
Psoriasis-Associated Late Cornified Envelope (LCE) Proteins Have
Antibacterial Activity
Niehues, H.; Tsoi, L.C.; Krieken, D.A. van der; Jansen, P.A.M.; Oortveld, M.A.W.; Rodijk-
Olthuis, D.; ... ; Oortveld, M.A.W

Citation
Niehues, H., Tsoi, L. C., Krieken, D. A. van der, Jansen, P. A. M., Oortveld, M. A. W., Rodijk-
Olthuis, D., … Schalkwijk, J. (2017). Psoriasis-Associated Late Cornified Envelope (LCE)
Proteins Have Antibacterial Activity. Journal Of Investigative Dermatology, 137(11),
2380-2388. doi:10.1016/j.jid.2017.06.003
 
Version: Not Applicable (or Unknown)
License: Leiden University Non-exclusive license
Downloaded from: https://hdl.handle.net/1887/55803
 
Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:3
https://hdl.handle.net/1887/55803


ORIGINAL ARTICLE See related commentary on pg 2257

2380
Psoriasis-Associated Late Cornified
Envelope (LCE) Proteins Have
Antibacterial Activity

Hanna Niehues1,8, Lam C. Tsoi2,3,4,8, Danique A. van der Krieken1,8, Patrick A.M. Jansen1,
Merel A.W. Oortveld1, Diana Rodijk-Olthuis1, Ivonne M.J.J. van Vlijmen1, Wiljan J.A.J. Hendriks5,
Richard W. Helder6, Joke A. Bouwstra6, Ellen H. van den Bogaard1, Philip E. Stuart2, Rajan P. Nair2,
James T. Elder2,7,9, Patrick L.J.M. Zeeuwen1,9 and Joost Schalkwijk1,9
Terminally differentiating epidermal keratinocytes express a large number of structural and antimicrobial
proteins that are involved in the physical barrier function of the stratum corneum and provide innate cuta-
neous host defense. Late cornified envelope (LCE) genes, located in the epidermal differentiation complex on
chromosome 1, encode a family of 18 proteins of unknown function, whose expression is largely restricted to
epidermis. Deletion of two members, LCE3B and LCE3C (LCE3B/C-del), is a widely-replicated psoriasis risk
factor that interacts with the major psoriasis-psoriasis risk gene HLA-C*06. Here we performed quantitative trait
locus analysis, utilizing RNA-seq data from human skin and found that LCE3B/C-del was associated with a
markedly increased expression of LCE3A, a gene directly adjacent to LCE3B/C-del. We confirmed these findings
in a 3-dimensional skin model using primary keratinocytes from LCE3B/C-del genotyped donors. Functional
analysis revealed that LCE3 proteins, and LCE3A in particular, have defensin-like antimicrobial activity against a
variety of bacterial taxa at low micromolar concentrations. No genotype-dependent effect was observed for the
inside-out or outside-in physical skin barrier function. Our findings identify an unknown biological function
for LCE3 proteins and suggest a role in epidermal host defense and LCE3B/C-del-mediated psoriasis risk.

