for human CSF where the Aβ40 is the dominant
isoform34. The relative production of Aβ40 and Aβ42 is probably regulated through
changes in the γ-secretase cleavage site35,34. Secondly, the model included an AβO pool
in brain for Aβ42 but not Aβ40. Inclusion of exchange of an Aβ42 monomer pool with an
AβO pool could account for the differential effect of MBi-5 on Aβ40 and Aβ42 response
observed in the data, in which the response for Aβ40 was higher than for Aβ42. Without
incorporation of the AβO pool in the model, the Aβ40 and Aβ42 response could not both
be described adequately by a single drug effect. The identification of this AβO constitutes
the scientific basis for the identification of BACE1 inhibitor effects on higher ordered
amyloid species. Due to the dissociation of Aβ42 oligomers to Aβ42 monomers during
BACE1 inhibition the response for Aβ42 was lower than for Aβ40. The differential
effect of the AβO pool on Aβ42 is consistent with the biology of oligomer- and plaque
formation where Aβ42 plays a more significant role than Aβ401. Aβ42 is the major
constituent of plaque and other species such as oligomers31,36.

The baseline level of the AβO pool estimated by the model of 278 pM (1,255 pg/mL)
should be interpreted as the level of Aβ42 monomers that is incorporated in the ’oligomer
soup’ in the brain, i.e. Aβ dimers, trimers and high molecular weight species3. Here, no
distinction is made between oligomeric species, as the AβO pool is modelled as a pool
in equilibrium with monomeric Aβ42 without correction for the number of subunits in
multimeric species comprising the AβO pool.
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The AβO dissociation rate (Krev) of 1.308 × 10−5 s−1 identified here is relatively
slow compared to the dissociation of Aβ aggregates acquired from in vitro analysis
techniques. Gruning et al. (2013) detected the appearance of monomers from Aβ42 and
Aβ40 protofibrils: the dissociation rate was 1.4×10−4 and 1.2× 10−4 s−1 for Aβ42 and
Aβ40, respectively. Narayan et al. (2012) reported Aβ40 fibrils releasing soluble Aβ40
species at a rate of 9.3×10−5 s−1. Sánchez et al. (2011) identified Aβ monomer off-rates
of 0.6×10−2 and 1.0×10−2 s−1 for Aβ40 and Aβ42 fibrils. It is difficult to compare rates
obtained in vivo to those determined using in vitro approaches, as the in vitro experimental
settings can have major impact. Moreover, the comparability of the dissociation rates
to the value obtained in the current analysis is limited, because no particular oligomeric
species was characterized in the systems pharmacology approach.

Quantitative measurements of the response of AβO to drugs targeting the APP pathway,
such as BACE1 inhibition, is of interest. Initial results of a new sensitive Aβ oligomer
assay5 suggest an AβO baseline level of ∼1.5 pg/mL in rhesus CSF from the cisterna
magna, which constitutes different oligomeric species (Mary Savage, Juliya Kalinina,
unpublished observations). This number cannot be compared directly to the model
derived AβO baseline of 1,255 pg/mL representing Aβ subunits in the ’oligomer soup’
in the brain. Also, the Aβ-oligomer assay may not pick up all oligomeric species or
AβO may dissociate to monomers during sample preparation. Furthermore, it remains
to be seen if CSF AβO measurements accurately reflect the brain AβO concentrations40.
The hydrophobicity of oligomers may make them very low or absent in aqueous fluids as
CSF8. Recent data suggest that human CSF AβO range between 0.1 and 10 pg/mL and
human brain AβO levels are 252 pg/mL in AD and 87 pg/mL in control brain5. Other data
suggest 1,000-fold higher concentrations of AβO than monomers in the soluble fraction of
human AD cerebral cortex8. Relative concentrations in CSF will not necessary reflect the
relative concentrations in brain as oligomers are likely cleared to CSF much more slowly
than monomeric Aβ. Additional dose-ranging studies of BACE1 inhibition in rhesus in
which AβO response is quantified, are ongoing. It is anticipated that including such data
in the systems pharmacology model analysis will elucidate the relationship between the
AβO pool in the model and measurements of AβO.

The identified AβO pool should be interpreted with caution as an AβO pool in rhesus
may differ from an AβO pool in AD patients with plaque burden. Rhesus do not develop
dementia and neurodegenerative changes that characterize AD41. It is almost certain that
the rhesus used in this study had far less amyloid deposition than a human AD patient.
Therefore, the most crucial question is the nature of the identified AβO pool in rhesus and

64



Systems pharmacology analysis of the APP pathway

its pathological relevance to AD in human. Aβ oligomerization is a separate aggregation
event. Certain oligomers are off-pathway species that do not further aggregate to amyloid
fibrils. Coexistence of several oligomeric populations that do or do not propagate into
fibrils is possible. If it can be demonstrated that there is a relationship between the
soluble AβO identified in rhesus and the AD brain-derived soluble AβO and this could be
correlated with neurotoxicity, then the relevance of AβO in rhesus would be indisputable.

The lack of success of clinical trials targeting the APP pathway has been ascribed to
the failure to reduce the level of toxic AβO

40. Plaques, toxic AβO and Aβ peptides should
be targeted to significantly reduce soluble Aβ load because of the relationship between
these three. It has been hypothesized that by decreasing Aβ levels, soluble AβO amounts
are also reduced, in turn inducing the release of AβO from plaques to restore the balance
between AβO in the plaques and the extracellular environment40.

The ability to identify and estimate the oligomerization effect through modelling
suggested that these efforts to model the monomer pathway may also provide information
on the higher ordered amyloid species. The ability to see this effect suggested that
Aβ production inhibition by MBi-5 may also have the ability to draw down these forms
as well as inhibit Aβ de novo production. In an APP transgenic mice study it has been
demonstrated that BACE1 inhibition reduces amyloid plaque load (Kennedy and Hide,
unpublished observations). This implies that if monomeric Aβ levels decrease as result of
blocked Aβ production, AβO dissociate to restore the equilibrium between monomeric
Aβ and AβO. To confirm this, incorporation of AβO data into the model using rhesus
data is ongoing.

A comprehensive model of the APP pathway describing the effects the BACEi MBi-
5 has been established, taking into account the kinetics and interrelationships of sAPPα,
sAPPβ, Aβ40 and Aβ42. The effect of BACE1 inhibition was incorporated in the model
as inhibition of the formation rate of sAPPβ. As sAPPβ and C99 are both products
of the same BACE1 cleavage step, the response of sAPPβ could be used as driver of
Aβ response. However, sAPPβ and C99 could be subjected to different elimination
processes as C99 remains membrane bound42. The fact that the Hill coefficient of the
concentration response relationship slightly deviates from unity may be a reflection of this
simplification of the underlying biological system. To adequately separate the sequential
cleavage steps of BACE1 and γ-secretase from other processes involved, data from a
γ-secretase inhibitor study in CMP rhesus18 will be added to inform the model further
(ongoing).

As BACE1 is the initiating enzyme in Aβ production, its inhibition has been proposed
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to decrease the amount of cerebral Aβ and to subsequently prevent the development
of Aβ-associated pathologies43. With the developed systems pharmacology model a
deeper comprehension of the effects of BACEi on the APP processing pathway and the
anticipated effect on AβO was gained. Understanding these effects early in preclinical
development could improve the anticipation of the magnitude of Aβ reducing effects in
humans. The model forms the first step in developing a translational systems model to
predict possible Aβ response of new drug candidates in human, based on their estimated
potency in rhesus.

66



Systems pharmacology analysis of the APP pathway

References

1. Di Carlo, M., Giacomazza, D., & San Bi-

agio, P.L. Alzheimer’s disease: biological

aspects, therapeutic perspectives and diag-

nostic tools. J physics Condens matter an

Inst Phys J. 2012;24(24):244102.

2. Hardy, J. & Selkoe, D.J. The amyloid hy-

pothesis of Alzheimer’s disease: progress

and problems on the road to therapeutics.

Science. 2002;297(5580):353–6.

3. Benilova, I., Karran, E., & De Strooper, B.

The toxic Aβ oligomer and Alzheimer’s dis-

ease: an emperor in need of clothes. Nat

Neurosci. 2012;15(3):349–357.

4. Klein, W.L. Synaptotoxic amyloid-β

oligomers: a molecular basis for the cause,

diagnosis, and treatment of Alzheimer’s dis-

ease? J Alzheimer’s Dis. 2013;33:S49–S65.

5. Savage, M.J., et al. A sensitive Aβ

oligomer assay discriminates Alzheimer’s

and aged control cerebrospinal fluid. J Neu-

rosci. 2014;34(8):2884–97.

6. Esparza, T.J., et al. Amyloid-beta oligomer-

ization in Alzheimer dementia vs. high

pathology controls. Ann Neurol. 2013;73

(1):104–119.

7. Mc Donald, J.M., et al. The presence of

sodium dodecyl sulphate-stable Aβ dimers

is strongly associated with Alzheimer-type

dementia. Brain. 2010;133:1328–41.

8. Yang, T., Hong, S., O’Malley, T., Sperling,

R.A., Walsh, D.M., & Selkoe, D.J. New

ELISAs with high specificity for soluble

oligomers of amyloid β-protein detect nat-

ural Aβ oligomers in human brain but not

CSF. Alzheimer’s Dement. 2013;9(2):99–

112.

9. Esler, W.P. & Wolfe, M.S. A portrait of

Alzheimer secretases - New features and

familiar faces. Science. 2001;293(5534):

1449–54.

10. Wiltfang, J., et al. Higly conserved and

disease-specific patterns of carboxytermi-

nally truncated Aβ peptides 1-37/38/39 in

addition to 1-40/42 in Alzheimer’s disease

and in patients with chronic neuroinflamma-

tion. J Neurochem. 2002;81(3):481–496.

11. Portelius, E., Mattsson, N., Andreasson, U.,

Blennow, K., & Zetterberg, H. Novel A Iso-

forms in Alzheimer’s Disease - Their Role

in Diagnosis and Treatment. Curr Pharm

Des. 2011;17(25):2594–2602.

12. Husain, M.M., Kenneth, T., Siddique,

H., & McClintock, S.M. Present and

prospective clinical therapeutic regimens

for Alzheimer’s disease. Neuropsychiatr Dis

Treat. 2008;4(4):765–777.

13. Yan, R. & Vassar, R. Targeting the β secre-

tase BACE1 for Alzheimer’s disease therapy.

Lancet Neurol. 2014;13(3):319–329.

14. Lu, Y., et al. Cerebrospinal fluid amyloid-β

(Aβ) as an effect biomarker for brain Aβ

lowering verified by quantitative preclinical

analyses. J Pharmacol Exp Ther. 2012;342

(2):366–75.

15. Jack, C.R. & Holtzman, D.M. Biomarker

modeling of Alzheimer’s disease. Neuron.

2013;80(6):1347–1358.

67



Chapter 3

16. Podlisny, M.B., Tolan, D.R., & Selkoe,

D.J. Homology of the amyloid beta protein

precursor in monkey and human supports

a primate model for beta amyloidosis in

Alzheimer’s disease. Am J Pathol. 1991;138

(6):1423–1435.

17. Gilberto, D.B., et al. An alternative method

of chronic cerebrospinal fluid collection via

the cisterna magna in conscious rhesus mon-

keys. Contemp Top Lab Anim Sci. 2003;42

(4):53–59.

18. Cook, J.J., et al. Acute γ-secretase inhibi-

tion of nonhuman primate CNS shifts amy-

loid precursor protein (APP) metabolism

from amyloid-β production to alternative

APP fragments without amyloid-β rebound.

J Neurosci. 2010;30(19):6743–50.

19. Lu, Y., et al. Cerebrospinal fluid β-amyloid

turnover in the mouse, dog, monkey and

human evaluated by systematic quantitative

analyses. Neurodegener Dis. 2013;12(1):

36–50.

20. Janson, J., et al. Population PKPD modeling

of BACE1 inhibitor-induced reduction in

Aβ levels in vivo and correlation to in vitro

potency in primary cortical neurons from

mouse and guinea pig. Pharm Res. 2014;31

(3):670–83.

21. Parkinson, J., et al. Modeling of age-

dependent amyloid accumulation and γ-

secretase inhibition of soluble and insoluble

Aβ in a transgenic mouse model of amyloid

deposition. Pharmacol Res Perspect. 2013;1

(2):e00012.

22. Liu, X., et al. Mechanistic pharmacokinetic-

pharmacodynamic modeling of BACE1 in-

hibition in monkeys: development of a pre-

dictive model for amyloid precursor protein

processing. Drug Metab Dispos. 2013;41

(7):1319–28.

23. Potter, R., et al. Increased in vivo Amyloid-

β42 production, exchange, and irreversible

loss in Presenilin Mutations Carriers. Sci

Transl Med. 2013;5(189):189ra77.

24. Danhof, M., Alvan, G., Dahl, S.G.,

Kuhlmann, J., & Paintaud, G. Mechanism-

based pharmacokinetic-pharmacodynamic

modeling - A new classification of biomark-

ers. Pharm Res. 2005;22(9):1432–7.

25. Danhof, M., De Jongh, J., De Lange, E.C.,

Della Pasqua, O., Ploeger, B.A., & Voskuyl,

R.A. Mechanism-based pharmacokinetic-

pharmacodynamic modeling: biophase dis-

tribution, receptor theory, and dynamical

systems analysis. Annu Rev Pharmacol Tox-

icol. 2007;47:357–400.

26. Dobrowolska, J.A., et al. CNS amyloid-

β, soluble APP-α and -β kinetics during

BACE inhibition. J Neurosci. 2014;34(24):

8336–8346.

27. Wu, G., Sankaranarayanan, S., Hsieh,

S.H.K., Simon, A.J., & Savage, M.J. De-

crease in brain soluble amyloid precursor

protein β (sAPPβ) in Alzheimer’s disease

cortex. J Neurosci Res. 2011;89(6):822–32.

28. Sankaranarayanan, S., et al. First demon-

stration of cerebrospinal fluid and plasma

Aβ lowering with oral administration of a

β-site amyloid precursor protein-cleaving

enzyme 1 inhibitor in nonhuman primates. J

Pharmacol Exp Ther. 2009;328(1):131–140.

29. Beal, S.L. NONMEM Users Guide: In-

troduction to Version VI GloboMax

68



Systems pharmacology analysis of the APP pathway

ICON Development Solutions;Ellicott City,

MD;2008.

30. Nelson, D.L. & Cox, M.M. Lehninger Prin-

ciples of Biochemistry 3rd ed. Worth Pub-

lishers;New York;2000.

31. Iwatsubo, T., Odaka, A., Suzuki, N., Mizu-

sawa, H., Nukina, N., & Ihara, Y. Visu-

alization of Aβ42(43) and Aβ40 in senile

plaques with end-specific Aβ monoclonals:

evidence that an initially deposited species

is Aβ42(43). Neuron. 1994;13(1):45–53.

32. Cheng, X., Wu, J., Geng, M., & Xiong, J.

The role of synaptic activity in the regula-

tion of amyloid beta levels in Alzheimer’s

disease. Neurobiol Aging. 2014;35(6):1217–

1232.

33. Dobrowolska, J.A., et al. Diurnal patterns of

soluble amyloid precursor protein metabo-

lites in the human central nervous system.

PLoS One. 2014;9(3):e89998.

34. Murphy, M.P., Hickman, L.J., Eckman,

C.B., Uljon, S.N., Wang, R., & Golde, E.T.

γ-Secretase, evidence for multiple prote-

olytic activities and influence of membrane

positioning of substrate on generation of

amyloid β peptides of varying length. J Biol

Chem. 1999;274(17):11914–11923.

35. Dolev, I., et al. Spike bursts increase

amyloid-β 40/42 ratio by inducing a

presenilin-1 conformational change. Nat

Neurosci. 2013;16(5):587–95.

36. Jarrett, J.T., Berger, E.P., & Lansbury, P.T.

The carboxy terminus of the β amyloid pro-

tein is critical for the seeding of amyloid

formation: Implications for the pathogen-

esis of Alzheimer’s disease. Biochemistry.

1993;32(18):4693–4697.
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Pharmacokinetic Data Analysis MBi-5

The exposure at the target site in the brain can rarely be quantified directly. In the cisterna
magna ported (CMP) rhesus monkey model exposure can be measured in cerebrospinal
fluid (CSF) in addition to plasma. The pharmacokinetics (PK) in plasma and CSF can
be used to derive a measure of exposure at the target site. Therefore, a population PK
model was developed that describes the PK of MBi-5 in plasma and CSF in CMP rhesus
monkeys. The results of the PK analysis of MBi-5 were included in the subsequent PK-PD
analysis.

The PK model was developed and fitted to the data by means of non-linear mixed
effects modelling using the NONMEM software package version VI level 2 (see the
Materials and Methods section in chapter 3).

K24

Ka

A2, V2

Central

Vmax, Km

K32

K23

K30

A3, V3

CSF

A4, V4

Peripheral

A1

K42

Figure S3.1: Schematic of the population PK model for MBi-5, that comprised of a dose,
central, peripheral and CSF compartment.
Rate constants for the individual compartments are Ka (absorption), K24 (rate constant from
central to peripheral), K42 (rate constant from peripheral to central), K23 (rate constant from
central to CSF), K32 (rate constant from CSF to central). A1, A2, A3, A4, V2, V3 and V4 are
amounts (A) and volume of distribution (V) of MBi-5 in dose, central, CSF and peripheral
compartments, respectively. K30 is the elimination rate in CSF compartment. Vmax is the
maximum velocity; Km is the Michaelis-Menten constant.

The compartmental PK model of MBi-5 was based on simultaneous analysis of
plasma and CSF PK data. The PK profiles of MBi-5 in plasma and CSF were adequately
described by a model containing three compartments: a central, peripheral and CSF
compartment (Supplemental Figure S3.1). The CSF compartment is linked to the central
compartment, with exchange determined by rate constants K32 and K23. The model
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considered elimination from the central and CSF compartment, where the elimination
from the central compartment (K20) is described by the Michaelis-Menten equation
(Equation S3.1).

K20 =
VMAX

KM + A2

V2

(S3.1)

The rate of change in each compartment can be expresses as:

d

dt
A1 = −Ka ×A1 (S3.2)

d

dt
A2 =Ka ×A1 −K24 ×A2 +K42 ×A4 −K23 ×A2 +K32 ×A3

− VMAX ×A2

KM + A2

V2

(S3.3)

d

dt
A3 = K23 ×A2 −K32 ×A3 −K30 ×A3 (S3.4)

d

dt
A4 = K24 ×A2 −K42 ×A4 (S3.5)

MBi-5 displayed nonlinear PK at different kinetic levels. The extent of the absorption
decreased with an increase in dose (Ka, from 10.0 to 0.144 h−1 for 10 and 125 mg/kg,
respectively). The distribution to the CSF compartment appeared to be saturable, reflected
in a decrease in the rate constant from the central to CSF compartment for the 125 mg/kg
dose (K23, from 0.000488 to 0.000116 h−1). Elimination was identified from the central
and CSF compartment. As the elimination of MBi-5 from the central compartment
followed Michaelis-Menten kinetics (Supplemental Equation S3.1) the clearance in the
central compartment changed as function of time and concentration (CL2 = K20(t,Cp)×
V2). At the doses included in the current investigation, clearance in the CSF compartment
(CL3 = K30*V3) was approximately 106-fold greater than clearance from the central
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compartment, indicating that the CSF clearance route contributes remarkably.
Table S3.1 shows all PK parameter estimates. The volume of the CSF compartment

could not be estimated and was fixed to a small value (0.0250 L). Interanimial variability
was quantified for the volume of the central compartment (V2). Residual variability
(proportional error) was higher for the CSF than for the plasma concentration (0.628 and
0.188 for CSF and plasma, respectively).

The developed PK model gives an adequate description of plasma and CSF concentra-
tion time profiles, as can be seen from plots of the simulated and observed concentrations
versus time profiles with 90% confidence interval (Figure S3.2).

PK data from the CMP rhesus monkey show that there is substantial CSF exposure after
oral dosing (10 fold lower than in plasma). The data suggest that MBi-5 concentrations
in brain, expected to be in between plasma and CSF levels, are sufficient to adequately
inhibit β-secretase activity in brain. The plasma and CSF concentrations versus time
profiles predicted from the model had a good fit to the values observed in the rhesus
monkeys. Thus, the model could serve as input for PD model analysis.

Table S3.1: Population parameter estimates including coefficient of variation (CV%) for the
PK model of MBi-5

PARAMETER DESCRIPTION VALUE UNIT CV%
Structural parameters
V2 central volume 122 L 18.9
Q4 intercompartmental clearance 2.01 L.h−1 53.2
FV4

a peripheral volume as fraction of central volume 0.488 42.8
Km Michaelis-Menten constant 6.24 µM 24.4
Vmax maximum velocity 1.04 µM.h−1 25.7
Ka dose10b absorption rate dose10 10.0 h−1 -
Ka dose30 absorption rate dose30 0.250 h−1 47.6
FKac absorption rate dose125 as fraction of Ka dose30 0.579 37.0
K23 rate constant from central to CSF 0.000488 h−1 37.7
FK23 dose 125d K23 for dose125 as fraction 0.239 23.5
K30 elimination rate CSF compartment 34.5 h−1 21.2
V3

b volume CSF compartment 0.0250 L -
Interanimal variability
ω2

V2 Interanimal variability central volume 0.0612 27.0
Residual error
σ2

plasma Residual variabiliy plasma 0.188 10.5
σ2

CSF Residual variabiliy CSF 0.628 26.4
a V4 = V2×FV4.
b Fixed.
c Ka dose125 = Ka dose30 ×FKa.
d K23 dose125 = K23×FK23.

75



Chapter 3

10−3 

10−2 

10−1 

100 

0 24 48 72 96 120 144

P
la

sm
a 

co
nc

en
tr

at
io

n 
(µ

M
) 

Time after dose(h)

Upper bound

Median

Lower bound

Observed

Median Observed

10−5 

10−4 

10−3 

10−2 

10−1 

0 24 48 72 96 120 144

C
S

F
 c

on
ce

nt
ra

tio
n 

(µ
M

) 

Time after dose(h)

Upper bound

Median

Lower bound

Observed

Median Observed

10−3 

10−2 

10−1 

100 

101 

0 24 48 72 96 120 144

P
la

sm
a 

co
nc

en
tr

at
io

n 
(µ

M
) 

Time after dose(h)

Upper bound

Median

Lower bound

Observed

Median Observed

10−5 

10−4 

10−3 

10−2 

10−1 

100 

0 24 48 72 96 120 144

C
S

F
 c

on
ce

nt
ra

tio
n 

(µ
M

) 

Time after dose(h)

Upper bound

Median

Lower bound

Observed

Median Observed

10−3 

10−2 

10−1 

100 

101 

0 24 48 72 96 120 144

P
la

sm
a 

co
nc

en
tr

at
io

n 
(µ

M
) 

Time after dose(h)

Upper bound

Median

Lower bound

Observed

Median Observed

10−5 

10−4 

10−3 

10−2 

10−1 

100 

0 24 48 72 96 120 144

C
S

F
 c

on
ce

nt
ra

tio
n 

(µ
M

) 

Time after dose(h)

Upper bound

Median

Lower bound

Observed

Median Observed

(A) 10 mg/kg MBi-5 plasma
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(B) 10 mg/kg MBi-5 CSF
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(C) 30 mg/kg MBi-5 plasma
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(D) 30 mg/kg MBi-5 CSF

10−3 

10−2 

10−1 

100 

0 24 48 72 96 120 144

P
la

sm
a 

co
nc

en
tr

at
io

n 
(µ

M
) 

Time after dose(h)

Upper bound

Median

Lower bound

Observed

Median Observed

10−5 

10−4 

10−3 

10−2 

10−1 

0 24 48 72 96 120 144

C
S

F
 c

on
ce

nt
ra

tio
n 

(µ
M

) 

Time after dose(h)

Upper bound

Median

Lower bound

Observed

Median Observed

10−3 

10−2 

10−1 

100 

101 

0 24 48 72 96 120 144

P
la

sm
a 

co
nc

en
tr

at
io

n 
(µ

M
) 

Time after dose(h)

Upper bound

Median

Lower bound

Observed

Median Observed

10−5 

10−4 

10−3 

10−2 

10−1 

100 

0 24 48 72 96 120 144

C
S

F
 c

on
ce

nt
ra

tio
n 

(µ
M

) 

Time after dose(h)

Upper bound

Median

Lower bound

Observed

Median Observed

10−3 

10−2 

10−1 

100 

101 

0 24 48 72 96 120 144

P
la

sm
a 

co
nc

en
tr

at
io

n 
(µ

M
) 

Time after dose(h)

Upper bound

Median

Lower bound

Observed

Median Observed

10−5 

10−4 

10−3 

10−2 

10−1 

100 

0 24 48 72 96 120 144

C
S

F
 c

on
ce

nt
ra

tio
n 

(µ
M

) 

Time after dose(h)

Upper bound

Median

Lower bound

Observed

Median Observed

(E) 125 mg/kg MBi-5 plasma
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(F) 125 mg/kg MBi-5 CSF

Figure S3.2: Visual predictive check of plasma (left panels) and CSF (right panels)
concentration time profile of MBi-5 in the rhesus with 90% confidence interval.
The rhesus were administrated with 10 mg/kg (A) (B), 30 mg/kg (C) (D) and 125 mg/kg (E) (F)
MBi-5. Observation sample size: n=102 for plasma and CSF per dose from 6 monkeys collected
over 7 days.
Plus-symbols represent observed measurements. Dotted line corresponds to the median observed profile.
Solid lines show the median simulated profiles. The longs-dashed lines correspond to the 90% prediction
intervals obtained from 1000 individual simulated profiles.
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Integrating tracer kinetic data in an APP systems pharmacology model

Abstract

Purpose: To assess the ability of a recently developed systems pharmacology model
of the β-amyloid precursor protein (APP) pathway to predict the tracer kinetics of APP
metabolites following administration of a β-secretase inhibitor.

Methods: A stable isotope tracer 13C6-labelled Leucine was administered to cisterna
magna ported (CMP) rhesus monkeys in conjunction with the β-secretase (BACE1) in-
hibitor MBi-5. The fraction labelled APP metabolites (total Aβ, sAPPα , sAPPβ) were
measured over 145 hours. A systems pharmacology model of the APP pathway, recently
developed using information on CSF absolute concentrations of the APP metabolites
(Aβ40, Aβ42, sAPPβ and sAPPα), was used as the basis for the prediction of the tracer
kinetic data.

Results: BACE1 inhibition by MBi-5 resulted in a concentration driven saturable ef-
fect on the APP pathway as reflected in the absolute concentrations of the metabolites,
fraction labelled Aβ and sAPPβ. In contrast, this MBi-5 concentration dependency was
not observed in the fraction labelled sAPPα because similar drug effects on both the
labelled and unlabelled pools for this marker yield a lack of dose-differentiation in this
relative biomarker. The recent APP systems model and absolute concentrations of the
APP metabolites support a dose-dependent response. The current results indicate that
interpretation of fraction labelled data is complex and best achieved with a kinetic model.
Aβ40 and Aβ42 dynamics did not fully explain the measured fraction labelled Aβ. The
model was used to demonstrate that a contribution of other Aβ isoforms with altered
dynamics from Aβ40 and Aβ42 is a potential explanation.

Conclusions: This analysis demonstrated that using a systems pharmacology model to
integrate tracer kinetic data with absolute protein concentrations enables a more accurate
interpretation of the tracer kinetic data.

Key words

Systems pharmacology - APP pathway - tracer kinetics - Aβ - β-secretase inhibition
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Introduction

The accumulation of amyloid-β (Aβ) peptide in the brain parenchyma as result of over-
production and/or decreased clearance has been implicated in the pathophysiology of
Alzheimer’s disease (AD)1. Toxic soluble Aβ oligomers (AβO) are considered to be the
drivers of the neurodegeneration in the brains of patients with AD2. Modulation of Aβ is
a therapeutic target for AD, with the potential for eliciting a disease modifying effect
by reducing high levels of Aβ peptides and subsequently preventing the development of
Aβ associated pathologies3,4. One of the main therapeutic strategies aims at Aβ reduction
through the inhibition of secretases responsible for their production.

Aβ peptides are generated by two sequential proteolytic cleavages of the β-amyloid
precursor protein (APP)5. The first step is catalyzed by β-site APP-cleaving enzyme
(BACE1, also called β-secretase) to yield the N-terminal fragment soluble APPβ (sAPPβ)
and the C-terminal membrane-bound 99-aminoacid fragment (C99). C99 undergoes
further cleavage by a second protease known as γ-secretase to generate Aβ species of
different chain lengths, the major variants having 38 (Aβ38), 40 (Aβ40) or 42 (Aβ42)
amino acids6. A third protease, α-secretase, cleaves APP within the Aβ sequence generat-
ing non-amyloidogenic soluble APPα (sAPPα) and precluding the formation of the major
Aβ variants7. A new APP processing pathway was recently reported by Willem et al.
(2015), in which sequential cleavage of APP by η-secretase and BACE1 or ADAM10
leads to the formation of Aη − β and Aη − α, respectively. There may be other alternate
pathways unknown at this time.

To improve the prediction of therapeutic effects on Aβ burden, an understanding
of the behaviour of the APP system as a whole, as opposed to the behaviour of its
individual components, is imperative. This requires a quantitative analysis of the dynamic
interactions between drugs and the APP processing pathway. To this end, a systems
pharmacology model of the APP processing pathway was reported recently9.

The model was based on the absolute concentrations of APP metabolites sAPPα,
sAPPβ, Aβ40 and Aβ42 and described their kinetics and interrelationships following
β-secretase inhibition. In the current analysis, we evaluated whether the systems pharma-
cology model could adequately describe the tracer kinetic data of the APP metabolites
following β-secretase inhibition.

Tracer kinetic studies have been introduced to gain understanding of the dynamics
of the APP pathway following secretase inhibition. In 2007 Bateman et al.10 published
a stable isotope labeling kinetics (SILK) protocol for quantification of Aβ production
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and clearance rates in the brain. In short, a tracer is infused intravenously after drug
administration and the proportion of synthesized labelled APP metabolites is monitored
for 145 hours. The SILK protocol measures the fraction of APP metabolites labelled
with tracer. In addition, many of the SILK studies used liquid chromatography/MS or
enzyme linked immunosorbant assay (ELISA) to measure absolute APP metabolite con-
centrations11,12,13. Integrating the tracer kinetic data with absolute protein concentration
measurements yields detailed insights in the functioning of the underlying biological
system. For example, tracer kinetics combined with absolute protein concentrations
have led to observations such as increased rates of the production of Aβ in carriers of
the PSEN1 mutation and a reported dose-dependent decrease in Aβ production with
γ-secretase inhibitors in humans11,14. The technique has also been applied to define a
clear related change in slowed Aβ half-life and increasing age12.

The objective of the current investigation is to compare the findings of the novel
systems pharmacology model of the APP pathway to the tracer kinetic data. To this end,
we extended the recently developed systems pharmacology model, by accounting for
tracer dynamics throughout the APP pathway. Such an approach involves a quantitative
analysis of the drug concentrations, plasma tracer enrichment and biomarker responses
(absolute and fraction labelled proteins) using a comprehensive mathematical model that
describes the underlying biological processes, while making a strict distinction between
drug-specific and systems specific parameters. This allows for detailed interpretation of
the biomarker responses by accounting for interdependencies among biomarkers as well
as allowing for separation of rate versus extent of effects on the system. In this manner
invaluable information is obtained on the functioning of the integrated biological system.

Dose ranging, biomarker, plasma tracer enrichment and pharmacokinetic data obtained
from cisterna magna ported (CMP) rhesus monkeys receiving single doses of the BACE1
inhibitor MBi-5 and an infusion of the stable isotope tracer 13C6-labelled Leucine (13C6-
L) were available. The biomarkers measured were APP metabolites (Aβ40, Aβ42,
sAPPβ and sAPPα); their concentrations were determined by ELISA. SILK was utilized
to determine plasma enrichment 13C6-L and fraction 13C6-L labelled APP metabolites
(fraction labeled sAPPβ, fraction labeled sAPPα, fraction labeled total Aβ).

The application of a systems pharmacology model based analysis accounting for
tracer dynamics throughout the APP pathway revealed the similarities and differences
in response measurements to BACE1 inhibition as determined by ELISA and SILK and
these are discussed in this manuscript.
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Materials and Methods

Animals
The CMP rhesus monkey model was described by Gilberto et al. (2003). The rhesus
monkeys are chronically implanted with catheters in the cisterna magna, allowing repeated
sampling of CSF and plasma. Six male animals, weighing between 5.2 and 11.7 kg
(average, 8.7 kg), age 2 to 10 years (average, 8 years), were included in the study. Data
from one animal was excluded from the analysis because of problems with the GS-MS.

These monkeys were captive-bred in a closed colony and individually housed. Animal
use procedures were conform to the Guide for the Care and Use of Laboratory Animals16.

In vivo labeling protocol
The 13C6-Leucine infusion protocol was previously described by Cook et al. (2010). In
brief, the monkeys were administered 13C6-labelled Leucine (13C6-L) intravenously, with
a primed infusion of 4 mg/kg bolus over 10 minutes, followed by 12 h of continuous
infusion at a rate of 4 mg/kg/h. The primed 12 h 13C6-L infusion was administered 1 hour
post drug administration. The study protocol was described previously by Dobrowolska
et al. (2014). CSF was sampled at -21, -19, 0 (pre-drug dose) and 3, 5, 7, 9, 13, 16, 19,
22, 25, 28, 31, 49, 55, 58, 73 and 145 h post drug administration, resulting in 19 samples
for each monkey per treatment group to determine fraction labeled total Aβ, fraction
labeled sAPPα and fraction labeled sAPPβ. Blood was sampled at 0 (pre-drug dose) and
3, 5, 7, 9, 13, 16, 19, 22, 25, 28, 31 and 49 h post drug administration resulting in 13
samples for each monkey per treatment group to assess the 13C6-L enrichment in plasma.

GC-MS was used to quantify plasma 13C6-L enrichment as previously described by
Bateman et al. (2007) and Cook et al. (2010). 13C6-L enrichment was quantified as a
tracer-to-tracee ratio (TTR).

Aβ, sAPPα and sAPPβ were isolated by immunoprecipitation. To isolate Aβ a combi-
nation of the antibodies W0-2, directed against Aβ5-8, and HJ5.1, raised against Aβ13-28,
was used. The proteins were proteolytically cleaved into smaller peptide fragments.
LC-ESI-tandem MS was used to quantify the amount of 13C6-L labeling in total Aβ,
sAPPα and sAPPβ at each time point. Fraction 13C6-L labelled protein was calculated
as the fraction of the signal intensities for labelled peptide fragments over the sum of the
signal intensities for labelled and unlabelled peptide fragments17. For Aβ, the peptide
quantified was Aβ16−27.
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Drug administration and sampling
In a single dose, four-way, full crossover study, MBi-5 was administered at 10, 30, 125
mg/kg (5 mL/kg), or vehicle (0.4% methylcellulose) PO, with at least two weeks washout
between each period. In conjunction 13C6-L was administered as described above. Plasma
and CSF drug concentrations were collected at 0 (pre-drug dose) and 3, 5, 7, 9, 13, 16,
19, 22, 25, 28, 31, 49, 55, 58, 73 and 145 h post-drug dose, resulting in 17 plasma and
CSF PK samples for each monkey per treatment group. 2 mL of blood and 1 mL of CSF
were collected at each time point. The concentration of MBi-5 in the plasma and CSF
samples was determined using LC-MS/MS. The pharmacological profile of MBi-5 was
summarized by Dobrowolska et al. (2014).

The concentrations of Aβ40, Aβ42, sAPPα and sAPPβ were collected at -22, -20 and
-1 h (pre-drug dose) and 2, 4, 6, 8, 12, 15, 18, 21, 24, 27, 30, 48, 54, 57, 72 and 144 h post-
drug dose, giving 19 measurements of each biomarker for each monkey per treatment. 1
mL of CSF were collected at each time point. The assays used for the protein concentration
measurements were described previously18,19,20. Neoepitope-specific antibodies were
used to detect Aβ40 and Aβ42, directed against Aβ1-40 and Aβ1-42.