Journal of Investigative Dermatology (2017) 137, 2380e2388; doi:10.1016/j.jid.2017.06.003
INTRODUCTION
Psoriasis vulgaris is a common inflammatory skin disease
determined by both genetic and environmental factors (Nestle
et al., 2009). Based on a number of genome wide association
studies and meta-analyses thereof, more than 60 susceptibility
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loci have been identified that account for 20e25% of psoriasis
heritability (Tsoi et al., 2012; Tsoi et al., 2015b; Zuo et al.,
2015). Psoriasis is characterized by dysregulated cutaneous
immune responses involving innate immunity (tumor necrosis
factor-a and NF-kB pathways) and exaggerated Thelper type 1
(Th1) and T helper type 1 (Th17) lymphocyte activation
(Johnston et al., 2013; Jordan et al., 2012; Lowes et al., 2014).
In addition, psoriasis-associated genes expressed by kerati-
nocytes and with a presumed role in epidermal homeostasis
have also been genetically implicated in psoriasis, including
the late cornified envelope (LCE) genes (de Cid et al., 2009;
Huffmeier et al., 2010) and the beta-defensins (Hollox et al.,
2008). Despite the identification of many candidate genes,
functional studies that explain the contribution of genetic
polymorphism to psoriasis risk are largely lacking. A number
of studies, however, have shown a plausible link between
genes from susceptibility loci and immunobiological features
of psoriasis such as an association between variation at
TNFAIP3 and response to tumor necrosis factor-a blockade
(Tejasvi et al., 2012), and the association between the IL12B
risk allele and increased Th1-cytokine levels (Johnston et al.,
2013). In addition, only very few risk loci involve coding var-
iants that are amenable to experimental verification in animal
models or in vitro cellular models of skin biology or inflam-
mation (Jordan et al., 2012; Tsoi et al., 2012). Among the
psoriasis susceptibility regions, the major histocompatibility
complex class I gene HLA-C*06:02 (PSORS1) and the LCE
region harboring a deletion of the LCE3B and LCE3C genes
(originally designated PSORS4) (Capon et al., 2001) provide
s. Published by Elsevier, Inc. on behalf of the Society for Investigative Dermatology. This is
icle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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plausible candidates to investigate at the functional level.
HLA-C*06:02 is by far the strongest psoriasis risk factor, with
an odds ratio estimated to be between 2.6 and 5 in Caucasians
(Genetic Analysis of Psoriasis Consortium & the Wellcome
Trust Case Control Consortium 2 et al., 2010; Nair et al.,
2009), and the odds ratio for the LCE deletion (odds ratio w
1.3) (Huffmeier et al., 2010) is one of the highest among the
remaining psoriasis-associated loci (Tsoi et al., 2012). LCE
genes are expressed only in epidermis and oral epithelia
(Bergboer et al., 2011; Jackson et al., 2005) and are assumed to
encode structural proteins with a role in epithelial barrier for-
mation; however, no functional studies supporting this
contention have been published so far. Remarkably, the LCE3
group, which encompasses the LCE3B and LCE3C genes, is
under regulation of psoriasis-associated Th1 and Th17 cyto-
kines (Bergboer et al., 2011; Niehues et al., 2016). LCE3B/C-
del affects a 32 kb fragment in the epidermal differentiation
complex (EDC) on chromosome1,which is commonly deleted
in the non-African population (allele frequency of LCE3B/C-
del: 60e70%) (de Cid et al., 2009). In addition to the loss of the
protein coding genes LCE3B and LCE3C, it also removes three
intergenic fragments that harbor potential regulatory se-
quences (de Guzman Strong et al., 2010). In this study, we
show that LCE3B/C-del causes an upregulation of the flanking
LCE3A gene. Our hypothesis-driven functional studies have
revealed that these three proteins are unlikely to be involved in
skin barrier function and rather represent antimicrobial
proteins.

RESULTS
Expression quantitative trait loci analysis of genes in the EDC

The association results between the deletion surrogate
rs4112788 and expression traits are shown in Figure 1a.
Within the EDC region, only the expression levels of LCE3A,
LCE3B, and LCE3C are significantly (false discovery rate
< 0.1) associated with the marker in both normal (NN) and
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psoriatic (PP) skin (Table 1). As expected, expression of both
LCE3B and LCE3C are decreased in PP skin in the presence of
the G allele of rs4112788, which is in linkage disequilibrium
with LCE3B/C del. We observed the same result for LCE3C
expression in NN, whereas LCE3B could not be assessed as it
was not expressed in more than 20% NN skin samples. In
fact, of the 80 NN samples, we detected expression of LCE3A
and LCE3C in 43 and 40 samples, respectively, but LCE3B
was expressed only in one sample. In contrast, of the 92 PP
samples, we detected expression of LCE3A, LCE3B, and
LCE3C in 92, 48, and 55 samples, respectively. Figure 1b
shows that LCE3A expression levels were elevated in in-
dividuals with the GG genotype (surrogate for del/del)
compared with individuals with the AA genotype, in both NN
and PP samples. LCE3A is strongly and significantly
(P ¼ 7.7 � 10�30) upregulated in PP (mean expression
level ¼ 5.8 � 103) compared with NN skin (mean expression
level ¼ 20). The fold change difference in expression be-
tween GG/AA genotypes is 2.1 in PP samples, and the
contrast is even higher in NN samples (mean expression level
is 35 for GG and 0 for AA). We did not observe a significant
genotype difference for LCE3A expression in nonlesional
psoriatic (PN) skin samples, likely due to the smaller sample
size. RNA-seq data showed that expression of LCE3A behaves
similarly between NN and PN skin (NN ¼ 4.6 vs. 4.5 in PN
skin). See Supplementary Table S1 online for the normalized
RNAseq expression data of all individuals.

Genotype-dependent expression of LCE genes in
3-dimensional (3D) reconstructed epidermis

To substantiate these findings in vitro, and to determine LCE3B/
C-del-dependent epidermal morphology and differentiation,
we generated 3D reconstructed epidermis from wild type/
wild type (wt/wt) (N¼ 6) and del/del (N¼ 6) keratinocytes.We
have previously shown that in such a 3D reconstructed
epidermis model, the spatiotemporal expression of LCE
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Table 1. Top significant eQTL results in NN and PP skin between rs4112788 and EDC genes

Skin type Gene
Relative location

to deletion Effect P FDR

Normal LCE3C* Within � 1.60 � 10�11 1.96 � 10�9

LCE3A* Downstream þ 5.36 � 10�5 3.30 � 10�3

RP11-216N14.9 Downstream þ 2.75 � 10�3 1.13 � 10�1

LCE1D Downstream � 7.1 � 10�3 0.18

LINGO4 Upstream � 7.29 � 10�3 0.18

Psoriasis LCE3C* Within � 4.09 � 10�15 5.11 � 10�13

LCE3B* Within � 5.34 � 10�13 3.34 � 10�11

LCE3A* Downstream þ 8.73 � 10�4 3.64 � 10�2

LCE1D Downstream � 1.92 � 10�2 0.6

ILF2 Downstream � 3.49 � 10�2 0.67

Note: LCE3B is not expressed in more than 20% of the NN skin samples; therefore the eQTL analysis was not conducted.

Abbreviations: EDC, epidermal differentiation complex; eQTL, expression quantitative trait loci; LCE, late cornified envelope; NN, normal skin; PP, lesional
psoriatic skin.

*Indicates significance at the false discovery rate (FDR � 0.1) level. “Effect” refers to whether the gene is up- (þ) or downregulated (�) in the presence of the
G allele for rs4112788 (surrogate for del/del).
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proteins is similar to in vivo epidermis (Niehues et al., 2016).
Histopathological examination of the 3D reconstructed
epidermis did not reveal obvious morphological differences
between the two genotypes (hematoxylin and eosin staining),
nor did immunohistochemical staining reveal abnormalities in
expression of differentiation proteins (Supplementary
Figure S1 online). Confirming what was observed in vivo
(Figure 1a and b), quantitative PCR analysis showed a signifi-
cant effect of the LCE3B/C-del on LCE3A expression
(Figure 2aec): LCE3AmRNAexpressionwas 6.6-fold higher in
del/del keratinocytes compared with wt/wt keratinocytes (P <
0.003). To mimic psoriasis in vitro and confirm the in vivo
findings, we stimulated 3D reconstructed epidermis with
psoriasis-associated cytokines. To verify the effect of cytokine
stimulation, expression levels of known Th1 and Th1/Th17
responsive genes CXCL10 and DEFB4 were analyzed and
found to be strongly induced irrespective of the LCE3B/C-del
genotype (Supplementary Figure S2a and b online). After Th1-
but not Th17-cytokine stimulation, we found a significant ge-
notype effect (4.7-fold, P < 0.05, Figure 2b and c). Generally,
Th1 cytokines induced expression of all tested LCE family
genes (Figure 2d), whereas Th17 cytokines specifically
increased LCE2 and LCE3 genes (Figure 2e). These in vitro
findings corroborate the in vivo findings of the effect of LCE3B/
C-del on LCE3A expression. The fold increase in 3D recon-
structed epidermis of del/del keratinocytes is modest
compared with the huge relative increase in vivo, which is
caused by the relatively high basal expression of LCE3A in wt/
wt cells in the skin equivalents, whereas LCE3A expression
in vivo for the AA (wt/wt) genotype is zero.