PK-PD analysis
The PK-PD model has been developed and fitted to the data by means of non-linear
mixed effects modelling using the NONMEM software package version 7 level 221. The
NONMEM software package was implemented on an Intel QuadCore (Intel R© CoreTM i7-
3370 CPU, 3.40 GHz, 4.00 GB RAM) and Compaq Visual Fortran (version 6.6, Compaq
Computer Corporation, Houston, Texas, USA) was used as compiler.

Modeling techniques were detailed by Van Maanen et al9. A decrease of 10.8 points
in the minimum value of the objective function by adding an additional parameter, cor-
responding to p<0.001 in a χ-squared distribution, was considered significant. Data
management and model assessment were done using the statistical software package
S-PLUS for Windows (TIBCO Spotfire S+ R© 8.2, TIBCO Software Inc.).

To validate the model a visual predictive check (VPC) was performed in which the
median and the 90% inter-quantile range of the data simulated with the developed model
were plotted together with the observations. A validated result is close agreement of
median observed and predicted line with ∼90% of the observations falling within the 90%
prediction interval.
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Model description
The systems pharmacology model of MBi-5 was based on sequential analysis of plasma
tracer enrichment, PK and PD data. For the description of plasma enrichment over
time a model that considers two pools for both 13C6-L and 12C6-L was developed (see
Supplemental Material 1). The model related tracer input (13C6-Leucine infusion, in
mg/kg/hr) to the measured enrichment (tracer to tracee ratio, TTR in%) in plasma. The
PK model of MBi-5 was based on simultaneous analysis of plasma and CSF PK data (see
van Maanen et al. (2016)). The PK profiles of MBi-5 observed in plasma and CSF were
adequately described, thus the model could serve as input for PD model analysis.

The PKPD model accounting for labelled and unlabelled species is an extension of
the model presented in van Maanen et al. (2016). For each individual monkey, the PK
of MBi-5 and kinetics of plasma tracer enrichment were utilized as two independent
inputs, by using individual parameter estimates of the respective kinetic models. The
biomarker response profiles of MBi-5 measured in CSF were adequately described by
a model containing expressions to describe the time courses of APP, sAPPβ, sAPPα,
Aβ40, Aβ42, AβO, FactorX (Fig. 4.1). sAPPβ, sAPPα, Aβ40 and Aβ42 were informed
by data, whereas APP, AβO and FactorX were inferred based on the model and the data
of aforementioned biomarkers. FactorX represents other (unknown) analytes quantified in
fraction labelled Aβ (vide infra).

The production of APP was believed to be zero order, i.e. a constant production of APP.
It was assumed that there is no alternative proteolytic enzyme cleaving full length APP
other than α-secretase and BACE1. As both sAPPβ and C99 are products of APP cleavage
by BACE1, sAPPβ and C99 were assumed to follow the same kinetics and therefore
sAPPβ could be used in the model as surrogate precursor for Aβ. The production of
sAPPα, sAPPβ and Aβ were assumed to be first order, i.e. dependent on the concentration
of its precursor. To keep track of tracer dynamics throughout the pathway, two differential
equations were implemented for each variable to account for labelled and unlabelled
species, in which the tracer is assumed to be metabolically indistinguishable from the
tracee. The system of differential equations is presented in Supplemental Material 4.
The label incorporation in the APP pathway is driven by the kinetic model of plasma
enrichment (Supplemental Material 4, Eq. S4.8 and S4.9). The inhibition of the BACE1
cleavage by MBi-5 was described by a sigmoidal Imax function (Supplemental Material
4, Eq. S4.22) using the individual predicted target site concentration of MBi-5, derived
from the PK model (Supplemental Material 4, Eq. S4.23), as driver of the response.
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Figure 4.1: Schematic of systems model of APP processing.
The model comprised two times thirteen compartments: Six biomarker compartments in brain
(yellow circles), one oligomer compartment and six transit compartments from brain to CSF
(white circles), where each compartment was duplicated to track labelled and unlabelled species.
Four biomarkers were measured in CSF (sAPPα, sAPPβ, Aβ40 and Aβ42), indicated by the blue
boxes. Total concentrations (labelled plus unlabelled) of sAPPα, sAPPβ, Aβ40 and Aβ42 were
measured using ELISA. Using SILK, fraction labelled sAPPα, fraction labelled sAPPβ and
fraction labelled total Aβ were determined where fraction labelled total Aβ is labelled over total
Aβ species. The drug effect (EFF) inhibited Rinβ. Ctarget, derived from the PK model, was used
as driver of the biomarker response in the model 9. sAPPβ was used in the model structure as a
surrogate substrate for C99 in the γ-secretase cleavage step. The tracer PK model of label
enrichment of the Leucine pool (see Supplemental Material 1) informed label incorporation into
the APP pathway.
Dashed arrows and compartments are additions to the model structure compared to the model based on
ELISA data only 9. Model extensions are indicated with the green shaded area. Equation numbers for each
compartment have been included inside parentheses in order to facilitate their identification (see
Supplemental Material 4).
APP: Aβ-precursor protein; Aβ: amyloid-β-peptide; Ctarget: drug concentration target site; Kin40: Aβ40
formation rate; Kin42: Aβ42 formation rate; Kinx: FactorX formation rate; Kout: Aβ40 and
Aβ42 degradation rate; Koutx: FactorX degradation rate; Krev: Oligomer dissociation rate; KtAP: transit rate
sAPPα and sAPPβ from brain to CSF; Kpl: Oligomerization rate; KtAB: transit rate Aβ from brain to CSF;
RinAPP: source of APP; Rinβ: sAPPβ formation rate; Rinα: sAPPα formation rate; Rout:
sAPPβ degradation rate; Routa: sAPPα degradation rate.
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Results

Tracer enrichment in the brain
A kinetic model was used to describe the time course of the tracer enrichment in plasma
during and after the infusion of the tracer. The model described tracer (13C6-L) and tracee
(endogenous 12C6-L) kinetics (see Supplemental Material 1).

Individual parameters from the kinetic tracer enrichment model were used to derive
the enrichment at the target site in the brain. For this, the following assumptions were
made: (1) there is no significant time delay between when the tracer is measured in plasma
and when the tracer enters the brain. Any modest time delays in tracer entering the brain
would be accounted for by later delay functions such as transit to CSF as the model could
not independently assess this component of delay; (2) the shape of the enrichment-time
profile in the brain is similar to that in plasma; (3) the probability of the incorporation of
13C6-L into protein is the same as the probability that endogenous 12C6-L is incorporated
into protein; (4) none of the tracer incorporated into protein reappears as a consequence of
protein breakdown in the time course of the tracer infusion. In the initial phase of tracer
infusion the 13C6-L incorporation in the APP metabolites is so small, that it is unlikely
that 13C6-L would be recycled by protein breakdown. Furthermore, protein turnover is
assumed to be slow relative to the tracer infusion time.

No distinction can be made between the relative uptake of 13C6-L in the APP pool
and the transport of tracer from plasma to the brain. The blood-brain barrier transport is
assumed not to be the rate-limiting step for 13C6-L uptake in the APP pool. The relative
formation of labelled and unlabelled APP species is related to the brain enrichment.
Therefore, brain enrichment refers to the tracer (13C6-L) to tracee (endogenous 12C6-L)
ratio (TTR [%]) at the target site in the brain accessible for precursor (APP) formation.
Consequently, brain enrichment can be derived using information from the placebo groups:
if no inhibitor is given, and hence the system is in steady state, the sum of the labelled and
unlabelled species is constant. A scale correction factor (FAC, see Supplement Material 4
Eq. S4.9) was applied to the plasma tracer enrichment, representing the relative uptake
of tracer in the precursor (APP) pool. FAC was estimated to be 0.764 indicating that
enrichment in the precursor pool was 76.4% of the level of plasma tracer enrichment.

Extension of the APP pathway model to account for tracer dynamics
Previously, a comprehensive systems model, incorporating the pharmacokinetics of MBi-
5 and APP metabolites (Aβ40, Aβ42, sAPPα and sAPPβ) concentrations was developed9.
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The model quantified APP metabolite concentrations response to BACE1 inhibition and
included an AβO compartment that could account for the differential effect of MBi-5 on
Aβ40 and Aβ42 response. sAPPβ was used in the model structure as a surrogate substrate
for C99 in the γ-secretase cleavage step. As sAPPβ and C99 are both products of the same
cleavage step, their formation rates should be the same. Modeling efforts to separately
account for sAPPβ and C99 did not improve the model description of the data and,
therefore, demonstrated adequacy of the surrogate assumption.

For the current analysis, this model was extended to account for tracer dynamics
throughout the APP pathway (Figure 4.1). The 13C6-L label incorporation into the APP
pathway is determined from the derived brain tracer enrichment. To account for labelled
and unlabelled species, two compartments were implemented for each variable (APP,
sAPPβ, sAPPα, Aβ40, Aβ42, AβO). Accordingly, the absolute amount of each APP
metabolite is the sum of its labelled and unlabelled species and the fraction labelled APP
metabolite is the ratio of labelled over the sum of its labelled and unlabelled species, with
the exception of Aβ (Supplemental Material 4, Eq. S4.32-S4.34). In the SILK protocol
no distinction was made between Aβ40 and Aβ42. Therefore, fraction labelled Aβ was
initially assumed to be equal to the fraction labelled of total Aβ40 and Aβ42.

At first, the model structure and parameter values were fixed to those identified
recently on absolute APP metabolite concentration data9. The model was then used
to predict the fraction labelled proteins (SILK). Here, underprediction was observed
for fraction labeled sAPPβ (placebo, dose 30 and dose 125 mg/kg, Fig. 4.4C, 4.4O,
4.4U ) and fraction labeled sAPPα (placebo, 10 mg/kg, 30 mg/kg, Fig. 4.4A, 4.4G,
4.4M). Overprediction was observed for fraction labeled Aβ for all dose groups (Fig.
4.4E, 4.4K, 4.4Q, 4.4W). As the response measurements to BACE1 inhibition by ELISA
and SILK were the result of inhibiting the same pathway step, difference in effects of
BACE1 inhibition on the biomarkers was not expected. Therefore, the flawed model fit
indicated that there was additional information content to be gained from the SILK data
beyond that from the ELISA. As such this additional data helped to better refine the true
mechanistic representation of the APP system.

Accounting for differences in APP metabolite response measurements by ELISA
and SILK

Integrating kinetic modelling of labelled and absolute data allows for the inconsistency
of the results to be more robustly evaluated beyond comparison of observed response
measurements. The results indicated a inconsistency between response magnitudes by

89



Chapter 4

ELISA and SILK within the framework of the previously established kinetic model.
Likely, aspects misspecified would be related to how the label is incorporated into the
pathway or in how the two quantitative measures related to each other.

It was hypothesized that differences in APP metabolite responses as measured by
ELISA and SILK may be caused by some deeper compartment in the APP pathway that
could not be identified based on ELISA data only. This could be an additional APP pool
causing a release of labelled APP that feeds slowly into the system, or an C99 pool that
gives a slow release of labelled C99 that feeds into the system. Inclusion of the additional
APP pool in the model worsened the description of fraction labeled sAPPα (results not
shown). This indicated that the cause of the discrepancy in measurements should be
sought further down the APP pathway. It was not possible to identify an C99 model
component based on the current dataset, with which it was not feasible to separate the
γ-secretase cleavage step from sAPPβ elimination9.

An understanding of the assay differences between SILK and ELISA could suggest
another alternate explanation of the disconnect, as one technique may have measured
analytes which the other did not. Possibilities include ELISA cross-reactivity to species
which were not measured by the SILK method, e.g. η-secretase products8, or SILK
measured alternative APP fragments in addition to sAPPα, sAPPβ, Aβ40 or Aβ42. If
the same analytes were measured in both methods, then fraction labeled Aβ (SILK)
would be composed of labelled over total Aβ40 and Aβ42 species and absolute Aβ40 and
Aβ42 protein concentrations (ELISA) would be the sum of its labelled and unlabelled
species. If the analytes as measured in SILK differ from those in ELISA this assumption
will not hold. Fraction labelled Aβ (SILK) is then composed of labelled over total
Aβ40, Aβ42 and other analytes. Absolute Aβ40 and Aβ42 protein concentrations
(ELISA) remain the sum of their labelled and unlabelled species. To address this, a
FactorX compartment was incorporated in the model representing these other analytes.

It was investigated if the other analytes represented by FactorX have a similar degra-
dation rate (Koutx) as Aβ40 and Aβ42 (Kout). The formation rate of FactorX (Kinx) was
defined by steady state conditions and derived from the other parameters (Supplement
Material 4 Eq. S4.29). As a result, Kinx had a different value than Kin40 and Kin42.
With the similar degradation rate and the derived formation rate of FactorX, the inclu-
sion of FactorX in the calculation of fraction labeled Aβ had no impact on the fraction
labeled Aβ curve (not shown). Because mathematically terms were canceled out in the
calculation of fraction labeled Aβ including FactorX, the same fraction labeled Aβ as

based on only labelled over total Aβ40 and Aβ42 species was obtained. This indicated
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Figure 4.2: Graphical insight into the Aβ biomarker responses in CSF, using the identified
systems model of the APP processing pathway.
The biomarker responses in CSF are predicted after a single dose of 125 mg MBi-5, using the
typical parameter estimates.
Aβ40 green solid line; Aβ42 blue solid line; FactorX purple solid line; AβO grey solid line; fraction
labeled Aβ light blue dashed line; fraction labeled Aβ with FactorX orange dashed line; fraction
labeled Aβ with AβO light green dashed line; fraction labeled Aβ with FactorX and AβO red dashed line.

that the analytes that were hypothesized to be additionally measured in SILK had to have
different kinetics. Therefore, a different degradation rate for the analytes represented by
FactorX was included in the model. The transit rate from brain-to-CSF for FactorX (KtX)
was assumed to be similar to the transit rate for Aβ species (Aβ40 and Aβ42). The
model including FactorX labelled and unlabelled species, with different kinetics for
FactorX than for Aβ40 and Aβ42, improved the description of the SILK data (results not
shown). Description was further improved by also including labelled over total AβO in
fraction labelled Aβ as determined in CSF. For this, the transit of AβO from brain to
CSF needed to be added to the model structure. This facilitated the identification of the
AβO transit rate. When estimated the AβO transit rate was similar to the Aβ transit rate
from brain to CSF (KtAB) and could therefore be fixed to the same high value (10 h−1)9. It
was not possible to identify the brain-turnover of AβO as a separate parameter. Therefore,
the AβO half-life of 0.07 h reflects delays due to the brain-turnover and brain-to-CSF
transfer. The value of the transit rate for sAPPα and sAPPβ (KtAPP) should be interpreted
relative to the Aβ transit rate. By fixing KtAB all possible delay is lumped in KtAPP.

The right panels in Fig. 4.4 show the description of the SILK data for the model
with FactorX and AβO included in the calculation of fraction labelled Aβ. A prediction
was performed with the model to investigate the contribution of FactorX and AβO to
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the fraction labeled Aβ curve (Fig. 4.2). The FactorX level was slightly higher than
Aβ40 and the shape of the FactorX response curve was different from the Aβ40 and
Aβ42 responses due to the different degradation rate of FactorX (Koutx). Inclusion of
FactorX and AβO in fraction labeled Aβ had a lowering effect on the fraction labelled
Aβ curve and slightly altered its shape.

Comparison results based on ELISA and SILK versus ELISA only
Administration of MBi-5 increased sAPPα and decreased sAPPβ, Aβ40 and Aβ42
concentrations in a concentration driven saturable effect as measured by ELISA (Fig. 4.5).
A concentration-dependent response was also identified for the fraction labeled profiles
of Aβ and sAPPβ. For the fraction labeled profile of sAPPα, the drug effect was almost
absent (Fig. 4.4). One single drug effect could describe the concentration-dependent
response of all biomarkers, including the lack of response for fraction labeled sAPPα.

Predictions from the systems model (Fig. 4.3) show that BACE1 inhibition resulted in
a MBi-5 concentration driven accumulation of APP, leading to an increased production of
sAPPα as APP is shunted down the α-secretase pathway. Both labelled and unlabelled
species accumulate in a dose-dependent manner as result of BACE1 inhibition, but as the
tracer infusion starts one hour post drug administration, the relatively more unlabelled
species than labelled species accumulate. Due to the fractional nature of the fraction
labeled measurement, these unlabelled species dilute the apparent response, from the start
of drug treatment. Therefore, although there is a MBi-5 concentration driven increase
in APP, this is not reflected in the ’fraction labeled APP’ curve. The fraction labelled
sAPPα is dependent on labelled APP and dilution by the accumulation of unlabelled
sAPPα. Consequently, minimal drug concentration-dependent increase appeared from the
fraction labelled sAPPα curve, even though there is drug concentration driven increase
in sAPPα formation. The same effect does not occur for fraction labeled sAPPβ. The
labeling process is continuous during the tracer infusion and washout, as is the APP accu-
mulation during BACE1 inhibition. However, during the one hour time period between
drug administration and start of tracer infusion there is no accumulation of unlabelled
sAPPβ, as sAPPβ levels are reducing as result of BACE1 inhibition. Therefore, there is
no dilution of the apparent fraction labeled sAPPβ response by unlabelled sAPPβ species.

The drug potency (IC50) identified in the combined analysis of ELISA and SILK data
was 0.0267 µM (95% CI, 0.0201-0.0333), comparable to the IC50 identified on ELISA
data only (0.0269 µM (95% CI, 0.0154-0.0384))9. This value is also close to the in vitro

inhibition constant (Ki) of 10 nM for MBI-5 inhibition of purified BACE117. The Hill
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Figure 4.3: Predicted APP in brain (A), sAPPα in CSF (B) and sAPPβ in CSF (C) responses,
using the identified systems model of APP processing.
The biomarker responses are predicted after a dose range of MBi-5, using typical parameter
estimates.
Absolute protein concentrations: solid line; Fraction labelled proteins: dotted line; Placebo: green; Dose 10
mg/kg: blue; Dose 30 mg/kg: black; Dose 125 mg/kg: red; End time of tracer infusion: vertical grey line.

coefficient of the concentration response relationship significantly changed from 1.53
(95% CI, 1.44-1.92) based on ELISA data to 0.986 (95% CI, 0.963-1.01) based on ELISA
and SILK data. As the Hill coefficient was not significantly different from 1, the sigmoid-
emax concentration response relationship could be reduced to an Emax relationship by
fixing the Hill coefficient to 1. A Hill coefficient of 1 is the theoretical value for a simple
receptor-target interaction. The shift to this value based on the ELISA and SILK data
suggested that a more distinct representation of the inhibitor interaction with the target
was achieved.

The Hill coefficient of unity based on ELISA and SILK data indicated a less steep
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concentration response relationship than was identified on ELISA data only. Based on
the ELISA and SILK data, inhibition rises much less quickly with concentration than
expected based on the recent result. This mainly affected the description of the APP
metabolite concentration response curves for the higher dose groups (Fig. 4.5)9.

The brain-turnover of sAPPα was slower based on the combined analysis (1.6 h)
compared to based on ELISA data only (0.8 h). The identified proteolytic cleavage rates
of APP by BACE1 and α-secretase imply that 49.1% of endogenous full length APP
is cleaved by BACE1 and 50.9% by alternate pathways represented by the terms for
α-secretase. These results are similar to the percentages APP identified to go down each
path based on ELISA data only (44% and 56%, respectively)9.

A sequence of models with interanimal variability on different parameters was tested
and the results compared, in order to select the best random effects model structure.
The final model included interanimal variability on the baseline level of sAPPβ and
FAC. The identified interanimal variability on the baseline level of sAPPβ also reflects
on the baseline levels of the other APP metabolites, because of their interrelationships.
Interanimal variability could not be identified for the drug effect parameters, indicating
that the variation in drug effect was small relative to the underlying biologic variation in
the system. Residual variability for absolute protein concentrations were implemented as
proportional error models. Residual variability was higher for Aβ40 and Aβ42 than for
sAPPβ and sAPPα. Residual variability for fraction labelled proteins was implemented
as an additive error model.
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Table 4.1: Population parameter estimates including coefficient of variation (CV%) for updated
model based on ELISA and SILK data.

PARAMETER DESCRIPTION VALUE UNIT CV%
Structural parameters
sAPPβbase baseline sAPPβ 1.15e+003 pM 6.23
FbaseAβ40 Aβ40 baseline as fraction of sAPPβbase 0.566 7.83
FbaseAβ42 Aβ42 baseline as fraction of sAPPβbase 0.0208 5.58
FbasesAPPα sAPPα baseline as fraction of sAPPβbase 0.895 2.20
FbaseX FactorX baseline as fraction of sAPPβbase 0.883 26.6
Routa degradation rate sAPPα 0.427 h−1 5.53
Kout degradation rate Aβ40 and Aβ42 0.603 h−1 7.05
Koutx degradation rate FactorX 0.138 h−1 9.78
KtAP transit rate sAPPα and sAPPβ 0.110 h−1 5.04
KtABa transit rate Aβ 10 h−1

FAC scale correction factor 0.764 2.50
Kpl oligomerization rate 0.164 h−1 42.0
Krev oligomer dissociation rate 0.0169 h−1 35.4
IMa Imax 1
IC50 IC50 0.0267 µM 12.5
Interanimal variability
ω2

BSAPb
b Interanimal variability sAPPβ baseline 0.0670 22.5

ω2
FAC

b Interanimal variability scale correction factor (FAC) 0.0127 44.7
Residual error
σ2

Aβ40
c Residual variability Aβ40 0.266 15.4

σ2
Aβ42

c Residual variability Aβ42 0.126 10.6
σ2

sAPPβ
c Residual variability sAPPβ 0.0548 14.6

σ2
sAPPα

c Residual variability sAPPα 0.0625 8.19
σ2

FracLab
c Residual variability fraction labelled 4.62e-005 7.40

a Fixed.
b Interanimal variability is assumed to follow a normal distribution with mean zero and variance ω2.
c Residual variability is assumed to follow a normal distribution with mean zero and variance σ2.
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Figure 4.4: Visual predictive check of fraction labeled protein response vs. time profile of
MBi-5 in the rhesus with 90% confidence interval.
Predictions were performed with model based on ELISA data only (left) and updated model
based on ELISA and SILK data (right). Placebo (A-F), dose 10 mg/kg (G-L), dose 30 mg/kg
(M-R) and dose 125 mg/kg (S-X). Observation sample size: n=95 for each SILK biomarker from
5 monkeys collected over 7 days at 4 occasions.
Solid line: Median model predicted fraction labeled protein response-time profile; Long-dashed line: 90 %
prediction interval; Dotted line: Median observed fraction labeled protein response-time profile; + symbol:
Observations.
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Figure 4.4: (Continued)
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Figure 4.4: (Continued)
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Figure 4.5: Visual predictive check of sAPPα (left: A,C,E,G), sAPPβ (right: B,D,F,H), Aβ40
(left: I,K,M,O) and Aβ42 (right: J,L,N,P) concentration response vs. time profile of MBi-5 in
the rhesus with 90% confidence interval. Predictions were performed with updated model based
on ELISA and SILK. Observation sample size: n=95 for each APP metabolite from 5 monkeys
collected over 7 days at 4 occasions. Solid line: Median model predicted concentration-time profile
Long-dashed line: 90 % prediction interval. Dotted line: Median observed concentration-time profile +
symbol: Observations.
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Figure 4.5: (Continued)
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Discussion

Tracer kinetic studies are widely used to determine the influence of enzyme inducers or
inhibitors on the rates of production and degradation of proteins. Traditionally, a non-
compartmental analysis of the tracer enrichments versus time curve is used to estimate
their effects on the rates of protein production and/or degradation. The rate of protein
production being estimated from the upswing of the curve and the rate of degradation
from the downswing. It has been demonstrated that the use of non-compartmental tracer
kinetic data analysis where the enrichment is not in steady state could lead to inaccurate
quantification of kinetic parameters 22.

Alternatively, compartmental models have been used for this purpose 23,24. Here
typically a standard two stage is followed in which each individuals PD parameters are
estimated and then population mean and variance of each parameter are derived25. A
limitation of this approach is that the effect on protein disposition is related to the dose
rather than to measures of drug concentrations.

To our knowledge, we are the first to utilize a population PK-PD modelling approach
to the analysis of tracer kinetic data. The approach utilized here, in which the time course
of the plasma tracer enrichment is analysed in conjunction with the time course of the
plasma and CSF concentrations of the BACE1 inhibitor MBi-5, is novel for this type
of data. The individual values of the (pharmaco)kinetic parameters obtained in these
models serve as input for the modelling of the time course of the tracer enrichment of the
APP metabolites. This enabled characterization of the concentration-enrichment-effect
relationship of the BACE1 inhibitor, while taking into account the variability in PK,
enrichment and PD in the study population.

We have recently been able to propose a systems pharmacology model for the APP
processing pathway based on absolute concentrations of APP metabolites in rhesus mon-
keys9. This model provided a unique opportunity to further evaluate our understanding of
the APP processing pathway while including tracer kinetic data in addition to absolute
protein measurements. To this end we have simultaneously analysed the effects of a
BACE1 inhibitor on the APP processing pathway, by analyzing the effects on tracer
kinetic parameters (fraction labelled of various peptide species) as well as absolute protein
concentrations. This has yielded invaluable information on the nature of measurements
used in both techniques and on the underlying physiology.

The application of the existing systems pharmacology model to the combined dataset
was generally consistent with our understanding of the APP processing pathway and
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the existence of the oligomer pool. Moreover, the parameters describing the forma-
tion and degradation of the APP metabolites were comparable thereby strengthening
our understanding of the relative contribution of the different analytes to the observed
responses.

In the presence of the BACE1 inhibitor MBi-5 a concentration dependent saturable
decrease in Aβ40, Aβ42 and sAPPβ concentrations was observed in combination with an
increase in sAPPα absolute protein concentrations. In the SILK assay fraction labelled
profiles for Aβ and sAPPβ were reduced in a similar MBi-5 concentration-dependent
manner. However, the effect on the fraction labelled profile of sAPPα was negligible.
This is explained by the fact that the effect on sAPPα is an indirect effect through the
accumulation of APP, secondary to the inhibition of BACE1. As the concentrations of
both unlabelled and labelled sAPPα change in the same direction, there is no clear effect
on the ratio labelled over total sAPPα (= the fraction labelled). This is further augmented
by the fact that the tracer infusion starts one hour after MBi-5 administration. In this
first hour after the administration of the BACE1 inhibitor unlabelled sAPPα starts to
accumulate while there is no accumulation of labelled sAPPα. This further dampens the
effect on the fraction labelled sAPPα. Finally, after a single dose of the BACE1 inhibitor,
the observed dose response relationship also depends on the end time of the tracer infusion
relative to the time of the maximal PD response.

In contrast to the attenuated effects of BACE1 inhibition on parameters characterizing
the α-secretase pathway (fraction labelled sAPPα), clear effects on the parameters of
BACE1 pathway (fraction labelled sAPPβ, fraction labelled Aβ) were observed, which is
explained by the fact that these parameters are all downstream of BACE1, so that there is
no accumulation of unlabelled protein in the time between drug administration and start
of tracer infusion. These observations show, that due the complexity of the underlying
biochemical network, lack of concentration dependent effect of an enzyme inhibitor on
certain parameters, does not exclude the possibility that there is indeed such an effect.

We found a lower brain tracer enrichment relative to plasma tracer enrichment during
13C6-L infusion (Supplemental Material 3, Figure S4.4). The discrepancy between plasma
tracer enrichment and target site enrichment may be explained by a lower amount of tracer
at the target site, due to dilution of tracer. This may be the result of a higher amount of
endogenous Leucine at the target site than in plasma. Also, kinetics of Leucine into and
out of the cells, as well as into and out of the corresponding protein pools can differ across
tissues 22.

The lower relative enrichment at the target site indicates that 13C6-L does not achieve
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an isotopic equilibrium throughout all free pools of Leucine in the time frame of tracer
infusion. This is also observed in the plasma tracer enrichment data, where plasma
TTR is still rising during the 12 h infusion. This was confirmed by simulations using the
developed model, indicating that it takes approximately 52 days of infusion to reach steady
state with the primed-constant infusion technique as used in SILK (see Supplemental
Material 1, Figure S4.3). With the primed 12 h infusion used in the current study, 62%
of the steady state level of plasma tracer enrichment was reached. Therefore, the plateau
observed in plasma tracer enrichment is a pseudo steady-state. The absence of steady state
in tracer enrichment requires an analysis which takes into account the dynamics of the
system, such as a comprehensive model based analysis performed currently.

The extension of the systems pharmacology model to include tracer kinetic data
provides additional insights into the underlying APP processing pathway. Our modelling
results indicate that 49.1% of APP is cleaved by BACE1 and 50.9% by α-secretase. It
was assumed that all alternate pathways were represented by the terms for α-secretase.
The reported percentage of APP to go down the α-secretase path should be interpreted
as capturing the contribution of alternate pathways in general, as it acts to mediate the
increase in APP which drives the α-secretase response and any other alternate pathway
response. Increases in APP due to BACE1 inhibition result in more substrate being
available to alternate pathways in general and α-secretase as an alternate path well
represents this phenomena. It is expected that all alternate paths will behave dynamically
as α-secretase does as all drug effects on alternate paths will be driven by the APP increase
under BACE1 inhibition. The increases seen with α-secretase and captured in this model
should also reflect the relative changes to be expected for any alternate pathway that
may be present. Therefore, it is expected that sAPP-η would build-up in response to
BACE1 inhibition similar to sAPPα build-up. An accumulation of the cleavage products
of η-secretase after BACE1 inhibition was also reported by Willem et al 2015 in mice.

The simultaneous analysis of the combined data revealed differences in Aβresponses
after BACE1 inhibition in rhesus monkeys as determined by ELISA and SILK. In a model-
based analysis, in which knowledge of the biological system and analytical methods
was integrated, various hypotheses to align APP metabolite response measurements in
ELISA and SILK were tested. A possible explanation of the disconnect may be that
an unknown process or analytes other than Aβ40 (Aβ1-40) and Aβ42 (Aβ1-42) were
measured in SILK and not ELISA. The incorporation of the FactorX compartment in
the model accounted for this (Fig. 4.1). The disconnect in measurements between both
methods may be explained by the use of different measurement techniques. The antibodies
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used in the ELISA where neoepitope-specific antibodies (N-terminal antibodies), directed
against Aβ1-40 and Aβ1-42. The antibodies used to isolate Aβ in the SILK protocol were
not end-specific for the N- or C-terminus, but directed against Aβ5-27. As the antibodies
used to isolate Aβ were raised against Aβ5-27, these analytes that were detected in this
assay must include this amino acid sequence.

A new APP processing pathway was recently reported by Willem et al 2015, in which
sequential cleavage of APP by η-secretase and BACE1 or ADAM10 leads to the formation
of Aη-β and Aη-α, respectively. Several Aη peptides were reported by Willem et al 2015,
that could have been captured by antibody W0-2, but not by HJ5.1, as used in the SILK
protocol. Therefore, this does not explain the disconnect.

In an alternative path, BACE1 can cleave full length APP at the β-prime site (GLU11
in the Aβ sequence) leading to the production of Aβ11-40 and Aβ11-42. These are
major cleavage products of BACE1, as reported by26. Both Aβ11-40 and Aβ11-42
could not have been captured by the antibody W0-2 used in the SILK protocol, nor the
neoepitope-specific antibodies used in the ELISA. Thus, β-prime site cleavage products
cannot explain a difference in measurements between both methods.

It could be that ELISA does not detect the full complement of Aβ42, as it is either tied
up in AβO or bound to a carrier protein27. The methods used to detect the fraction labelled
Aβ in the SILK protocol should also capture AβO. How rapidly newly synthesized
Aβ becomes an oligomeric species and how rapidly AβO would move from brain to CSF
is not known, but they are likely cleared to CSF much more slowly than the monomer due
to their biophysical properties. It could also be that there is active transport of soluble
toxic AβO out of the brain, resulting in faster brain-to-CSF transport than for monomeric
species. It was not possible to identify the brain-turnover of AβO and turnover over
brain-to-CSF transport as separate parameters. Therefore, the half-life of AβO of 0.07 h
reflects delays due to both brain-to-CSF transfer and turnover in the brain. Therefore, the
rate of appearance of AβO response in CSF relative to Aβ cannot be appointed to one of
these processes.

Remarkably, different kinetics were identified for the process or analytes represented
by FactorX, compared to Aβ40 and Aβ42. It was not possible to separate the rate of the
γ-secretasecleavage from the brain-to-CSF transport. Therefore, the transit rates from
brain-to-CSF for Aβ40, Aβ42 (KtAB) and FactorX (KtX) were fixed to an arbitrary high
value (10 h-1) and assumed to be equal.

Consequently, the Aβ40 and Aβ42 half-life of 1.1 h reflects delays due to the γ-
secretase cleavage step and brain-to-CSF transfer. The current model structure in which
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Aβ40 and Aβ42 are directly formed is a simplification of the underlying system. γ-
secretase cleaves C99 through interactive pathways for stepwise successive processing
to generate different Aβ isoforms, with Aβ40 and Aβ42 as the major products28. The
initial γ-secretase cleavages are followed sequentially by γ-secretase cleavages after every
three or four residues. The systems model was able to combine two types of data and
describe seven biomarkers successfully. Adding the tracer kinetic data (SILK) to the
model based on absolute protein concentrations (ELISA)9 confirmed the system that
was identified on ELISA data only. This is one utility of the biomarkers of the SILK
protocol. Our understanding of the relationships among the absolute APP metabolite
concentrations did not change compared to the recent analysis based on ELISA data
only. However, the combined analysis allowed for more hypotheses to be tested. Vice
versa, including absolute protein concentrations in the interpretation of the tracer kinetic
data had added value. This facilitated the correct interpretation of drug concentration
dependencies in the tracer kinetic data and led to the investigation of a disconnect in the
two type of measurements of the same system, which was accounted for by the FactorX
model component.

If dedicated measurements of Aβ1-40 and Aβ1-42 were used in the SILK protocol,
it is expected that Aβ40, Aβ42, fraction labelled Aβ could have been described by a
model without inclusion of the FactorX model component. However, even then, matrix
components in the CSF may affect the measurement reproducibility across different
immunoassays27.

In a follow-up study, dedicated measures of Aβ40, Aβ42 and Aβ38 will be performed
in the same samples in both labelled and absolute quantification. In addition, Aβ will
be quantified using an antibody directed at the mid-domain Aβ17-28. If FactorX is an
Aβ isoform, it would then be possible to determine if it has different half-lifes from Aβ40,
Aβ42 and Aβ38 and how much FactorX accounts for total of Aβ species compared to
Aβ40, Aβ42 and Aβ38.
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Conclusion

This investigation demonstrated that the simultaneous analysis of absolute protein con-
centrations and tracer kinetic data using a systems pharmacology model will elucidate
the underlying biological system and will thereby facilitate the interpretation of the tracer
kinetic data in the light of the system. The model-based analysis distinguished labelled
and unlabelled species, as well as separated steps in the APP pathway and distribution to
CSF. This enabled and improved understanding of the (lack-of) dose-dependent response
in kinetic data.

Different hypotheses to align APP metabolite response measurements in ELISA and
SILK were tested. A possible explanation of the disconnect may be that an unknown APP
fragment with differing kinetics or an unknown process was picked up in SILK assay.
This requires further investigation.

The developed comprehensive model can be used to perform simulations to investigate
study design features that may influence the magnitude of biomarker responses, such
as dose and degree of Aβ production inhibition. To maximize information on the APP
pathway from the tracer protocol, simulations can be performed to investigate how the
13C6-L infusion time and length affects the fraction labelled curves (ongoing). It is
anticipated that adding information on APP metabolite responses (absolute and fraction
labelled proteins) following γ-secretase inhibition will provide more information on the
biological system as well as the discrepancies between absolute protein concentrations
and tracer kinetic data.
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SUPPLEMENTAL MATERIAL (1)

Kinetic Data Analysis of Plasma Enrichment

A kinetic model was developed to quantify plasma 13C6-L enrichment in CMP rhesus
monkeys. The results of the plasma enrichment analysis were included in the subsequent
PK-tracer-PD analysis.

The kinetic model was developed and fitted to the data by means of non-linear
mixed effects modeling using the NONMEM software package version 7 level 2 (see the
Materials and Methods section in Chapter 4).

f(t)

TC1 

TR1(t)

Tracee

Tracer

F

U

u(t)

TC2

TR2(t)

K12

K21

K12

K21

Figure S4.1: Model structure of kinetic model describing plasma tracer enrichment.
The model relates tracer input [mg/kg/hr] to the tracer-to-tracee ratio (TTR[%]). The model
includes two tracee (12C6-Leucine) and two tracer (13C6-Leucine) compartments, representing
extra- (pool 1) and intra-cellular (pool 2) tracee and tracer, respectively. Measurements are
assumed to be taken from the extracellular compartment.
Dashed line: sampling. Arrow: tracer infusion. U: production of tracee in pool 1. u(t): tracer infusion into
pool 1. F: disposal of tracee from pool 1. f(t): disposal of tracer from pool 1. K12: Transit rate from pool 1 to
pool 2. K21: Transit rate from pool 2 to pool 1.

The compartmental model related the tracer infusion [mg/kg/h] to the measured
enrichment, quantified as tracer (13C6-Leucine) to tracee (endogenous 12C6-Leucine)
ratio (TTR [%]), by describing tracee and tracer kinetics.

The model included two tracee (12C6-Leucine) and two tracer (13C6-Leucine) com-
partments (Supplemental Figure S4.1), representing extra- and intra-cellular tracee and
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tracer. Measurements are assumed to be taken from the extracellular compartment.

Tracee is produced and disposed from tracee pool 1. Tracer is disposed from tracer
pool 1. It is assumed that the natural production of tracer is negligible within the time
frame of the experiment. The tracer coming into the system comes from the tracer infusion.
The rate of disposal of tracer (f(t)) equals the rate of disposal of the tracee (F). The tracer
and tracee kinetics is described by Eqs. S4.1 - Eqs. S4.4:

Tracee pool 1 (TC1):

d

dt
TC1 = −K12 ∗ TC1 +K21 ∗ TC2 − F ∗ TC1 + U (S4.1)

Tracee pool 2 (TC2):

d

dt
TC2 = K12 ∗ TC1 −K21 ∗ TC2 (S4.2)

Tracer pool 1 (TR1):

d

dt
TR1(t) = −K12 ∗ TR1(t) +K21 ∗ TR2(t)− f(t) ∗ TR1(t) + u(t) (S4.3)

Tracer pool 2 (TR2):

d

dt
TR2(t) = K12 ∗ TR1(t)−K21 ∗ TR2(t) (S4.4)

The TTR in plasma can then be calculated as described by Eqs. S4.5: Tracer to tracee
ratio (TTR):

d

dt
TTR =

TR1(t)
TC1

− TTRbase

1 + 0.0111 ∗ 6
∗ 100% (S4.5)

Here, TTRbase is the observed ratio of 13C6-Leucine to 12C6-Leucine prior to the
addition of tracer.

The value 1/(1+0.0111*6) is the skew correction factor, accounting for the natural
abundance of 13C6-Leucine1. The spectrum of 13C6-Leucine does not have the same mass
abundance distribution as natural 12C6-Leucine. In the calculation of TTR, this skew in
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isotopomer distribution must be accounted for. The correction factor can be approximated
by the value 1/(1+An), where A is the natural isotopic abundance of 13C carbon atoms
and n is the number of atoms labelled2. 1.11% of the naturally occurring carbon atoms
are 13C atoms and Leucine has six carbon atoms (C6H13NO2), therefore 1/(1+0.0111*6).

The baseline of tracee pool 2 (TC2base) and production of tracee (U) follow from
steady state conditions.

TC2base = TC1base ∗
K12

K21
(S4.6)

U = F ∗ TC1base (S4.7)

Supplemental Table S4.1 shows all kinetic parameter estimates. All parameters
could be estimated with good precision. For the baseline of the tracee pool 1 (TR1base)
interanimal variability was quantified. The model included a proportional error to describe
the residual variability.

The measured plasma tracer enrichment was adequately described by the model, as
can been seen from the visual predictive check (Supplemental Figure S4.2). Thus, the
model could serve as input for PK-tracer-PD model analysis.

Table S4.1: Population parameter estimates including coefficient of variation (CV%) for
kinetic model of plasma tracer enrichment.

PARAMETER DESCRIPTION VALUE UNIT CV%
F Disposal 0.931 h−1 25.5
K12 Transit rate from pool 1 to pool 2 0.644 h−1 16.5
K21 Transit rate from pool 1 to pool 2 0.0154 h−1 33.4
TC1base Baseline tracee pool 1 141 mg 15.1
ω2

TC1base
Interanimal variability baseline tracee pool 1 0.0166 20.0

σ2 Residual variability 0.722 20.4

Time to steady state
A simulation was performed with the kinetic model to investigate if plasma tracer enrich-
ment reached steady state with the primed 12 h 13C6-L infusion as used in the current
SILK study (Supplemental Figure S4.3). To that end, the continuous infusion time was
extended and the time to steady state derived. It takes approximately 52 days of infusion
to reach steady state with the primed infusion technique. After approximately 10 and 17
days respectively 95% and 99% of the steady state level is reached. In the current study,
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with the primed 12 h infusion, 62% of the steady state level of plasma tracer enrichment
was reached.

BACE 10−054
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Figure S4.2: Visual predictive check of plasma tracer enrichment (TTR) time profile of
13C6-Leucine in the rhesus with 90% confidence interval.
Observation sample size: n=260 from 5 monkeys collected over 2 days at four occasions.
Solid line: Median model predicted plasma TTR-time profile Long-dashed line: 90% prediction interval.
Dotted line: Median observed plasma TTR-time profile Plus-symbols: Observations.
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Figure S4.3: Simulation of plasma tracer enrichment (TTR) time profile using the identified
kinetic model.
The plasma TTR is predicted after a primed infusion of 4 mg/kg bolus over 10 minutes, followed
by 1300 h continuous infusion at a rate of 4 mg/kg/h, using the typical parameter estimates.
Steady state plasma TTR is reached after ∼ 52 days of infusion.
Solid line: Model predicted plasma TTR-time profile after primed 1300 h infusion. Long-dashed grey line:
Model predicted plasma TTR-time profile after primed 12 h infusion. Dashed vertical red line: Time of 95%
steady state plasma TTR. Dot-dashed vertical green line: Time of 99% steady state plasma TTR.
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SUPPLEMENTAL MATERIAL (2)

Table S4.2: Population parameters derived from model parameters for updated model based on
ELISA and SILK data.

PARAMETER DESCRIPTION VALUE UNIT

Aβ40basea Aβ40 baseline 650.9 pM
Aβ42baseb Aβ42 baseline 23.92 pM
FactorXbase

c FactorX baseline 1,015 pM
sAPPαbase

d sAPPα baseline 1,029 pM
AβObase

e AβO baseline 232.12 pM
APP base

f APP baseline 2,179 pM
RinAPP

g source of APP 9.25*10−7 L−1h−1

Rinαh sAPPα formation rate 0.202 h−1

Rinβ i sAPPβ formation rate 0.209 h−1

Kin40j Aβ40 formation rate 0.341 h−1

Kin42 k Aβ42 formation rate 0.0125 h−1

Kinxl Aβx formation rate 0.122 h−1

a Aβ40base=FbaseAβ40*sAPPβbase.
b Aβ42base=FbaseAβ42*sAPPβbase.
c FactorXbase=FbaseFactorX*sAPPβbase.
d sAPPαbase=FbasesAPPα*sAPPβbase.
e AβObase=Kpl*Aβ42base/Krev.
f APPbase=sAPPβbase+sAPPβbase
g RinAPP= (Rinα+ Rinβ )*APPbase*MWLeuL /(TC1base*109)
h Rinα= Routa*sAPPαbase/APPbase
i Rinβ= (Kin40+Kin42+Kinx)*sAPPβbase/APPbase
j Kin40=Kout*Aβ40base/sAPPβbase
k Kin42=Kin40*Aβ42base/Aβ40base
l Kinx=Koutx*FactorXbase/sAPPβbase
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SUPPLEMENTAL MATERIAL (3)

Simulation scale correction factor

In the PKPD model the plasma tracer enrichment was scaled to the level of tracer enrichment

in the brain using a scale correction factor FAC. FAC represents the relative uptake of tracer in

the precursor APP pool and was estimated to be 0.764. 13C6-Leu does not achieve an isotopic

equilibrium throughout all free pools of Leucine within the timeframe of the tracer infusion.

Therefore, the tracer enrichment in the brain differs from plasma enrichment.

If isotopic equilibrium is assumed, and hence FAC=1, the fraction labelled protein is overesti-

mated for fraction labeled total Aβ, sAPPβ and sAPPα, as is demonstrated in Supplemental Figure

S4.4 for the placebo group.
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●●●
●
●●

●●●●
●●●

●
●●●
●●

●●●●
●

●●●●
●

●
●

●

●

●●

●

●●

●

●●

●

●

●
●●

●●

●

●

●
●
●●

●

●
●
●

●
●

●

●

●●●●

●

●●●●
●

●
●
●●●

●
●●●
●
●

●●
●●●
●

●●
●●●
●

●
●●●●

0 24 48 72 96 120

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Time after dose(h)

F
ra

ct
io

n 
la

be
le

d 
sA

P
P

α 

(C) fraction labeled sAPPα

Figure S4.4: Simulation fraction labelled protein response vs. time profile for the placebo
group with scale correction factor (FAC) equals 1.
Solid line: Predicted fraction labelled protein response-time profile; Dashed line: Smoother through the
observations of the placebo group; Symbols: Observations placebo group.
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SUPPLEMENTAL MATERIAL (4)

Equations

The interaction between labeled and unlabelled APP, sAPPβ, sAPPα, Aβ40, Aβ42, AβO and

FactorX is described by Eq. S4.8 - Eq. S4.21:

d

dt
APPunlab =RinAPP ∗ TC1 ∗ 109

MWLeuU
− (Rinβ ∗ EFF +Rinα) ∗APPunlab

−RinAPP ∗ TR1 ∗ 109 ∗ FAC
MWLeuL

(S4.8)

d

dt
APP lab =RinAPP ∗ TR1 ∗ 109 ∗ FAC

MWLeuL

− (Rinβ ∗ EFF +Rinα) ∗APP lab
(S4.9)

d

dt
sAPPαunlab = Rinα ∗APPunlab −Routa ∗ sAPPαunlab (S4.10)

d

dt
sAPPαlab = Rinα ∗APP lab −Routa ∗ sAPPαlab (S4.11)

d

dt
sAPPβunlab =Rinβ ∗ EFF ∗APPunlab

− (Kin40 +Kin42 +Kinx) ∗ sAPPβunlab
(S4.12)

d

dt
sAPPβlab =Rinβ ∗ EFF ∗APP lab

− (Kin40 +Kin42 +Kinx) ∗ sAPPβlab
(S4.13)

d

dt
Aβunlab40 = Kin40 ∗ sAPPβunlab −Kout ∗Aβunlab40 (S4.14)

d

dt
Aβlab40 = Kin40 ∗ sAPPβlab −Kout ∗Aβlab40 (S4.15)
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d

dt
Aβunlab42 =Kin42 ∗ sAPPβunlab −Kout ∗Aβunlab42

−Kpl ∗Aβunlab42 +Krev ∗AβunlabO

(S4.16)

d

dt
Aβlab42 =Kin42 ∗ sAPPβlab −Kout ∗Aβlab42 −Kpl ∗Aβlab42

+Krev ∗AβlabO
(S4.17)

d

dt
AβunlabO = Kpl ∗Aβunlab42 −Krev ∗AβunlabO (S4.18)

d

dt
AβlabO = Kpl ∗Aβlab42 −Krev ∗AβlabO (S4.19)

d

dt
FactorXunlab = Kinx ∗ sAPPβunlab −Koutx ∗ FactorXunlab (S4.20)

d

dt
FactorXlab = Kinx ∗ sAPPβlab −Koutx ∗ FactorXlab (S4.21)

The label incorporation in the APP pathway is informed from the kinetic model of plasma

tracer enrichment. In Eqs. S4.8 and S4.9 this is imputed by TC1 and TR1, converted from mg to

pM by 109/MWLeu. FAC in Eqs. S4.9 is a scale correction factor, used to scale the plasma tracer

enrichment to the level of tracer enrichment in the brain.

The rate of change of APP with respect to time in the presence of the inhibitor is described by

Eqs. S4.8 and S4.9, in which the BACE1 cleavage inhibition is incorporated by the factor EFF.

EFF is the degree of inhibition caused by MBi-5, expressed as shown in Eqs. 5.8.

EFF = 1−
CGAM

target ∗ Imax
CGAM

target + IC50GAM
(S4.22)

Where Ctarget is the target site concentration of MBi-5 , IC50 the Ctarget that results in 50%

inhibition of BACE1, Imax is the maximum inhibition and GAM is the Hill coefficient. Ctarget was

derived from the PK model as:

Ctarget = Cplasma ∗
AUCCSF

AUCplasma
(S4.23)

Where AUCCSF and AUCplasma are the areas under the CSF and plasma concentration time

curves, respectively. Here, Ctarget is assumed to follow the same profile as Cplasma, with the ratio
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between the two concentrations being equal to the ratio between AUCCSF and AUCplasma.

It is assumed that the system is in steady state when no tracer and no treatment is given (EFF=1).

In addition, it is assumed that prior to tracer infusion, there are no labelled species. These steady

state conditions were used to derive part of the system parameters.

From the steady state conditions and Eqs. S4.8 it follows that the source of APP (RinAPP) was:

RinAPP = (Rinβ +Rinα) ∗ APPbase ∗MWLeuL

TC1base ∗ 109
(S4.24)

Where APPbase is the baseline level of APP (unlabelled, prior to tracer infusion), which is assumed

to be equal to the sum of the baseline levels of sAPPα and sAPPβ, as all alternate pathways are

represented by the terms for α-secretase. BTC1 is the baseline of tracee pool 1.

Using the steady state conditions and Eqs. S4.10 the sAPPα formation rate (Rinα), equivalent to the

α-secretase cleavage step, can be derived:

Rinα = Routa ∗
sAPPαbase
APPbase

(S4.25)

Where sAPPαbase is the baseline level of sAPPα.

The sAPPβ formation rate (Rinβ), equivalent to the BACE1 cleavage step, follows from steady state

conditions and Eqs. S4.12:

Rinβ = (Kin40 +Kin42 +Kinx) ∗
sAPPβbase
APPbase

(S4.26)

Where sAPPβbase is the baseline level of sAPPβ.

From steady state conditions and Eqs. S4.14 the Aβ40 formation rate (Kin40), equivalent to a

γ-secretase cleavage step can be calculated:

Kin40 = Kout ∗ Aβ40base
sAPPβbase

(S4.27)

Where Aβ40base is the baseline level of Aβ40. sAPPβbase is the baseline level of sAPPβ, used

here as surrogate for the baseline level of C99.

From Eqs. S4.16 and steady state conditions, with substitution of Kout from Eqs. S4.27, the Aβ42

formation rate (Kin42), equivalent to a γ-secretase cleavage step, is deduced:

Kin42 = Kin40 ∗
Aβ42base
Aβ40base

(S4.28)

Where Aβ42base is the baseline level of Aβ42.

From Eqs. S4.20 and steady state conditions, the FactorX formation rate (Kinx) is deduced:

Kinx = Koutx ∗
FactorXbase
sAPPβbase

(S4.29)

Where FactorXbase is the baseline level of FactorX.
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The model structure includes two times six transit compartments, two for each biomarker

(labelled and unlabelled) (sAPPα, sAPPβ, Aβ40, Aβ42, AβO, FactorX), to account for transport

from the target site in the brain to CSF. These transit processes are described, in general, by

Eqs. S4.30 and S4.31:

d

dt
specieslabCSF = Kt ∗ (specieslab − specieslabCSF ) (S4.30)

d

dt
speciesunlabCSF = Kt ∗ (speciesunlab − speciesunlabCSF ) (S4.31)

Where Kt is the transit rate for the particular species (KtAP for sAPPα and sAPPβ; KtAB for

Aβ40, Aβ42 and AβO; KtX for FactorX).

The fraction labelled species (FracLab) for each APP metabolite in CSF are calculated as

labelled over total species (Eq. S4.32-S4.34).

FracLabsAPPαCSF =
sAPPαlabCSF
sAPPαTotalCSF

(S4.32)

FracLabsAPPβCSF =
sAPPβlabCSF
sAPPβTotalCSF

(S4.33)

FracLabAβCSF =
Aβlab40CSF +Aβlab42CSF +AβlabOCSF + FactorXlab

CSF

AβTotal40CSF +AβTotal42CSF +AβTotalOCSF
+ FactorXTotal

CSF

(S4.34)

The total concentrations for each APP fragment in CSF are calculated as:

TotalspeciesCSF = specieslabCSF + speciesunlabCSF (S4.35)
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Challenging the APP systems model with a γ-secretase inhibitor

Abstract

The abnormal accumulation of amyloid-β (Aβ) in the brain parenchyma has been posited
as a central event in the pathophysiology of Alzheimer’s disease. Recently, we have pro-
posed a systems pharmacology model of the APP pathway, describing the Aβ precursor
protein (APP) metabolite responses (Aβ40, Aβ42, sAPPα and sAPPβ) to β-secretase 1
(BACE1) inhibition1. In this investigation this model was challenged to describe Aβ dy-
namics following γ-secretase (GS) inhibition. This led an extended systems pharmacology
model, with separate descriptions to characterize the sequential cleavage steps of APP by
BACE1 and GS, to describe the differences in Aβ response to their respective inhibition.
Following GS inhibition a lower Aβ40 formation rate constant was observed, compared
to BACE1 inhibition. Both BACE1 and GS inhibition were predicted to lower AβO levels.
Further model refinement and new data may be helpful to fully understand the difference
in Aβ dynamics following BACE1 versus GS inhibition.
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Introduction

The amyloid cascade hypothesis posits that the pathological cascade leading to Alzheimer’s
Disease (AD) is triggered by abnormal accumulation of amyloid-β protein (Aβ) in the
brain parenchyma2. Inhibition of Aβ production in the brain is therefore a therapeutic
target for treating AD with a potentially disease-modifying effect3,4.

Aβ is generated through sequential proteolytic cleavage of β-amyloid precursor
protein (APP) by β-secretase (BACE1) and γ-secretase (GS)5, as schematically depicted
in Figure 5.1. In the first cleavage step, the N-terminal secreted fragment soluble APPβ
(sAPPβ) and the C-terminal membrane-bound 99-amino acid fragment (βCTF or C99)
are formed by BACE1. Subsequently, C99 is cleaved by GS yielding Aβ species of
different chain length of which Aβ38, Aβ40 and Aβ42 are the most common isoforms.
In an alternative pathway, cleavage of APP by α-secretase leads to the formation of
soluble APPα (sAPPα) and the C-terminal membrane-bound 83-amino acid fragment
(αCTF or C83). α-secretase cleavage precludes Aβ formation. Recently, a new APP
processing pathway was reported by Willem et al. 6 , in which sequential cleavage of APP
by η-secretase and BACE1 or ADAM10 produces Aη-β and Aη-α, respectively. There
may be other alternate processing of APP unidentified at this moment.

These observations show that the accumulation of Aβ species is governed by a
biochemical network, in which there are multiple enzymes that may serve as a target to
modify the exposure to distinct Aβ peptide species. The network structure complicates the
prediction of the effect of inhibitors of the various enzymes on the exposure to the various
Aβ species. This may explain the mixed observations in some of the early clinical trials
with enzyme inhibitors. Against this background we have recently proposed a systems
pharmacology model to describe the effect of BACE1 inhibition on multiple Aβ species1.

Inhibitors of the two secretases that generate Aβ from APP, BACE1 and GS inhibitors,
have been proposed as potential disease-modifying approaches in the treatment of AD3.
Several BACE1 inhibitors are presently in clinical trials. The BACE1 inhibitor E2609
(Eisai) is currently in Phase II clinical development, MK-8931 (MSD) has advanced to
Phase III and AZD 3293 (Eli Lilly and AstraZenica) recently progressed to Phase III.
Various GS inhibitors, acting downstream on the APP pathway compared to BACE1
inhibitors, have also been pursued in the pharmaceutical industry. The GS inhibitor
MK-0752 was progressed to Phase I, but then discontinued due to tolerability issues. The
GS inhibitor avagecestat (BMS-708163) was discontinued after Phase II because of lack
of efficacy and adverse effects of the gastrointestinal and dermatological system7. The
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development of the GS inhibitor begacestat (GSI953) was discontinued after several Phase
I trials. Begacestat reduced plasma Aβ40 levels but not CSF Aβ408. The Phase III trial
of the GS inhibitor semagacestat (LY450139) was terminated before completion, because
semagacestat was associated with worsening of cognition and function, as well as adverse
events such as skin cancers9. As yet, no GS inhibitor demonstrated therapeutic success in
AD patients.

oligomerization

sAPPβ

Aβ

sAPPα

C99C83

P3
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Non-amyloidogenic pathway           Amyloidogenic pathway

Full-
length
APP

AβO

fibrillization

β-amyloid plaque
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BRAIN

Aβ40, Aβ42,..

−

Figure 5.1: The amyloid hypothesis of AD.
In the APP processing pathway, full length APP is cleaved by β-secretase (β-sec) or
α-secretase (α-sec) to form sAPPβ and C99 or sAPPα and C83. C99 is then cleaved by
γ-secretase (γ-sec) to form Aβ. In a possible feedback loop C83 binds to GS γ-secretase leading
to a reduction of Aβ (grey lines). The amyloid hypothesis states that an imbalance in production
and clearance of Aβ can result in aggregation of Aβ42 fragments into amyloid plaque.

A better understanding of the drug-induced modulation of the APP system after GS
inhibition, may be obtained through a quantitative comprehension of its concentration-
response relationships. Several studies on the pharmacokinetics (PK) and the pharmacody-
namics (PD) of GS inhibitors have been reported. Das et al. 10 reported a two-compartment
model describing Aβ response to GS inhibition, as observed in plasma and CSF in rhe-
sus monkeys. Their model postulates an inhibitory mechanism of Aβ clearance by GS
inhibition. However, in their model aspects of the Aβ production, transport and clearance
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processes were simplified. A model-based meta-analysis of published and in-house (pre-
)clinical GS inhibitors data was performed by Niva et al. 11 . The production and clearance
of Aβ was described with a turnover model, with a drug effect on the production rate. Tai
et al. 12 also used turnover models to describe Aβ levels following GS inhibition in brain,
CSF and plasma in wild type rat. They propose a quasi-static Aβ pool in the brain which
does not change after short drug exposure.

The above mentioned approaches look solely at the behaviour of Aβ and not at the
behaviour of the APP system as a whole. The understanding of the APP system is
imperative to improve the prediction of drug effects on Aβ levels. Recently, a systems
pharmacology model of the APP processing pathway was developed to characterize the
APP metabolites responses to BACE1 inhibition by MBi-51, distinct from MSD’s BACE1
inhibitor MK-8931. Throughout the article the term ’recent model’ is used to refer this
model. The recent model took into account the kinetics and interrelationships of sAPPβ,
sAPPα, Aβ40 and Aβ42. In the model, sAPPβ was used as a surrogate substrate for
C99 in the γ-secretase cleavage step, modulating the responses of Aβ40 and Aβ42 in the
presence of the BACE1 inhibitor. A precursor APP pool, shared by sAPPα and sAPPβ,
was included to describe the effect on all four biomarkers with a single drug effect. The
effect of BACE1 inhibition was built-in the model as inhibition of the pathway mediated
by BACE1. Using this model, it was demonstrated that BACE1 inhibition resulted in a
larger absolute reduction of CSF levels of Aβ40 than of Aβ42, as the effect on Aβ42 was
modulated by back-conversion from an oligomer (AβO) pool.

There is growing evidence that AβO have a central role in the pathogenesis of AD13.
Toxic AβO are considered to be the drivers of neurodegeneration. AβO might exist
in a complex equilibrium with Aβ monomers and fibrils14. Treatments that prevent
Aβ production may reduce the concentration of AβO and subsequently promote the
release of soluble Aβ from fibrils to restore the equilibrium15.

The objective of the current investigation was to elucidate the APP processing pathway
further, by challenging the recently developed systems pharmacology model of the APP
pathway to describe Aβ dynamics following GS inhibition. The aims were (i) to separate β-
secretase and γ-secretase sequential cleavage steps; (ii) to investigate possible differences
in Aβ response following GS versus BACE1 inhibition; and (iii) to evaluate if moderation
of Aβ42 by back-conversion from an AβO pool could also be identified after inhibiting
GS. To this end, CSF Aβ40 and Aβ42 response data from two studies of the GS inhibitor
MK-0752 in cisterna magna ported rhesus monkeys16 were analysed simultaneously with
data from a BACE1 inhibitor (MBi-5) study, using the APP systems model.
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Materials and Methods

Animals
All animal studies were reviewed and approved by the MSD Institutional Animal Care
and Use Committee. The NIH Guide to the care and use of Laboratory Animals and
the Animal Welfare act were followed in the conduct of the animal studies (Institute
of Laboratory Animal Resources, National Research Council, 1996). The CMP rhesus
monkey model was reported by Gilberto et al. 17 . The rhesus monkeys are chronically
implanted with catheters in the cisterna magna, facilitating repeated sampling of CSF and
plasma (through a jugular vascular access point). These rhesus monkeys were individually
housed and captive-bred in a closed colony.

In the first GS inhibitor study (study 1), six male animals, weighing between 6.9 kg
and 9.6 kg (mean, 8.2 kg), age n=5 at 5 years to 8 years (mean, 6 years) and 1 animal
aged 17 years at time of study were included. The second GS inhibitor study (study 2)
included six male animals, weighing between 6.1 kg and 12.3 kg (mean, 9.1 kg), age 7
to 10 years (mean, 8 years). In the BACE1 inhibitor study (study 3), six male animals,
weighing between 5.2 kg and 11.7 kg (mean, 8.7 kg), age 2 to 10 years (mean, 8 years),
were included. Half of the animals in the BACE1 inhibitor study participated also in the
GS inhibitor studies.

Drug administration and sampling
The effects of secretase inhibition were obtained in three studies. In study 1, infor-
mation on the effect of GS inhibition on Aβ40 and Aβ42 was obtained following a
single oral administration of MK-0752 (3-((1r,4s)-4-(4-chlorophenylsulfonyl)-4-(2,5-
difluorophenyl)cyclohexyl)propanoic acid) at 60 and 240 mg/kg (5 mL/kg) in a vehicle
controlled (sterile water) three-period crossover study. In study 2, the effect of GS inhibi-
tion on Aβ40 and Aβ42 was measured during a follow-up collection period, following a
single oral dose of MK-0752 at 240 mg/kg (5 mL/kg) in a vehicle controlled (sterile water)
study. In study 3, the effect of BACE1 inhibition on sAPPα, sAPPβ, Aβ40 and Aβ42
were measured, following a single, oral administration of MBi-5 at 10, 30, 125 mg/kg
(5 mL/kg), or vehicle (0.4% methylcellulose) in a four-way full crossover study. The
study protocols of study 1 and 2 and pharmacological profile of MK-0752 were previously
described by Cook et al. 16 . The detailed study protocol of study 3 and pharmacologi-
cal profile of MBi-5 were described by Dobrowolska et al. 18 . The study protocols are
summarized here.
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In study 1, plasma and CSF drug concentrations were collected at 0 (predose) and 3,
5, 7, 9, 13, 16, 19, 22, 25, 28, 31, 34, 37, 40 and 49 h postdose, resulting in 16 plasma and
CSF PK samples for each monkey per treatment. In study 2, plasma and CSF samples
were collected as described for study 1 and additional samples were taken at 73, 145, 169,
217 and 241 h postdose, resulting in 21 plasma and CSF PK samples for each monkey.
2 mL of blood and 1 mL of CSF were collected at each time point. The concentration
of MK-0752 in the plasma and CSF samples was determined using LC-MS/MS. The
concentrations of Aβ40 and Aβ42 were determined from CSF samples collected at the
same time points as PK samples, giving 16 measurements of each biomarker for each
monkey per treatment in study 1 and 21 measurements of each biomarker for each monkey
in study 2. The Aβ1-40 and Aβ1-42 assays used for the concentration measurements
were described previously by Cook et al. 16 .

In study 3, plasma and CSF drug concentrations were collected at 0 (predose) and
3, 5, 7, 9, 13, 16, 19, 22, 25, 28, 31, 49, 55, 58, 73 and 145 h postdose, resulting in 17
plasma and CSF PK samples for each monkey per treatment group. 2 mL of blood and 1
mL of CSF were collected at each time point. The concentration of MBi-5 in the plasma
and CSF samples was determined using LC-MS/MS. The concentrations of Aβ40, Aβ42,
sAPPα and sAPPβ were determined from CSF samples collected at -22, -20 and -1h
(predose) and 2, 4, 6, 8, 12, 15, 18, 21, 24, 27, 30, 48, 54, 57, 72 and 144 h postdose,
giving 19 measurements of each biomarker for each monkey per treatment group. 1 mL
of CSF were collected at each time point. The specific enzyme-linked immunosorbent
assays used for the concentration measurements were described previously19,20.

PK-PD analysis

PK-PD modelling analysis was performed by means of non-linear mixed effects modelling
using the software package NONMEM (version 7.2.021). In this approach, structural
(fixed) effects and both intra- and interindividual variability are taken into account. Typical
values of structural model parameters (population parameters, which define the average
value for a parameter in a population) (θ), the variance and covariance of the interindividual
variability (ω2) and the variance of the residual error (σ2) are estimated.

The best models were chosen based on minimum value of the objective function, the
precision of parameter estimates, and visual inspection of goodness-of-fit plots. A more
detailed description of the modelling procedure was described in van Maanen et al. 1 .

To evaluate the performance of the model a visual predictive check (VPC) was
performed in which the median and the 90% inter-quantile range of the data simulated
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with the final parameter estimates were overlayed with the observations. The predictive
capacity is considered sufficient when the median and 90% of predictions line up within
the 5th, 50th and 95th percentiles of the observations.

The NONMEM software package was implemented on an Intel QuadCore
(Intel R©CoreTM i7 CPU860, 2.80 GHz, 3.24 GB RAM) and Compaq Visual Fortran
(version 6.6, Compaq Computer Corporation, Houston, Texas, USA) was used as compiler.
Data management and model assessment was done using the statistical software package
S-PLUS for Windows (version 8.0 Professional, Insightful Corp., Seattle, USA).

Model description

The systems model of the APP processing pathway was developed by sequential analysis
of PK and PD data following administration of MBi-5 and MK-0752. The PK models
of MBi-5 and MK-0752 were based on simultaneous analysis of plasma and CSF PK
data of each compound. The results of the PK data analysis of MBi-5 have been reported
elsewhere by van Maanen et al. 1 . The results of the PK data analysis of MK-0752 are
reported in the supplemental material.

The PK models adequately described the plasma and CSF concentration time profiles
of MBi-5 and MK-0752, respectively, thus the models could serve as input for PD model
analysis.

The interrelationships of APP metabolite responses to BACE1 inhibition were de-
scribed recently using a comprehensive systems model of the APP processing pathway1.
To describe the effect of the GS inhibitor, the model had to be extended.

The extended systems model of the APP processing pathway included a compartment
for C99. The relation between Aβ and C99 was included in the model, representing the
γ-secretase cleavage step, on which the drug effect of MK-0752 was implemented. In
addition, sAPPβ was no longer used as driver of Aβ response and a sAPPβ elimination
path was incorporated into the model.

The biomarker response profiles of MBi-5 and MK-0752 measured in CSF were
adequately described by a model containing compartments for seven moieties: APP,
sAPPβ, sAPPα, C99, Aβ40, Aβ42 and AβO (Fig. S5.1). The production of APP was
assumed to be constant and described by a zero order input rate constant RinAPP . The
production of the APP metabolites was assumed to be first order, i.e. dependent on its
precursor concentration. The relationship between APP and its metabolites (sAPPβ,
sAPPα, C99, Aβ40 and Aβ42) and AβO is described by Eq. 5.1 - Eq. 5.7:
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d

dt
APP = RinAPP − (Rin ∗ EFFB +Rin2) ∗APP (5.1)

d

dt
sAPPα = Rin2 ∗APP −Routa ∗ sAPPα (5.2)

d

dt
sAPPβ = Rin ∗ EFFB ∗APP −Routb ∗ sAPPβ (5.3)

d

dt
C99 =Rin ∗ EFFB ∗APP − (Kin40 +Kin42) ∗ EFFG ∗ C99

−Kout99 ∗ C99
(5.4)

d

dt
Aβ40 = Kin40 ∗ EFFG ∗ C99−Kout ∗Aβ40 (5.5)

d

dt
Aβ42 =Kin42 ∗ EFFG ∗ C99−Kout ∗Aβ42 −Kpl ×Aβ42

+Krev ×AβO

(5.6)

d

dt
AβO = Kpl ×Aβ42 −Krev ×AβO (5.7)

The rate of change of APP with respect to time in the presence of the BACE1 inhibitor
is expressed by Eq. 5.1, in which the BACE1 cleavage inhibition is incorporated by the
factor EFFB. The rate of change of C99 with respect to time in the presence of the GS
inhibitor is described by Eq. 5.4, in which the GS cleavage inhibition is incorporated by
the factor EFFG. EFFB and EFFG are the degrees of inhibition caused by MBi-5 and
MK-0752, respectively. Generally, the degree of inhibition is described by a sigmoidal
Imax function, as shown in Eq. 5.8.
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EFF = 1−
CGAMtarget ∗ Imax

CGAMtarget + IC50GAM
(5.8)

Where Ctarget is the target site concentration of MBi-5 or MK-0752, respectively, IC50

the Ctarget that results in 50% inhibition of BACE1 or GS, Imax is the maximum response
and GAM is the Hill coefficient. Ctarget was derived from the respective PK models as:

Ctarget = Cplasma ∗
AUCCSF
AUCplasma

(5.9)

Where AUCCSF and AUCplasma are the areas under the CSF and plasma concentration
time curves, respectively. Ctarget is assumed to be in steady state with Cplasma.
It is assumed that the system is in steady state (SS) when no treatment is given (EFFB=1,

EFFG=1). These steady state conditions were used to derive part of the system parameters.
From SS and Eq. 5.1 it follows that the zero order input rate constant of APP (RinAPP ) is:

RinAPP = (Rinα +Rinβ) ∗APPbase (5.10)

Where APPbase is the baseline level of APP, assumed to be equal to the sum of the baseline
levels of sAPPα and sAPPβ. All alternate pathways are represented by the terms for
α-secretase.
Using SS conditions and Eq. 5.2 the sAPPα formation rate constant (Rinα), equivalent to
the α-secretase cleavage step, can be derived:

Rinα = Routa ∗
sAPPαbase
APPbase

(5.11)

Where sAPPαbase is the baseline level of sAPPα.
The sAPPβ and C99 formation rate constant (Rinβ), equivalent to the BACE1 cleavage
step, follows from SS conditions and Eq. 5.3:

Rinβ = Routb ∗
sAPPβbase
APPbase

(5.12)

Where sAPPβbase is the baseline level of sAPPβ.
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From Eq. 5.5 and SS, the Aβ degradation rate constant (Kout), is deduced:

Kout = Kin40 ∗
C99base
Aβ40base

(5.13)

Where C99base is the baseline level of C99. Please not that C99 is not an observed
measure. From Eq. 5.4 and SS the baseline level of C99 can be calculated:

C99base =
Routb ∗ sAPPβbase

Kin40 +Kin42 +Kout99
(5.14)

Combining Eq. 5.13 and Eq. 5.14, the Aβ42 formation rate constant (Kin42), equivalent
to a GS cleavage step, can be written as:

Kin42 = Kout ∗ Aβ42base
Aβ40base

(5.15)

Kpl and Krev are the Aβ42 oligomerization and dissociation rate constant, respectively,
which are dependent on the baseline values of Aβ42 and the AβO pool (Aβ42base and
AβObase, resp.) according to Eq. 5.16:

Krev =
Kpl ×Aβ42base

AβObase
(5.16)

The model structure includes four transit compartments (Fig. S5.1), one for each
biomarker measured in CSF (sAPPα, sAPPβ, Aβ40, Aβ42), to account for transport from
the target site in the brain to CSF. These transit processes are described, in general, by
Eq. 5.17:

d

dt
xAxCSF = Ktr ∗ (xAx− xAxCSF ) (5.17)

Where Ktr is the transit rate constant for the particular APP metabolite xAx (sAPPα,
sAPPβ, Aβ40, Aβ42).
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Results

Aβ response to GS and BACE1 inhibition was described by separate descriptive
models
Initially, empirical PK-PD models were developed to quantify the exposure-response
relationships for each CSF APP metabolite of the BACE1 inhibitor MBi-5 (Aβ40, Aβ42,
sAPPα and sAPPβ) and GS inhibitor MK-0752 (Aβ40 and Aβ42) in rhesus monkeys. For
the BACE1 inhibitor MBi-5, the empirical PK-PD models for Aβ40, Aβ42, sAPPα and
sAPPβ were discussed recently in van Maanen et al. 1 . For MBi-5 and MK-0752, we
now present the empirical PK-PD models for Aβ40 and Aβ42. The exposure-response
relationship for each Aβ-inhibitor combination was described by a transit model with
1 or 2 compartments, with the drug effect modelled relative or subtractive to baseline
using an Imax function. Table 5.1 presents a summary overview of the results of these
models. For each inhibitor, the empirical models identified similar drug effects for Aβ40
and Aβ42: for MBi-5 the identified potencies were Aβ40: 0.0254 µM (95% CI, 0.0246-
0.0262) and Aβ42: 0.0455 µM (95% CI, 0.0351-0.0559) and for MK-0752 the identified
potencies were Aβ40: 0.432 µM (95% CI, 0.300-0.564) and Aβ42: 0.567 µM (95% CI,
0.402-0.732).