LCE3B/C del is not associated with skin barrier alterations

We asked whether genotype-dependent alterations of LCE3A
expression, that is, the absence of LCE3B and LCE3C and the
upregulation of LCE3A, had functional consequences that
would provide a clue to its genetic association with psoriasis.
Many epidermis-specific genes encode either structural pro-
teins involved in physical barrier function (Candi et al., 2005)
or small proteins that provide an antimicrobial barrier (Gallo
and Hooper, 2012; Schroder and Harder, 2006). Limited
Journal of Investigative Dermatology (2017), Volume 137
proteomic data suggest that LCE proteins are part of the
stratum corneum (SC), hence participate in physical skin
barrier function, although direct proof is lacking. We there-
fore assessed transepidermal water loss from 3D recon-
structed epidermis of wt/wt and del/del genotypes to unveil a
possible effect on inside-out barrier function. No difference
in transepidermal water loss was observed between the ge-
notypes (Figure 3aec). We noticed that cytokine-stimulated
3D reconstructed epidermis had a lower transepidermal
water loss compared with control 3D constructs (control vs.
Th17, P < 0.001), but again no differences between the two
genotypes were observed (Figure 3d). The outside-in barrier
function was investigated by the analysis of the penetration of
hydrophilic and hydrophobic low molecular weight tracers.
Quantitative determination of hydrocortisone diffusion by
ultra performance liquid chromatography analysis through
the SC did not reveal a difference between the two genotypes
(Figure 3e). Furthermore, we did not observe Lucifer yellow
penetration in constructs of any of the genotypes, under
unstimulated and Th1- or Th17-cytokine conditions
(Figure 3f). Collectively, these data indicate that LCE3B/C-del
is not associated with altered skin barrier function.

LCE3 proteins have antibacterial activity

Keratinocytes are a known source of antimicrobial peptides
(AMPs) such as defensins, secretory leukocyte protease in-
hibitor, skin-derived antileukoprotease/Elafin, psoriasin, and
LL37, many of which are small, cationic, and/or cysteine-rich
proteins (Harder et al., 2013). As LCE3 proteins are also small
(9e11 kD) and cationic (isoelectric points > 8.6) having an
extremely high cysteine content (18e23%), we tested the
hypothesis that LCE proteins are antimicrobial. On the basis
of the finding that LCE3A expression is firmly increased in
LCE3B/C-del carriers, we decided to study the antimicrobial
activity for all three LCE3 proteins (LCE3A/B/C). We used
chemically synthesized LCE3A, LCE3B, and LCE3C, which
demonstrated clear antimicrobial activity against 10
commensal and pathogenic bacteria (Figure 4 and
Supplementary Table S2 online). Remarkably, even at sub-
micromolar concentrations, activity was observed against a
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variety of taxa, including Gram-negative (Figure 4aed) and
Gram-positive (Figure 4eej) microorganisms, including both
aerobic and aerotolerant species. Notably, antimicrobial ac-
tivity was present under the same experimental (low salt)
conditions that reveal the antibacterial activity of human
beta-defensin 2, a prototypic cationic, epidermal cysteine-
rich AMP (Harder et al., 1997). High salt concentrations
inhibited the antimicrobial activity of LCE3 proteins
(Supplementary Figure S3a online). LCE3A appeared to be
the strongest antimicrobial protein of the tested LCEs, and its
potency toward Gram-negative bacteria is similar to the re-
ported potency of human beta-defensin 2 for Escherichia coli
and Pseudomonas aeruginosa (Harder et al., 1997)
(Supplementary Figure S3b).