The separate empirical models revealed potential challenges for the combined analysis.
Firstly, there are study differences in Aβ baselines: Aβ40 baseline is 1.5 fold higher
and the Aβ42 baseline is 3.4 fold higher in the GS inhibitor studies (study 1 and 2)
compared to the BACE1 inhibitor study (study 3). Consequently, the ratio of Aβ42:Aβ40
is higher in the GS inhibitor studies: 0.078 for the GS inhibitor studies and 0.034 for
the BACE1 inhibitor study, respectively. Secondly, the mean transit time through the
compartments of the models was lower for Aβ42 after BACE1 inhibition than Aβ42 after
GS inhibition. This indicated that the response of Aβ42 to BACE1 inhibitor will appear
earlier in CSF than with GS inhibition. Sequentially, BACE1 inhibition interferes earlier
in the amyloidogenic APP pathway. This suggested a temporal difference in relative
response progression of Aβ42 following BACE1 versus GS inhibition. For Aβ40, the
mean transit time was higher after BACE1 inhibition than after GS inhibition, however
overlapping confidence intervals suggest insignificant differences.

A systems model to describe APP metabolite responses to GS and BACE1 inhibition
Recently, we reported a systems pharmacology model, incorporating the pharmacokinetics
of MBi-5 and APP metabolites (Aβ40, Aβ42, sAPPβ and sAPPα) concentrations1. In
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Table 5.1: Summary parameters of the separate empiric model fits for Aβ40 and Aβ42 for each
inhibitor

PARAMETER DESCRIPTION UNIT MBi-5 MK-0752

Aβ40 Aβ42 Aβ40 Aβ42

baseline baseline pM 722 24.8 1080 83.3

Imax maximal inhibition 100%a,b 20.4 pM c 100%a 100%a

IC50 median inhibition concentration µM 0.0254 0.0455 0.432 0.567
(CV

1.63%)
(CV

11.6%)
(CV

15.6%)
(CV

14.8%)

GAM Hill coefficient 1a 1a 1.70 1.48

MTTd Mean transit time (MTT) h 5.155 3.597 4.651 5.435

95% confidence interval MTT h (4.23-6.60) (2.42-7.08) (3.72-6.21) (4.26-7.52)

a Fixed.

b Effect = baseline ∗ (1−
CGAMtarget∗Imax

CGAMtarget+IC
GAM
50

)

c Effect = baseline−
CGAMtarget∗Imax

CGAMtarget+IC
GAM
50

d MTT = 1
Kt

× (n+ 1), where n is the number of transit compartments and Kt is the transit rate.

the current analysis, the model was extended to describe dynamics of Aβ responses after
exposure to a GS inhibitor. To this end, the APP metabolite responses of Aβ40, Aβ42,
sAPPβ and sAPPα following BACE1 inhibition and Aβ40 and Aβ42 response following
GS inhibition were analysed simultaneously.

To closer match the APP processing pathway, a C99 compartment was added to the
model structure. As sAPPβ and C99 are both products of the same BACE1 cleavage step,
the formation rate constant of C99 was set to be equal to the formation rate constant of
sAPPβ (Rinβ). The effect of BACE1 inhibition was incorporated in the model as inhibition
of Rinβ. The effect of GS inhibition was modelled as inhibition of the Aβ40 and Aβ42
formation rate out off the C99 compartment, consistent with the γ-secretase cleavage step.
The elimination of sAPPβ (RoutB) could now be described as a separate parameter.

Inclusion of a C99 compartment and the estimated GS inhibition rates implied rebound
of Aβ40 and Aβ42 response after GS inhibition: Simulations indicated an excessive
response above baseline upon cessation of GS inhibition (not shown). However, the data
did not suggest any significant rebound. Therefore, the model was refined by adding an
alternative elimination pathway of C99 (Kout99) and hence preventing rebound. The
resulting model structure is presented in Figure 5.2.

Inter-study baseline differences were evaluated by adding baseline data from two other
studies (Study A and B) (see Supplemental Material). From this, it became apparent
that a correction for Aβ baseline differences between studies needed to be included. The
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Figure 5.2: Schematic of model structure.
The model comprised eleven compartments: Six biomarker compartments in brain (yellow), one
oligomer pool (blank dashed) and four transit compartments from brain to CSF (blank). Four
biomarkers were measured in CSF (sAPPα, sAPPβ, Aβ40 and Aβ42), indicated by the blue
boxes. The model included a C99 compartment (dashed), which was not present in the model
based on β-secretase inhibition data only. Model extensions are indicated with the green shaded
area. The drug effect of the β-secretase inhibitor (BACEi EFF) inhibited Rin. The drug effect of
the γ-secretase inhibitor (GSi EFF) inhibited Kin42 and Kin40. As driver of biomarker response
Ctarget was used, which was derived from the respective PK models (not shown).
APP: Aβ-precursor protein; Aβ: amyloid-β-peptide; Ctarget: drug concentration target site; Kin40: Aβ40
formation rate; Kin42: Aβ42 formation rate; Kout: Aβ degradation rate; Kout99: C99 degradation rate; KtAP:
transit rate sAPPα and sAPPβ from brain to CSF; KtAB: transit rate Aβ from brain to CSF; RinAPP: source
of APP; Rinα: sAPPα formation rate; Rinβ: sAPPβ and C99 formation rate; Routa: sAPPα degradation rate;
Routb: sAPPβ degradation rate. Kpl: Oligomerization rate; Krev: AβO dissociation rate.

underlying biological system was assumed to be the same during all studies. Therefore,
scaling factors were included on the model predictions (IPRED) for Aβ40 and Aβ42
outside of the system. To improve the model description further, differences in parameter
values following BACE1 or GS inhibition were investigated. The formation rate constant
of Aβ40 (Kin40) was fixed to the value identified recently (0.574 h−1) following BACE1
inhibition1 and a significantly lower Kin40 was identified after GS inhibition (0.349 h−1

(95% CI: 0.296-0.402). Also, a substantial reduction of the Aβ42 oligomerization rate
constant (Kpl) after GS inhibition was found (95% reduction). Including these differences
improved the description of all the biomarkers.

Overall, the data were adequately captured across studies (Fig.5.3-5.6). Only a slight
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underprediction was observed for the baseline level of Aβ40 in study 1 (Fig. 5.3A) and
the maximal Aβ42 response to 240 mg/kg MK-0752 (Fig. 5.5B and 5.5C) and 125
mg/kg MBi-5 (Fig. 5.5F).

The model separated drug-specific and system-specific parameters
The population parameters and intra- and interanimal variability were optimized for the
all study populations simultaneously and are reported in Table 5.2. Interanimal variability
was included as exponential in nature, reflecting lognormal distributions of the individual
model parameters, for the baseline of sAPPβ, the IC50 of MBi-5 and the IC50 of MK-0752.
As the baselines of other APP metabolites were modelled as function of the baseline of
sAPPβ, the interanimal variability of sAPPβ is propagated in these biomarkers. Residual
variability was included for each APP
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Figure 5.3: Placebo. Aβ. Simulations of biomarker response vs. time profile of placebo in the
rhesus with 90% confidence interval. Observation sample size: n=114 for each APP metabolite
from 6 monkeys collected over 7 days. Solid line: Median predicted. Long-dashed line: 90% prediction
interval. Dotted line: Median observed. + symbol: Observations.
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Figure 5.4: Aβ40. Simulations of biomarker response vs. time profile of Aβ40 in the rhesus
with 90% confidence interval. Observation sample size: n=114 for each APP metabolite from 6
monkeys collected over 7 days. Solid line: Median predicted. Long-dashed line: 90% prediction interval.
Dotted line: Median observed. + symbol: Observations.
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Figure 5.5: Aβ42. Simulations of biomarker response vs. time profile of Aβ42 in the rhesus
with 90% confidence interval. Observation sample size: n=114 for each APP metabolite from 6
monkeys collected over 7 days. Solid line: Median predicted. Long-dashed line: 90% prediction interval.
Dotted line: Median observed. + symbol: Observations.
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Figure 5.6: sAPPα (left) and sAPPβ (right). Simulations of biomarker response vs. time
profile of MBi-5 in the rhesus with 90% confidence interval. Observation sample size: n=114
for each APP metabolite from 6 monkeys collected over 7 days. Solid line: Median predicted.
Long-dashed line: 90% prediction interval. Dotted line: Median observed. + symbol: Observations.
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metabolite (sAPPβ, sAPPα, Aβ40, Aβ42), as proportional error models, assuming a
normal distribution. Drug specific parameters (IC50, GAM, IM) could be distinguished
from system specific parameters (Kin40, Kout99, Routa Routb, KtrAP, Kpl, Krev). The
correlations between parameters were all below 0.95.

The transit rate constant from brain-to-CSF for Aβ40 and Aβ42 was assumed to be
equal and fast. As the transit rate for sAPPβ and sAPPα can only be estimated relative to
the transit rate of Aβ, the latter was fixed to an arbitrary high value (10 h−1). The transit
rate constant for sAPPβ and sAPPα was estimated to be 0.0847 h−1, which should be
interpreted relative to the Aβ transit rate constant.

Correction factors on Aβ42 and Aβ40 for study differences in levels compared to
study 3 were 3.7 (95% CI, 3.40-4.00) and 1.37 (95% CI, 1.26-1.48), which were imputed
as multipliers on the respective IPREDs of Aβ42 and Aβ40.

The IC50 of MBi-5 was estimated to be 0.0185 µM (95% CI, 0.0149-0.0221); the
IC50 of MK-0752 was 0.445 µM (95% CI, 0.337-0.553). The Hill coefficients for both
compounds slightly deviated from unity: MBi-5 1.49 (95% CI, 1.35-1.63) and MK-
0752 1.73 (95% CI, 1.54-1.92).

Differences in APP metabolite interrelationships following BACE1 and GS
inhibition
The formation rate constant of Aβ42 (Kin42) was calculated according to Equation 5.15:
0.0186 h−1 and 0.0113 h−1 in the BACE1 and GS inhibition studies, respectively. Kin42
was higher than the formation rate constant of Aβ40 (Kin40: 0.574 h−1 and 0.349 h−1,
in the BACE1 and GS inhibition studies, respectively). This is in agreement with the
previously reported ratio of Aβ42 and Aβ40 of about 1:10 in non-Alzheimer brain
(Iwatsubo et al. 22 ).

The resulting model was used to visualize the interrelationships of the biomarkers
following BACE1 and GS inhibition, respectively. Also, the behaviour of APP, C99 and
AβO was predicted. The relationships of the biomarker responses to BACE1 inhibition
were recently discussed in van Maanen et al. 1 . The differentiation in biomarker response
to inhibition of BACE1 and GS was as followed. APP increases after BACE1 but not after
GS inhibition (Figure 5.7A and 5.7B, respectively). C99 decreases following BACE1
inhibition and slightly increases following GS inhibition. Both BACE1 and GS inhibition
are predicted to decrease AβO levels, implying that the formation of AβO is reduced
by decreased levels of monomeric Aβ42 and that AβO is in dynamic equilibrium with
monomeric Aβ42.
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Table 5.2: Population parameter estimates including coefficient of variation (CV%)

PARAMETER DESCRIPTION VALUE UNIT CV%

Structural parameters

sAPPβbase baseline sAPPβ 1.22e+3 pM 4.44
FbasebAβ40 Aβ40 baseline as fraction of sAPPβbase 0.602 2.56
FbasecAβ42 Aβ42 baseline as fraction of sAPPβbase 0.0195 2.37
FbasedsAPPα sAPPα baseline as fraction of sAPPβbase 0.729 2.15
Kin40Ba formation rate Aβ40 following BACE1 inhibition (fixed) 0.574 h−1

Kin40G formation rate Aβ40 following GS inhibition 0.349 h−1 7.68
Kout99 degradation rate C99 4.70 h−1 10.1
Routa degradation rate sAPPα 1.80 h−1 13.3
Routb degradation rate sAPPβ 1.79 h−1 9.61
KtrAP transit rate sAPPα and sAPPβ 0.0847 h−1 4.17
KtrABa transit rate Aβ(fixed) 10 h−1

IMBa Imax BACE (fixed) 1
IC50B IC50 BACE 0.0185 µM 9.89
GAMBa Hill coefficient 1.49 4.72
IMGa Imax GSi (fixed) 1
IC50G IC50 GSi 0.445 µM 12.4
GAMGa Hill coefficient 1.73 5.55
KplB oligomerization rate following BACE1 inhibition 0.183 h−1 13.3
FKplGe factor on oligomerization rate following GS inhibition 0.0512 21.3
Krev oligomer dissociation rate 0.0104 h−1 64.7
FAC1 correction factor for study differences Aβ42 3.70 4.16
FAC2 correction factor for study differences Aβ40 1.37 4.25

Interanimal variability

ω2
BSAPb Interanimal variability sAPPβ baseline 0.0672 20.4
ω2
IC50B Interanimal variability IC50 BACE 0.280 39.6
ω2
IC50G Interanimal variability IC50 GSi 0.176 44.8

Residual error

σ2
Aβ40 Residual variability Aβ40 0.135 5.45
σ2
Aβ42 Residual variability Aβ42 0.0911 4.97
σ2
sAPPβ Residual variability sAPPβ 0.0732 8.09
σ2
sAPPα Residual variability sAPPα 0.106 8.53

a Fixed.
b Aβ40base=FbaseAβ40*sAPPβbase.
c Aβ42base=FbaseAβ42*sAPPβbase.
d sAPPαbase=FbasesAPPα*sAPPβbase.
e KplG=KplB*FKplG.
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Figure 5.7: Simulation biomarker responses.
The biomarker responses are simulated after a single dose of 125 mg MBi-5 (A) (C) and single
dose of 60 mg MK-0752 (B) (D).
APP black dashed line; sAPPα yellow solid line; sAPPβ blue solid line; C99 light blue dashed line; Aβ40

green solid line; Aβ42 red solid line; AβO grey twodash line.

The simulated concentration of AβO should be interpreted as the level if Aβ42
monomers tied in the ’oligomer soup’ in the brain. The AβO pool was modelled as a pool
in equilibrium with monomeric Aβ42 without adaptation for the number of subunits in
multimeric species contained in the AβO pool. The simulated difference in AβO con-
centration in Figure 5.7A and 5.7B therefore reflects a difference in the the number of
monomers incorporated in the AβO pool.
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Discussion

A recently reported systems model of the APP processing pathway was extended to
describe the interrelationships of Aβ40, Aβ42, sAPPβ, and sAPPα upon inhibition of
BACE1 with MBi-5 and Aβ40 and Aβ42 upon inhibition of GS with MK-0752 simulta-
neously1. BACE1 acts earlier in the cascade, affecting all four biomarkers. Sequentially,
GS inhibition interferes later in the amyloidogenic APP pathway and affects Aβ40 and
Aβ42 only. In the recent model, sAPPβ was used as a surrogate substrate for C99 in the
γ-secretase cleavage step, driving the response of Aβ. Consequently, the γ-secretase cleav-
age step could not be differentiated from sAPPβ elimination. Here, the combined model
based analysis of BACE1 inhibitor and GS inhibitor response data facilitated the sepa-
ration of the γ-secretase cleavage step from other processes involved. To that end, the
extended systems model of the APP processing pathway included a compartment for
C99, wherein the relationship between C99 and Aβ represents the γ-secretase cleavage
step. As a result of this model extension, it was possible to identify the brain-turnover of
sAPPβ as a separate parameter. Thus, the brain turnover of sAPPβ (0.39 hours) could be
distinguished from the half-life of the brain-to-CSF transfer (8.2 hours).

Using the sAPPβ pool as moderator of Aβ in the recent model was a simplification
of the underlying biological system. Here, the systems model structure more closely
resembles the underlying APP pathway and the incorporation of the data following GS
inhibition was essential for this.

The MK-0752 concentration dependent decrease of Aβ40 and Aβ42 could be de-
scribed by incorporating a single drug effect in the model: inhibition of the formation rates
of Aβ40 and Aβ42 out of the C99 compartment, equivalent to the GS cleavage step. The
effect of BACE1 inhibition was incorporated in the model as inhibition of the formation
of sAPPβ and C99 (Rinβ), corresponding to the BACE1 cleavage step.

The elimination rate was higher for C99 than for sAPPβ. sAPPβ and C99 could be
subjected to different elimination processes, conceivably because C99 remains membrane
bound as opposed to sAPPβ, or has other biochemical/biophysical properties. The
elimination rate of sAPPβ and sAPPα had similar values. Both are soluble fragments of
APP, with overlapping sequence only differentiating in the 16 C-terminal amino-acids.
The functions that are related to the shared domains of sAPPα and sAPPβ are identical
(Chasseigneaux2012a). Therefore, it is not unlikely that sAPPα and sAPPβ also have
similar elimination pathways.

The identified IC50 of MK-0752 in the empirical models were consistent with the
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single potency identified using the systems model. Aβ is the product of GS cleavage
of C99 and therefore Aβ response measurement following GS inhibition provides a
direct reflection of the drug action. Hence, the IC50 values based on empirical versus

the mechanistic systems model were similar for MK-0752. The estimated IC50 of MK-
0752 (0.445 µM) is also similar to the brain IC50 in guinea-pigs of 440 nM16.

For MBi-5, the identified IC50 in the empirical models were significantly higher than
the single potency of 0.0185 µM identified using the systems model. As MBi-5 interferes
earlier in the amyloidogenic APP pathway, inhibiting the formation of the Aβ precursor
C99, Aβ response does not directly reflect the drug action. A systems model that includes
key processes such as the production, elimination, and brain-to-CSF transport for the APP
metabolites can more accurately describe the IC50 than an empirical model.

The identified IC50 of MBi-5 in the current analysis was lower 0.0185 µM (95% CI,
0.0149-0.0221) than recently identified 0.0269 µM (95% CI, 0.0154-0.0384)1, however,
confidence intervals overlap. The more complete systems model presented here, explains
more fully the processes occurring in the APP pathway and therefore provides a more
accurate characterization of IC50.

A significant difference in Aβ40 formation rate constant was identified following
BACE1 and GS inhibition. This may reflect that the implementation of the GS cleavage
step in the model is a simplification of the underlying system. Matsumura et al. 23 report
multiple interactive pathways for stepwise successive processing of C99 by GS, which are
hypothesized to define the Aβ isoforms and quantity of each Aβ. If Aβ40 and Aβ42 are
indeed the products of consecutive GS cleavage, this may be reflected in the identified
divergence in Aβ dynamics following GS inhibition versus BACE1 inhibition.

An alternative explanation of the differentiation in Aβ dynamics following BACE1
and GS inhibition may be that a feedback mechanism was activated. Tian et al. 24 propose
that α-secretase cleavage initiates a feedback mechanism in which increased C83 may
negatively modulate GS activity, thereby lowering Aβ production. As sAPPα and C83 are
products of the same cleavage step by α-secretase, C83 will increase in a similar manner
as sAPPα following BACE1 inhibition. The model predicts that C83 concentrations
increase as result of BACE1 inhibition, but do not increase as result of GS inhibition.
Therefore, we would expect this inhibitory effect on GS through C83 to occur after BACE1
inhibition, but not after GS inhibition. And this would then have to be reflected in a lower
Aβ formation rate constant following BACE1 inhibition. However, a higher Aβ formation
rate was found. The feedback mechanism as proposed by Tian was evaluated in the current
model, but was not supported by the data.
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It has been demonstrated that increased sAPPα generation is accompanied by a
reduction of both β-secretase cleavage and Aβ generation 25. The model predicts that C99
will decrease following BACE1 inhibition and slightly increases following GS inhibition.
Increased C99 levels may have a stimulating effect on α-secretase. Stimulation of α-
secretase will lead to enhanced production of sAPPα and C83 and reduced production
of sAPPβ and C99 and, consequently, less Aβ being formed. This may be reflected in
the lower Aβ formation rate constant that was identified following GS inhibition. As
both sAPPα and sAPPβ levels following GS inhibition were not measured in the current
study, the proposed mechanism cannot be confirmed using the current data, and will be
investigated further in a follow-up study.

The interpretation of the AβO pool was recently discussed in van Maanen et al. 1 .
The systems analysis suggests a difference in oligomerization of Aβ42 after GS and
BACE1. However, the maximal Aβ42 response to the higher dose groups of MBi-5 and
MK-0752 were not adequately captured. Therefore, this should be interpreted with
caution. In the recent model, inclusion of an AβO pool in the model could account for
the differential effect of MBi-5 on Aβ40 and Aβ42 response observed in the data. In the
Supplemental Material 3, the observed change in the ratio of Aβ42:Aβ40 after GS and
BACE1 inhibition is presented. After GS inhibition, there is less difference in response
of Aβ40 and Aβ42 observed, and thus less change in the ratio Aβ42:Aβ40. This may
be caused by differential activation of some feedback mechanism on Aβ production or
oligomerization, or model simplification of successive GS cleavage, as discussed above.
Once quantitative data of AβO response following BACE1 and GS is added, a difference
in oligomerization may be confirmed.

Correction factors on Aβ42 and Aβ40 for study differences in study 1 and 2 compared
to study 3, were implemented in the model on IPRED, assuming the underlying system
is the same. Because these factors were implemented outside of the system, these are
assumed to not affect model derived differences following GS versus BACE1 inhibition.
The observed study variations in Aβ42 and Aβ40 levels could result from factors related
to analytical procedures, such as differences in laboratory procedures among centers and
technicians, sample handling or sample storage.

When planning a new study, a cross-over study design, in which each rhesus monkey
receives MBi-5 and MK-0752, should be considered. This design will facilitate an
adequate separation of study differences and differences in system responses following
BACE1 or GS inhibition as the first is canceled out. Also, if sAPPα and sAPPβ response
to GS inhibition would additionally be measured, it is anticipated that possible feedback
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mechanism in the APP pathway can be further evaluated.
By challenging the model, we can learn something: If the existing model does not

capture the data, we need to ask why and understand what is going. Subsequent model
refinement can then be helpful in elucidating system behaviour and identifying knowledge
gaps and further experiments.

Conclusions
The development of a systems pharmacology model is an evolutionary process, integrating
knowledge of the biological system with emerging data. In the current analysis, by
analysing the effects of two compounds with differing method of action, i.e. a GS and
BACE1 inhibitor, acting on different sequence in the APP processing pathway, the APP
processing pathway could be further elucidated. As a result, the systems pharmacology
model of the APP pathway could be refined. The model characterized the response and
inter-relationships of the APP metabolites and gave insight into the biological mechanisms
of the system. The application of such a mechanistic approach that separates drug specific
and systems specific parameters provides a robust characterization of the inhibitors. A
differentiation in Aβ dynamics after BACE1 versus GS inhibition was found, reflected in
a difference in Aβ40 formation. As such, the systems pharmacology analysis also points
to parts of the APP system which require further investigation, in order to fully understand
the interference of secretase inhibitors on the system.
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SUPPLEMENTAL MATERIAL (1)

Pharmacokinetic Data Analysis MK-0752

A population PK model was developed that describes the PK of MK-0752 in plasma and
CSF in cisterna magna ported (CMP) rhesus monkeys. The results of the PK analysis
of MK-0752 were used to predict target site exposure for each PD observation in the
subsequent PK-PD analysis.

The PK model was developed and fitted to the data by means of non-linear mixed
effects modeling using the NONMEM software package version VI level 2 (see the
Materials and Methods section in Chapter 5).

The compartmental PK model of MK-0752 was based on the model reported by Shou
et al. (2005)1. They reported that MK-0752 exhibits enterohepatic recirculation (EHR) in
rhesus monkeys. Their four-compartment PK was modified for the simultaneous analysis
of plasma and CSF PK data.

The PK profiles of MK-0752 in plasma and CSF were adequately described by a
model containing six compartments: GI tract, central, peripheral, gall bladder, central CSF
and peripheral CSF compartment (Supplemental Figure S5.1). The CSF compartment
is linked to the central compartment, with input to CSF determined by the rate constant
Kin. A peripheral CSF compartment is linked to the central CSF compartment, with
exchange determined by the rate constants K63 and K36. The model considered EHR of
MK-0752 for which the recirculation rate from the gal bladder was described by a cosine
function (Supplemental Equation S5.1):

CS = AMP · COS
(
2π · time
PER

+HOR

)
+ V ER (S5.1)

in which AMP is the amplitude of the cosine function corresponding to the maximum
recirculation rate, PER is the period of the cosine function, HOR is the horizontal shift of
the cosine function corresponding to a shift on the time axis and VER is the vertical shift
of the cosine function corresponding to a shift on the rate axis.

The rate of change in each compartment can be expresses as:
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Figure S5.1: Schematic of the population PK model for MK-0752, that comprised of a GI tract,
central, peripheral, gall bladder, central CSF and peripheral CSF compartment.
Rate constants for the individual compartments are Ka (absorption), K24 (rate constant from
central to peripheral), K42 (rate constant from peripheral to central), K36 (rate constant from
central CSF to peripheral CSF), K63 (rate constant from peripheral CSF to central CSF), K20 (rate
constant from central to gall bladder), K50 (elimination rate from the gall bladder compartment),
CS (rate constant recirculation via a cosine-function), Kin (rate constant from central to central
CSF and elimination rate from the central CSF compartment). A1, A2, A3, A4, A5 and A6 are
amounts (A) of MK-0752 in GI tract, central, central CSF, peripheral, gall bladder and peripheral
CSF compartments, respectively. V2 is the volume of the central compartment.

d

dt
A1 = −Ka ×A1 + CS ×A5 (S5.2)

d

dt
A2 = Ka ×A1 −K24 ×A2 +K42 ×A4 −K20 ×A2 (S5.3)

d

dt
A3 = Kin × A2

V2
−K36 ×A3 +K63 ×A6 −Kin ×A3 (S5.4)

d

dt
A4 = K24 ×A2 −K42 ×A4 (S5.5)
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d

dt
A5 = K20 ×A2 − CS ×A5 −K50 ×A5 (S5.6)

d

dt
A6 = K36 ×A3 −K63 ×A6 (S5.7)

Table S5.1 shows all PK parameter estimates. The CSF input rate (Kin) could not be
estimated with good precision. Considering the limitations of the data, this was accepted.
The relative bioavailability (F1) was fixed to the value reported by Shou et al. (2005). The
parameters Ka and AMP were fixed to parameter estimates from a preliminary analysis
based on 60 mg/kg data only and a one compartmental model. In the two compartmental
model based on 60 mg/kg and 240 mg/kg data, these could not be reliably estimated.

Interanimal variability was quantified for the clearance (CL) and volume of the central
compartment (V2). Residual variability (proportional error) was higher for the CSF than
for the plasma concentration (0.173 and 0.132 for CSF and plasma, respectively).

The developed PK model gives an adequate description of plasma and CSF concentra-
tion time profiles, as can be seen from plots of the simulated and observed concentrations
versus time profiles with 90% confidence interval (Supplemental Figure S5.2).

There is substantial CSF exposure after oral dosing, as shown by the PK data from the
CMP rhesus monkeys. The data suggest that MK-0752 concentrations in brain, expected
to be in between plasma and CSF levels, are sufficient to adequately inhibit γ-secretase ac-
tivity in brain. The plasma and CSF concentrations versus time profiles predicted from
the model were in good agreement with the values observed in the rhesus monkeys. Thus,
the model could serve as input for PD model analysis.
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Table S5.1: Population parameter estimates including coefficient of variation (CV%) for the
PK model of MK-0752

PARAMETER DESCRIPTION VALUE UNIT CV%
Structural parameters
Kaa absorption rate 1.13 h−1 -
CL clearance 0.774 L/h 12.3
V2 central volume 3.68 L 17.6
K24 rate constant from central to CSF 0.00745 h−1 27.8
K42 rate constant from central to CSF 0.0229 h−1 4.89
F1a relative bioavailability 0.89 - -
PERa period of cosine function 24 h -
AMPa amplitude of cosine function 1.87 - -
HOR horizontal shift of cosine function 2.47 - 6.92
VERa vertical shift of cosine function 0 - -

K50
elimination rate gall bladder

compartment 1.02 h−1 35.8

KinCSF ×1000 CSF input and output rate 0.0381 h−1 82.7
K36 as fraction of
Kin

rate constant from central CSF to
peripheral CSF as fraction of Kin

110 - 5.81

K63
rate constant from peripheral CSF to

central CSF 0.000926 h−1 19.4

Interanimal variability
ωCL2 Interanimal variability clearance 0.141 34.3

ωV 2
2

Interanimal variability central
volume 0.381 37.3

ω(CL,V 2) Covariance between CL and V2 0.195 33.3
Residual error
σ2
plasma Residual variabiliy plasma 0.132 14.4
σ2
CSF Residual variabiliy CSF 0.173 12.2
a Fixed.
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(A) 60 mg/kg MK-0752 plasma
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(B) 60 mg/kg MK-0752 CSF
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(C) 240 mg/kg MK-0752 plasma
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(D) 240 mg/kg MK-0752 CSF

Figure S5.2: Visual predictive check of plasma (left panels) and CSF (right panels)
concentration time profile of MK-0752 in the rhesus with 90% confidence interval. The rhesus
were administrated with 60 mg/kg (A) (B) and 240 mg/kg (C) (D) MK-0752. Observation sample
size: Study 1: n=16 for plasma and CSF per dose (60 and 240 mg/kg) from 6 monkeys collected
over 2 days. Study 2: n=21 for plasma and CSF from 6 dose 240 mg/kg treated monkeys
collected over 10 days. In the figure, the first 3 treatment days of study 2 are depicted.
Plus-symbols represent observed measurements. Dotted line corresponds to the median observed profile.
Solid lines show the median simulated profiles. The longs-dashed lines correspond to the 90% prediction
intervals obtained from 1000 individual simulated profiles.
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SUPPLEMENTAL MATERIAL (2)

Study differences in Aβ baseline levels

Baseline data of Aβ40 and Aβ42 from the two GS inhibitor studies (study 1 and 2) and
the BACE1 inhibitor study (study 3) is depicted in Fig. S5.3A and S5.3B, respectively,
together with additional baseline data which was included in the analysis from study A
and B. A large between-study variability in the baseline data was observed.

There was overlap in the rhesus monkey individuals included in the studies. Half
of the subjects included in the GS inhibitor studies (study 1 and 2) was also used in the
BACE1 inhibitor study (study 3) and study A.

In study time lines, Study B was run first, followed closely by study 1. Approximately
1 year later study 2 was conducted. Study A came next a few months later and lastly study
3 followed. No relationship between the age of the rhesus monkeys and the baseline level
could be identified. As clock times were not available, a circadian rhythm in the combined
baseline data could not be investigated.
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Figure S5.3: Study differences in baseline levels of Aβ40 (left) and Aβ42 (right).

162



Supplemental Material

SUPPLEMENTAL MATERIAL (3)

Study differences in ratio Aβ42:Aβ40

The ratio Aβ42:Aβ40 from the two GS inhibitor studies (study 1 and 2) and the BACE1
inhibitor study (study 3) is depicted in Fig. S5.4A, S5.4B and S5.4C, respectively.
BACE1 inhibition resulted in a bigger change in the ratio, compared to GS inhibition,
with the investigated dosages.

Study 1

0 72 144

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

R
at

io
 A

β4
2:

A
β4

0

Time (h)

● 0 mg/kg
60 mg/kg
240 mg/kg

(A) Study 1

Study 2

0 72 144

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

R
at

io
 A

β4
2:

A
β4

0

Time (h)

● 0 mg/kg
240 mg/kg

(B) Study 2
Study 3

0 72 144

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

R
at

io
 A

β4
2:

A
β4

0

Time (h)

● 0 mg/kg
10 mg/kg
30 mg/kg
125 mg/kg

(C) Study 3
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Evidence for 2nd-order kinetics of Aβ42 oligomerization

Abstract

Toxic soluble Aβ oligomers (AβO) are considered to be the primary drivers of the neu-
rodegeneration in Alzheimer’s Disease (AD). Here, for the first time, the effect of BACE1
inhibition on the time course of the changes in AβO is determined. Administration of the
BACE1 inhibitor MBi-5 (30 or 125 mg/kg) resulted in a reduction of AβO concentrations.
The amyloid precursor protein (APP) metabolite (sAPPβ, sAPPα, Aβ40, Aβ42, Aβ38)
and AβO responses in CSF from cisterna-magna-ported rhesus monkeys was analysed on
the basis of a recently established systems pharmacology model of the APP pathway.

The changes in AβO were linked to the dynamics of the precursor Aβ42: There was no
contribution from the precursors Aβ40 and Aβ38 to the AβO pool. Aβ42 oligomerization
was characterized to be a second-order process. Decreases in monomeric Aβ42 responses
following from BACE1 inhibition were partially compensated by dissociation of AβO.
The model gave an accurate description of the 6 biomarkers. The systems pharmacology
analysis provided insights into AβO reduction after treatment with a BACE1 inhibitor, and
supports the hypothesis that Aβ42 is the Aβ species prone to oligomerization. Simulations
visualized that 30% reduction of the Aβ42 monomeric level reduced AβO by more than
half.
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Introduction

According to the amyloid hypothesis, proteolytic processing of amyloid precursor protein
(APP) to form the amyloid-β (Aβ) peptides plays a central role in the pathophysiology of
Alzheimer’s Disease (AD)1,2. Aβ levels are increased early in the disease process, while
patients remain clinically asymptomatic, forming toxic soluble Aβ oligomers (AβO )
and plaques. AβO are considered to be a primary driver of the neurodegeneration in AD
brain3.

Aβ is the final product of proteolytic cleavage of the transmembrane APP in the
amyloidogenic pathway and is assumed to be a precursor of AβO. In the APP processing
and clearance pathways, APP is cleaved sequentially by β-secretase 1 (BACE1) and
γ-secretase4. BACE1 cleavage of APP releases the N-terminal secreted fragment soluble
β-amyloid precursor protein (sAPPβ) and C99, a C-terminal fragment which remains
membrane bound. C99 is subsequently cleaved by γ-secretase, creating Aβ peptides of
different amino acid chain lengths, of which the most common have 38, 40 or 42 amino
acids (Aβ38, Aβ40, or Aβ42, respectively)5. A third secretase, α-secretase cleaves APP
within the Aβ sequence generating non-amyloidogenic soluble sAPPα and precluding
Aβ generation6.

Aβ appears to aggregate into at least three different states: AβO, which are soluble
disordered clusters, protofibrils, which are prefibrilar insoluble high molecular weight
AβO (50-1500 kDa) comprising spherical, annular, and curvilinear assemblies, and fibrils,
which are long, many-chain highly structured β-sheet-like aggregates7,8,9. Aβ is believed
to co-exist with AβO, protofibrils and fibrils at equilibrium10. The pathway by which
normal monomeric forms of Aβ become fibrils is still uncertain11.

One of the main therapeutic strategies for AD is to reduce Aβ in the central nervous
system and thereby, theoretically, preventing all downstream pathological processes.
Potential therapies include inhibition of the secretases responsible for its production
(BACE1 or γ-secretase inhibitors). The effect of inhibiting Aβ production on AβOs is not
fully understood.

Several studies on the pharmacokinetics (PK) and the pharmacodynamics (PD) of
BACE1 and γ-secretase inhibitors have been reported12,13,14,15,16,17. Such models focus
primarily on the drug effect on Aβ40 and/or Aβ42 dynamics. A quantitative characteriza-
tion of the drug effects on AβO is still lacking.

The drug effects on the individual attributes of the APP pathway are difficult to predict,
because it involves a complicated biological network. In order to develop a model that
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fully characterized the drug effects on Aβ monomeric and oligomeric levels, its important
to consider the interactions between APP metabolites.

Systems pharmacology provides a mathematical framework for integrating understand-
ing of biochemical/pathological pathways with basic principles of PK and PD. Recently, a
systems pharmacology model of the APP processing pathway was developed to charac-
terize APP metabolite (sAPPβ, sAPPα, Aβ40, Aβ42) responses to BACE1 inhibition18.
Throughout the article the name ’β-APP model’ is used to refer this model. Using infor-
mation from monomeric Aβ species, an Aβ42 oligomer pool was identified in the β-APP
model. It is of interest to know if the AβO response to BACE1 inhibition was correctly
derived from Aβ monomeric responses. This would verify monomeric Aβ as good predic-
tor of AβO response to Aβ production inhibition. To this end, AβO measurements need
to be compared to model predicted AβO levels.

In the current crossover study in cisterna-magna-ported rhesus monkeys the effects of
a BACE1 inhibitor (MBi-5; 30, 125 mg/kg) on the CSF concentrations of six biomarkers
(sAPPβ, Aβ40, Aβ42, Aβ38, AβO, sAPPα) were determined. AβO concentrations in
CSF were quantified using a novel two-site ELISA assay19. The time course of the
changes in the concentration of all biomarkers were simultaneously analysed with the
β-APP model. This analysis yielded predictions of the effect of MBi-5 on the AβO con-
centrations (the oligomer pool). Next, these model predictions were compared to measured
AβO concentrations. Finally, the existing model was extended to include also the effect
on AβO concentrations. Specifically, the objectives of this investigation were fourfold:
(i) to compare model predicted AβO from the recently reportedβ-APP model with obser-
vations of AβO; (ii) to characterize AβO dynamics following BACE1 inhibition; (iii) to
confirm that AβO dissociates to restore the equilibrium between Aβ monomers and AβO,
following secretase inhibition; (iv) to investigate the relationships of Aβ40, Aβ42 and
Aβ38 monomers with the AβO pool.

Materials and Methods

Animals
All animal studies were reviewed and approved by the MSD Institutional Animal Care
and Use Committee. The NIH Guide to the care and use of Laboratory Animals and
the Animal Welfare act were followed in the conduct of the animal studies (Institute
of Laboratory Animal Resources, National Research Council, 1996). The CMP rhesus
monkey model was reported by Gilberto et al. 20 . The rhesus monkeys are chronically
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implanted with catheters in the cisterna magna, facilitating repeated sampling of CSF and
plasma in conscious rhesus monkeys. These rhesus monkeys were individually housed
and captive-bred in a closed colony.

In this study, six male animals, weighing between 8.6 kg and 11.8 kg (mean, 9.7 kg),
age at 9 years to 13 years (mean, 11 years) at time of the study were included.

Drug administration and sampling
Information on the effect of BACE1 on sAPPα, sAPPβ, Aβ40, Aβ42, Aβ38 and AβO was
obtained following a single oral administration of MBi-5 at 30, 125 mg/kg (5 mL/kg) or
vehicle (0.4% methylcellulose) in a four-way full crossover study.

Plasma and CSF drug concentrations were collected at 0 (predose) and 3, 5, 7, 9, 13,
14.5, 16, 19, 22, 25, 28, 31, 49, 55, 58, 73 and 96 h postdose, resulting in 18 plasma and
CSF PK samples for each monkey per treatment group. 2 mL of blood and 1 mL of CSF
were collected at each time point. The concentration of MBi-5 in the plasma and CSF
samples was determined using LC-MS/MS. The concentrations of sAPPα, sAPPβ, Aβ40,
Aβ42, Aβ38 and AβO were determined from CSF samples, collected at the same time
points as PK samples, by established and validated ELISA-based assays (Meso Scale
Diagnostics), giving 18 measurements of each biomarker for each monkey per treatment.
The two-site ELISA assay used for AβO measurement was previously described by Savage
et al. 19 .

PK-PD analysis
The PK and PD data were analysed with a non-linear mixed effects modelling approach
utilizing the software package NONMEM (version 7.2.021). In this approach, structural
(fixed) effects and both intra- and interindividual variability are taken into account. Typical
values of structural model parameters (population parameters, which define the average
value for a parameter in a population) (θ), the variance and covariance of the interindividual
variability (ω2) and the variance of the residual error (σ2) are estimated.

The models were compiled using Compaq Visual Fortran (version 6.6, Compaq
Computer Corporation, Houston, Texas, USA) and executed on a PC equipped with
an an Intel QuadCore (Intel R© CoreTM i7 CPU860, 2.80 GHz, 3.24 GB RAM). Data
management and model assessment was done using the statistical software package
S-PLUS for Windows (version 8.0 Professional, Insightful Corp., Seattle, USA).

The best models were chosen based on the analysis of their obtained minimum value
of the objective function (defined as minus twice the log-likelihood), the precision of
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parameter estimates, and visual inspection of goodness-of-fit plots. A more detailed
description of the modelling procedure was described in van Maanen et al. 18 .

To evaluate the performance of the model a visual predictive check (VPC) was
performed in which the median and the 90% inter-quantile range of the data simulated
with the final parameter estimates were plotted together with the observations. A validated
result would have close resemblance of median observed and predicted line with 90% of
the observations that fall within the 90% prediction interval.

Model description

The systems model of the APP processing pathway was developed by sequential analysis
of PK and PD data following administration of MBi-5. The PK model of MBi-5 was
based on simultaneous analysis of plasma and CSF PK data. The PK model of MBi-5 has
been reported elsewhere by van Maanen et al. 18 .

The PK model adequately described the plasma and CSF concentration time profiles
of MBi-5, respectively, thus the model could serve as input for PD model analysis.

The interrelationships of the absolute amounts of APP metabolite responses to
BACE1 inhibition were described recently using a comprehensive systems model of
the APP processing pathway18, the so-called β-APP model. To describe the effect of the
BACE1 inhibitor on Aβ38, the model had to be extended. Also, the oligomerization of
Aβ was changed to a second order process.

The biomarker response profiles of MBi-5 measured in CSF were adequately described
by the β-O-APP model containing compartments for seven variables: APP, sAPPβ,
sAPPα, Aβ40, Aβ38, Aβ42 and AβO (Fig. 6.2). The production of APP was believed to
be zero order, i.e. a constant production of APP. It was assumed that there is no alternative
proteolytic enzyme cleaving full length APP other than α-secretase and BACE1. As both
sAPPβ and C99 are products of APP cleavage by BACE1, sAPPβ and C99 were presumed
to follow the same kinetics and therefore sAPPβ could be used in the model as surrogate
precursor for Aβ. The production of sAPPα, sAPPβ and Aβ were assumed to be first
order, i.e. dependent on the concentration of its precursor. The interaction between APP,
sAPPβ, sAPPα, Aβ40, Aβ38, Aβ42 and AβO is described by Eq. 6.1 - Eq. 6.7:

d

dt
APP = RinAPP − (Rinβ × EFF +Rinα)×APP (6.1)
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d

dt
sAPPα = Rinα×APP −Routa × sAPPα (6.2)

d

dt
sAPPβ = Rinβ × EFF ×APP − (Kin40 +Kin42 +Kin38)× sAPPβ

(6.3)

d

dt
Aβ40 = Kin40 × sAPPβ −Kout×Aβ40 (6.4)

d

dt
Aβ38 = Kin38 × sAPPβ −Kout ∗Aβ38 (6.5)

d

dt
Aβ42 = Kin42 × sAPPβ −Kout42 ×Aβ42 −Kpl × (Aβ42)

ALPH

+Krev ×AβO/

(
MWAβ42

1000
× Factoroligo

) (6.6)

d

dt
AβO = Kpl × (Aβ42)

ALPH × MWAβ42

1000
× Factoroligo −Krev ×AβO

(6.7)

The exchange between the AβO pool and the Aβ42 compartment is described by
Eq. 6.6 and Eq. 6.7, where ALPH is the power of the concentration of Aβ42, Factoroligo
is the conversion factor on AβO and MWAβ42 is the molecular weight of Aβ42. Krev

and Kpl are the dissociation rate and higher-order Aβ42 oligomerization rate constant,
respectively, which are dependent on the baseline values of Aβ42 and the AβO pool
(Aβ42base and AβObase, resp.) according to Eq. 6.8:

Krev =
Kpl × (Aβ42base)

ALPH × MWAB42

1000 × Factoroligo

AβObase
(6.8)

The rate of change of APP with respect to time in the presence of the inhibitor is described
by Eq. 6.1, in which the BACE1 cleavage inhibition is incorporated by the factor EFF.
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EFF is the degree of inhibition caused by MBi-5, expressed as shown in Eq. 6.9.

EFF = 1−
CGAM

target × Imax

CGAM
target + IC50GAM

(6.9)

Where Ctarget is the target site concentration of MBi-5 , IC50 the Ctarget that results in
50% inhibition of BACE1, Imax is the maximum response and GAM is the Hill coefficient.
Ctarget was derived from the PK model as:

Ctarget = Cplasma ×
AUCCSF

AUCplasma
(6.10)

Where AUCCSF and AUCplasma are the areas under the CSF and plasma concentration
time curves, respectively. Ctarget is assumed to be in steady state with Cplasma.

It is assumed that the system is in steady state (SS) when no treatment is given (EFF=1).
These steady state conditions were used to derive part of the system parameters. From SS
and Eq. 6.1 it follows that the source of APP (RinAPP) is:

RinAPP = Routa × sAPPαbase + (Kin40 +Kin42 +Kin38)× sAPPβbase

(6.11)

Where APPbase is the baseline level of APP, which is assumed to be equal to the sum of
the baseline levels of sAPPα and sAPPβ.All alternate pathways are represented by the
terms for α-secretase.

Using SS conditions and Eq. 6.2 the sAPPα formation rate (Rinα), equivalent to the
α-secretase cleavage step, can be derived:

Rinα = Routa ×
sAPPαbase
APPbase

(6.12)

Where sAPPαbase is the baseline level of sAPPα.

The sAPPβ formation rate (Rinβ), equivalent to the BACE1 cleavage step, follows
from SS and Eq. 6.3:

Rinβ = (Kin40 +Kin42 +Kin38)×
sAPPβbase
APPbase

(6.13)
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Where sAPPβbase is the baseline level of sAPPβ.
Using SS conditions and Eq. 6.4, 6.6 and 6.5, respectively, the formation rates of

Aβ40 (Kin40), Aβ42 (Kin42) and Aβ38 (Kin38), equivalent to γ-secretase cleavage steps,
can be calculated:

Kin40 = Kin42 ×
Aβ40base
Aβ42base

(6.14)

Kin42 = Kout× Aβ42base
sAPPβbase

(6.15)

Kin38 = Kin42 ×
Aβ38base
Aβ42base

(6.16)

Where Aβ40base, Aβ42base and Aβ38base are the baseline levels of Aβ40, Aβ42 and
Aβ38, receptively. sAPPβbase is the baseline level of sAPPβ, used here as surrogate for
the baseline level of C99.

The model structure includes six transit compartments (Fig. 6.2), one for each
biomarker measured in CSF (sAPPα, sAPPβ, Aβ40, Aβ42, Aβ38, AβO), to account for
transport from the target site in the brain to CSF. These transit processes are described, in
general, by Eq. 6.17:

d

dt
xAxCSF = Ktr ∗ (xAx− xAxCSF ) (6.17)

Where Kt is the transit rate for the particular particular APP metabolite xAx (KtAP for
sAPPα and sAPPβ and KtAB for Aβ40, Aβ42, Aβ38 and AβO).
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Results

Within-study comparison
The performance of the recently reported β-APP model18 was assessed using a ’within-
study comparison’: model parameter values were optimized using the current study data
and then AβO was predicted and compared to the observed concentrations of AβO in the
present study. The rationale for this analysis is that different methodologies were used
for the quantitation of the PD biomarkers in the current study compared to the previous
study18. Consequently, biomarker baseline levels and ratios changed (see Supplemental
Material). When using the β-APP model and parameter values, the difference in prediction
of AβO and data may be caused by methodology differences or model misspecification. It
is impossible to distinguish the two from each other. In the ’within-study comparison’,
the difference in prediction of AβO and data must be related to model misspecification
and the model can be optimized accordingly.

Comparison of model predicted versus observed AβO concentration profiles
The β-APP model parameters were optimized on a subset of the current data, using only
the biomarker data of sAPPβ, sAPPα, Aβ40 and Aβ42. Compared to the results obtained
in the previous study, the estimates of the Aβ degradation rate (Kout) was significantly
lower and transit rate for sAPPα and sAPPβ from brain to CSF (KtrAP) was significantly
higher (Kout: 0.94 h−1 (95% CI, 0.689-1.19) and 0.304 h−1 (95% CI, 0.198-0.41) in
previous and current study, respectively; KtAP: 0.0985 (95% CI, 0.0931-0.104) and 0.127
(95% CI, 0.111-0.143) in previous and current study, respectively). The IC50 of the
BACE1 inhibitor MBi-5 did not change significantly.

Using the parameter values, optimized for the current study data, the CSF AβO re-
sponse data in the current study was predicted. For this, similar to the compartment
”Observed CSF Aβ42”, the compartment ”Observed CSF AβO” was added to the model,
which represents the transport of AβO from brain-to-csf (Figure 6.2). The prediction of
the onset of the AβO response to BACE1 inhibition was slow relative to the observations
(Figure 6.1). Likewise, the maximum response was also underpredicted.

A conversion factor was included to account for different units of Aβ monomers
and AβO

It is to be noted that the concentrations of Aβ monomers were expressed in pM and
AβO concentrations were expressed in pg/mL. Therefore, a conversion factor needed
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to be included in the model, which has a relationship with the molecular weight of the
oligomers and other processes involved (e.g. differences in distribution volume). The
conversion factor is implemented in the differential equations describing Aβ42 (Eq. 6.6)
and AβO (Eq. 6.7). Based on visual inspection, this factor was initially set to 0.05 for the
prediction discussed above and later optimized to be 0.0178.
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Figure 6.1: Prediction of AβO response vs. time profile of placebo (A), 30 mg/kg (B) and 125
mg/kg (C) MBi-5 in the rhesus monkeys with 90% confidence interval.
Predictions were performed with the model structure presented in van Maanen et al. 18 , with
parameter values optimized on the current study data (within-study comparison). Observation
sample size: n=108 for each APP metabolite from 6 monkeys collected over 4 days.
Plus-symbols represent observed measurements. Dotted line corresponds to the median observed profile.
Solid lines show the median predicted profiles. The long-dashed lines correspond to the 90% prediction
intervals obtained from 1000 individual simulated profiles.
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The systems model was extended to describe Aβ38 response

The APP systems model was optimized, based on simultaneous analysis of sAPPβ, sAPPα,
Aβ40, Aβ42, Aβ38 and AβO response data for BACE1 inhibition. Modifications were
made to the β-APP model structure by adding extra compartments to describe Aβ38
dynamics and brain-to-csf transport, as shown in the schematic of the extended, so-called
β-O-APP model, in Figure 6.2.

The differential equation representing Aβ38 dynamics in the β-O-APP model is Eq.
6.5. The same Aβ degradation rate (Kout) was identified for each Aβ isoform (Aβ40,
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Figure 6.2: Schematic of β-O-APP model.
The model comprised thirteen compartments: Seven biomarker compartments in brain (yellow
circles) and six transit compartments from brain to CSF (white circles). Six biomarkers were
measured in CSF (sAPPα, sAPPβ, Aβ40 ,Aβ42, Aβ38 and AβO), indicated by the blue boxes.
The drug effect (EFF) inhibited Rinβ. As driver of biomarker response Ctarget was used, which
was derived from the PK model 18. sAPPβ was used in the model structure as a surrogate
substrate for C99 in the γ-secretase cleavage step 18. Model extensions compared to the β-APP
model presented in van Maanen et al. 18 are indicated with the green shaded area.
APP: Aβ-precursor protein; Aβ: amyloid-β-peptide; Ctarget: drug concentration target site; Kin38: Aβ38
formation rate; Kin40: Aβ40 formation rate; Kin42: Aβ42 formation rate; Kout: Aβ38, Aβ40 and
Aβ42 degradation rate; Krev: Oligomer dissociation rate; KtAP: transit rate sAPPα and sAPPβ from brain to
CSF; Kpl: Oligomerization rate; KtAB: transit rate Aβ from brain to CSF; KtABO : transit rate AβO from
brain to CSF; RinAPP: source of APP; Rinα: sAPPα formation rate; Rinβ: sAPPβ formation rate; Routa:
sAPPα degradation rate.
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Aβ42, Aβ38). Further, the transit rate for brain-to-CSF transport (KtAB) did not differ for
Aβ38 compared to Aβ40 and Aβ42. Different formation rates were implemented for each
one of the Aβ species. The formation rates of Aβ40, Aβ42 and Aβ38 were calculated
according to Eqs. 6.14-6.16. The highest formation rate was found for Kin40 (1.29 h−1),
followed by Kin38 (0.380 h−1) and than Kin42 (0.0993 h−1).

Aβ42 only contributor to AβO pool
After extension of the model for Aβ38, the contribution of Aβ40, Aβ38 and Aβ42 to the
oligomer pool was investigated. These Aβ species were evaluated both as single contribu-
tors as combined sources of Aβ for the oligomer pool, by including oligomerization rates
for each Aβ. Aβ42 was identified as the only contributor to the oligomer pool.

Aβ oligomerization is a second-order process
The dependence of the AβO concentration on the Aβ42 concentration was investigated.
The oligomerization was identified to be a higher order process, with an order of 1.81
(95% CI, 1.33-2.29), indicating that its rate is proportional to the ∼2nd power of the
concentration of monomeric species and that the oligomerization can only occur when
two Aβ42 peptides interact. The difference in absolute oligomer response following a
1st, 1.81 and 2nd order oligomerization process is visualized in Figure 6.3. This plot
illustrates that the order of the oligomerization process affects not only the onset of the
oligomer response, but also the maximum effect.

The second-order Aβ oligomerization means that a relatively larger change from
baseline for AβO compared to monomeric Aβ species is obtained following BACE1
inhibition, as is depicted in Figure 6.5B.

To better understand the relationship between Aβ42 and AβO response, the change of
baseline for Aβ42 was plotted against the change of baseline for AβO (Figure 6.4). This
plot exhibits a hysteresis loop between Aβ42 and AβO effects, when followed over time.

Thus, the same Aβ42 concentration corresponds to two different magnitudes of
AβO effects depending on the temporal sequence in which the effect is measured (e.g.
30% reduction in Aβ42 and 11% or 57% reduction in AβO following 125 mg/kg MBi-5).
The reason is because the maximum Aβ42 response was achieved before the maximum of
AβO response (Figure 6.5A).
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Figure 6.3: Illustration of the difference in absolute oligomer response following a 1st, 1.81
and 2nd order oligomerization process. The oligomer response was simulated after a single dose
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Figure 6.4: Illustration of the relationship between response of Aβ42 and AβO. The AβO and
Aβ42 response was simulated after a single dose of 125 mg MBi-5, using the typical parameter
estimates.

The β-O-APP model described APP metabolite and AβO responses to BACE1 inhi-
bition

Figures 6.6-6.8 show the model description of each APP metabolite and AβO for each
dose group. In general, an adequate description of the biomarker responses was obtained
across dose groups. A slight underprediction was observed for sAPPβ response at dose
125 mg/kg (Figure 6.8B) and overprediction of the AβO baseline (Figure 6.6F).

The β-O-APP model was used to simulate the biomarker interrelationships in CSF
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after BACE1 inhibition (Figure 6.5A), illustrating that the biomarker maximum responses
in CSF appear at different time sequence. Also, the response profiles of Aβ40, Aβ42 and
Aβ38 were similar, albeit at different concentration levels. When visualizing the change
from baseline for these Aβ species, the profiles were overlapping (Figure 6.5B).

Model parameters
The population parameters and intra- and interanimal variability, optimized for the current
study population, are presented in Table 6.1. The random-effects model structure was
optimized by comparing the results of models with interanimal variability on different
parameters. The final model included interanimal variability for the baselines of sAPPβ,
sAPPα and Aβ, modelled as lognormally distributed parameters. The same interanimal
variability was included for the baselines of Aβ38, Aβ40 and Aβ42, as these are products
of the same cleavage step. For each APP metabolite (sAPPβ, sAPPα, Aβ40, Aβ42, Aβ38,
AβO) separately, a proportional error was used to describe the random residual variability.

The parameter estimate of the IC50 was not significantly different from recently
reported: in the recent analysis an IC50 of 0.0269 µM (95% CI, 0.0154–0.0384) was
found18; in the current analysis an IC50 of 0.0322 µM (95% CI, 0.0214-0.043) was
identified.
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Table 6.1: Population parameter estimates including coefficient of variation (CV%)

PARAMETER DESCRIPTION VALUE UNIT CV%

Structural parameters

sAPPβbase baseline sAPPβ 332 pM 24.9
Aβ38base baseline Aβ38 381 pM 13.2
Aβ40base baseline Aβ40 1290 pM 7.18
Aβ42base baseline Aβ42 99.6 pM 10.3
sAPPαbase baseline sAPPα 395 pM 17.5
Kout degradation rate Aβ40, Aβ42, Aβ38 0.321 h−1 14.5
Routa degradation rate sAPPα 1.18 h−1 13.6
KtAP transit rate sAPPα and sAPPβ 0.138 h−1 5.68
KtABa transit rate Aβ 10 h−1

Imaxa maximal inhibition (Imax) 1
IC50 median inhibition concentration 0.0322 µM 17.1
GAM Hill coefficient 0.749 10.3
Kpl second-order oligomerization rate constant 6.59e-4 pM−1 h−1 10.3
AβObase baseline AβO 2.1 pg/mL 13.8
ALPHa Power of the concentration of Aβ42 2
Factoroligo Conversion factor on AβO 0.0178 45.8

Interanimal variability

ω2
BSAPb

b Interanimal variability sAPPβ baseline 0.26 30.4
ω2

BSAPa
b Interanimal variability sAPPα baseline 0.145 30.3

ω2
AB

b Interanimal variability Aβ 0.103 39.8

Residual error

σ2
Aβ40

c Residual variability Aβ40 0.078 12.1
σ2

Aβ42
c Residual variability Aβ42 0.0576 19.8

σ2
sAPPβ

c Residual variability sAPPβ 0.0971 26
σ2

sAPPα
c Residual variability sAPPα 0.0486 23.3

σ2
oligo

c Residual variability AβO 1.14 20.7
σ2

Aβ38
c Residual variability Aβ38 0.0711 19.5

a Fixed.
b Interanimal variability is assumed to follow a normal distribution with mean zero and variance ω2.
c Residual variability is assumed to follow a normal distribution with mean zero and variance σ2.
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Figure 6.6: Placebo. Visual predictive check of biomarker response vs. time profile of placebo
in the rhesus with 90% confidence interval. Predictions were performed with extended model
((A), (B), (C), (D), (E), (F)). Observation sample size: n=108 for each APP metabolite from 6
monkeys collected over 4 days.
Plus-symbols represent observed measurements. Dotted blue line corresponds to the median observed profile.
Solid lines show the median simulated profiles. The long-dashed lines correspond to the 90% prediction
intervals obtained from 1000 individual simulated profiles.
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Figure 6.7: Dose 30 mg/kg. Visual predictive check of biomarker response vs. time profile of
MBi-5 in the rhesus with 90% confidence interval. Predictions were performed with model with
extended model ((A), (B),(C), (D), (E),(F)). Observation sample size: n=108 for each APP
metabolite from 6 monkeys collected over 4 days.
Plus-symbols represent observed measurements. Dotted blue line corresponds to the median observed profile.
Solid lines show the median simulated profiles. The long-dashed lines correspond to the 90% prediction
intervals obtained from 1000 individual simulated profiles.

185



Chapter 6

125 mg/kg

102 

103 

−24 0 24 48 72 96

C
S

F
 s

A
P

P
α 

(p
M

) 

Time after dose(h)

Upper bound
Median
Lower bound
Observed
Median Observed

(A) sAPPα

125 mg/kg

101 

102 

103 

−24 0 24 48 72 96

C
S

F
 s

A
P

P
β 

(p
M

) 

Time after dose(h)

Upper bound
Median
Lower bound
Observed
Median Observed

(B) sAPPβ
125 mg/kg

101 

102 

103 

−24 0 24 48 72 96

C
S

F
 A

β3
8 

(p
M

) 

Time after dose(h)

Upper bound
Median
Lower bound
Observed
Median Observed

(C) Aβ38

125 mg/kg

101 

102 

103 

−24 0 24 48 72 96

C
S

F
 A

β4
0 

(p
M

) 

Time after dose(h)

Upper bound
Median
Lower bound
Observed
Median Observed

(D) Aβ40
125 mg/kg

101 

102 

−24 0 24 48 72 96

C
S

F
 A

β4
2 

(p
M

) 

Time after dose(h)

Upper bound
Median
Lower bound
Observed
Median Observed

(E) Aβ42

125 mg/kg

101 

−24 0 24 48 72 96

C
S

F
 O

lig
om

er
s 

(p
g/

m
L)

Time after dose(h)

Upper bound
Median
Lower bound
Observed
Median Observed

(F) AβO

Figure 6.8: Dose 125 mg/kg. Visual predictive check of biomarker response vs. time profile of
MBi-5 in the rhesus with 90% confidence interval. Predictions were performed with extended
model ((A), (B),(C), (D), (E),(F)). Observation sample size: n=108 for each APP metabolite from
6 monkeys collected over 4 days.
Plus-symbols represent observed measurements. Dotted blue line corresponds to the median observed profile.
Solid lines show the median simulated profiles. The long-dashed lines correspond to the 90% prediction
intervals obtained from 1000 individual simulated profiles.
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Discussion

Soluble AβO are believed to be responsible for the neurodegeneration or toxicity to brain
tissue observed in AD. To optimize therapeutic intervention targeting Aβ production with
the aim to reduce AβO burden, it is important to understand and quantify the PD effects
on AβO. In that respect, it is imperative to consider the behaviour of the APP system as a
whole.

The recently reported APP systems model18, the β-APP model, was extended to
include Aβ38 dynamics and describe AβO response data from a novel assay. The so-
called β-O-APP model successfully captured sAPPβ and sAPPα concentration behaviour,
Aβ monomeric (Aβ38, Aβ40, Aβ42) and oligomeric concentrations and the interactions
between these species.

Aβ oligomerization was a second order process, indicating that the concentration of
Aβ directly affects the rate of the reaction. Specifically, doubling the concentration of
Aβ would quadruple the rate of the oligomerization. The half-life of the oligomerization
process is dependent on the initial Aβ concentration. The second-order kinetics of
Aβ oligomerization means that a relatively higher change from baseline for AβO compared
to monomeric Aβ species is obtained following BACE1 inhibition. e.g. 30% reduction
in Aβ42 yields a 50% reduction in AβO following 125 mg/kg MBi-5. By reducing
AβO levels, neuropathological alterations underlying AD may be slowed down or stopped.
As such, Aβ production inhibition is a potential disease modifying therapy.

The β-O-APP model also contains expressions to account for the fact that decreases
in monomeric Aβ42 response resulting from BACE1 inhibition is partially compensated
by reverse dissociation of AβOs. AβOs appear to dissociate in order to restore the
balance between Aβ monomers and AβO. This supports the belief that Aβ co-exist
with AβO in equilibrium and that AβO formation is reversible to a certain extent10. As
amyloid plaques and fibrils might exist in equilibrium with Aβ oligomeric forms, reducing
AβO levels through Aβ production inhibition may bring down higher ordered forms as
well. Takamura et al. 22 reported that antibodies raised against AβO reduced plaques in
conjunction with AβO.

Our analysis indicated that of the measured Aβ species (Aβ38,Aβ40,Aβ42) Aβ42 was
the only major contributor to the oligomer pool. This is in line with the findings that Aβ42
is the dominant Aβ species in plaques and fibrils23,24,25. Further, Garai and Frieden 26

reported greater in vitro oligomerization propensity of Aβ42 compared to Aβ40, using a
fluorescent assay with tetramethylrhodamine-labelled Aβ. Aβ42 is very self-aggregating,
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while Aβ40 may actually be anti-amyloidogenic2,27. The additional two amino acids on
the C-terminus of Aβ42 makes the peptide more hydrophobic and significantly more rigid
than Aβ40 and susceptible to aggregation. The increased rigidity promotes entropy-driven
aggregation. The high hydrophobicity of Aβ42 pushes for aggregation to reduce exposure
of the hydrophobic tail28.

Recently, AβO were predicted to decrease in response to BACE1 inhibition, which
was at that time derived indirectly on the basis of an analysis monomeric Aβ response data.
In the current analysis, the decrease in AβO concentrations following BACE1 inhibition
was confirmed. The within-study comparison that was used to compare model predicted
versus observed AβO indicated that the onset of the AβO response was predicted to be
slower and the predicted maximum response was lower than observed.

The addition of the parameter Factorolig made it possible to account for differences
in units of the quantification assays of monomeric Aβ and AβO. This parameter has a
relationship with the size of the oligomers and other process involved. A lower apparent
volume of distribution of AβO compared to Aβ monomers would be expected, if the mea-
sured AβOs are high-molecular weight species. This would then be reflected in Factororig .
The measured AβOs were a mixture of AβO with different number if Aβ monomers
incorporated, of which the distribution was unknown. If, for simplicity, it is assumed
that Factororig only has a relationship with AβO size, it is defined as one divided by the
number of subunits of Aβ42 in AβO. This would indicate that, on average, the measured
AβOs contain 56 subunits of Aβ. This is close to the reported size of larger amyloid
oligomers of 30-50 protein molecules29.

It was not possible to use the parameter estimates from the β-APP model in the
current analysis, as different biomarker assays were used to determine APP metabolite
concentrations. In principle, identified system parameters are attributed to the biological
system and may not change from one analysis to another30. However, in practice, due to
experimental variation system parameters may shift. Then, it is important to understand
what is measured and to realize what experimental design aspects might be different as
well as those that are kept the same. With respect to the development of a system model,
standardization of biomarker assays for data collection will be beneficial.

The β-APP model was extended to describe Aβ38, in addition to Aβ40 and Aβ42
dynamics. Different formation rates were found for these Aβ species. Ranking the
formation rates from high to low these rank: Aβ40, Aβ38, Aβ42. This is consistent
with the composition of Aβ species reported for human CSF, in which Aβ40 is the
dominant isoform, and the concentration of Aβ42 was much lower than Aβ40 and Aβ38
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concentrations31.

Unwanted protein aggregation, such as that of Aβ in AD, is generally believed to
involve aggregation in a non-native state. In the case of amyloidogenic proteins, the
starting reactant is the monomeric form of the protein and the product of the protein ag-
gregation is aggregated protein fibrils. The intermediate species that are formed along the
way are still uncertain. Various approaches to determine protein aggregation kinetics and
understand the underlying mechanism have been reported in literature and were reviewed
by Morris et al. 11 . These were based on in situ and ex situ aggregation kinetics studies.
Lomakin et al. 32 investigated the fibrillation of Aβ40, by following its aggregation using
quasi-elastic light scattering in vitro. They proposed a critical protein concentration above
which stepwise protein aggregation occurs: (i) monomers, (ii) micelles, (iii) nuclei, (iv)
fibrils. The fiber elongation rate was proposed to be proportional to the Aβ40 monomer
concentration, i.e. a first order process. This cannot be directly compared to the higher
order Aβ42 oligomerization identified in the current analysis. As Aβ42 is more prone
to aggregation than Aβ40 (vide supra), the results reported by Lomakin et al. 32 might
have been different for Aβ42 under the same experimental conditions. Moreover, in vitro

conditions for aggregation are less complex than in vivo, where processes as production,
elimination, deposition and fibrillization of Aβ monomers are in dynamic equilibrium.

Conclusions & Perspectives

The findings reported herein indicate that the use of systems pharmacology modelling
can be a very useful tool when investigating drug effects on attributes of a complicated
biological network. The β-O-APP model was able to integrate information from an
AβO assay with the PK and APP metabolites concentration measurements in response to
BACE1 inhibition. This yielded important information about the relationship between
monomeric Aβ species and AβOs: (1) Oligomerization was a higher order process. This
means that a relatively larger change from baseline for AβO compared to monomeric
Aβ species is obtained following BACE1 inhibition; (2) AβOs decreased in response to
BACE1 inhibition; (3) Of the measured Aβ species Aβ42 was the only major contributor
to the oligomer pool.

The β-O-APP model brings us closer to optimizing the therapeutic intervention to
reduce AβO burden. In a follow-up analysis, the potential reduction of the putatively
neurotoxic AβO pool following γ-secretase inhibition will be investigated. Potential differ-
ences in effects on AβO levels after treatment with a BACE1 versus a γ-secretase inhibitor
will be evaluated. To this end, data following treatment with the γ-secretase inhibitor

189



Chapter 6

MK-0752 from the current study will be added to further inform the model (Chapter 7).
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SUPPLEMENTAL MATERIAL

Study differences

The response data of Aβ40, Aβ42, sAPPβ and sAPPα from the recent BACE1 inhibitor
study1 (hereinafter referred to as study 1) and the current BACE1 inhibitor study (here-
inafter referred to as study 2) following a dose of 125 mg/kg MBi-5 is depicted in
Supplemental Figure S6.1. A large between-study variability in the data was observed.
This is also apparent from the plots of the ratios of Aβ42:Aβ40 (Supplemental Figure
S6.2A), Aβ40:sAPPβ (Supplemental Figure S6.2B) and sAPPβ:sAPPα ( Supplemental
Figure S6.2C) in each study. There was no overlap in the rhesus monkey individuals
included in studies 1 and 2.
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A single systems pharmacology approach to unravel Aβ oligomer modulation

Abstract

Accumulation of toxic soluble Aβ oligomers (AβO) is the primary event driving the
pathological changes in Alzheimer’s Disease (AD). Inhibition of β-amyloid precursor
protein (APP) cleavage enzymes has been proposed as an approach to reduce AβO con-
centrations. Due to the complexity of the underlying biochemical network, the effects of
these interventions on AβO are difficult to predict.

The aim of this investigation was to develop a single systems pharmacology model to
predict the change in AβO following administration of inhibitors of multiple APP cleavage
enzymes (i.e. β-secretase (BACE1) and γ-secretase (GS) inhibition). A novel systems
pharmacology model, the β-γ-O-APP model, which is an extension of a previously
proposed β-O-APP model, was successfully applied to describe the pharmacokinetics and
the time course of the changes in APP metabolite (sAPPβ, sAPPα, Aβ42, Aβ40, Aβ38)
and AβO concentrations.