As defensins can exert a toxic effect on mammalian cells
as well (Lichtenstein et al., 1986), we tested LCE proteins
effects up to 10 mM on submerged keratinocytes cultures for
4 or 20 hours and did not encounter any effect on cell
viability or morphology (Supplementary Figure S4a and b
online).
DISCUSSION
LCE expression is largely restricted to skin and oral epithelial
tissue, and is absent in cells of the immune system. This in-
dicates that the biological mechanism conferring an
increased psoriasis risk is linked to specific epithelial func-
tions of these tissues. Quantitative PCR studies have shown
that LCE3 gene expression is low to undetectable in normal
skin, but is readily detectable in oral epithelia (Jackson et al.,
2005). On skin injury and inflammation, however, LCE3
genes are induced (Bergboer et al., 2011; Jackson et al.,
2005) suggesting that LCE3 proteins might be involved in
skin barrier function or repair. The reported epistasis between
the major risk factor HLA-C*06:02 and LCE3B/C-del
(Chandra et al., 2016; de Cid et al., 2009; Huffmeier et al.,
2010) supports the idea that an impaired barrier in LCE3B/
C-deficient skin would facilitate the penetration of environ-
mental antigens, which in turn could trigger an HLA-
C*06:02-restricted immune response (Bergboer et al., 2012).
On the basis of this assumption, we performed a detailed
analysis of the barrier properties of the del/del and wt/wt
www.jidonline.org 2383
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genotypes. However, for the molecules studied here, our
in vitro models did not reveal an impairment of outside-in
and inside-out barrier function in LCE3B/C-del epidermis.
As the LCE3 baseline expression levels are higher in stratified
oral epithelia (tonsil, gingiva, pharynx) than in normal skin
(Niehues et al., 2016), we cannot exclude the possibility that
the impact of LCE3B/C-loss could lead to leaky oral epithelia
that are prone to penetration of external antigens. The
observation that many psoriasis patients have their first flare
after streptococcal tonsillitis (McFadden et al., 2009;
Valdimarsson et al., 2009) would be compatible with the
oral cavity as the site of entry of bacterial antigens. This po-
tential mechanism clearly warrants further investigation.

An alternative explanation for increased penetration of
external antigens in LCEB/C-deficient epidermis would point to
a more direct antimicrobial role of these LCE proteins.
Mammalian epidermis is known for its antimicrobial shield of
keratinocyte-expressed AMPs (Harder et al., 2013).We found a
rather broad defensin-like spectrumof antibacterial activity that
includes Gram-positive and Gram-negative species, and
anaerobic as well as aerotolerant organisms. In view of their
high homology, other LCE members may have antimicrobial
properties as well. It will be interesting to determine whether
this activity extends to other organisms such as yeasts and fungi.

LCE3 proteins are small (9e10 kDa), cationic proteins
(isoelectric points approximately 9.0), and their antimicrobial
activity is inhibited at high ionic strength. LCE3 proteins share
these properties with many previously described AMPs such
as human beta defensin-1, human beta defensin-2, human
alpha-defensin-1, secretory leukocyte protease inhibitor, and
LL37. All these proteins lose antimicrobial activity in aqueous
solutions of physiological ionic strength, which raises the
question whether the observed in vitro activity has any
relevance under physiological conditions. It has been argued
Journal of Investigative Dermatology (2017), Volume 137
that in vitro assays poorly capture the physiological condi-
tions in which these proteins work in vivo, such as SC of the
skin, or mucous surfaces of the oral cavity or respiratory
system. Epidermis-expressed LCE proteins or peptides derived
thereof will end up in the SC, which is composed of lipids
and crosslinked proteins, and devoid of free water. The
(bound) water content of SC is extremely variable
(Thakoersing et al., 2013), and to our knowledge, the ionic
composition and concentration of the SC is unknown. The
antimicrobial activity of AMPs is obviously concentration
dependent, and so is their salt sensitivity. Although AMPs are
typically tested in the low micromolar range, their actual
concentration in vivo may be orders of magnitude higher. We
have modeled the epidermal concentration of human beta-
defensin 2 using an in vitro reconstructed skin model,
which suggested that a concentration of 300 mM is reached
(Jansen et al., 2009), which is far higher than required for
antimicrobial activity, and which may offset the effect of high
ionic strength. For all these reasons, the in vitro antimicrobial
assay conditions are quite distinct from the environment in
which AMPs such as LCE and defensins operate, and in vitro
models to test AMPs under these tissue-specific conditions
are currently lacking. Indirect evidence that these molecules
are genuine antimicrobial agents in vivo is provided by the
observation that mice in which these genes have been
knocked out have a compromised innate immune system
(Moser et al., 2002).