A differential effect of BACE1 versus GS inhibition on the APP metabolite profiles
was observed, which was reflected in the ratio Aβ42:Aβ40:Aβ38. The analysis shows
that this may be explained by stepwise successive cleavage of C99 by GS, wherein part
of Aβ38 is converted from Aβ42. Both BACE1 and GS inhibition resulted in similar
maximum reduction of the AβO and monomeric Aβ. The β-γ-O-APP model suggests
that GS inhibition may enhance the non-amyloidogenic processing of APP via homeo-
static feedback exerted by C99. Understanding the mechanisms that underlie the APP
processing pathway through the APP systems pharmacology model aids the optimization
of therapeutic intervention to reduce AβO burden.
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Introduction

The amyloid cascade hypothesis for Alzheimer’s Disease (AD) posits that the deposition of
the amyloid peptides (Aβ) in the brain is a central event in the pathophysiology. Aβ s are
elevated early in the disease, before clinical symptoms manifest and this leads to a series
of pathophysiological changes1. The most toxic species of Aβ are soluble Aβ oligomers
(AβO), which are believed to be the initial drivers of neurodegeneration2,3

Aβ is the final product of proteolytic cleavage of the transmembrane β-amyloid pre-
cursor protein (APP) and the precursor of AβO. In the amyloidogenic pathway, Aβ is
produced by sequential cleavage of APP by β-secretase 1 (BACE1) and γ-secretase (GS)4.
Cleavage by BACE1 creates the soluble β-amyloid precursor protein (sAPPβ) and C99,
a C-terminal fragment which remains membrane bound. Aβ is derived from the GS
cleavage of C99, generating Aβ peptides of various amino acid chain lengths, of which
the most common are 38, 40 or 42 amino acids long (Aβ38, Aβ40, or Aβ42, respec-
tively)5. An alternative pathway is driven by α-secretase cleavage, which generates the
non-amyloidogenic soluble sAPPα and the C-terminal membrane-bound 83-amino acid
fragment C83. This occurs within the Aβ sequence, and thus precludes Aβ generation6.

Aβ peptide accumulates in stages into amyloid plaques. The Aβ peptides first form
AβO, which are soluble disordered clusters. Then, protofibrils are formed, which are
prefibrillar insoluble high molecular weight AβO (50-1500 kDa) consisting of spherical,
annular, and curvilinear assemblies7,8,9. Next, chains of agglomerates called fibrils are
generated, followed by an interwoven mass of fibrils called β-sheets and in the final stage
plaques are developed10.

Targeting AβO may prove to be an effective treatment for AD by halting their accu-
mulation and preventing their neurotoxic effect. One of the main therapeutic strategies for
AD aims at Aβ reduction through inhibition of Aβ production. Due to the complexity of
the underlying biochemical network, the effects of these interventions on the individual
moieties of the APP processing pathways and AβO are difficult to predict.

Systems pharmacology abstracts our understanding of biochemical/pathological path-
ways into mathematical constructs, in combination with the application of pharmacokinetic
(PK) and pharmacodynamic (PD) principles. In this approach, the drug effect is considered
to be the result of the interactions of the drug and the biological system.

Recently, we have proposed a systems pharmacology model of the APP process-
ing pathway characterizing APP metabolite (sAPPα, sAPPα, Aβ40, Aβ42, Aβ38) and
AβO responses to BACE1 inhibition, the so called β-O-APP model 11. In that inves-
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tigation Aβ oligomerization was identified to display second order kinetics and Aβ42
was found to be the major contributor to the AβO pool. This model was based on an
analysis of the data of the effect of a BACE1 inhibitor from a 4-way crossover study in
cisterna-magna-ported rhesus monkeys on the effects of a BACE1 (MBi-5) and a GS
(MK-0752) inhibitor on the biomarker concentrations in CSF. In the current investigation,
we have included the GS inhibitor response data from the same study and investigated
differences in biomarker responses between BACE1 and GS inhibition.

In an earlier analysis with the β-γ-APP model, both BACE1 and GS inhibition
were predicted to lower AβO levels, which was at that point derived from monomeric
Aβ dynamics12. The prediction suggested a lower oligomerization rate of Aβ42 after GS
and BACE1 inhibition. Now, the effect of BACE1 and GS inhibition on the time course
of the changes in AβO measurements is determined and can be compared. Also, to our
knowledge for the first time, sAPPβ and sAPPα levels following GS inhibition have been
measured.

The objectives of this investigation were: (1) to extend a systems pharmacology model
of the APP processing pathway, describing the effects of both BACE1 and GS inhibitors on
its individual attributes and its interrelationships; (2) to elucidate the relationship between
the AβO and monomeric Aβ further, which is imperative to improve the prediction of
therapeutic effects on Aβ; (3) to understand the difference in Aβ dynamics following
BACE1 versus GS inhibition.

Materials and Methods

Animals

In this study, six male rhesus monkeys, weighing between 8.6 kg and 11.8 kg (mean,
9.7 kg), age at 9 years to 13 years (mean, 11 years) at time of the study were included.
They were individually housed and captive-bred in a closed colony. The rhesus monkeys
are chronically implanted with catheters in the cisterna magna, as described by Gilberto
et al. 13 . This facilitated repeated sampling of CSF and plasma in conscious rhesus
monkeys. All animal studies were reviewed and approved by the MSD Institutional
Animal Care and Use Committee. The NIH Guide to the care and use of Laboratory
Animals and the Animal Welfare act were followed in the conduct of the animal studies
(Institute of Laboratory Animal Resources, National Research Council, 1996).
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Drug administration and sampling
In a four-way full crossover study, a single oral dose of MBi-5 at 30 and 125 mg/kg,
MK-0752 at 240 mg/kg (5 mL/kg) or vehicle (0.4% methylcellulose) was administered.
Plasma and CSF drug concentrations were collected at 0 (predose) and 3, 5, 7, 9, 13, 14.5,
16, 19, 22, 25, 28, 31, 49, 55, 58, 73 and 96 h postdose, resulting in 18 plasma and CSF
PK samples for each rhesus monkey per treatment group. 2 mL of blood and 1 mL of
CSF were collected at each time point. The concentration of MBi-5 and MK-0752 in
the plasma and CSF samples was determined using LC-MS/MS. The concentrations
of sAPPα, sAPPβ, Aβ40, Aβ42, Aβ38 and AβO were determined from CSF samples,
collected at the same time points as PK samples, by established and validated ELISA-
based assays (Meso Scale Diagnostics ”sAPPα/sAPPβ Kit” (Catalog No. K15120E) and
”Human (6E10) Abeta Triplex Assay” (Catalog No. K15148E)), giving 18 measurements
of each biomarker for each monkey per treatment. To determine AβO concentrations, a
two-site ELISA assay was used, that was previously described by Savage et al. 14 .

PK-PD analysis
A non-linear mixed effects modelling approach was used to analyze the PK and PD data.
This approach takes structural (fixed) effects and both intra- and interindividual variability
into account. Typical values of structural model parameters (population parameters, which
define the average value for a parameter in a population) (θ), the variance and covariance
of the interindividual variability (ω2) and the variance of the residual error (σ2) are
estimated. The population approach described individual profiles relative to the overall
population trend.

The β-γ-O-APP model was implemented in the software package NONMEM (version
7.2.015). The models were compiled using Compaq Visual Fortran (version 6.6, Compaq
Computer Corporation, Houston, Texas, USA) and executed on a PC equipped with
an an Intel QuadCore (Intel R© CoreTM i7 CPU860, 2.80 GHz, 3.24 GB RAM). Data
management and model assessment was done using the statistical software package S-
PLUS for Windows (version 8.0 Professional, Insightful Corp., Seattle, USA). Based on
the analysis of their obtained minimum value of the objective function (defined as minus
twice the log-likelihood), the precision of parameter estimates, and visual inspection of
goodness-of-fit plots the best models were selected. A more detailed description of the
modelling procedure was described in van Maanen et al. 16 .

The performance of the β-γ-O-APP model was evaluated with a visual predictive
check (VPC), in which the median and the 90% inter-quantile range of the data simulated
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with the final parameter estimates were plotted together with the observations. A validated
result would have close resemblance of median observed and predicted line with 90% of
the observations that fall within the 90% prediction interval.

Berkeley MadonnaTM version 8.3.18 (Macey and Oster, University of California,
Berkeley) was used for simulations to illustrate the characteristics of the β-γ-O-APP
model.

Model description

The APP systems pharmacology model was developed by sequential analysis of PK and PD
data following administration of MBi-5 and MK-0752. The PK model of MBi-5 was based
on simultaneous analysis of plasma and CSF PK data and has been described elsewhere by
van Maanen et al. 16 . The PK model for MK-0752 was reported previously17,12. The PK
models adequately described the plasma and CSF concentration time profiles of MBi-5 and
MK-0752, respectively, thus the models could serve as input for PD model analysis.

The biomarker response profiles of MBi-5 and MK-0752 measured in CSF were ade-
quately described by the β-γ-O-APP model containing compartments for eight moieties:
APP, sAPPβ, sAPPα, C99, Aβ40, Aβ42, Aβ38 and AβO (Fig. 7.1). APP production was
assumed to be constant and described by a zero order input rate RinAPP . The production
of the APP metabolites was assumed to be first order, i.e. dependent on its precursor
concentration. The interaction between APP and its metabolites (sAPPβ, sAPPα, C99,
Aβ40, Aβ42 and Aβ38) and AβO is described by Eq. 7.1 - Eq. 7.8:

d

dt
APP = RinAPP −

(
Rinβ × EFFB +Rinα×

(
C99

C99base

)FP)
×APP

(7.1)

d

dt
sAPPα = Rinα×

(
C99

C99base

)FP
×APP −Routa × sAPPα (7.2)

d

dt
sAPPβ = Rinβ × EFFB ×APP −Routb ∗ sAPPβ (7.3)
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d

dt
C99 =Rinβ × EFFB ×APP

− (Kin40 +Kin42 +Kin38) ∗ EFFG ∗ C99−Kout99 ∗ C99
(7.4)

d

dt
Aβ40 = Kin40 × EFFG× C99−Kout×Aβ40 (7.5)

d

dt
Aβ42 =Kin42 × EFFG× C99−Kout42 ×Aβ42

−Kin382 × EFFG×Aβ42 −Kpl × (Aβ42)
ALPH

+Krev ×AβO/

(
MWAβ42

1000
× Factoroligo

) (7.6)

d

dt
Aβ38 =Kin38 × EFFG× C99 +Kin382 × EFFG×Aβ42

−Kout ∗Aβ38
(7.7)

d

dt
AβO = Kpl × (Aβ42)

ALPH × MWAβ42

1000
× Factoroligo −Krev ×AβO

(7.8)

The rate of change of APP with respect to time in the presence of the BACE1 inhibitor
is expressed by Eq. 7.1, in which the BACE1 cleavage inhibition is incorporated by the
factor EFFB. The rate of change of C99 with respect to time in the presence of the GS
inhibitor is described by Eq. 7.4, in which the GS cleavage inhibition is incorporated by
the factor EFFG. EFFB and EFFG are the degrees of inhibition caused by MBi-5 and
MK-0752, respectively. Generally, the degree of inhibition is described by a sigmoidal
Imax function, as shown in Eq. 7.9.

EFF = 1−
CGAMtarget ∗ Imax

CGAMtarget + IC50GAM
(7.9)
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Where Ctarget is the target site concentration of MBi-5 or MK-0752, respectively, IC50

the Ctarget that results in 50% inhibition of BACE1 or GS, Imax is the maximum response
and GAM is the Hill coefficient. Ctarget was derived from the respective PK models as:

Ctarget = Cplasma ∗
AUCCSF
AUCplasma

(7.10)

Where AUCCSF and AUCplasma are the areas under the CSF and plasma concentration
time curves, respectively. Ctarget is assumed to be at a level between CCSF and Cplasma,
following the same profile as Cplasma.
It is assumed that the system is in steady state (SS) when no treatment is given (EFFB=1,

EFFG=1). These steady state conditions were used to derive part of the system parameters.
From SS and Eq. 7.1 it follows that the zero order input rate of APP (RinAPP ) is:

RinAPP = (Rinα +Rinβ) ∗APPbase (7.11)

Where APPbase is the baseline level of APP, assumed to be equal to the sum of the baseline
levels of sAPPα and sAPPβ, as all alternate pathways are represented by the terms for
α-secretase.

Using SS conditions and Eq. 7.2 the sAPPα formation rate (Rinα), equivalent to the
α-secretase cleavage step, can be derived:

Rinα = Routa ×
sAPPαbase
APPbase

(7.12)

Where sAPPαbase is the baseline level of sAPPα.

The sAPPβ and C99 formation rate (Rinβ), equivalent to the BACE1 cleavage step, follows
from SS conditions and Eq. 7.3:

Rinβ = Routb ×
sAPPβbase
APPbase

(7.13)

Where sAPPβbase is the baseline level of sAPPβ.
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From Eq. 7.5 and SS, the Aβ degradation rate (Kout), is deduced:

Kout = Kin40 ×
C99base
Aβ40base

(7.14)

Where C99base is the baseline level of C99.

From Eq. 7.4 and SS the baseline level of C99 can be derived:

C99base =
Routb × sAPPβbase ×Aβ40base

Kin40 × (Aβ40base +Aβ38base +Aβ42base) +Aβ40base ×Kout99

(7.15)

Using SS conditions 7.6, 7.7 and 7.15, respectively, the formation rates of Aβ42 (Kin42)
and Aβ38 (Kin38), equivalent to γ-secretase cleavage steps, can be calculated:

Kin42 =
(Kout+Kin382)×Aβ42base

C99base
(7.16)

Kin38 =
Kout×Aβ38base −Kin382 ×Aβ42base

C99base
(7.17)

Where Aβ42base and Aβ38base are the baseline levels of Aβ42 and Aβ38, receptively.

The exchange between the AβO pool and the Aβ42 compartment is described by
Eq. 7.6 and Eq. 7.8, where ALPH is the power of the concentration of Aβ42, Factoroligo
is the conversion factor on AβO and MWAβ42 is the molecular weight of Aβ42. Krev

and Kpl are the dissociation rate and higher-order Aβ42 oligomerization rate constant,
respectively, which are dependent on the baseline values of Aβ42 and the AβO pool
(Aβ42base and AβObase, resp.) according to Eq. 7.18:

Krev =
Kpl × (Aβ42base)

ALPH × MWAB42

1000 × Factoroligo

AβObase
(7.18)

The model structure includes six transit compartments (Fig. 7.1), one for each
biomarker measured in CSF (sAPPα, sAPPβ, Aβ40, Aβ42, Aβ38, AβO), to account for
transport from the target site in the brain to CSF. These transit processes are described, in
general, by Eq. 7.19:
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d

dt
xAxCSF = Ktr ∗ (xAx− xAxCSF ) (7.19)

Where Kt is the transit rate for the particular particular APP metabolite xAx (KtAP for
sAPPα and sAPPβ and KtAB for Aβ40, Aβ42, Aβ38 and AβO).
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Figure 7.1: Schematic of β-γ-O-APP model.
The model comprised fourtheen compartments: Eight biomarker compartments in brain (yellow
circles) and six transit compartments from brain to CSF (white circles). Six biomarkers were
measured in CSF (sAPPα, sAPPβ, Aβ40,Aβ42, Aβ38 and AβO), indicated by the blue boxes.
The drug effect of the BACE1 inhibitor (BACEi EFF) inhibited Rinβ. The drug effect of the GS
inhibitor (GSi EFF) inhibited Kin40, Kin40, Kin38 and Kin382. As driver of biomarker response
Ctarget was used, which was derived from the PK models of the BACE1 inhibitor 16 and GS
inhibitor 12, respectively. The red arrow indicates the homeostatic feedback on
α-secretase through the action of C99. Model extensions compared to the β-O-APP model are
indicated with the green shaded area.
APP: Aβ-precursor protein; Aβ: amyloid-β-peptide; Ctarget: drug concentration target site; Kin38: Aβ38
formation rate from C99; Kin382: Aβ38 formation rate from Aβ42; Kin40: Aβ40 formation rate; Kin42:
Aβ42 formation rate; Kout: Aβ38, Aβ40 and Aβ42 degradation rate; KoutC99: C99 degradation rate; Krev:
Oligomer dissociation rate; KtAP: transit rate sAPPα and sAPPβ from brain to CSF; Kpl: Oligomerization
rate; KtAB: transit rate Aβ from brain to CSF; KtABO : transit rate AβO from brain to CSF; RinAPP: source
of APP; Rinβ: sAPPβ formation rate; Rinα: sAPPα formation rate; Routb: sAPPβ degradation rate; Routa:
sAPPα degradation rate.
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Results

APP systems pharmacology model
A systems pharmacology model, incorporating the PK of MBi-5 and MK-0752, CSF
APP metabolite (Aβ38, Aβ40, Aβ42, sAPPα and sAPPβ) concentrations and AβO mea-
surements was developed to quantify APP metabolite and AβO responses to BACE1 and
GS inhibition in monkeys. The model, named the β-γ-O-APP model, is schematically
presented in Fig. 7.1. The model included terms to describe the production and elimination
of each APP metabolite. The oligomerization of Aβ42 was described by higher order
kinetics11.

The drug effect of MBi-5 was incorporated in the model as blocking sAPPβ and C99
production, equivalent to the BACE1 cleavage step. The drug effect of MK-0752 was
implemented as blocking Aβ production, corresponding to the GS cleavage step. Both
drug effects where described by an Imax function12.

Part of Aβ38 is converted from Aβ42
A difference in the ratios of Aβ42, Aβ40 and Aβ38 over total Aβ (Aβ38+Aβ40+Aβ42)
following BACE1 versus GS inhibition was found (see Supplemental Material). This was
described by extending the β-γ-O-APP model to account for subsequent GS cleavage of
part of Aβ42 to Aβ38 (Equation 7.7). This cleavage step is inhibited by the GS inhibitor,
but not blocked if BACE1 is inhibited.

MK-0752 exposure increased sAPPα
A slight decrease in sAPPβ and increase of sAPPα concentrations, as well as a change
in the ratio sAPPβ:sAPPα was observed in response to GS inhibition (see Supplemental
Material). This could be described by implementing a homeostatic feedback loop in the
model structure regulated by C99: The increase in C99 relative to baseline C99 after GS
inhibition stimulates α-secretase processing of APP (Equation 7.2). Then, as result of
substrate competition, BACE1 processing of APP relatively decreases resulting in a slight
decline of sAPPβ following GS inhibition. The strength of this homeostatic feedback
action was quantified by the feedback parameter FP, that was estimated to be 0.438, which
was significantly different from zero (when there would be no feedback).
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Aβ production inhibition decreased AβO

Both BACE1 and GS inhibition reduced the AβO levels, which was adequately de-
scribed by the APP systems model (Figs. 7.3F, 7.4F and 7.5F, respectively). Note that
Aβ monomers were measured in pM and AβO were expressed in pg/mL. For this reason,
a conversion factor needed to be included in the model, which was discussed recently11.
A similar maximum reduction of AβO concentration of 89% was obtained after treatment
with 125 mg/kg MBi-5 and 240 mg/kg MK-0752. However, GS inhibition had a more
prolonged pharmacological effect on AβO levels compared to BACE1 inhibition.

Model parameters
The analysis of the variability of model parameters due to interanimal variation resulted
in a random-effects structure including interanimal variability for the baselines of sAPPβ,
sAPPα, Aβ38, Aβ40, Aβ42 and AβO, with the same random-effect parameter used for
Aβ40 and Aβ42 (Table 7.2). All were included as exponential in nature, which reflects
lognormal distributions of the individual parameters.

It was not possible to obtain a successful completion of the Covariance Step in
NONMEM using the model including interanimal variability. Furthermore, because
of long model minimization times it was not feasible to perform a bootstrap to obtain
parameter precision. Therefore, the precision of the model parameters from the model
without interanimal variability is reported in Table 7.1, which was adequate.

To take caution against over parameterization of the model, the formation rate constant
of Aβ40 Kin40 was fixed to the value from the β-O-APP model11.

When estimated, the Hill coefficients of the concentration response relationships of
MBi-5 and MK-0752 were not significantly different from 1. Therefore, the sigmoid-
Imax concentration response relationships could be simplified to Imax relationships by
fixing the Hill coefficients to 1. For MBi-5, a potency (IC50) of 0.0251 µM (95% CI,
0.02-0.0302) was identified, which was similar to the previously reported IC50 of 0.0256
µM (95% CI, 0.0137–0.0375) from another CMP rhesus study16, and is also near the in

vitro inhibition constant (Ki) of 10 nM for MBi-5 inhibition of purified BACE1 and the
IC50 of 24 nM for inhibition of Aβ production in intact cells18. An IC50 of 0.0468 µM
(95% CI, 0.0154–0.0782) was identified for MK-0752 . This value was 10 fold lower than
reported earlier for CMP rhesus monkeys12 and also 10 fold lower than the brain IC50 of
MK-0752 in guinea-pigs of 440 nM19.
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Table 7.1: Population parameter estimates including coefficient of variation (CV%)

PARAMETER DESCRIPTION VALUE UNIT CV%

Structural parameters

sAPPβbase baseline sAPPβ 382 pM 17
Aβ38base baseline Aβ38 411 pM 16
Aβ40base baseline Aβ40 1330 pM 10.5
Aβ42base baseline Aβ42 107 pM 12.1
sAPPαbase baseline sAPPα 457 pM 13.3
Kin40

a formation rate Aβ40 1.29 h−1

Kin382 Aβ38 formation rate from Aβ42 0.162 h−1 17.5
Routa degradation rate sAPPα 1.11 h−1 12.7
Routb degradation rate sAPPβ 1.46 h−1 11.8
Kout99 degradation rate C99 0.496 h−1 34.9
KtAP transit rate sAPPα and sAPPβ 0.122 h−1 3.09
KtABa transit rate Aβ 10 h−1

ImaxBa maximal inhibition (Imax) MBi-5 1
IC50B median inhibition concentration MBi-5 0.0251 µM 10.4
GAMBa Hill coefficient MBi-5 1
ImaxGa maximal inhibition (Imax) MK-0752 1
IC50G median inhibition concentration MK-0752 0.0468 µM 34.2
GAMGa Hill coefficient MK-0752 1
Kpl oligomerization rate 5.46e-4 pM−1 h−1 40.1
AβObase baseline AβO 2.03 pg/mL 13.6
ALPHa order oligomerization 2
FP feedback parameter 0.496 20.8
Factoroligo conversion factor on oligomers 0.00994 20.6

Residual error

σ2
Aβ40

b Residual variability Aβ40 0.157 21.5
σ2

Aβ42
b Residual variability Aβ42 0.146 26.9

σ2
sAPPβ

b Residual variability sAPPβ 0.269 42.8
σ2

sAPPα
b Residual variability sAPPα 0.175 34.9

σ2
oligo

b Residual variability AβO 1.01 18.2
σ2

Aβ38
b Residual variability Aβ38 0.247 27.1

a Fixed.
bResidual variability is assumed to follow a normal distribution with mean zero and variance σ2.
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Table 7.2: Population parameter estimates

PARAMETER DESCRIPTION VALUE UNIT

Structural parameters
sAPPβbase baseline sAPPβ 349 pM
Aβ38base baseline Aβ38 373 pM
Aβ40base baseline Aβ40 1250 pM
Aβ42base baseline Aβ42 98 pM
sAPPαbase baseline sAPPα 423 pM
Kin40

a formation rate Aβ40 1.29 h−1

Kin382 Aβ38 formation rate from Aβ42 0.145 h−1

Routa degradation rate sAPPα 1.08 h−1

Routb degradation rate sAPPβ 1.54 h−1

Kout99 degradation rate C99 0.386 h−1

KtAP transit rate sAPPα and sAPPβ 0.129 h−1

KtABa transit rate Aβ 10 h−1

ImaxBa maximal inhibition (Imax) MBi-5 1
IC50B median inhibition concentration MBi-5 0.0255 µM
GAMBa Hill coefficient MBi-5 1
ImaxGa maximal inhibition (Imax) MK-0752 1
IC50G median inhibition concentration MK-0752 0.0488 µM
GAMGa Hill coefficient MK-0752 1
Kpl oligomerization rate 6.45e-4 pM−1 h−1

AβObase baseline AβO 1.75 pg/mL
ALPHa order oligomerization 2
FP feedback parameter 0.438
Factoroligo conversion factor on oligomers 0.00667
Interanimal variability
ω2

BSAPb
b Interanimal variability sAPPβ baseline 0.194

ω2
BSAPa

b Interanimal variability sAPPα baseline 0.105
ω2

AB4.
b Interanimal variability Aβ40 and Aβ42 0.0681

ω2
AB38

b Interanimal variability Aβ38 0.119
ω2

ABO
b Interanimal variability AβO 0.116

Residual error
σ2

Aβ40
c Residual variability Aβ40 0.117

σ2
Aβ42

c Residual variability Aβ42 0.0705
σ2

sAPPβ
c Residual variability sAPPβ 0.109

σ2
sAPPα

c Residual variability sAPPα 0.0783
σ2

oligo
c Residual variability AβO 0.785

σ2
Aβ38

c Residual variability Aβ38 0.0934
a Fixed.
b Interanimal variability is assumed to follow a normal distribution with mean zero and variance ω2.
c Residual variability is assumed to follow a normal distribution with mean zero and variance σ2.
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Figure 7.2: Placebo. Visual predictive check of biomarker response vs. time profile of placebo
in the rhesus with 90% confidence interval. Predictions were performed with extended model
((A), (B), (C), (D), (E), (F)). Observation sample size: n=108 for each APP metabolite from 6
monkeys collected over 4 days.
Plus-symbols represent observed measurements. Dotted blue line corresponds to the median observed profile.
Solid lines show the median simulated profiles. The long-dashed lines correspond to the 90% prediction
intervals obtained from 1000 individual simulated profiles.
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Figure 7.3: Dose 30 mg/kg MBi-5. Visual predictive check of biomarker response vs. time
profile of MBi-5 in the rhesus with 90% confidence interval. Predictions were performed with
model with extended model ((A), (B),(C), (D), (E),(F)). Observation sample size: n=108 for each
APP metabolite from 6 monkeys collected over 4 days.
Plus-symbols represent observed measurements. Dotted blue line corresponds to the median observed profile.
Solid lines show the median simulated profiles. The long-dashed lines correspond to the 90% prediction
intervals obtained from 1000 individual simulated profiles.
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Figure 7.4: Dose 125 mg/kg MBi-5. Visual predictive check of biomarker response vs. time
profile of MBi-5 in the rhesus with 90% confidence interval. Predictions were performed with
extended model ((A), (B),(C), (D), (E),(F)). Observation sample size: n=108 for each APP
metabolite from 6 monkeys collected over 4 days.
Plus-symbols represent observed measurements. Dotted blue line corresponds to the median observed profile.
Solid lines show the median simulated profiles. The long-dashed lines correspond to the 90% prediction
intervals obtained from 1000 individual simulated profiles.
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Figure 7.5: Dose 240 mg/kg MK-0752. Visual predictive check of biomarker response vs. time
profile of MK-0752 in the rhesus with 90% confidence interval. Predictions were performed
with extended model ((A), (B),(C), (D), (E),(F)). Observation sample size: n=108 for each APP
metabolite from 6 monkeys collected over 4 days.
Plus-symbols represent observed measurements. Dotted blue line corresponds to the median observed profile.
Solid lines show the median simulated profiles. The long-dashed lines correspond to the 90% prediction
intervals obtained from 1000 individual simulated profiles.
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β-γ-O-APP model described all biomarker responses
The β-γ-O-APP model simultaneously described APP metabolite and AβO responses
to both BACE1 and GS inhibition. In general, the data were adequately captured across
biomarkers for both MBi-5 (Figs. 7.2, 7.3, 7.4) and MK-0752 (Fig. 7.5) treatment. The
description of the Aβ responses after MBi-5 treatment was marginally improved compared
to the description obtained with the β-O-APP model11. The raise in sAPPα after GS
inhibition was slightly underpredicted (Fig. 7.5A).

β-γ-O-APP model predicts APP metabolites interrelations
The β-γ-O-APP model could be used to predict APP metabolites interrelations and
responses to BACE1 and GS inhibition and foresee the response of APP and C99 in brain
(Fig. 7.6).

APP increases after inhibition of BACE1 (Fig. 7.6A), as result of the blocked BACE1
pathway. APP is then shunted down the α-secretase pathway, resulting in an upsurge of
sAPPα product. The sAPPβ level reduces after BACE1 inhibition, as it is a direct product
of BACE1 cleavage of APP. The increase in sAPPα and decrease in sAPPβ results in a
decline in the ratio of sAPPβ:sAPPα and net rise in the sum of sAPPα and sAPPβ (Fig.
7.6E). The C99 level is predicted to decline after BACE1 inhibition. The loss of C99 after
BACE1 inhibition results in reduced Aβ levels.

After GS inhibition APP slightly reduces due to the increased α-secretase processing
of APP (Fig. 7.6B). As a result of substrate competition sAPPβ also slightly declines. The
accumulation of C99 through GS inhibition stimulates the α-secretase pathway, resulting
in an upswing of sAPPα levels and changing the ratio of sAPPβ:sAPPα and net sum of
sAPPα and sAPPβ (Fig. 7.6F).

Both BACE1 and GS inhibition lower the monomeric Aβ concentrations (Fig. 7.6C,
7.6D), though the respective inhibition results in different Aβ ratios (Fig. 7.6E, 7.6F). Both
BACE1 and GS inhibition reduce the AβO level, although the effect is more prolonged
after GS inhibition.

The diurnal oscillations observed in the simulated biomarker responses after GS
inhibition are induced by the enterohepatic recirculation which MK-0752 exhibits12 17.
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Figure 7.6: Simulation absolute biomarker responses ((A), (B)), biomarker change from
baseline (%) ((C), (D)) and biomarker ratios ((E), (F)) using the β-γ-O-APP model. The
biomarker responses were simulated after a single dose of 125 mg/kg MBi-5 (left) and 240 mg/kg
MK-0752 (right), using the typical parameter estimates.
sAPPα red solid line; sAPPβ yellow solid line; Aβ40 green solid line; Aβ38 light blue solid line; Aβ42 dark
blue solid line; AβO black solid line; C99 grey dot-dashed line; APP grey dashed line.
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Discussion

One of the main therapeutic strategies is to delay AD onset and progression is reducing
Aβ aggregation through the decrease of Aβ monomeric levels by means of Aβ production
inhibition. Therefore, the dynamics of AβO after Aβ production inhibition needs to be
elucidated. The β-γ-O-APP model described APP metabolites (sAPPβ, sAPPα, Aβ38,
Aβ40, Aβ42) and AβO responses and their interrelations after GS and BACE1 inhibition
successfully.

The reduction of AβO concentration after inhibition of BACE1 with 125 mg/kg
MBi-5 was equivalent to the AβO decline obtained after 240 mg/kg MK-0752. The
pharmacological effect of GS inhibition was prolonged by the enterohepatic recirculation
of MK-0752. The enterohepatic recirculation of MK-0752 was previously discussed by
Shou et al. 17 .

The simultaneous analysis of BACE1 and GS inhibitor Aβ response data revealed
a shift in the relative formation of Aβ38, Aβ40 and Aβ42 after GS blockage. This
was explained by stepwise successive cleavage of C99 by GS, in which part of Aβ38 is
converted from Aβ42. This pathway is blocked after GS, but not after BACE1 inhibition.
Matsumura et al. 20 reported that most of Aβ38 is converted from Aβ42 and Aβ43. Our
results indicate that almost a third of Aβ38 originates from Aβ42 cleavage.

sAPPβ and sAPPα are upstream in the APP pathway of the GS cleavage path. To
our surprise, sAPPα increased in response to GS inhibition. This could be character-
ized by a homeostatic feedback loop regulated by C99, where an increase in C99 via
GS inhibition stimulates α-secretase processing of APP. This suggests that an increase
of membrane bound C99 may affect cellular control of APP α-secretase cleavage or
alter APP trafficking to the cell surface, directly or through α-secretase, therefore in-
creasing α-secretase cleavage at the plasma membrane. Enhanced processing of APP by
α-secretase after GS inhibition has also been observed in in vitro experiments performed
in model cell lines reported by Siegenthaler et al. 21 . They suggested that GS activity
could influence α-secretase levels or activity. However, the regulation of the activity of
α-secretase is not fully understood6,22.

The observed increase in sAPPα generation was accompanied by a modest reduction
of sAPPβ after GS inhibition. This is due to less full-length APP remaining as substrate
for BACE1 when α-secretase cleavage is raised. The idea of substrate competition for
APP between α-secretase and BACE1 is well accepted6. However, here the decrease
in sAPPβ is not as strong as would be expected purely based on substrate competition
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following the upsurge of α-secretase activity. That is why the model underpredicted the
raise in sAPPα. There appears to be an increase in the sum of sAPPβ and sAPPα after GS
inhibition (see Supplemental Material, Figure S7.2A). This suggests an increase in pro-
duction of APP. There may be an autoregulation mechanism of APP production, induced
by GS inhibition, compensating for the loss of sAPPβ as result of α-secretase stimulation.
This was investigated during model development, and there were indications that including
autoregulation of APP would improve the description of the data. However, with the
current data, the process of autoregulation could not be characterized adequately. Further
investigation is warranted.

Because α-secretase cleaves APP within the Aβ sequence, pharmacological activation
of α-secretase, and thereby reducing Aβ production may be a therapeutic intervention in
AD. Further, sAPPα plays a role in neuroprotection and is downregulated in familial and
sporadic AD patients22.

Tian et al. 23 proposed a feedback mechanism initiated by the α-secretase cleavage
path, in which Aβ production is lowered by increased C83 which negatively modulate
GS activity. sAPPα and C83 are products of the same cleavage step by α-secretase. The
model predicted increased C83 concentrations as result of BACE1 and GS inhibition.
Therefore, this inhibitory effect on GS through C83 is expected to occur after both BACE1
and GS inhibition. The feedback mechanism as proposed by Tian was investigated in the
β-γ-O-APP model, but could not be distinguished from the interaction of the inhibitors
on the system as both work to lower Aβ levels.

In a series of investigations we have explored the development of a systems phar-
macology model for the APP processing pathway. In the first of these investigations,
a systems pharmacology model was developed of the APP processing pathway based
on CSF concentrations of APP metabolites (Aβ40, Aβ42, sAPPβ, sAPPα) after expo-
sure to the BACE1 inhibitor MBi-5 in CMP rhesus monkeys 16. With this so called
β-APP model, AβO were predicted to reduce after BACE1 inhibition, which was in-
formed from monomeric Aβ species.

In the second investigation, the systems model was validated using tracer kinetic data
(fraction labeled sAPPα, fraction labeled sAPPβ and fraction labeled total Aβ). This
β-13C-APP model accounted for the tracer 13

6 C-Leucine dynamics throughout the systems
model 24. In the third investigation, separate descriptions to characterize the sequential
cleavage steps of APP by BACE1 and GS were included in the systems model. This
was based on the simultaneous investigation of APP metabolite response data from
dedicated studies for the BACE1 inhibitor MBi-5 (Aβ40, Aβ42, sAPPβ, sAPPα) and
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the GS inhibitor MK-0752 (Aβ40, Aβ42), respectively 12. The investigation with this
β-γ-APP model implied a difference in Aβ dynamics after BACE1 versus GS inhibition,
which was reflected in a different Aβ40 formation rate constant. Further, the model based
prediction of AβO suggested a lower oligomerization rate of Aβ42 after GS then after
BACE1 inhibition. However, in that investigation, the difference in Aβ dynamics between
BACE1 versus GS inhibition could not be separated from study differences.

In the fourth investigation the β-APP model was extended to describe the effect
of an additional Aβ isoform (Aβ38) and capture AβO response measurements. This
β-O-APP model, was based on simultaneous analysis of CSF APP metabolites (Aβ38,
Aβ40, Aβ42, sAPPβ, sAPPα) and AβO concentration measurements after MBi-5 expo-
sure 11. In this investigation, Aβ oligomerization was characterized to be a second order
process. Further, Aβ42 was identified to be the Aβ species that drives the Aβ oligomer-
ization

In the current, and hence fifth investigation, the β-O-APP model was extended
to describe the effect of BACE1 and GS inhibition on the APP pathway simultane-
ously and capture AβO response data to both inhibitors. With the current analysis, the
β-γ-APP model could advance further, as information on the sAPPβ, sAPPα, Aβ38, and
AβO response data to GS inhibition could be added. Further, seeing the cross-over study
design of the current study using both inhibitors, true differences could be separated from
study differences. In the current analysis, no differences in systems parameters after
BACE1 versus GS inhibition could be identified, which indicated a correct simultaneous
characterization of the inhibitor-system interactions. Also, the Hill coefficients shifted
to unity, which is the theoretical value for a simple receptor-target interaction, indicating
that the β-γ-O-APP model provided a more accurate representation of the inhibitors
interaction with the system.

Conclusions & Perspectives

The current and prior series of investigations illustrate that systems pharmacology mod-
elling is work in progress and that various processes in the biological network have to
be considered. With each turning, the APP systems model is progressed and biological
insights are gained or questions raised that can get the model to an improved or more
advanced state.

Here, the β-γ-O-APP model revealed a feedback mechanism by downstream com-
ponents on a upstream path: blockage of the GS cleavage path promotes the non-
amyloidogenic processing of APP by homeostatic feedback, proposed to be exerted
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by C99. In addition, the stepwise successive cleavage of C99 by GS, wherein part of
Aβ38 is converted from Aβ42 was characterized by the model. Furthermore, the effects
of Aβ production inhibition on AβO concentrations were quantified.

A next step in the advancement of the APP systems model could be the extension of
the model to include higher order agglomerated species, such as fibrils. It would be of
interest to know if Aβ production inhibition can bring down the fibril concentrations as
well, which may dissociate to AβO to restore the balance between these species.

To further evaluate the proposed feedback mechanism, sAPP (sAPPβ and sAPPα) data
following a dose range of the GS inhibitor may be informative. Also, sAPP response
measurements after an α-secretase stimulator could provide information on a possible
autoregulation mechanism of APP production.

The developed β-γ-O-APP model can be used to perform simulations to investigate
other interventions, such as inhibition of Aβ oligomerization or Aβ clearance enhancers.
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SUPPLEMENTAL MATERIAL

Differences in Aβ ratios after BACE1 versus GS inhibition
The sum of Aβ38, Aβ40 and Aβ40 in the treatment arms of the cross-over study is
presented in Fig. S7.1A. Both BACE1 and GS inhibition resulted in a reduction of total
Aβ. The ratios of Aβ38, Aβ40 and Aβ40 over total Aβ is depicted in Fig. S7.1B. GS
inhibition resulted in a bigger change in the ratios of each Aβ species over total, compared
to BACE1 inhibition, with the investigated dosages. The difference is most pronounced
for the ratio Aβ42 over total Aβ.

Differences in the sum and ratio of sAPPβ and sAPPα after BACE1 versus GS inhi-
bition
The sum of sAPPβ and sAPPα and the ratio of sAPPβ over sAPPα in the treatment arms
of the cross-over study is depicted in Fig. S7.2A and S7.2B, respectively. Both BACE1
and GS inhibition reduce the ratio of sAPPβ over sAPPα.
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Figure S7.1: Observed differences in the treatment arms of the sum of Aβ38, Aβ40 and Aβ42
(A) and the ratio of each Aβ species over total Aβ (B). The lines are smoothers through the
observed data.
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Introduction and objectives

The leading cause of cellular dysfunction in neurodegenerative diseases is the accumula-
tion of protein aggregates inside or outside of neurons. These aggregates are phenotypi-
cally different but biochemically similar across neurodegenerative diseases suggesting a
conserved molecular mechanism of pathogenesis. This is consistent with the observation
that neurodegenerative disorders as Alzheimer’s disease (AD), Parkinson’s disease (PD),
Huntington’s disease (HD) and motor disorders such as amyotrophic lateral sclerosis
(ALS) present the same pattern of progression of neuronal death, nervous system deterio-
ration and cognitive impairment. Presumably these pathological changes are driven by
an error in protein conformation followed by abnormal aggregation to form pathogenic
assemblies ranging from small oligomers to large amyloid masses. The amyloid cas-
cade hypothesis of AD provides a framework for protein misfolding neurodegenerative
diseases.

AD is presently incurable, as the loss of neurons is irreversible and none of the
currently available treatments attenuates the progression of the pathological cascade.
According to the amyloid hypothesis, proteolytic processing of amyloid precursor protein
(APP) to form the amyloid-beta (Aβ) peptides plays a central role in the pathophysiol-
ogy of AD. Aβ levels are increased early in the disease process, forming toxic soluble
Aβ oligomers (AβO) and plaques. AβO are considered to be a primary driver of the
neurodegeneration in AD brain. In the APP processing and clearance pathways, APP is
cleaved sequentially by β-secretase (BACE1) and γ-secretase (GS) to produce Aβ.

The drug effects on the individual attributes of the APP pathway are difficult to pre-
dict, because of the complexity of the underlying biochemical network that governs the
formation and elimination of the individual components. As a consequence also, the
effect on AβOs and on the Aβ equilibrium after inhibiting Aβ production or enhancing
Aβ clearance is largely unknown. A systems pharmacology modelling approach, describ-
ing the interactions in the underlying biochemical network, will provide a mechanistic
understanding of the behaviour of the APP pathway, enabling the prediction of therapeutic
effects on Aβ and indirectly also on AβO concentrations (Chapter 2).

The objectives of the investigations described in this thesis were: (1) To establish a
systems pharmacology model to describe in a strictly quantitative manner the biochemi-
cal network of APP processing; (2) to predict and evaluate the effect of Aβ production
inhibitors, acting at different sequences in the APP processing pathway, on AβO con-
centrations; (3) to explore other therapeutic strategies which may aid the reduction of
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AβO burden.

Development of a systems pharmacology model to predict the oligomer
response following secretase inhibition

The effects of Aβ production inhibitors were characterized in conscious cisterna-magna-
ported (CMP) rhesus monkeys. In these CMP rhesus monkeys a permanent catheter was
implanted into the cisterna-magna enabling repeated sampling of cerebrospinal fluid (CSF)
collection in conscious monkeys (Figure 8.1)1. With this animal model, detailed studies
on the pharmacokinetics (PK) and pharmacodynamics (PD) of potential APP modifying
drugs in the central nervous system can be performed, which is difficult to achieve in
humans.

Table 8.1: Summary overview model structures

Model Inhibitors Included biomarkers Chapter

β-APP model BACE1i (MBi-5) sAPPβ, sAPPα, Aβ40, Aβ42 3

β-13C-APP model BACE1i (MBi-5)
sAPPβ, sAPPα, Aβ40, Aβ42, fraction labeled Aβ,

4
fraction labeled sAPPα, fraction labeled sAPPβ

β-γ-APP model
BACE1i (MBi-5) sAPPβ, sAPPα, Aβ40, Aβ42

5
GSi (MK-0752) Aβ40, Aβ42

β-O-APP model BACE1i (MBi-5) sAPPβ, sAPPα, Aβ40, Aβ42, Aβ38, AβO 6

β-γ-O-APP model
BACE1i (MBi-5) sAPPβ, sAPPα, Aβ40, Aβ42, Aβ38, AβO

7
GSi (MK-0752) sAPPβ, sAPPα, Aβ40, Aβ42, Aβ38, AβO

In a series of investigations, we have developed a systems pharmacology model for
the APP processing pathway. The various steps in the development of this model are
summarized in Table 8.1 and presented in Figure 8.2-Figure 8.6. First, we established a
systems pharmacology model of the APP processing pathway to characterize the influence
of BACE1 inhibition on the concentrations of the APP metabolites sAPPβ, sAPPα, Aβ40,
Aβ42 (Figure 8.2) (Chapter 3). In this so called β-APP model, the effect of the BACE1
inhibitor MBi-5 was described by inhibition of the formation of sAPPβ out of APP,
where sAPPβ was used as surrogate of C99, to drive the Aβ formation. This analysis
showed that upon BACE1 inhibition the concentration of the metabolite sAPPα increased
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present a vector for bacterial meningitis and would therefore be
treated as a true positive as well. This situation generally was
determined by evaluating the total protein and glucose levels of
the CSF. The total protein also is known as microprotein, as a
result of the low values relative to the serum resulting from the
bidirectional active transport mentioned previously. A bacterial
or viral meningitis would increase the intracranial pressure re-
sulting in increased permeability at the capillary cell walls. This
increased permeability would allow larger proteins to begin en-
tering the CSF, thus increasing the total protein concentration
(18). The increased permeability would begin to override the
bidirectional active transport mechanism and could be observed
as CSF protein profile begins to equilibrate with the blood pro-
teins. A bacterial meningitis also may present with a decreased
glucose value. This situation would be the result of the bacteria
using the glucose present as an energy source, alterations of glu-
cose transport, and increased brain cell utilization of glucose
(17). A viral meningitis would not effect the glucose concentra-
tion. Confirmation of a bacterial or viral meningitis was done
through cytologic examination. An increased total white blood
cell count along with differential allowed discernment between
viral and bacterial meningitis. A viral meningitis would produce
an increase in the lymphocytic series versus an increase in the
neutrophilic series for bacterial (17). If there were no changes
noted in the chemistry, there could still reside a possibility of
biofilm contamination within the implant lumen. Follow-up cul-
tures were necessary to ascertain possibility of a biofilm.

If an animal had three cultures in a row that were positive for
contamination, the port and catheter were surgically removed. The

animal also would be placed on an antibiotic regime that would
be specific to the particular bacteria cultured and able to pen-
etrate into the CSF (19). After completing the antibiotic therapy
the animal would be anesthetized and a CSF tap performed at the
site of the cisterna magna to collect for a follow-up culture.

Results and Discussion
Model success. To date, 36 surgeries have been performed

with variable model success; success being defined as consistent
patency for CSF collection for longer than 2 weeks postopera-
tively and completion of a single study. There have been
successful implantations in 21 monkeys (16 male, 5 female) out
of the 36 surgeries performed (58% success rate).

(i) Patency and flow rate. The duration of patency for the 21
successful surgeries ranges from 25 to 542 days (average, 230 days).
From this original number, there are 11 animals (9 male, 2 fe-
male) remaining with functional ports. The duration of patency
in this remaining colony ranges from 178 to 542 days (average,
334 days).

The flow rates on the colony of successful animals was quite
variable between animals and even within an individual animal
from day to day. The flow rate observed ranged between 0.1 to
2.0 ml/min, with averages between 0.47 and 0.98 ml/min (See
Table 1 for average flow rates).

(ii) Implant failures. There were 13 animals (9 male, 4 female)
from the group of 21 successful models whose implants eventu-
ally failed due to minor complications and/or loss of patency
(Table 2). Two animals displayed mild neurological signs, in

Figure 3. Schematic of rhesus monkey head, lateral view of implant placement. Note figure is artist’s depiction of implant placement and is not to
scale. Skull is not removed during implantation procedures.

Figure 8.1: Schematic of lateral view of implant placement in rhesus monkey head.
The rhesus monkeys were surgically implemented with a catheter system which was placed 1.0
cm into the cisterna, facilitating direct access to CSF outflow from the cisterna magna. The
catheter was attached to a titanium port placed subcutaneously between the shoulder blades to
allow easy access for sampling CSF in a conscious, chaired rhesus monkey. Figure from Gilberto
et al. 1 .

and while the concentrations of the metabolites Aβ40, Aβ42 and sAPPβ decreased in a
dose-proportional manner. Analysis of the changes in the monomeric Aβ species with
the β-APP model enabled prediction of a reduction of the putative neurotoxic AβO pool.
Also, the findings indicated that decreases in monomeric Aβ responses resulting from
BACE1 inhibition were partially compensated for by dissociation of AβO.

The next step in the model development was the interfacing of the β-APP model with
tracer kinetic data obtained with the so-called stable-isotope-labeling kinetics (SILK)
protocol (Chapter 4). The SILK protocol was originally used to quantify differences in
the Aβ kinetics between patients with AD and their cognitively normal controls. Here the
SILK protocol was applied for the first time to examine the effect of BACE1 inhibition
on the fraction labelled Aβ, fraction labelled sAPPα and fraction labelled sAPPβ after
13C6-Leucine infusion, which was started at 1 hour after the administration of MBi-5.
Interfacing of the tracer kinetic data with the β-APP model yielded the next version of the
systems pharmacology model of the APP pathway, the β-13C-APP model (Figure 8.3).

The β-13C-APP model distinguished labelled and unlabelled species and also sepa-
rated steps in the biotransformation and the distribution of APP peptides to CSF. This
improved the understanding of the dose-proportionality of the effect on the fraction
labelled sAPPβ and the lack of such a dose-proportional response in fraction labelled
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sAPPα. A disconnect between Aβ response measurements that were obtained with the
data from the enzyme-linked immunosorbent assay (ELISA) and SILK was found, that
may be explained by on the one hand the formation of an unknown APP fragment with
differing kinetics or, on the other hand an unknown process that influenced the result of
the SILK assay. In the modelling this effect was accounted for by inclusion of the model
component FactorX.

A limitation of the β-APP model was that the influence of γ-secretase cleavage step
could not be separated from an effect on sAPPβ elimination. Therefore, in Chapter 5
the β-APP model was extended to describe Aβ40 and Aβ42 response to GS inhibition.
This led to the third version of the model, the β-γ-APP model, which contains separate
descriptions to characterize the sequential cleavage steps of APP by BACE1 and GS
while the elimination of sAPPβ is described by a separate parameter (Figure 8.4). The
β-γ-APP model was identified on the basis of a simultaneous analysis of APP metabolite
response data following the administration of the BACE1 inhibitor MBi-5 (1 study; effects
on the metabolites Aβ40, Aβ42, sAPPβ and sAPPα) and the GS inhibitor MK-0752 (2
studies; effects on Aβ40 and Aβ42), respectively. This analysis revealed a difference in
Aβ dynamics after BACE1 versus GS inhibition, which was reflected in a different value of
the Aβ40 formation rate constant. Further, the model based prediction of AβO suggested a
lower oligomerization rate of Aβ42 after GS then after BACE1 inhibition. Unfortunately,
in this investigation, the identified differences in Aβ dynamics after BACE1 or GS
inhibition could not be separated from study differences, as levels of CSF biomarkers can
vary between studies (vide infra).

Application of the systems pharmacology model to
characterize oligomer modulation following secretase inhibition

In the previous studies we have obtained indirect information on the formation of AβO,
through the analysis of the effects of secretase inhibitors on the monomeric species. This
was necessary, because no direct measurements of the AβO were available. In this respect
it should be realized that it is extremely difficult to measure the low concentrations of
the Aβ species2,3. In the meantime however an assay had become available for direct
measurement of AβO

4. It was therefore of great interest to compare the model based
prediction of AβO response to BACE1 and GS inhibition with the observed AβO response
measurements. In the fourth study therefore the effects of MBi-5 and MK-0752 on
the CSF concentrations of five APP metabolites (sAPPβ, sAPPα, Aβ40, Aβ42, Aβ38)
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and AβO were determined. The study was designed in a 4-way full crossover design.
The APP systems model was extended to describe the effect of BACE1 inhibition on an
additional Aβ isoform (Aβ38) and to capture AβO response measurements (Chapter 6;
β-O-APP model). The model was advanced further to describe GS inhibitor response
data (sAPPβ, sAPPα, Aβ40, Aβ42, Aβ38, AβO), which ultimately led to the β-γ-O-APP
model (Chapter 7).

Before analysing the data on the basis of the β-O-APP model, a subset of the data
(the effects on the peptides sAPPβ, sAPPα, Aβ40 and Aβ42) was analysed on the basis
of the original β-APP model. This was necessary, because due to changes in the sample
pre-treatment and the analytical methodology the absolute values of the concentrations in
these studies differed from those in previous investigations, leading to different values of
the model parameters. Using a within-study comparison, it was shown that the onset and
maximum observed AβO response was underpredicted by the β-APP model. As a next
step therefore, the monomeric Aβ (Aβ38, Aβ40, Aβ42) and AβO response measurements
were incorporated in the fourth version of the model (Figure 8.5). This analysis showed
that the Aβ oligomerization follows second order kinetics. Furthermore, the model also
provided evidence that dissociation of AβO, restoring the balance with Aβ monomers
(homeostatic adaptation), contributes to the ultimate treatment effect. This analysis also
showed that, of the various peptides, Aβ42 is the main monomeric Aβ species that
drives the Aβ oligomerization, which is in line with the general belief that Aβ42 is the
Aβ species prone to toxic aggregation.

In Chapter 7, the β-O-APP model was extended to simultaneously describe the
effect of BACE1 and GS inhibition and to capture AβO response data to inhibitors of
both enzymes (Figure 8.6). In the β-γ-O-APP model the sequential cleavage steps by
BACE1 and GS were described separately, in a manner that is similar to the β-γ-APP
model. With this analysis, information on the sAPPβ, sAPPα, Aβ38, and AβO response
to GS inhibition was included. Quite unexpectedly, this revealed that upstream of the
GS cleavage step in the APP pathway, changes in sAPPβ and sAPPα concentrations
in response to GS inhibition were present. The systems analysis of the decrease of
sAPPβ and the increase of sAPPα in response to GS inhibition revealed a homeostatic
feedback loop regulated via C99: the increase in C99 following GS inhibition stimulated
α-secretase processing of APP.

A difference in the ratio Aβ42:Aβ40:Aβ38 between BACE1 versus GS inhibition was
found, which was explained by stepwise successive cleavage of C99 by GS, wherein part
of Aβ38 is converted from Aβ42. Further, due to the cross-over study design using both
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Figure 8.2: β-APP model (Chpt. 3).
The model comprised nine compartments: Five
biomarker compartments in brain (yellow circles)
and four transit compartments from brain to CSF
(white circles). Four biomarkers were measured in
CSF (sAPPα, sAPPβ, Aβ40 and Aβ42),
indicated by the blue boxes. The model included
an AβO compartment (dashed circle). The drug
effect of the BACE1 inhibitor (EFF) inhibited
Rinβ. sAPPβ was used in the model structure as a
surrogate substrate of C99 in the
γ-secretase cleavage step.
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Figure 8.3: β-13C-APP model (Chpt. 4).
The model comprised two times thirteen
compartments: Six biomarker compartments in
brain (yellow circles), one oligomer compartment
and six transit compartments from brain to CSF
(white circles), wherein each compartment was
duplicated to track labeled and unlabeled species.
Seven biomarkers were measured in CSF (sAPPα,
sAPPβ, Aβ40 and Aβ42 (ELISA); fraction
labeled sAPPα, fraction labeled sAPPβ and
fraction labeled total Aβ (SILK)).The drug effect
(EFF) inhibited Rinβ. sAPPβ was used in the
model structure as a surrogate substrate for C99 in
the γ-secretase cleavage step. The tracer PK
model of label enrichment of the Leucine pool
informed label incorporation into the APP
pathway. Model extensions compared to the
β-APP model are indicated in blue.
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Figure 8.4: β-γ-APP model (Chpt. 5).
The model comprised eleven compartments: Six
biomarker compartments in brain (yellow), one
oligomer pool (blank dashed) and four transit
compartments from brain to CSF (blank). Four
biomarkers were measured in CSF (sAPPα,
sAPPβ, Aβ40 and Aβ42), indicated by the blue
boxes. The model included a C99 compartment,
which was not present in the β-APP model.
Model extensions compared to the β-APP
model are indicated in blue. The drug effect of the
BACE1 inhibitor (BACEi EFF) inhibited Rinβ.
The drug effect of the GS inhibitor (GSi EFF)
inhibited Kin42 and Kin40.
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The model comprised fourtheen compartments:
Eight biomarker compartments in brain (yellow
circles) and six transit compartments from brain to
CSF (white circles). Six biomarkers were
measured in CSF (sAPPα, sAPPβ, Aβ40, Aβ42,
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The drug effect of the BACE1 inhibitor (BACEi
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Figure 8.2 - Figure 8.6:
Advancement of the systems pharmacology model in a series of models (β-APP model (Figure

8.2), β-13C-APP model (Figure 8.3), β-γ-APP model (Figure 8.4), β-O-APP model (Figure 8.5),

β-γ-O-APP model (Figure 8.6) to characterize drug effects on the APP pathway. As driver of

biomarker responses Ctarget was used in all models, which was derived from the PK models of

the BACE1 inhibitor and GS inhibitor, respectively.
APP: Aβ -precursor protein; Aβ : amyloid-β-peptide; Ctarget: drug concentration target site; Kin38: Aβ38 formation rate
from C99; Kin382: Aβ38 formation rate from Aβ42; Kin40: Aβ40 formation rate; Kin42: Aβ 42 formation rate; Kinx: Fac-
torX formation rate; Kout: Aβ38, Aβ40 and Aβ42 degradation rate; KoutC99: C99 degradation rate; Koutx: FactorX degra-
dation rate; Krev: Oligomer dissociation rate; KtAP: transit rate sAPPα and sAPPβ from brain to CSF; Kpl: Oligomerization
rate; KtAβ : transit rate Aβ from brain to CSF; KtAβ O : transit rate AβO from brain to CSF; KtX: transit rate FactorX from
brain to CSF; RinAPP: source of APP; Rinβ: sAPPβ formation rate; Rinα: sAPPα formation rate; Routb: sAPPβ degrada-
tion rate; Routa: sAPPα degradation rate.
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inhibitors, variation between studies could be accounted for, revealing the true differences
in the systems behaviour. Identical values of the systems parameters after BACE1 versus
GS inhibition were obtained. Specifically, the lower value of the oligomerization rate
constant after GS inhibition that had been observed after the analysis on the basis of the
β-γ-APP model could now be explained by the fact that that model did not account for
stepwise successive cleavage of C99 by GS.

Identical values of the system specific parameters were observed for the two different
interventions (BACE1 versus GS inhibition). This confirms that a true system specific
model characterizing the interactions in the APP biochemical network has been obtained.
The structure of the final systems pharmacology model of the APP pathway, the so called
β-γ-O-APP model, is depicted in Figure 8.6.

In conclusion, a systems pharmacology model of APP processing has been developed
which constitutes a basis for the prediction of the influence of therapeutic interventions on
the exposure to AβO. The systems pharmacology model is based on a network structure.
Specific features of the model are i) the AβO formation is a second-order process, ii)
the treatment effect is influenced by AβO dissociation restoring the equilibrium with
Aβ monomers and iii) GS inhibition can trigger a homeostatic feedback mechanism
promoting the non-amyloidogenic pathway.

Extrapolation of the systems APP model from rhesus monkeys to hu-
mans – some preliminary results

An important question is how the model of the APP pathway in monkeys could be adapted
to predict, in a quantitative manner the effects of drugs targeting the APP pathway in
humans. Here we present some preliminary results of the interspecies scaling of BACE1
inhibition between rhesus monkeys and humans. In this context, first the APP pathway
homology of rhesus monkeys to humans is discussed. Next, the considerations in the
interspecies translation of drug effects in the β-γ-O-APP model are outlined. Finally,
the systems APP model is used to predict CSF response data in humans after BACE1
inhibition.

APP is highly conserved between humans and rhesus monkeys5. The 695 amino
acid isoform of APP (APP695) is completely homologous between humans and rhesus
monkeys, whereas the common longer isoform APP770 differs in only four amino acids6.
APP is quite exceptional in having across mammals a totally conserved length and a very
high degree of interspecies sequence identity, indicating that the proteolytic processing is
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important for the physiological APP function7. BACE1, GS and α-secretase sequences
are also highly similar between humans and rhesus monkeys with respectively a 99%, 97%
and 99% match in amino acids (NCBI homoloGene). Quantitative ELISAs have shown
that the concentrations of cerebral Aβ are comparable in patients with AD and aged rhesus
monkeys8. However, binding assays with radiolabelled Pittsburgh Compound B have
shown significant differences in the ligand affinity for Aβ rich cortical extracts from aged
nonhuman primates compared to patients with AD. This may be explained by differences
in the Aβ aggregates or endogenous cofactors6. With the selective Aβ oligomer ELISA
assay that was used in the current rhesus studies, oligomers could also be quantified in
human CSF4.

The β-γ-O-APP model consists of eight linked turnover equations for APP, C99,
sAPPα, sAPPβ, Aβ38, Aβ40, Aβ42 and AβO. The values of physiological turnover rate
constants in species other than rhesus monkeys can in principle be predicted based on
allometric scaling principles9. Therefore, allometric scaling principles were applied to
scale the values of the first order rate constants Rinβ and Rinα from rhesus monkeys to
humans on the basis of body weight using the allometric exponent of -0.25 (Eq. 8.1)10.
The baseline values of APP, C99, sAPPα, sAPPβ, Aβ38, Aβ40, Aβ42 and AβO are
considered species independent and were therefore not scaled. The feedback parameter
(FP) was dependent on the baseline C99, which is the same in both species. Therefore, FP
was also not scaled. This means that intrinsically the values of the zero-order production
rate of APP are scaled (Eq. 8.2 and 8.3).

Rhuman = Rrhesus ·
(
BWhuman

BWrhesus

)−0.25

(8.1)

d

dt
APP = RinAPP −

(
Rinβ +Rinα×

(
C99

C99base

)FP)
×APP (8.2)

RinAPP = (Rinα +Rinβ) ∗APPbase (8.3)

Because of the linkage of the turnover equations in the model, other parameters of
the model (Routa, Routb, Kin40, Kin42, Kin38, Kin382, Kout99, Kout, Kpl, Krev) are also
intrinsically scaled. However, due the linkage of the turnover equations and derived
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parameters, the allometric scaling of the system of equations is cancelled out and the
values of the system parameters remain unchanged. For the herein reported prediction of
APP metabolite responses in human, the values of the system parameters were therefore
kept the same as established in rhesus monkey.

Another factor that needs to be taken into account in the scaling is the fact that in the
rhesus monkey CSF samples were taken from the cisterna magna, whereas in humans CSF
is obtained by a lumbar puncture. A transit compartment model, consisting of a series of
transit compartments, was included to account for the delay between the cisterna magna
and lumbar CSF biomarker responses, in manner that is similar as previously reported by
Kleijn et al. 11 . Thus to translate the β-γ-O-APP model from rhesus monkey to human the
following assumptions were made:

(1) APP processing pathway is identical in humans and rhesus monkeys. It is assumed
that the identified homeostatic feedback mechanism applies also in humans.

(2) Values of the system parameters are the same in rhesus monkeys and humans.

(3) Values of the drug effect parameters (Imax, IC50) are similar across species.

(4) The delay between the cisterna magna and lumbar CSF biomarker responses can be
described by a series of transit compartments.

To evaluate if the β-γ-O-APP model can be translated from rhesus monkeys to humans,
with the above mentioned assumptions, the human predictions for the BACE1 inhibitor
verubecestat (MK8931) were compared to experimentally determined values that had been
reported in the literature12. The population PK parameters of verubecestat13 and reported
IC50 in healthy subjects12 were used to predict the response of the APP metabolites
(Aβ40, Aβ42, Aβ38, sAPPβ, sAPPα) and AβO in healthy non-elderly subjects and AD
patients. System and drug parameters were assumed to be the same for healthy subjects
and AD patients, although this is a simplification of the likely non-homogeneous systems
conditions during disease. An empirical drift model component was used to correct for the
upward drift in CSF concentrations over the sampling period observed in healthy subjects
(see Supplemental Material).

The model adequately predicted the response of Aβ40, Aβ42 and sAPPβ after a single
dose in healthy volunteers (Figure 8.7 left panels). After 14 days of once-daily dosing
of verubecestat in healthy volunteers, the response of Aβ40, Aβ42 and sAPPβ for the
highest dose groups was slightly underpredicted (Figure 8.7 middle panels). In AD, the
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model yielded a reasonable prediction of the observed biomarker response after 7 days of
once-daily dosing (Figure 8.7 right panels).

The model predicted a decrease in the human AβO concentrations in CSF at the
lumbar region (Figure 8.8 middle row). After a single 100 mg dose of verubecestat in
healthy volunteers an 84% reduction in the predicted concentration of AβO was observed.
This value is close to the 94% reduction at day 7 following repeated administration of
once daily doses in the range of 40-150mg that was predicted by the model.

These simulations show that the translated model holds promise for use in the dose
selection for clinical trials and to determine what dose level is needed to reach a predefined
target % reduction in AβO concentrations. When clinical AβO concentration data from
Aβ production inhibitors would become available, the proposed model for the interspecies
extrapolation could be verified.
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Figure 8.7: Model based prediction of verubecestat effects on CSF Aβ40, Aβ42 and
sAPPβ after a single dose (SD) in healthy volunteers (HV) (left), multiple dose (MD) in HV
(middle) and MD in AD patients (right). Predictions are expressed as percentage relative to
baseline. Symbols represent the median of observed percentage relative to baseline.
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Figure 8.8: Model based prediction of verubecestat effects on CSF Aβ38, AβO and
sAPPα after a single dose (SD) in healthy volunteers (HV) (left), multiple dose (MD) in HV
(middle) and MD in AD patients (right). Predictions are expressed as percentage relative to
baseline. CSF Aβ38, AβO and sAPPα were not measured in these studies.
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Perspectives in clinical studies in AD

The systems pharmacology model of the APP pathway in monkeys can be of value in
the design and development of therapeutic interventions for AD in many ways. Here we
briefly discuss a number of potentially useful applications.

Optimization of clinical study designs
Assessment of disease severity and treatment effect in clinical trials in AD constitutes
a major challenge, due the lack of meaningful biomarkers reflecting disease severity,
or predicting treatment effect. Moreover, frequently highly invasive techniques such as
repeated sampling of CSF must be applied to obtain meaningful data. As a result, there is
little room to optimize study protocols experimentally. Here we propose that modelling
and simulation offers an informative approach to the optimization of the designs of clinical
trials on the effects of novel drugs following single dose and repeated administration. This
is exemplified in the optimization of the so-called SILK protocol. A number of years ago
the protocol has been developed to determine kinetics of low-abundance proteins such
as Aβ 14. In this protocol, a primed bolus of 13C6-Leucine is infused intravenously, at
2 mg/kg over 10 minutes, followed by 2 mg/kg/hours continuous infusion for 9 hours.
The proportion of synthesized and secreted Aβ labelled with 13C6-Leucine at amino
acid 17 and 34 is measured, and the fraction of labelled Aβ in CSF is monitored for a
number of hours after the end of the infusion14. As was mentioned earlier, the method
has been successfully applied to assess differences in Aβ kinetics in cognitively normal
persons versus symptomatic AD patients15. Recently, this SILK protocol has been used
to assess the effect of drugs such as GS inhibitors on Aβ production16. Here, it is
important to optimize the design of the SILK protocol, particularly in relation to the time
of administration of the 13C6-Leucine infusion relative to the time of administration of
the drug and the interpretation of the signal.

Our studies on the effects of MBi-5 on the APP pathway in monkeys, using chemical
assays (ELISA) for the quantification of the peptides showed a clear dose dependency for
the effect on all APP metabolites (Chapter 4). However, in the same study such a dose
dependency was not detected by the SILK protocol for the fraction labelled sAPPα. For
sAPPβ and Aβ the sensitivity to detect dose proportionality appears to depend on, among
other factors, the timing of administration of the 13C6-Leucine infusion. An important
question is how the design of the SILK protocol can be further optimized. Here, we use
the β-13C-APP model to investigate in a series of simulations the effect of study design
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features on the 13C6-signal. These simulations focus specifically on i) the sensitivity
to detect a treatment effect and ii) the possibility of identifying the exposure response
relation. The details of the simulated scenarios are reported in the Supplemental Material.

These simulations showed that the timing of the 13C6-Leucine infusion relative the
drug dose and dose frequency affects the magnitude of the 13C6-signal and the possibility
to observe a dose proportionality in the signal. For the fraction labelled sAPPα signal, the
protocol cannot be optimized further. This is caused by the fact that this APP metabolite
is upstream of BACE1 inhibition. As a result of the inhibition of this enzyme unlabelled
sAPPα accumulates, diluting the signal, independent of the timing of the 13C6-Leucine
infusion.

To investigate the effect of drugs, the SILK protocol should be optimized based on
the best timing of the 13C6-Leucine infusion for an endpoint which is closest to the
target AβO, which is fraction labelled Aβ. The optimal time of the 13C6-leucine infusion
depends on a number of factors, such as i) the PK of the drug under investigation, ii)
the delay between the PK and BACE1 inhibition, iii) the delay between the kinetics of
effects on Aβ relative to the kinetics of BACE1 inhibition and iv) the delay between start
of 13C6-Leucine infusion and sufficient enrichment at the target site. These factors can
only be investigated simultaneously using an integrated model approach. Our simulations
show that the greatest signal in terms of clear dose proportionality in fraction labelled
Aβ is obtained when the 13C6-Leucine infusion starts immediately after administration of
the BACE1 inhibitor. The signal is already diminished when 13C6-Leucine infusion starts
at 1 hour post drug dose.

Early diagnosis

Initiating treatment early in the course of the disease is likely to be important when the
aim is to slow or alter disease progression. The early diagnosis of preclinical AD is
challenging, because patients do not display any symptoms presumably as result of a large
resilience in the functioning of the biological system (Chapter 2). An important question
is whether, and if so how, metabolites of the APP pathway might serve as biomarkers for
the early detection of AD. It is well established that metabolite concentrations in CSF can
reflect some of the pathophysiological changes that occur in the brain17. According to
amyloid cascade hypothesis, the first step in the pathological cascade is accumulation of
Aβ (Figure 2.3). CSF Aβ has therefore potential as a biomarker for (early) diagnosis and
may provide clue of preclinical AD18.

The development of biomarkers for the early detection of AD that are predictive of
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preclinical AD constitutes a major challenge for a variety of reasons. First, the quantitation
of metabolites of the APP pathway in CSF is technically difficult. As a result the reported
values of CSF concentrations of Aβ can vary between different research centres and
laboratories. This has led to a large initiative for the standardization of pre-analytical
aspects of CSF biomarkers: The ”Alzheimer’s Association Cerebrospinal Fluid (CSF)
Quality Control Program” brings together laboratories across the globe with the aim of
standardizing the measurement of potential Alzheimer’s biomarkers19. There has also
been intensive research of aggregate-based biomarkers, including AβO in CSF. However,
to date, no biomarkers have been identified that can reliably diagnose AD in the early
disease stage in an individual patient20,21.

Second, due to the resilience in the biological system, changes in biomarkers may
not be observed until advanced stages of the disease. An intriguing question is whether
the sensitivity could be enhanced on the basis of a challenge test, analogous to the use
of the glucose tolerance test for the detection of glucose intolerance as a precursor of
type II diabetes mellitus22. For the APP pathway, the system could be challenged by
the administration of a modulator such as a secretase inhibitor. The design of such a
challenge test could be optimized on the basis of the systems pharmacology model of the
APP network. Furthermore, the model-based analysis of the system response could yield
estimates of system parameters that may serve as novel biomarkers which are indicative for
the disease severity, and possibly predictive of the treatment response to APP modulating
drugs.

Personalized treatment solutions

In most of the clinical trials in AD the molecular heterogeneity of the disease has not
been taken into account. Because of such heterogeneity of AD, treatment may need to
be stratified as, dependent on the genotype, response to potentially disease modifying
therapeutics such as secretase inhibitors and Aβ clearance enhancers may be different.

In recent years important progress has been made in delineating genetic factors in the
pathophysiology of AD related to changes in APP processing. Familial AD mutations
in APP and in the presenilin genes PS-2 and PS-2 and at-risk gene polymorphisms
responsible for late-onset AD all point to a unambiguous and early role of Aβ in the
pathogenesis of AD23,24,25. In early-onset AD genetic variations were found on the APP
gene as well as in the presenilin genes PS1 and PS2, encoding for the catalytic subunit of
GS, causing altered APP processing26,27,28. In sporadic, late-onset AD the epsilon4 allele
of the apolipoprotein E gene (APOE) was identified as a major risk factor contributing

254



Conclusions & perspectives

to the pathogenesis of AD in about 20% of the cases29,25. Mechanistically, this can be
understood by the fact that APOE is involved in the clearance and the aggregation of the
Aβ peptide.