A variety of AMP mechanisms that mediate bacterial killing
or toxin inactivation have been described, including mem-
brane permeabilization and depolarization (Selsted and
Ouellette, 2005), peptide nanonets (Chu et al., 2012), and
local protein unfolding (Kudryashova et al., 2014). LCE3
proteins cause a rapid killing that is reminiscent of the ki-
netics of killing by human neutrophil defensins where the
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Figure 4. Antimicrobial activity of LCE3 proteins. LCE3A, B, C were incubated with Gram-negative (aed) and Gram-positive commensal and pathogenic

bacteria (eej) between 0.1 to 10 mM protein. For specifications see Supplementary Table S4. 2 � 102 CFU/ml is the detection limit; therefore values <2 � 102

CFU/ml are not depicted. Error bars ¼ standard error of the mean. CFU, colony forming units; LCE, late cornified envelope.
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outer and inner membrane of E. coli are sequentially per-
meabilized within 30e60 minutes (Lehrer et al., 1989).
Further analysis is needed to better understand the mecha-
nism of bacterial killing and its relevance in the antimicrobial
shield of the epidermis.
How can we integrate these findings into a comprehensive
picture of the pathogenesis of psoriasis? From an evolutionary
perspective, the LCE3B/C indel is likely a derived rather than
an ancestral allele, as the deletion has not been reported in
non-human primate genomes. In addition, the frequency of
www.jidonline.org 2385
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the indel is only 37% in African populations, but it is be-
tween 62 and 64% in East-Asian, South-Asian, American,
and European populations (Bassaganyas et al., 2013; 1000
Genomes Project Consortium et al., 2010). This may
possibly indicate a selective advantage in out-of-Africa pop-
ulations. In view of the antimicrobial activity of LCE3 pro-
teins, the deletion could cause a different antimicrobial
shield in the epidermis. In wt/wt individuals (AA genotype),
LCE3A is not expressed in normal skin, and also the expres-
sion levels of LCE3B/C are also very low or absent. LCE3B/C-
del thus causes the LCE3A gene to be expressed at significant
levels in the normal skin of these individuals (Figure 1b). The
loss of LCE3B/C would not have a noticeable effect in normal
skin, as they were not expressed anyway. The net result of the
indel would be a quantitatively (and possibly qualitatively)
different epidermal host defense repertoire. Speculatively,
this could provide an evolutionary benefit and hence favor
the spread of LCE3B/C-del. An increased risk to develop
psoriasis could be regarded as the evolutionary cost of having
this stronger antimicrobial shield in the epidermis and oral
cavity.

As there is an epistatic interaction with HLA*C06:02 (Tsoi
et al., 2012), LCE3B/C-del could alter the self-peptide profile
of the skin by altering the balance of LCE3A self-peptides,
compared with LCE3B and LCE3C. It could also alter the
cutaneous microbiome in such a way as to promote the
survival and colonization of taxa that elicit an HLA*C06:02-
restricted response. A precedent comes from a recent
microbiome study showing that filaggrin deficiency in ich-
thyosis vulgaris patients causes marked changes in the bac-
terial species composition (Zeeuwen et al., 2016).
Microbiome studies on psoriasis have been performed, and
shifts in microbiome composition have been reported, but
unfortunately none of these studies have included the host
HLA*C06:02 and LCE3B/C-del genotypes. In addition to
psoriasis, the LCE3B/C-del has been associated with different
other diseases, including lupus (Lu et al., 2011) and rheu-
matoid arthritis (Docampo et al., 2010); our findings will
provide further insights for the causal mechanism of this lo-
cus to the associated autoimmune disorders. Clearly, future
studies should aim to establish the effects of LCE3B/C-del on
the tissue microbiome, and their potential effects on
HLA*C06:02-dependent immune processes that lead to
disease.