The current general thinking is that susceptibility for late-onset AD involves various
genetic risk factors, as up to 60%-80% of the late-onset AD is genetically determined27,30.
The genetic heterogeneity of the disease is high, and a large number of genetic risk factors,
with relatively low penetrance but high prevalence must be involved. Also, genes with
a modest contribution to the risk of AD may operate interactively24. A few risk factors,
supporting the amyloid hypothesis, are discussed in the Supplemental Material. It is
important that genetic information is considered in future clinical trials with drugs acting
at the APP pathway.

The genetic information may be utilized in various ways. Firstly, this may hint
to system parameters that need to be adjusted to describe the disease state. Secondly,
an individual’s genetic susceptibility may serve as a preselection criterion for further
diagnostic tests as well as personalized treatment of interventions targeting the APP
pathway.

Prediction of the long term treatment effect

Future treatments for AD are likely to be interventions that modify the progression of
the disease17. Demonstration of a drug effect on disease progression is notoriously dif-
ficult due to the slow progression of the disease and the typically wide inter-individual
variation in the rate of progression. An additional complicating factor is that the statis-
tical techniques that are applied in the evaluation of clinical trials (such as analysis of
variance) are not valid in the case of a chronically progressive disease. Moreover, they
do not differentiate between symptomatic and disease modifying effects. To meet these
challenges, the concept of disease progression analysis has been introduced31,32. Disease
progression analysis utilizes regression models to estimate the rate of disease progression.
Using a simple linear regression model and the Alzheimer Disease Assessment Scale –
Cognition subscale (ADAS-Cog) score as a pharmacodynamic endpoint it was found that
AD progresses at a rate of 8.2 units per year33.

It remains to be determined however whether disease severity progresses linearly with
time. Here it is of interest that the rate of progression was slower at earlier stages of the
disease34. Moreover, the ADAS-Cog score can only be used as a disease status marker
when cognitive changes have commenced. Therefore, in the early phases of the disease
and for the design of pre-emptive studies other biomarkers and a more complex disease
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progression model are needed. To overcome these and other complexities, the concept
of disease systems analysis has been introduced as a mechanistic alternative to disease
progression analysis Post et al. 35 .

In ”disease systems analysis” the disease progression is modelled on the basis of
a cascade of turnover models to describe the biomarker responses. This opens the
possibility to connect changes in biomarker responses at the early stages of the disease
to changes in behavioural endpoints (i.e. rating scales such as the ADAS-Cog score) at
later stages. The systems pharmacology models that have been introduced in this thesis
are based on the same concept of cascading turnover models and constitute therefore
a basis for disease systems analysis models in AD. These models can be extended to
comprise also the effects on further downstream biomarkers. The next biomarker to
become abnormal is amyloid-PET, reflecting accumulation of cortical Aβ fibrils, followed
by CSF tau, indicative for neurofibrillary tangles (NFT), followed by biomarkers for
neurodegeneration (fluorodeoxyglucose [FDG]-PET and structural magnetic resonance
imaging [MRI]). Cognitive impairment is the last event in the progression of the disease
(2.3). New biomarkers to measure disease progression in AD may became available over
the years.

To integrate these biomarkers in a disease systems model, the correlations between
these biomarkers need to be considered, firstly, between the biochemical markers CSF
Aβ and tau, secondly between fluid and imaging biomarkers, and ultimately with ADAS-
Cog scores. Most of these correlations are investigated in clinical-autopsy correlation
studies. In order to be able to capture disease progression longitudinal data in the same
subjects are needed. However, this type of data in the same subjects is rare and new
initiatives are needed in this respect. One of the first initiatives currently ongoing is the
’Alzheimer’s Disease Neuroimaging Initiative’ (ADNI). The ADNI is studying the rate of
cognition decline, change is brain structures and fluid biomarkers among volunteers over
55 years, who are healthy, as well as those who have been diagnosed with mild dementia
due to AD.

Alternative interventions targeting the APP pathway

We have developed a systems pharmacology model of the APP pathway on the basis of
Aβ production inhibitors (BACE1 and GS inhibition) and quantified their effects on AβO.
In theory, to reduce Aβ burden the functioning of the APP pathway can be modified in
many different ways: (1) inhibition of Aβ production; (2) enhancement of Aβ clearance;
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(3) blocking AβO toxicity through interactions with the AβO target site.

Until now, clinical trials of Aβ production inhibitors (i.e. BACE1 and GS inhibitors)
could not demonstrate clinical efficacy at tolerated doses in patients36,37,38. Moreover,
the anti-Aβ monoclonal antibodies, developed to enhance Aβ clearance, bapineuzumab
(Pfizer Inc.) and solanezumab (Eli Lilly & Co.) could not demonstrate efficacy in AD
patients large Phase III clinical trials39,40. In general, for amyloid-targeted therapy there
is now a tendency to move towards clinical trials with prodromal AD or in subjects at
preclinical stage of familial hereditary AD variants.

The primary endpoints for efficacy in the clinical AD studies were measures of
cognitive performance by changes in ADAS-Cog score and in the AD Cooperative Study
– Activities of Daily Living (ADCS-ADL) score. There are several possible explanations
for the lack of efficacy. A particularly important question is whether target engagement
as reflected in the exposure to AβO has been achieved. The β-γ-O-APP model could be
used to predict this.

In this section, the β-γ-O-APP model is used to perform simulations to investigate
interventions targeting the APP pathway. The behaviour of the individual moieties of the β-
γ-O-APP model was evaluated by simulating the responses after Aβ production inhibition
(BACE1 or GS inhibition) and by triggering the system with a hypothetical compound
enhancing Aβ clearance (Figure 8.9). The hypothetical Aβ clearance enhancer was
assumed to have similar PK properties as the BACE1 inhibitor. An Emax concentration
effect relationship was simulated assuming a maximal increase of the Aβ clearance rate
constant (Kout) by 5 fold.The simulation showed that the effect of the Aβ clearance
enhancer yielded less reduction in AβO concentration (83.4%) than production inhibition
(86.8% and 87.4% for BACE1 and GS inhibitor, respectively). Furthermore, Aβ clearance
enhancement does not affect APP, sAPPβ, C99 and sAPPα concentrations.

The β-γ-O-APP model offers the opportunity to investigate the net system’s responses
to combined intervention acting at different targets. Therefore, the system was triggered by
combined administration of two compounds: a combination of a BACE1 and GS inhibitor,
a combination of a GS inhibitor and Aβ clearance enhancer and a combination of a BACE1
inhibitor and Aβ clearance enhancer (Figure 8.10). The effects of the different treatments
were assumed to be additive and no PK interactions were taken into consideration.

Combined administration of MBi-5 and MK-0752 would further reduce Aβ monomers
and AβO concentrations compared to monotherapy: a reduction of 97% in AβO was
achieved with combined administration. Combining two drugs with similar action (Aβ pro-
duction inhibition), provided less reduction in AβO concentrations than a combination
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of GS inhibition and Aβ clearance enhancement (98.5%), although differences are small.
These simulations showed an additive response on AβO concentrations of combined inter-
vention. Further pharmacodynamic drug interaction studies may be required to investigate
a possible synergistic effect, in which response surface analysis may be used to elucidate
the drug interactions fully41.

A promising strategy seems to be the prevention of toxicological effects by prevent-
ing the interaction of toxic AβO species with target receptors. Such novel therapies
pharmacologically compete with AβO with critical receptor targets, thereby preventing
synapse loss and improving memory. An example of such receptor targets are the sigma-
2/PGRMC1 receptors that mediate AβO binding to the synaptic puncta on neurons42.
One such candidate compound targeting these receptors is the small molecule therapeutic
CT1812 (Cognition Therapeutics, Inc.), which is in clinical testing in AD patients. Adding
information from CT1812 study data would provide the opportunity to extend the β-γ-O-
APP model with a receptor interaction model component for AβO-receptor interactions.
Then, it would be of interest to investigate what happens to the Aβ equilibrium when
AβO concentrations rise as result of receptor blockage. The increase of AβO in the brain
may lead to redistribution of AβO into the CSF and more effective elimination. Or it
could lead to the undesirable effect of increased fibril formation. In that respect, extension
of the model to describe the higher ordered agglomerated species as fibrils and plaques
would be essential. For an effective suppression of the AβO concentrations and it’s toxic
effects if probably necessary to use rational combinations of drugs targeting multiple
targets in the system. Once the β-γ-O-APP model is extended, the combined intervention
of an Aβ production inhibitor and prevention of the interaction of AβO species with it’s
receptor target can be investigated such that therapy may be optimized.

The APP systems pharmacology model can bring us closer to optimizing the therapeutic
intervention to reduce oligomer burden in AD. This thesis shows that systems pharmacol-
ogy models provide a powerful tool for integrated analysis of biology and pharmacology
to assess system-drug interactions that is difficult to study in other ways. Further, the
model constitutes the basis for the development of a disease systems model for AD to
investigate the effect of disease modifying treatments on disease progression. Because
of a common pathological principle, this approach can also be applied to other protein
misfolding neurodegenerative disease such as PD, HD and ALS. An ultimate objective
would be to combine disease system models to investigate common pathological paths as
well as disease-specific signatures in protein misfolding neurodegenerative diseases.
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Figure 8.9: Different moieties of β-γ-O-APP model in response to 125 mg/kg MBi-5 (left
panels), 240 mg/kg MK-0752 (middle panels) and hypothetical compound (Aβ clearance
enhancer) (right panels).
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Figure 8.10: Different moieties of β-γ-O-APP model in response to combination of 125 mg/kg
MBi-5 and 240 mg/kg MK-0752 (left panels), the combination of 240 mg/kg MK-0752 and
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Perspectives in clinical studies in AD - Drift behaviour

In the reported human studies on verubecestat1, observed lumbar CSF concentrations
increased over the sampling period of 36 hours (Figure S8.1). It may be related to the
transport to the lumbar region or an artefact of repeated sampling from lumbar region2

and on the volume removed relative to the total CSF in spine. This drift behaviour is
subjected to between-study variation, as result of differences in study procedures and how
the lumbar samples were drawn. If this drift is not accounted for in the model, the drug
effect may be underpredicted. Therefore, the drift was predicted by an empirical drift
model component, similar to the drift model reported by Kleijn et al. 3 .
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sAPPβ (red) after last placebo administration over the 36-hour sampling period for healthy
volunteers after single dose (dashed line), once-daily doses for 14 days (long-dashed line) and
for AD patients after once-daily doses for 7 days (solid line).
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Optimization of clinical study designs - Simulation scenarios

The β-13C-APP model was used to investigate the effect of study design features on the
13C signal (Chapter 8). The simulated scenarios are presented in Table S8.1.

Table S8.1: Simulation scenarios

Scenario Investigation objective
MBi-5 dose

(mg/kg)

13C6-Leu

administration

timinga

Figure

A

Effect of time of administration of

13C6-Leu primed infusion relative to

the time of administration of MBi-5

125 single dose

(SD)

0, 2, 4, 6, 8, 10 or

12 h post SD
S8.2

B

Effect on the dose proportionality of

MBi-5 with 13C6-Leu primed

infusion at various time points

following the administration of

MBi-5

SD 1, 5, 10, 30,

60, 90, 125

1, 6 or 12 h post

SD
S8.3

C
Effect on 13C6-signal upon repeated

dosing of MBi-5

0, 10, 30, 125

once daily (OD)

for 5 days

1 h post last dose S8.4

D

Effect on the dose proportionality in

the 13C6-signal upon repeated

dosing of a dose range of MBi-5 OD

with 13C6-Leu primed infusions

started 1 h after drug dose on various

days

0, 10, 30, 125

mg/kg OD for 5

days

1 h after drug

dose on day 1, 2,

3, 4 or 5

S8.5

a relative to MBi-5 dose
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Optimization of clinical study designs- Simulation results

Simulation on scenario A showed that the timing of 13C6-Leu primed infusion has an
influence on the magnitude of the 13C6-signal as reflected in the fraction labelled Aβ,
fraction labelled sAPPα and fraction labelled sAPPβ (Figure S8.2). For fraction labelled
Aβ and fraction labelled sAPPβ the highest signal was obtained when starting the infusion
12 hours post drug dose, whereas for fraction labelled sAPPα the signal is maximal when
the infusion starts at the same time as drug dose.

Simulations of scenario B indicated that for the low MBi-5 dose levels (<30 mg/kg),
increase of 13C6-Leucine infusion start time relative to the administration of the drug
results in a loss of dose proportionality. For sAPPα dose proportionality was not evident
at 1 hour post drug and this was worsened at 6 and 12 hours post drug. For sAPPβ, the
dose proportionality of the 13C6-signal diminished with increasing 13C6-Leucine infusion
post drug start time, in particular after low MBi-5 doses (<30 mg/kg) (Figure S8.3).

Simulations of scenario C showed that the dose dependency in the 13C6-signal was
absent after once daily administration of MBi-5 during 5 days, while a dose dependent
response was predicted in the absolute protein concentrations (Figure S8.4).

Scenario D illustrated that the 13C6-signal in fraction labelled Aβ diminished with
time when dosed once daily (Figure S8.5).
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Figure S8.2: Simulation tracer kinetic profiles (fraction labeled Aβ (A), fraction labeled
sAPPα (B), fraction labeled sAPPβ (C)) with the β-13C-APP model.
Simulation scenario A: The start time of the 13C6-Leucine infusion relative to the
MBi-5 administration (125 mg/kg dose) is varied from 0 up to 12 hours post drug.
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Figure S8.3: Simulation tracer kinetic profiles with the β-13C-APP model.
Simulation scenario B: The start time of the 13C6-Leucine infusion relative to the
MBi-5 administration is varied (1, 6 and 12 hours post drug) and a dose range of MBi-5 (1 up to
125 mg/kg) is simulated.
Top panels: fraction labeled Aβ; Middle panels: fraction labeled sAPPα; Bottom panels: fraction labeled
sAPPβ.
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Figure S8.4: Simulation absolute protein concentrations and tracer kinetic profiles of APP
metabolites with the β-13C-APP model.
Simulation scenario C: Once daily dosing MBi-5 for 5 days, varying MBi-5 dose (0, 10, 30, 125
mg/kg). The start time of the 13C6-Leucine infusion relative to the MBi-5 administration is fixed
to 1h after last dose.
Top panels: Absolute protein concentrations; Bottom panels: tracer kinetic profiles.
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Figure S8.5: Simulation tracer kinetic profiles of Aβ with the β-13C-APP model.
Simulation scenario D: Once daily dosing MBi-5 for 5 days, varying MBi-5 dose (0, 10, 30, 125
mg/kg). The start time of the 13C6-Leucine infusion relative to the MBi-5 administration is 1
hour after MBi-5 dose on day 1, 2, 3, 4 and 5.

Personalized treatment solutions- Examples of genetic risk factors

The Triggering Receptor Expressed On Myeloid Cells 2 (TREM2) variant p.R47H and
p.A673T APP variant have been associated with AD risk or protection. TREM2 is
expresses on microglial cells and has a role in regulating the response of the innate
immune system to Aβ pathology and facilitating Aβ phagocytosis4. It binds to anionic
lipids that interact with Aβ fibrils and apoliproteins, such as APOE. The p.R47H TREM2
variant weakens microglial detection of these lipids, thereby decreasing Aβ clearance. The
APP p.A673T variant is close to the BACE1 cleavage site, making APP a less favourable
substrate for the β-cleavage path5.

Association analyses at the gene level have revealed that the loss-of-function in the
sortilin related receptor 1 (SORL1) and ATP-binding cassette transporter A7 (Aβ CA7)
genes are a moderate risk factor of AD. The SORL1 encodes a cargo protein which can
bind APP and direct its processing to non-amyloidogenic pathways. It can also bind
Aβ peptide and direct it to the lysosome, leading to its degradation6. Loss-of-function
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of SORL1 has been linked with increased late onset AD risk5. Several rare variants in
Aβ CA7 have been identified as risk factors of late onset AD, although its precise role in
AD pathogenesis is not well understood. Aβ CA7 is primarily expressed in microglial
cells and has a lipid transport function. It may be involved in Aβ clearance or production
as Aβ CA7 knockout mice showed an increase in amyloid plaques6,5,7.
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Samenvatting

Veel neurodegeneratieve ziekten, zoals de ziekte van Alzheimer (ZvA), de ziekte van
Parkinson (ZvP) en de ziekte van Huntington (ZvH), en motorische aandoeningen als
amyotrofe laterale sclerose (ALS) zijn geassocieerd met de misvouwing van een ziekte
specifiek eiwit. Deze aandoeningen laten een vergelijkbaar patroon van neuronale afster-
ving, achteruitgang van het zenuwstelsel en cognitieve stoornissen zien. De cellulaire
disfunctie wordt veroorzaakt door accumulatie van eiwit-aggregaten binnen of buiten
neuronen. De pathologische veranderingen worden gedreven door de abnormale ophoping
van het misgevouwen eiwit. Dit leidt tot de vorming van eiwit-aggregaten variërend
van kleine oligomeren tot geordende vezels en grote amyloı̈de massa’s. Vanwege de
overeenkomsten tussen de verschillende eiwit-misvouwing gerelateerde neurodegener-
atieve ziekten, biedt de ’amyloı̈de-cascade-hypothese’ van de ZvA een kader voor de
bestudering van eiwit-misvouwing neurodegeneratieve ziekten.

Volgens de amyloı̈de-cascade-hypothese initieert de accumulatie van de beta-amyloı̈d
(Aβ) peptiden de cascade van pathologische processen van de ZvA. Vroeg in het ziektepro-
ces, voordat klinische symptomen optreden, is er een toename van de Aβ concentraties,
wat leidt tot de vorming van giftige oplosbare Aβ oligomeren (AβO). De neurodegeneratie
in de hersenen bij de ZvA wordt primair aangedreven door deze AβOs. Vooralsnog is er
geen farmacologische behandeling beschikbaar die de progressie van de pathologische
cascade bij de ontwikkeling van de ZvA stopt of vertraagt. Een van de belangrijkste
therapeutische strategieën voor de ZvA is het verlagen van de Aβ concentratie in het
centrale zenuwstelsel (CZS), door ofwel de vermindering van de vorming van Aβ of het
versnellen van de afbraak van Aβ. Theoretisch kan de verlaging van de Aβ concentratie
in het CZS alle opvolgende pathologische processen voorkomen.

Aβ is het eindproduct van de proteolytische opdeling van het ‘transmembraan beta-
amyloı̈d voorloper eiwit’ (APP) door achtereenvolgens β-secretase (BACE1) en γ-secretase
(GS). De effecten van geneesmiddelen op de afzonderlijke metabole routes van de afbraak
van APP zijn moeilijk te voorspellen, omdat de vorming en de afbraak via een ingewikkeld
biochemisch netwerk worden gereguleerd. Daarom is ook het effect van de vermindering
van de vorming van Aβ of verhoging van de klaring van Aβ op de concentratie van
AβO en op het Aβ evenwicht moeilijk in strikt kwantitatieve zin te voorspellen.

In dit proefschrift werden wiskundige modellen ontwikkeld waarmee de afbraak
en eliminatie van APP via de verschillende routes kan worden gekwantificeerd. Het
onderliggende doel van dit onderzoek was om op een strikt kwantitatieve wijze het bio-
chemische netwerk van de APP-omzetting te beschrijven, om vervolgens het effect van
therapeutische interventies op de blootstelling aan AβO te voorspellen en te evalueren.

277



Hiertoe werd een ‘systeem-farmacologie’ benadering toegepast, waarmee de beschik-
bare kennis van de biologie en farmacologie van de systeemreacties wordt geı̈ntegreerd
(Hoofdstuk 2).

In een reeks onderzoeken werd een systeem-farmacologie model voor de omzettin-
gen van APP via verschillende routes in het APP netwerk opgesteld, op basis van far-
macokinetische en farmacodynamische data in rhesusapen. Deze rhesusapen waren
voorzien van een katheter in de cisterna magna, waardoor herhaalde afname van cere-
brospinale vloeistof (CSV) mogelijk was. Allereerst werd een systeem-farmacologie
model opgesteld voor de afbraak van AAP via de routes die leiden tot de vorming van
de metabolieten (sAPPβ, sAPPα, Aβ40, Aβ42) na een enkele toediening van de BACE1
remmer MBi-5 (Hoofdstuk 3; β-APP model). Na remming van het enzym BACE1 werd
een dosis-afhankelijke daling van de concentraties van de metabolieten Aβ40, Aβ42 en
sAPPβ gevonden, terwijl de concentratie van sAPPα werd verhoogd. Op basis van het
ontwikkelde model werd voorspeld dat na BACE1 remming er een daling is van de concen-
tratie van AβOs en voorts dat deze dissociëren waardoor de afname van Aβ monomeren
gedeeltelijk wordt gecompenseerd. Dit werd indirect afgeleid op basis van de analyse
van de verandering in de concentraties van de Aβ monomeren; Er waren ten tijde van dit
onderzoek geen directe metingen van AβO beschikbaar.

Bij klinisch onderzoek naar de werking van stoffen die een effect hebben op het APP
netwerk, wordt vaak gebruik gemaakt van een stabiele-isotoop-techniek, waarbij na toedi-
ening van Leucine gemerkt met het stabiele isotoop 13C de 13C-gemerkte fracties Aβ wor-
den bepaald, volgens het zogenaamde ’Stabel Isotope Labeling Kinetics (SILK)’ protocol.
In het onderzoek dat is beschreven in Hoofdstuk 3 werden de gegevens verkregen met het
SILK protocol (de fracties 13C-gemerkte sAPPβ, sAPPα en Aβ) gecombineerd met de
absolute eiwitconcentratie metingen (Hoofdstuk 4; β-13C-APP model). Hierdoor werd
een beter inzicht verkregen van enerzijds het gebrek aan dosis-evenredigheid in het effect
van de BACE1-remmer op de fractie gelabeld sAPPα en anderzijds de aanwezigheid
van zo’n dosis-proportionele respons in absolute sAPPα concentratie metingen. Verder
werd er een discrepantie gevonden tussen de Aβ reacties die werden gemeten met ELISA
en SILK. Deze discrepantie wordt mogelijk veroorzaakt door de aanwezigheid van een
onbekend APP fragment met verschillende kinetiek of door de aanwezigheid van een
onbekend proces dat de meting van de fractie gelabeld Aβ beı̈nvloedt.

De volgende stap in de ontwikkeling van het model was gericht op de afzonderlijke
beschrijving van de achtereenvolgende APP splitsingsstappen door BACE1 en GS. Hiertoe
werd in het derde onderzoek het β-APP model uitgebreid met de beschrijving van de
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effecten van GS remming op Aβ40 en Aβ42 (Hoofdstuk 5; β-γ-APP model). Deze anal-
yse was gebaseerd op de combinatie van APP-metaboliet-respons gegevens uit studies voor
de BACE1-inhibitor MBi-5 (1 studie; metingen van Aβ40, Aβ42, sAPPβ en sAPPα) en de
GS-remmer MK-0752 (2 studies; metingen van Aβ40, Aβ42). De analyse liet zien dat er
een verschil is in Aβ dynamiek na BACE1 versus GS remming. Dit kwam tot uitdrukking
in een andere waarde van de vormings-snelheidsconstante van Aβ40. Bovendien werd
op basis van het model een lagere Aβ oligomerisatie snelheid na remming van BACE1,
in vergelijking met de remming van GS gevonden. Het was in dit onderzoek echter niet
mogelijk om de waargenomen verschillen in Aβ dynamiek na remming van BACE1 en
remming van GS van studieverschillen te onderscheiden. Daaropvolgend hebben we
de voorspellingen van de AβO respons na remming van BACE1 en remming van GS
remming, zoals verkregen op basis van het β-APP model (Hoofdstuk 3) vergeleken met
directe waarnemingen van de AβO respons die zijn verkregen met behulp van een nieuwe
analytische techniek. Hiertoe werden in een viervoudig volledig cross-over studie ontwerp
de effecten van MBi-5 en MK-0752 op de CSV concentraties van vijf APP-metabolieten
(sAPPβ, sAPPα, Aβ40, Aβ42, Aβ38) en AβO bepaald. Met deze studiegegevens werd
het APP-systeemmodel op de volgende wijze aangevuld: (1) het β-APP model werd
uitgebreid om de vorming van de Aβ isoform Aβ38 te karakteriseren en de AβO respons
metingen in reactie op BACE1 remming te beschrijven (Hoofdstuk 6; β-O-APP model);
(2) het β-O-APP model werd vervolgens nog verder ontwikkeld om de respons gegevens
na GS remming te beschrijven (op basis van de sAPPα, sAPPβ, Aβ40, Aβ42, Aβ38,
AβO responsen) (Hoofdstuk 7; β-γ-O-APP model).

In Hoofdstuk 6 wordt het vierde onderzoek beschreven. Hierin werd de relatie
tussen de oligomeerpoel in het β-APP model en de metingen van AβO onderzocht en
de relatie tussen de Aβ monomeren (Aβ40, Aβ42, Aβ38) en AβO gekwantificeerd.
Aβ42 werd geı̈dentificeerd als de Aβvariant die de Aβ oligomerisatie aandrijft. Dit is
in overeenstemming met de algemene veronderstelling dat Aβ42 de Aβ-variant is die
gevoelig is voor toxische aggregatie.

Vervolgens bleek dat Aβ oligomerisatie verloopt volgens een tweede-orde kinetisch
proces. Dit betekent dat bij het remmen van Aβ productie, een relatief grotere ve-
randering van AβO ten opzichte van de basislijn wordt verkregen in vergelijking tot
monomeren Aβ varianten. De dissociatie van AβOs, om het evenwicht te herstellen
met Aβ monomeren (homeostatische aanpassing), draagt ook bij aan het uiteindelijke
geneesmiddeleffect.

In het vijfde onderzoek (Hoofdstuk 7) werd het β-O-APP model uitgebreid om
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AβO responsmetingen na remming van respectievelijk BACE1- en remming van GS
gelijktijdig te beschrijven. Hiertoe werden in het β-γ-O-APP model de opeenvolgende
APP splitsingsstappen door BACE1 en GS gescheiden, vergelijkbaar met de implementatie
in het β-γ-APP model. In deze analyse werd informatie over de sAPPβ, sAPPα, Aβ38 en
AβO respons op remming van GS toegevoegd. Verrassend was dat stroomopwaarts in de
APP vanaf de GS-splitsingsstap veranderingen in de concentraties van sAPPβ en sAPPα in
reactie op de remming van GS werden waargenomen. Dit leidde tot de identificatie van een
homeostatische terugkoppelingsmechanisme dat gereguleerd wordt via C99: de toename
van C99 na GS remming stimuleerde α-secretase verwerking van APP.

Voorts werd na remming van GS een andere verhouding Aβ42:Aβ40:Aβ38 gevonden
dan na remming van BACE1. Dit kon worden verklaard door de stapsgewijze en opeenvol-
gende splitsing van C99 door GS, waarbij een deel van Aβ38 wordt gevormd vanuit Aβ42.
Door de studies met de remmers van respectievelijk BACE1 en GS volgens een cross-over
design uit te voeren, was het mogelijk de daadwerkelijke verschillen in het systeemge-
drag in reactie op BACE1 versus GS remming aan te tonen. De lagere oligomerisatie
snelheid na GS remming die werd gevonden in vergelijking met de remming van BACE1
waargenomen in de analyse op basis van van het β-γ-APP model, kan worden verklaard
door de incorporatie van de stapsgewijze en opeenvolgende splitsing van C99 door GS. In
deze analyse waren de waarden van de systeemparameters na BACE1 en GS remming
identiek, wat suggereert dat een fysiologisch correcte beschrijving van de processen in het
APP biologische netwerk is verkregen.

Concluderend is er een systeem-farmacologie model van de APP verwerkings- en
klaringsroutes ontwikkeld. Dit model levert belangrijke kwantitatieve informatie over de
routes van de verwerking van APP: (i) Aβ-oligomerisatie is een tweede-orde proces; (ii)
AβO dissociëren om het evenwicht te herstellen met Aβ monomeren, wat het uiteindelijke
geneesmiddeleneffect beı̈nvloedt; (iii) Aβ42 is de enige belangrijke Aβ monomeren
variant die bijdraagt aan de oligomeerpoel; (iv) remming van GS stimuleert de niet-
amyloidogene verwerking van APP door homeostatische terugkoppeling die door C99
wordt uitgeoefend.

Een belangrijke vraag is hoe het model van de APP-paden in rhesusapen aangepast
moet worden, om de effecten van geneesmiddelen op de APP-paden in de mens op
een kwantitatieve manier te voorspellen. In het laatste hoofdstuk van dit proefschrift
(Hoofdstuk 8) werden enkele voorlopige resultaten van de vertaling van rhesusapen
naar mensen van de effecten van de remming van BACE1 gepresenteerd. Om het β-
γ-O-APP model van rhesusapen te vertalen naar de mens werd verondersteld dat de
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waarden van de systeemparameters in rhesusapen en mensen identiek zijn. Verder werd
de vertraging tussen de cisterna magna en de lumbale regio, waar CSV gemeten wordt
in mensen, beschreven door een reeks transitcompartimenten. De respons van Aβ40,
Aβ42 en sAPPβ na een enkele dosis van de BACE1 remmer verubecestat (MK8931) bij
gezonde vrijwilligers werd goed door het model voorspeld. Het model voorspelde na
toediening van een enkele dosis van 100 mg dosis verubecestat een afname van 84% in de
AβO concentratie in de lumbale CSV bij de mens en een afname van 94% na herhaalde
toediening gedurende 7 dagen in een dosering van 40 -150 mg.

Het APP-systeem-farmacologie model in rhesusapen kan op meerdere manieren van
waarde zijn bij het ontwerpen en ontwikkelen van therapeutische interventies voor de
ZvA, zoals werd besproken in Hoofdstuk 8. Ten eerste kan het model gebruikt worden
om het SILK protocol te optimaliseren, met name met het oog op de beste timing van
de 13C6-Leucine infusie voor een eindpunt dat het dichtst bij het doel AβO ligt. Daarbij
is vooral het tijdstip van de toediening van de 13C6-Leucine infusie ten opzichte van de
toediening van het te onderzoeken farmacon van belang. Simulaties lieten zien dat de
13C6-Leucine infusie het beste direct na de te onderzoeken stof kan worden toegediend.

Ten tweede kan het model worden gebruikt om een diagnostische test te ontwikkelen,
vergelijkbaar met de glucosetolerantietest bij type 2 diabetes mellitus, met als doel in een
vroeg stadium de ziekte van Alzheimer vast te stellen. Ten aanzien van de APP-paden
kan het systeem dan worden geprikkeld door toediening van een secretase-remmer. Het
model kan gebruikt worden om een dergelijke test te optimaliseren en systeemparameters
te onderzoeken die kunnen dienen als nieuwe biomarkers, indicatief voor de ernst van
de ziekte en eventueel voorspellend voor de behandelingsrespons op APP-modulerende
geneesmiddelen.

Ten derde kan het model worden gebruikt in de ontwikkeling van op de individu-
ele patiënt toegesneden behandeling. De genetische heterogeniteit van de ZvA is hoog.
Afhankelijk van het genotype kan de reactie op potentieel ziekte modificerende therapeu-
tica, zoals secretase-remmers verschillend zijn. De genetische informatie geeft mogelijk
aanwijzingen welke systeemparameters aangepast moeten worden om de staat van de
ziekte en op de individuele patient toegesneden interventies gericht op de APP-paden te
beschrijven.

Ten vierde vormt het APP-systeem model de basis voor een ziekte-systeem anal-
yse model van de ZvA, om ziekteprogressie en lange termijn behandelingseffecten te
voorspellen. Hiertoe kan het model uitgebreid worden om ook de effecten op latere
stroomafwaartse biomarkers te includeren, zoals amyloı̈d-PET, CSF-tau en biomarkers
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voor neurodegeneratie als FDG-PET en MRI, alsmede gedrags-eindpunten (d.w.z. schaal-
waarden zoals de ADAS-Cog score). Hierbij moet rekening gehouden worden met de
correlaties tussen deze biomarkers, waarvoor longitudinale data in dezelfde individuen
nodig zijn. Dergelijke data is momenteel zeldzaam.

Ten slotte, kan het β-γ-O-APP model gebruikt worden om simulaties uit te voeren
om interventies te onderzoeken die gericht zijn op de APP-paden. Tot nog toe konden
klinische studies van Aβ productie-remmers (d.w.z. BACE1 en GS remmers) geen
klinische werkzaamheid aantonen bij getolereerde doses in patiënten. Er zijn verschillende
mogelijke verklaringen voor het gebrek aan werkzaamheid. Hierbij is een belangrijke
vraag of de doelstelling zoals weerspiegeld in de blootstelling aan AβO is bereikt.

Het β-γ-O-APP model zou gebruikt kunnen worden om dit te voorspellen. Ook biedt
het β-γ-O-APP model de mogelijkheid om de netto reacties van het systeem op gecombi-
neerde interventies gericht op verschillende doelen in de APP-paden te onderzoeken. Een
veelbelovende strategie lijkt de preventie van toxische effecten, door het voorkomen van
de interacties van giftige AβOs met doelreceptoren. Voor een effectieve onderdrukking
van de AβO concentraties en de toxische effecten is het waarschijnlijk noodzakelijk is om
rationele combinaties van geneesmiddelen te gebruiken die zich op meerdere doelen in het
systeem richten. Zodra het β-γ-O-APP model wordt uitgebreid met een receptor-interactie
modelcomponent voor AβO-receptor interacties, kan de gecombineerde interventie van
een Aβ productie-remmer en preventie van de interactie van AβOs met het receptor
doelwit worden onderzocht, zodat therapie kan worden geoptimaliseerd.

Het APP-systeem-farmacologie model kan het optimaliseren van de therapeutische
interventie om de oligomeer-last in de ZvA te verlagen dichterbij brengen. Dit proef-
schrift illustreerde dat systeem-farmacologie modelering een krachtige aanpak is in de
geı̈ntegreerde analyse van biologie en farmacologie om systeem-geneesmiddel interacties
te beoordelen. Vanwege een algemeen pathologisch principe kan deze benadering ook
worden gebruikt voor andere eiwit-misvouwings gerelateerde neurodegeneratieve ziekten
zoals ZvP, ZvH en ALS.
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Aβ amyloid-β
AβO amyloid-β oligomer
AD Alzheimer’s Disease
ALPH power of Aβ42 concentration
APP β-amyloid precursor protein
BACE1 β-secretase
CI confidence interval
CMP cisterna magna ported
CSF cerebrospinal fluid
Ctarget drug concentration target site
C83 C-terminal membrane-bound 83-amino acid fragment
C99 C-terminal membrane-bound 99-amino acid fragment
ELISA enzyme-linked immunosorbent assay
FAC scale correction factor
FB feedback parameter
GS γ-secretase
IC50 median inhibition concentration
Imax maximum inhibition
Kin38 Aβ38 formation rate constant
Kin382 Aβ38 formation rate constant from Aβ42
Kin40 Aβ40 formation rate constant
Kin42 Aβ42 formation rate constant
Kout Aβ degradation rate constant
Kout99 C99 degradation rate constant
Kpl (second order) oligomerization rate constant
KtAB transit rate constant Aβ from brain to CSF
KtAP transit rate constant sAPPα and sAPPβ from brain to CSF
Krev AβO dissociation rate constant
LC-MS/MS liquid chromatography tandem mass spectrometry
MTT mean transit time
MW molecular weight
PK pharmacokinetic
PD pharmacodynamic
RinAPP zero order input rate constant for APP
Rinα sAPPα formation rate constant
Rinβ sAPPβ formation rate constant
Rout sAPPβ degradation rate constant
Routa sAPPα degradation rate constant
Routb sAPPβ degradation rate constant
sAPPα soluble APP alpha
sAPPβ soluble APP beta
SILK stable isotope labelling kinetics
TTR tracer to tracee ratio
12C6-L endogenous 12C6 Leucine
13C6-L 13C6-labelled Leucine
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