In conclusion, our study establishes two findings regarding
functional genomics of the psoriasis risk factor LCE3B/C-del.
First, we show that LCE3B/C-del, a risk allele for psoriasis, is
significantly associated with the elevated expression of the
upstream LCE3A gene in human skin. Secondly, we have
uncovered a hitherto unknown antibacterial function of the
proteins encoded by these three genes of the LCE3 family.
Overall, these findings suggest a central role for LCE3A in
epidermal host defense and LCE3B/C-del-mediated psoriasis
risk.

MATERIALS AND METHODS
Quantitative trait loci analysis of skin biopsies

All subjects involved in this study provided written informed consent

according to the Helsinki Guidelines and approved by the Institu-

tional Review Board of the University of Michigan Medical School.
Journal of Investigative Dermatology (2017), Volume 137
To evaluate the associations between the LCE3B/C-del and expres-

sion traits in the EDC region (between 151.5 and 154 Mb of chro-

mosome 1), we utilized our RNA-seq cohort for psoriasis (Tsoi,

2014; Tsoi et al., 2015a) to measure the gene expression levels in

NN, PN, and PP skin samples, respectively. Most of the samples in

the RNA-seq cohort were genotyped in our Exomechip cohort.

Altogether 80 nonpsoriatic controls and 92 psoriatic patients with

both genetic and expression data were included, with 27 of the

patients also providing expression data for PN skin. The samples and

data processing procedures for the RNA-seq data were described

previously (Li et al., 2014; Tsoi et al., 2015a). Briefly, we employed

Tophat and Cufflink to align reads and estimate expression levels,

respectively. We included in the expression quantitative trait loci

analysis only genes in the EDC region (chromosome 1: 151.5e154

Mb) that were expressed in at least 20% of the samples in the

condition being studied (i.e., NN, PN, or PP skin). For each

expression trait, we removed expression outliers (i.e., three times the

interquartile range smaller than the lower quartile or three times the

interquartile range larger than the upper quartile), and we further

performed inverse normal transformation on each gene’s expression

values. Genetic marker rs4112788 has been reported to be a close

proxy of LCE3B/C-del (de Cid et al., 2009), and it was genotyped in

the Exomechip cohort; therefore, we used this single nucleotide

polymorphism as a surrogate for the deletion and correlated its ge-

notypes with expression traits using a linear model. The expression

quantitative trait loci analysis was performed for NN, PN, and PP

skin separately.

LCE3B/C-del genotyping of keratinocytes used for in vitro
analyses

All subjects involved in this study were healthy (no skin diseases)

and provided written informed consent according to the Helsinki

Guidelines and approved by the local Medical Ethics Committee in

The Netherlands (CMO Regio Arnhem-Nijmegen, The Netherlands).

Keratinocytes were isolated and genotyped for their LCE3B/C-del

status as previously described (de Cid et al., 2009). The nondeletion

allele (i.e., containing LCE3B and 3C) is designated as wt. The

deletion allele is designated del. Genotypes are referred to as wt/wt,

del/wt, and del/del.

3D reconstructed epidermis

3D reconstructed epidermis was generated as described previously

(Niehues et al., 2017). To model the response of Th1 or Th17 T cells,

combinations of cytokines were added into the medium during days

5e8 of the air-liquid interface culture (Th1 mix: 10 ng/ml IL-1a, 0.5
ng/ml tumor necrosis factor-1a, 250 U/ml IFN-g; Th17 mix: 50 ng/ml

IL-17, 50 ng/ml IL-22; Preprotech, Rocky Hill, NJ).

Quantitative real-time PCR

RNA isolation, cDNA synthesis, quantitative PCR analysis, and

primer design were performed as described previously (Bergboer

et al., 2011; Zeeuwen et al., 2008) (Supplementary Table S3 on-

line). Target gene expression was normalized to the expression of the

housekeeping gene human acidic ribosomal phosphoprotein P0

(RPLP0). The DDCt method was used to calculate relative mRNA

expression levels (Livak and Schmittgen, 2001).

Statistics

Statistical analysis of quantitative PCR data was performed on DCt
values using commercially available software (IBM, SPSS Statistics

22). Repeated measures analysis of variance, followed by Bonferroni
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post hoc testing, was performed. P < 0.05 was considered statisti-

cally significant.

Immunohistochemistry

3D reconstructed epidermis was formalin-fixed and processed for

routine histology. Paraffin sections (6 mm) were stained with anti-

bodies using an indirect immunoperoxidase (Vectastain, Vector

Laboratories, Burlingame, CA) or immunofluorescence technique.

Details of antibodies are presented in Supplementary Table S4

online.

Transepidermal water loss measurement

Transepidermal water loss was determined according to the

condenser-chamber method (Aquaflux AF200, Biox Systems, Lon-

don, UK), as described before (Niehues et al., 2017).

In vitro outside-in dye penetration

Lucifer yellow (1 mM) (Sigma Aldrich) was added to the upper

chambers of 3D reconstructed epidermis in 12-well dishes for 1

hour. Immunohistological sections were counterstained with DAPI

(Boehringer Mannheim) and assessed with fluorescence microscopy

for Lucifer yellow penetration. Validation of this model is described

in (Niehues et al. 2017).

Hydrocortisone diffusion analysis

SC isolation was performed according to the procedure as described

earlier (van Smeden et al., 2011; Nugroho et al., 2006). In short, SC

was isolated from ex vivo skin or 3D epidermal equivalents and used

in the diffusion setup as described previously (Mojumdar et al.,

2014) using 0.34 mg/ml hydrocortisone in acetate buffer (pH 5.0)

as diffusion fluid with 2e2.5 ml/h flow speed. Samples were

collected for a period of 15 hours, with a sampling time of 60

minutes. Hydrocortisone content was analyzed by ultra performance

liquid chromatography (Acquity UPLC-UV system, Milford, MA) at

243 nm and analysis was performed using Masslynx v4.1 for peak

integration, calculation of the concentration, and flux determination,

which is represented as flux in mg/cm2/h.

Expression and synthesis of LCE proteins

The cloning of LCE genes has been described previously (Niehues

et al., 2016). LCE fusion proteins of glutathione S-transferase were

produced according to standard procedures (Frangioni and Neel,

1993). Fusion-proteins were thrombin-cleaved to liberate the LCE

protein from glutathione S-transferase. LCE3B-glutathione S-trans-

ferase fusion protein did not show any antibacterial activity, but after

glutathione S-transferase removal, the LCE protein clearly displayed

antimicrobial activity. As pure LCE proteins were difficult to obtain,

most likely due to their extremely high cysteine content, LCE3A,B,C

proteins were synthesized by solid phase peptide synthesis, purified

to 85e90% purity by reverse-phase HPLC and characterized by

electrospray mass spectroscopy (Pepmic, Suzhou, China). LCE pro-

teins were delivered in a reduced form. Reducing agents and other

low molecular weight components were removed by spin column

dialysis (Amicon Ultra Centrifugal Filters 3K, Merck Millipore, Bill-

erica, MA), and LCE proteins were extensively dialyzed against 10

mM sodium phosphate buffer (pH 7.4).

Bacteria culture

Diverse bacterial strains were grown on Columbia agar with 5%

sheep blood (Becton, Dickinson), and single colonies were used to

inoculate cultures in brain heart infusion medium (Mediaproducts

BV, Groningen, The Netherlands) overnight at 37 �C. Bacterial cul-
tures were diluted 102 times in brain-heart infusion medium and
allowed to grow for another 2.5 hours to reach exponential growth

(except for Propionibacterium acnes). For strains and specifications

of all bacterial strains, see Supplementary Table S2.

Antimicrobial assay

Bacteria were harvested from exponential growth cultures by

centrifugation (2,100g, 5 minutes), washed with sodium phosphate

buffer, and resuspended in sodium phosphate buffer at a concen-

tration of 104e105 colony forming units/ml. Bacterial suspensions

were exposed to LCE peptides in an assay volume of 100 ml, for 2
hours at 37 �C in a 96-well microplate (Greiner Bio-one,

Kremsmünster, Austria). The suspensions were serially diluted in

steps of 10, and 10 ml of each dilution was plated on 5% sheep blood

containing Columbia agar plates overnight at 37 �C. Antimicrobial

effects were determined by counting colony forming units.
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